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Abstract. Let K be a finite extension of Qp, and choose a uniformizer
π ∈ K . Choose πn+1 := pn

√
π such that πpn+1 = πn, and put K ∞ :=⋃

n
K (πn+1). We introduce a new technique using restriction to Gal(K /K ∞)

to study deformations and mod p reductions in p-adic Hodge theory. One of
our main results in deformation theory is the existence of deformation rings
for Gal(K /K ∞)-representations “of height 6 h” for any positive integer h,
and we analyze their local structure. Using these Gal(K /K ∞)-deformation
rings, we give a different proof of Kisin’s connected component analysis of flat
deformation rings of a certain fixed Hodge type, which we used to prove the
modularity of potentially Barsotti-Tate representations. This new proof works
“more uniformly” for p = 2, and does not use Zink’s theory of windows and
displays.

We also study the equi-characteristic analogue of crystalline representa-
tions in the sense of Genestier-Lafforgue and Hartl. We show the full faith-
fulness of a natural functor from semilinear algebra objects, so-called local
shtukas, into representations of the absolute Galois group of a local field of
characteristic p > 0. We also obtain equi-characteristic deformation rings for
Galois representations that come from local shtukas, and study their local
structure.

Key Words: Norm fields, representations of finite height, integral p-adic
Hodge Theory, mod p crystalline representations, local Galois deformation
theory, equi-characteristic analogue of Fontaine’s theory, local shtukas, Hodge-
Pink structures.
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CHAPTER 1

Introduction

1.1. Motivation and overview

1.1.1. p-adic local Galois representations. Since the pioneering work of Wiles
on the modularity of semi-stable elliptic curves overQ, many classes of 2-dimensional
(mod p or p-adic) global Galois representations are known to “come from” modu-
lar forms. One of the main difficulties of proving modularity lies in the study of
local deformation problems with various p-adic Hodge theory conditions, for which
one needs to understand Galois-stable Zp-lattices in (potentially) semi-stable p-
adic representations and their reductions mod pn. On the other hand, “integral
p-adic Hodge theory” is much more delicate than “classical” p-adic Hodge theory,
which makes it hard to study deformations satisfying various p-adic Hodge theory
conditions.

This paper introduces a new technique of using the norm fields to study defor-
mations and mod p reductions in p-adic Hodge theory, which is explained below.
Let K /Qp be a finite extension. Choose a uniformizer π ∈ oK , and consider an
infinite Kummer-type extension K ∞ := K ( p∞

√
π). We put GK := Gal(K /K )

and GK ∞ := Gal(K /K ∞). Kisin [Kis06] showed that the restriction to GK ∞

of a semi-stable GK -representation with Hodge-Tate weights in [0, h] is so-called
a GK ∞-representation “of height 6 h.”1 The precise definition will be given later
in Definition 5.2.8. The point is that integral theory for GK ∞-representations “of
height 6 h” is much simpler than integral p-adic Hodge theory, and that we lose no
information by restricting crystalline GK -representations to GK ∞ .2 See §2.4 for a
summary of Kisin [Kis06].

In order to study (or even, to define) deformations “of height 6 h” one needs
to define and study torsion representations “of height 6 h,” which is carried out
in Part II of this paper. One of the main results of this paper is the existence of
universal GK ∞-deformation rings “of height 6 h” for any positive integer h:

Theorem (11.1.2). Let F be a finite extension of Fp and let ρ̄∞ be an F-
representation of GK ∞ of finite dimension. Then there exists a complete local
noetherian W (F)-algebra R2,6h

ρ̄∞ with residue field F and a framed deformation of
ρ̄∞ over R2,6h

ρ̄∞ which is universal among all the framed deformations of ρ̄∞ with
“height 6 h.” If EndGK∞

(ρ̄∞) ∼= F then there exists a complete local noetherian

1Later in this paper, we use the terminology P-height instead of height where P(u) is an
Eisenstein polynomial over the maximal unramified subextension K 0 of K such that P(π) = 0.
This is to avoid confusion with the analogous notion of height which uses the p-adic cyclotomic
extension instead of an infinite Kummer-type extension.

2There is a semi-stable analogue of this statement. Roughly speaking, it says that by re-
stricting the GK -action of a semi-stable representation to GK∞ , we only lose the monodromy
operator of the corresponding filtered (ϕ,N)-module.

5



6 1. INTRODUCTION

W (F)-algebra R6h
ρ̄∞ with residue field F and a deformation of ρ̄∞ over R6h

ρ̄∞ which
is universal among all the deformations of ρ̄∞ with “height 6 h.”

The existence of such GK ∞-deformation rings is surprising because the usual
‘unrestricted’ GK ∞-deformation functor has a infinite-dimensional tangent space
(so ‘unrestricted’ GK ∞ -deformation rings do not exist in the category of complete
local noetherian rings); see §11.7.1 for the proof of this claim. Note that GK ∞ does
not satisfy the cohomological finiteness condition that is usually used to prove the
finite-dimensionality of the tangent space of interesting Galois deformation functors.

Let ρ̄ be a finite-dimensional F-representation of GK such that ρ̄|GK∞
∼=

ρ̄∞. Then “restricting the GK -action to GK ∞” defines natural maps from R2,6h
ρ̄∞

constructed in the above theorem into crystalline/semi-stable framed deformation
rings3 of ρ̄ with Hodge-Tate weights in [0, h]. (If EndGK∞

(ρ̄∞) ∼= F then we obtain
the same result for deformation rings without framing.) By using these maps and
analyzing the structure of GK ∞ -deformation rings constructed above, we obtain
the following results on crystalline/semi-stable deformation rings.

• The “ordinary” condition cuts out a union of connected components in
(the Qp-fiber of) a crystalline or semi-stable (framed) deformation ring
with Hodge-Tate weights in [0, h] (where the crystalline and semi-stable
deformation rings are as defined by Kisin [Kis08] and Tong Liu [Liu07]).
This is done in Proposition 11.4.18.

• Assume dimF ρ̄ = 2. Let R2,v
fl be the quotient of the flat framed deforma-

tion ring with the property that the determinant of the action of the inertia
group IK is equal to the p-adic cyclotomic character4. Kisin gave a com-
plete description of the connected components of SpecR2,v

fl [ 1
p ], which is

used as the main technical ingredient for the proof of his modularity lifting
theorem [Kis09b, Kis09a]. Assuming p > 2, the author gives a new proof
of Kisin’s description of the connected components of SpecR2,v

fl [ 1
p ], which

was crucially used in Kisin’s modularity lifting theorem [Kis09b, Kis09a].
The idea is to “resolve” SpecR2,v

fl using the Breuil-Kisin classification of
finite flat group schemes. This paper presents another method to resolve
SpecR2,v

fl using GK ∞-deformation rings, so we eliminate the Bruil-Kisin
classification from the proof of Kisin’s modularity theorem. The virtue of
this new method is that it works more uniformly in the case p = 2 (af-
ter minor modifications), while the Breuil-Kisin classification of finite flat
group schemes is quite problematic when p = 2. Kisin needs a separate
paper [Kis09a] to prove the classification of connected finite flat group
schemes over a 2-adic base, which uses Zink’s theory of windows and dis-
plays, and the full proof of Serre’s conjecture by Khare-Wintenberger uses
the modularity of 2-adic Barsotti-Tate liftings. See §11.6 for more details.

We digress to record the following result of separate interest, which is obtained
as a byproduct of the study of torsion representations “of height 6 h.” Observe
that a semi-simple mod p representation of GK can be uniquely recovered from
its restriction to GK ∞ . Indeed, since any semi-simple mod p representation of

3A crystalline/semi-stable (framed) deformation ring “over Qp” was defined by Kisin [Kis08],
and later Tong Liu [Liu07] defined it without inverting p We will use Tong Liu’s definition, which
recovers Kisin’s ring after inverting p.

4This condition can be thought of as fixing a p-adic Hodge type.
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GK is tame, this assertion follows from the fact that the extension K ∞/K does
not have any non-trivial tame subextension. By studying restrictions to GK ∞ , we
thereby obtain an explicit description of mod p crystalline characters with Hodge-
Tate weights in [0, h] for any positive h. (See Proposition 9.4.8 for the case when
the residue field of K is big enough. The author plans to generalize this results to
accommodate “descent data for a tame extension” in a subsequent work.) Even the
case h = 1 (i.e., finite flat mod p characters) is interesting. Savitt [Sav08] obtained
the same result for the case p > 2 and h = 1 via elaborate computations with Breuil
modules, but the author’s argument is much simpler and works in the case p = 2
as well (in addition to allowing any h > 1).

This result is a first step towards understanding the reduction mod p of crys-
talline GK -representations up to semisimplification, since any absolutely irreducible
mod p representation of GK arises as an “unramified induction” of a character.

1.1.2. Equi-characteristic analogue. There exists an equi-characteristic “ana-
logue” of Kisin’s theory [Kis06], which historically came first as initiated by Genestier-
Lafforgue [GL] and Hartl [Har10, Har09] in an attempt to find an equi-characteristic
analogue of Fontaine’s theory of crystalline representations. To explain this we first
introduce some notations. We fix a formal power series ring Fq[[π0]], which will play
the role of Zp (and π0 will play the role of p). We also fix a finite field k, a com-
plete discrete valuation ring oK ∼= k[[u]] with the fraction field K ∼= k((u)) and a
local map Fq[[π0]] → oK which makes oK a finite Fq[[π0]]-module. In particular,
this specifies an embedding Fq ↪→ k. Let GK denote the absolute Galois group
for K. Genestier-Lafforgue and Hartl studied Fq[[π0]]-representations of GK which
can be viewed as analogues of crystalline representations, and their theory bears
an incredible resemblance with the class of p-adic GK ∞ -representations “of finite
height.”

Before we discuss the work of Genestier-Lafforgue [GL] and Hartl [Har10,
Har09], let us explain why their theory can be regarded as an equi-characteristic
analogue of Fontaine’s theory of crystalline representations. (The idea presented
below is also found in Hartl’s work [Har10, Har09].) If one wants to find a class of
Fq[[π0]]-representations of GK which can be viewed as an “analogue” of crystalline
representations (or Barsotti-Tate representations), then the natural candidate is
the π0-adic Tate module of a “π0-divisible group” G over oK . But it turns out
that in order to get a nice theory we need more assumptions on the π0-divisible
groups. We say that a π0-divisible group G is of “finite height”5 if the Verschiebung
of G vanishes6 and the induced Fq[[π0]]-action on the Lie algebra satisfies a certain
natural assumption. We say a GK-representation over Fq[[π0]] is of finite height if
it is isomorphic to the π0-adic Tate module of a π0-divisible group of finite height.
See [Har09, §3.1] or §7.3 of this paper.

An amusing fact is that whereas the p-adic Tate module of a Barsotti-Tate
group always has its Hodge-Tate weights in [0, 1], the π0-adic Tate module of a

5Hartl calls it a divisible Anderson module in [Har09, §3.1]. A π0-divisible formal Lie group
of height 6 1 is also known as a Drinfeld formal Fq [[π0]]-module, and these have been widely
studied since being introduced by Drinfeld in [Dri76].

6The π0-divisible group associated to a Drinfeld module or to any π0-divisible formal Lie
group has vanishing Verschiebung, so this is not a restrictive assumption. See [Gen96, Ch.I, Prop
2.1.1] for the case of π0-divisible formal Lie groups.
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π0-divisible group of finite height can have any non-negative “weights.” To illus-
trate, consider the Lubin-Tate character χLT of GK , which can be thought of as a
representation of “weight 1.” Then for any positive number h, the character χhLT
comes from the π0-adic Tate module of a certain 1-dimensional π0-divisible formal
Lie group over oK of “height h.” It is reasonable to regard GK-representations
of finite height as the equi-characteristic analogue of crystalline representations of
non-negative Hodge-Tate weights.

The “Dieudonné-type classification” for finite flat group schemes with triv-
ial Verschiebung [SGA, 3, Exp VIIA, 7.4]7 induces a classification of π0-divisible
groups of finite height. This result was first announced by Hartl in [Har05], and
is surely well-known to experts. Since the proof was not available to the author,
we work out a proof in §7 of this paper.8 The Frobenius modules which occur
as the “Dieudonné module” of such π0-divisible groups were studied by Genestier-
Lafforgue [GL] and Hartl [Har10, Har09]9, and their theory exhibits many features
that are remarkably similar to Kisin’s theory [Kis06] of Frobenius S-modules which
classify GK ∞-representations “of finite height.”

Although GK-representations of finite height have properties akin to those of
GK ∞ -representations of finite P-height, it still makes sense to regard them as the
equi-characteristic analogue of crystalline representations of the full Galois group
GK (with non-negative Hodge-Tate weights) for the following reason. In a field of
characteristic p, adjoining a pth root induces a purely inseparable extension and
so does not change the absolute Galois group. Therefore the gap between GK and
the absolute Galois group of any infinite Kummer-type extension K[ q∞

√
u] collapses

since char(K) = p > 0.
The analogy between Kisin’s theory and its equi-characteristic analogue is fur-

ther strengthened by the following theorem proved by the author, which is also a
very useful tool in applying the theory of Genestier-Lafforgue and Hartl to Galois
representations.

Theorem (5.2.3). The π0-adic Tate module functor from the category of π0-
divisible groups over oK of finite P-height to the category of lattice Fq[[π0]]-representations
of finite height is fully faithful.

The statement of the above theorem is clearly reminiscent of Tate’s theorem
of the full faithfulness of the p-adic Tate module functor on Barsotti-Tate groups
[Tat67, §4.2]. For the proof, we use the “Dieudonné-type classification” to translate
the theorem into a statement about Frobenius modules. The proof is completely
analogous to that of [Kis06, Proposition 2.1.12], except the following two modifica-
tions. First, we need to work with “isocrystals with weakly admissible Hodge-Pink
structures”10 instead of weakly admissible filtered isocrystals (or weakly admissi-
ble filtered (ϕ,N)-modules). Second, we need to eliminate the use of logarithmic
connections over the open unit disk from the proof of [Kis06, Proposition 2.1.12],
which have no good equi-characteristic analogue.

7For readers’ convenience, we reproduce the proof in §7.2 of this paper.
8The classification of Drinfeld formal Fq [[π0]]-modules (i.e., π0-divisible formal Lie groups of

height 6 1) is also proved in [Gen96, §1].
9Such Frobenius modules are exactly the same as effective local shtukas in [GL, Har10, Har09]

(since oK is noetherian). See Proposition 7.1.9 of this paper.
10See Definition 2.3.1 and §2.3.7 for the definition.
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Our modified argument works verbatim in the p-adic case and thus gives a vari-
ant of Kisin’s proof of the p-adic version of Theorem 5.2.3; i.e., [Kis06, Proposition
2.1.12]. In particular, we construct an analogue of weakly admissible Hodge-Pink
structures in the Zp-coefficient case, and this is often useful. For example, one
can give an explicit criterion, in terms of such “mixed characteristic” Hodge-Pink
structures, to figure out whether an explicitly given M[ 1

p ] ∈ ModS(ϕ)[ 1
p ] comes

from a weakly admissible filtered isocrystal. See Remark 3.2.4 and Proposition ??
of this paper.

Thanks to the similarity between Zp-linear representations of GK ∞ “of finite
height” and Fq[[π0]]-linear representations of GK of finite height, any discussion
below for one adapts to the other. In particular, the same proof of Theorem 11.1.2
gives the existence of the universal deformation and framed deformation rings in the
equi-characteristic setting, even though GK has infinite p-cohomological dimension
in the equi-characteristic case.

1.2. Structure of the Paper

Since most of the results and proofs for p-adic GK ∞-representations “of finite
height” and their equi-characteristic analogues are completely parallel, in §1.3 we
give conventions to simultaneously discuss both cases simultaneously.

In Part I, we introduce various semilinear algebra objects which are used in the
study of p-adic GK ∞ -representations “of finite height” and their equi-characteristic
analogues, and settle the relations between them (e.g. equivalences of categories).
The following two results are the main theorems of Part I, which are crucially
used in the study of deformations. First, we give another proof of the theorem of
Genestier-Lafforgue [GL, Théorème 3.3] which asserts the equivalence of categories
between the category of local shtukas and the category of isocrystals with weakly
admissible Hodge Pink structure. The argument presented in this paper is more
akin to arguments of Kisin [Kis06, §1.3] and also proves the analogous statement
in the classical p-adic setting. (In the p-adic setting, “Kisin modules,” or (ϕ,S)-
modules of finite height, play the same role as effective local shtukas. See Definitions
2.2.1 and 2.3.1 for the relevant definitions.) Second, we show the full faithfulness
of natural functors from various categories of semi-linear algebra objects into the
category of suitable Galois representations (Theorem 5.2.3). The p-adic case of this
theorem was proved by Kisin [Kis06, Proposition 2.1.12].

In §2, we define various semilinear algebra objects which are used to study p-
adic GK ∞ -representations “of finite height” and their equi-characteristic analogues.
In §2.4, we outline the results of Kisin [Kis06] in order to “preview” the discussions
to follow.

In §3, we construct equivalences of categories between the category of isocrys-
tals with “effective” Hodge-Pink structures and the category of certain vector bun-
dles over the open unit disk with Frobenius structure. (We will define these objects
in §2 for both the p-adic and equi-characteristic cases.) This section is “modeled”
after [Kis06, §1.2], except that we work with Hodge-Pink structures instead of
filtered (ϕ,N)-modules.

In §4, we show the equivalence between the weak admissibility of an isocrystal
with Hodge-Pink structure and the property that the corresponding vector bundle
with Frobenius structure is pure of slope 0 in the sense of Kedlaya (in the p-adic
setting) and Hartl (in the equi-characteristic setting). The key ingredient is the
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theory of slopes, which is due to Kedlaya in the p-adic case and due to Hartl in
the equi-characteristic case. This section is “modeled” after [Kis06, §1.3] except
that we have to work solely with the Frobenius structure and eliminate the use of
logarithmic connections on vector bundles over the open unit disk.

In §5.1, we review Fontaine’s theory of étale ϕ-modules and develop its equi-
characteristic analogue, which allows us to define natural functors from various
categories of Frobenius modules we study into the category of suitable Galois rep-
resentations. In §5.2, we finally prove the full faithfulness of these functors, using
all the results in the previous sections.

In §6, we prove the equi-characteristic analogue of Kedlaya’s matrix factoriza-
tion lemma [Ked04, Prop 6.5] which was used in §4. This section could be replaced
by the following single sentence: the same argument that proves the p-adic state-
ment as appears in [Ked04, §6] also proves the equi-characteristic analogue.

The main result of §7 is the equivalence of categories between the category
“effective local shtukas”11 and the category of π0-divisible groups of finite height
(Theorem 7.3.2). This result serves as an equi-characteristic analogue of the Breuil-
Kisin classification of Barsotti-Tate groups [Kis06, Theorem 2.2.7], which is also
stated as Theorem 2.4.11(1) in this paper. This result was announced by Hartl
[Har05], but since the proof was not available to the author, we work out the proof
here.

Part II develops the theory of torsion GK ∞-representations of finite height
and its equi-characteristic analogue. In §8, we introduce torsion Frobenius modules
which give rise to torsion Galois representations. In §9, we prove various results
which play the same role in the study of deformations “of finite height” as Ray-
naud’s theory [Ray74] does in the study of flat deformations. As a byproduct,
we obtain an explicit description of mod p crystalline GK -characters by studying
mod p characters of GK ∞ with finite height. See Proposition 9.4.8 for the precise
statement.

In Part III, we apply all of the preceding results to study of deformations “of
height 6 h.” Since we work with the language of deformation groupoids instead
of deformation functors, we provide a section (§10) to recall definitions and prove
some basic properties that are needed. The discussion would be familiar to experts
in stacks, except that we do not use a Grothendieck topology12.

In §11.7, we show the existence of (framed) deformation rings for GK ∞-representations
“of height 6 h” as well as for their equi-characteristic analogue (Theorem 11.1.2).
In §11.1, we imitate the discussion in [Kis09b, (2.1)] to construct an analogue of
Kisin’s moduli space of finite flat group schemes over the (framed) deformation rings
“of height 6 h.” Here, we use the moduli of “S-lattices of height 6 h” in place of
finite flat group schemes. In §11.2, we show that this auxiliary space we constructed
over a deformation ring “of height 6 h” has generic fiber isomorphic to the generic
fiber of the deformation ring (Proposition 11.2.6). This result crucially uses the full
faithfulness of the natural functors from various categories of ϕ-modules into Galois

11The definition we use (Definition 7.1.1) slightly differs from Hartl’s, which is the reason
why this term is in quotes: we modify the definition in order to be able to show the equivalence
of categories with π0-divisible groups. If either the base is locally noetherian or the image of π0
is locally topologically nilpotent in the base, then our definition and Hartl’s definition coincide
(Proposition 7.1.9).

12Or rather, one can view a category cofibered in groupoids as a stack by giving the “silly”
Grothendieck topology on the base where only isomorphisms are coverings
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representations (Theorem 5.2.3). Using this, we show that the generic fibers of de-
formation rings of “height 6 h” are formally smooth (Corollary 11.2.10). In §11.3,
we define “types” on the generic fiber of a (framed) deformation ring “of height 6 h”
and show that (under a suitable “separability” assumption which is automatic in
the p-adic case) fixing a type cuts out a equi-dimensional union of connected com-
ponents in the generic fiber. We also compute the dimension of the dimension in
terms of a fixed “type.” The discussion of this section is akin to [Kis08, §3], except
that we work with isocrystals with weakly admissible Hodge-Pink structure instead
of weakly admissible filtered (ϕ,N)-modules.

The remaining sections are devoted to the study of connected components
of the generic fibers of various (framed) deformation rings. In §11.4, we show
that the “ordinary” condition cuts out a union of connected components in the
generic fiber of a (framed) deformation ring “of height 6 h” for any positive h, and
in the case of 2-dimensional representations we give a complete description of all
connected components with a certain fixed “type.” In the p-adic case we use the
natural map into crystalline/semi-stable (framed) deformation rings to show that
the “ordinary” condition cuts out a union of connected components in the Qp-fiber
of crystalline/semi-stable (framed) deformation rings.

In §11.5, for 2-dimensional representations (under a suitable “separability” as-
sumption which is automatic in the p-adic case) we determine the connected com-
ponents of (framed) deformation rings “of height 6 1” and of a certain fixed “type,”
using Deligne-Pappas local models for Hilbert-Blumenthal modular surfaces (and
its equi-characteristic analogue). Since the “moduli of finite flat group schemes”
and the “moduli of S-lattices of height 6 1” are defined in a very similar man-
ner, Kisin’s argument [Kis09b, (2.4), (2.5)] applies with few modifications to show
that if p > 2 then “restricting to GK ∞” induces an isomorphism from the Qp-fiber
of a framed GK ∞-deformation ring “of height 6 1” to the Qp-fiber of a framed
flat deformation ring; we explain this in §11.6. The point is that this allows us
to reduce the connected component analysis of flat deformation rings to that of
GK ∞-deformation rings “of height 6 1,” which was carried out in §11.5. For the
case p = 2, we prove a weaker statement which is good enough for the application
to Kisin’s modularity theorem for 2-adic potentially Barsotti-Tate representations
[Kis09a]. The proof uses Breuil’s theory of strongly divisible modules (§12). We
use strongly divisible lattices to produce some Zp-lattice crystalline representations
with Hodge-Tate weights in [0, 1] whose restriction to GK ∞ is naturally isomorphic
to a specified one.

Acknowledgement. The author deeply thanks Brian Conrad for his guidance.
The author especially appreciates his careful listening of my results and numerous
helpful comments. The author would also like to thank Gebhard Böckle and Urs
Hartl for various helpful comments. The author thanks Tong Liu for providing his
idea to prove Corollary 12.2.6 when p = 2.

1.3. Notations/Definitions

We define a σ-ring to be a pair (R, σR) where R is a ring and σR : R → R is
a ring endomorphism. For example (R, idR) is a σ-ring. We say (R, σR) is σ-flat if
σR is flat. For two σ-rings (R, σR) and (R′, σR′), we say that (R′, σR′) is defined
over (R, σR) if R′ is an R-algebra and σR′ is σR-semilinear. In this paper, σR
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usually has an interpretation as a Frobenius endomorphism (or a partial Frobenius
endomorphism) on R.

Let o0 be either Zp or Fq[[π0]]. We set π0 := p if o0 = Zp. Let F0 := o0[ 1
π0

]
be the fraction field; i.e., F0 = Qp or F0 = Fq((π0)). We view them as σ-rings by
setting σ := id. All the σ-rings (R, σR) that appears in this paper are defined over
(o0, id). We let q denote the size of the residue field of o0, so q = p if o0 = Zp.

Let K be a complete discretely valued field of characteristic p. Let oK be its
valuation ring and let k be its residue field. We assume that k is perfect if o0 = Zp,
and that k has a finite p-basis and contains Fq if o0 = Fq[[π0]]; i.e., k is a finite-
dimensional kp-vector space. In both cases, the qth power map on k (and hence, on
K) is finite. We fix a uniformizer u ∈ oK , so we often identify oK with k[[u]]. We
fix a separable closure Ksep and set GK := Gal(Ksep/K). We would like to study
a certain class of GK-representations over o0, F0, or finite algebras thereof.

1.3.1. Motivating examples. We first describe some motivating examples of
GK-representations with p-adic and equi-characteristic coefficient. By letting o0
denote either Zp or Fq[[π0]] and developing a consistent set of notations for each
choice, we shall study p-adic and equi-characteristic GK-representations simultane-
ously.
1.3.1.1. The case o0 = Fq[[π0]]. Let us fix an injective local map o0 ↪→ oK . We
are interested in o0-linear representations of GK which are obtained as the π0-adic
Tate modules of a certain class of π0-divisible groups over oK , namely “π0-divisible
groups of finite height” (Definition 7.3.1).
1.3.1.2. The case o0 = Zp. Let K be a finite extension ofQp, and K 0 the maximal
unramified subfield of K (i.e., K 0 ∼= W (k)[ 1

p ] where k is the residue field of K ).
Let us fix a uniformizer π ∈ oK and an Eisenstein polynomial P(u) ∈ oK 0 [u] such
that P(π) = 0. Pick π(n) ∈ oK for n ≥ 0 so that π(0) = π and (π(n+1))p =
π(n). Set K ∞ :=

⋃
n≥0 K (π(n)) as subfields of a fixed algebraic closure K . The

theory of norm fields provides a natural isomorphism GK ∞
∼−→ GK (call norm-field

isomorphism) where K ∼= k((u)). See §1.3.2 below for more discussions, and [Win83]
for a complete exposition on norm fields.

We are interested in a certain class of p-adic representations of GK , which are
called semi-stable representations. Kisin [Kis06] observed that while the study of
GK -stable Zp-lattices in semi-stable representations is very subtle in general, their
GK ∞-stable Zp-lattices are much more accessible.

1.3.2. Norm-field isomorphism. In the case o0 = Zp we give a useful description
of the norm-field isomorphism GK ∞

∼−→ GK , which will be used later in §9.4.
Consider the following ring R := lim←−

xp←x
oK /(p) of characteristic p > 0. By

[Win83, Théorème 4.1.2], R is a complete valuation ring for the valuation vR defined
as follows: for any x := {xn}n>0 ∈ R, define vR(x) := ordπ

(
limn→∞(x̃n)pn

)
where

x̃n ∈ oCK is any lift of xn ∈ oK /(p) ∼−→ oCK /(p). (One can easily check that
the sequence {(x̃n)pn}n always converges in oCK , and its limit is independent of
the choice of lifts x̃n.) We have a natural surjection R � k̄ given by sending
{xn}n>0 ∈ R to x0 mod mK . This surjection has a natural section k̄ → R which
sends α ∈ k̄ to {[αp−n ] mod p}n>0, where [αp−n ] ∈ oCK denotes the Teichmüller
lift of αp−n . We view R a k̄-algebra via this map. Now, consider an element
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π := {π(n) mod p}n≥0 ∈ R, and clearly we have vR(π) = 1. So we obtain a
continuous k-algebra embedding oK ∼= k[[u]] → R via u 7→ π, and we view R as a
complete ring extension of oK by this map. Note that GK continuously acts on R
via its natural action on each factor oK /(p), and the embedding oK ↪→ R is stable
under the GK ∞ -action on the target.

By [Win83, Corollaires 3.2.3, 4.3.4], there exist a natural isomorphism GK ∞
∼−→

GK (called norm-field isomorphism), and a natural oK-isomorphism oCK
∼−→ R

which “respects” the natural actions of GK ∞ on the source and GK on the target
(where GK ∞ and GK are identified via the norm-field isomorphism).

1.3.3. We start with introducing some o0-algebras over which various semilinear
algebra objects shall be defined.
W or oK 0 if o0 = Zp, then W := W (k) is the ring of Witt vectors of

k with the p-adic topology;
if o0 = Fq[[π0]], then W := o0⊗̂Fqk

∼= k[[π0]] with the π0-
adic topology.

K 0 := W [ 1
π0

] the fraction field of W .
S := W [[u]] with the natural o0-algebra structure from the one on W .
oE the π0-adic completion of S[ 1

u ] (i.e., formal Laurent series∑
anu

n with an ∈W , an → 0).
E := oE [ 1

π0
] the fraction field of oE .

Note that oE is a complete discrete valuation ring with π0 generating the max-
imal ideal and the residue field K ∼= k((u)). Thus, oE is a Cohen ring for K if
o0 = Zp. If o0 = Fq[[π0]], then under the identification oK ∼= k[[u]] we have
S ∼= ok[[π0]] ∼= o0⊗̂FqoK . Similarly, we have oE ∼= K[[π0]] ∼= o0⊗̂FqK. In particular,
we are given inclusions oK ↪→ S and K ↪→ oE in the equi-characteristic case.

We define a Frobenius endomorphism σ for each of above rings as follows. If
o0 = Zp, then let σW : W →W be the usual Witt vector Frobenius endomorphism.
If o0 = Fq[[π0]], then define σW by σ(π0) = π0 and σ(α) = αq for all α ∈ k. We
extend it by continuity to S by setting σS(u) = uq, where q = p if o0 = Zp. This
rule defines a unique endomorphism for each of rings defined above, which is finite
and flat. (In the case o0 = Fq[[π0]], we need the assumption that k has a finite
p-basis in order to show that σ is finite.) We always view above rings as σ-rings by
this construction of σ. This σ lifts the usual qth power map modulo π0 and fixes
the image of o0. In other words, all the above σ-rings are defined over (o0, id).

Now, we fix an element P(u) ∈ S which will play an important role throughout
the paper, as follows.

The case o0 = Zp.: We view W [u] as a subring of S. Let P(u) ∈ W [u] be
an Eisenstein polynomial, and let e be the degree of P(u). We normalize
P(u) so that P(0) = p = π0.13 Note that P(u) ≡ p mod u and P(u) ≡ cue
where c ∈W×.

The case o0 = Fq[[π0]].: Fix a nonzero element u0 ∈ mK (or equivalently, fix
a continuous injective Fq-map o0 → oK and let u0 be the image of π0).
Put P(u) := π0 − u0 ∈ S and let e := ordu(u0).

13The definition of Tate objects S(h) (Definition 2.2.6) depends on the choice of a specific
polynomial P(u), not just on the ideal P(u)·S. Our normalization P(0) = p will be used later in
§4.3.6 and §5.2.13.
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Remark 1.3.4 (The case o0 = Fq[[π0]]). We give another interpretation on the
element P(u) := π0 − u0. Within this remark, we give S the mS-adic topology,
and we give the natural valuation topology to o0 and oK . Then we have an isomor-
phism S ∼= o0⊗̂FqoK as a topological Fq-algebra. Now, fix a “structure morphism”
Spf oK → Spf o0 as in §1.3.1.1, and let γ : Spf oK ↪→ Spf S ∼= Spf o0×Spec Fq Spf oK
be the graph morphism. Then, γ is a closed immersion defined by the (closed) ideal
P(u)·S.

Since S/(P(u)) ∼= oK is a ring extension of W which induces the trivial ex-
tension on the residue field, we see that P(u) is a S×-multiple of some Eisenstein
polynomial in u over W with degree e. This explains the notations.

Remark 1.3.5 (The case o0 = Fq[[π0]]). As observed by G. W. Anderson
[And86] and Hartl [Har10], it is good to distinguish two roles of a uniformizer of
o0 by using different notations: a uniformizer π0 of the “coefficient ring” o0 of a
GK-representation (and hence, a uniformizer of W ), and the image u0 of π0 in the
“base ring” oK . To illustrate, let us consider an o0-linear representation coming
from a “π0-divisible group” over oK . Then π0 is an “operator” acting on the π0-
divisible group and u0 is the function on the base scheme. They both act on the Lie
algebra of the π0-divisible group, but a priori they have nothing to do with each
other. The situation is quite different if o0 = Zp. For a p-divisible group G over a
p-adic ring oK , the action of p ∈ Zp on G induces the multiplication by p ∈ oK on
the Lie algebra of G.



Part 1

GK-representations of finite P-height



In Part I, we introduce a rigid-analytic technique to study GK-representations
of finite P-height (in both p-adic and equi-characteristic settings; see Definition
5.2.8). The technique is closely related to Kisin’s work [Kis06] which associates to a
weakly admissible filtered (ϕ,N)-module a certain p-adic differential equation with
Frobenius structure over the open unit disk, which is an analogue of Berger’s work
[Ber07] in the (ϕ,Γ)-module setting. In our setting, we associate a vector bundle
with Frobenius structure (without differential structure) to so-called Hodge-Pink
structures (Definition 2.3.1) which are the replacement for filtered (ϕ,N)-modules.
(See §3 for the construction.) Originally, Hodge-Pink structures were defined by
Pink [Pin97] in the o0 = Fq[[π0]] case, as a “correct” analogue of Hodge structures in
the function field arithmetic. Our technique applies to (equi-characteristic) Hodge-
Pink structures, as well as a p-adic version of Hodge-Pink structure.

The main results of Part I can roughly be described as follows:
(1) a theory of weak admissibility for Hodge-Pink structures (Theorem 4.3.4)
(2) the full faithfulness of various natural functors from categories of semi-

linear algebra objects into GK-representations (Theorem 5.2.3)
The equi-characteristic case of Theorem 4.3.4 was proved by Genestier-Lafforgue
[GL, Théorème 3.3], while the p-adic case is first formulated and proved in this
paper. The p-adic case of the full faithfulnes result (Theorem 5.2.3) is due to Kisin
[Kis06, Proposition 2.1.12].

Lastly in §7, we define the equi-characteristic analogue of Barsotti-Tate groups,
and prove the analogue of the Breuil-Kisin classification of Barsotti-Tate groups
[Kis06, Theorem 2.2.7], which is also stated as Theorem 2.4.11(1) in this paper.
See Theorem 7.3.2 for the precise statement. This result was announced by Hartl
[Har05], but since the proof was not available to the author, we work out the proof
here.

We provide more detailed and technical overview of Part I later in §2.4.12.



CHAPTER 2

Frobenius modules and Hodge-Pink theory

2.1. Rigid-analytic objects

2.1.1. Rigid-analytic rings. We now introduce more notations from rigid-analytic
geometry. We review some background in rigid-analytic geometry in Appendix §6.1,
for the sake of completeness.

We normalize the absolute value | · | on K 0 = FracW and on any algebraic
field extension of it so that |π0| = q−1. (Recall that q is the cardinality of the
residue field of o0.) Let CK 0 be the completion of a fixed separable closure K 0.
Let I ⊂ [0, 1) be a subinterval, and we always assume that all radii of disks and
endpoints of I lie in qQ<0 , even if not stated.

∆ the rigid-analytic open unit disk over K 0 with u as a “coordinate.”
Concretely, its points x satisfy |u(x)| < 1.

∆I the subdomain of ∆ whose points satisfy |u(x)| ∈ I,
where I ⊂ [0, 1) is a subinterval (allowing I = {r}) with endpoints in qQ<0 .

O∆ the ring of rigid-analytic functions on ∆ (or the structure sheaf of ∆).
O∆I

the ring of rigid-analytic functions on ∆I (or the structure sheaf of ∆I).
Concretely, an element of O∆I

is f(u) =
∑
n∈Z anu

n with an ∈ K 0 such that
f(x) converges for any x ∈ CK 0 with |x| ∈ I. We occasionally use the notation
O∆I

to denote the structure sheaf on ∆I – for more detail, see §6.1. We point
out that the construction of O∆I

relies on the fact that K is discretely valued,
since we use a uniformizer u of K. In the case o0 = Fq[[π0]], one can take a differ-
ent approach which allows K to be non-discretely valued (e.g. algebraically closed
complete non-archimedean field); see §2.1.5 for more details.

Fix r ∈ qQ<0 , and put γ := − logq r. Let f(u) =
∑
i∈Z aiu

i be a rigid-analytic
function which converges in ∆[r,r]; i.e., f ∈ O∆[r,r] . Note that O∆[r,r] contains O∆I

if r ∈ I.
‖f‖r The sup-norm on ∆[r,r].Concretely, ‖f‖r := maxi{|ai| ri}.
wγ(f) The additive valuation: wγ(f) := − logq ‖f‖r = mini{v(ai) + γ ·i}.

We recall the following well-known properties of O∆I
, which will be used later.

(1) The ring O∆[0,r] is complete with respect to ‖ · ‖r, hence is a Banach K 0-
algebra. The ring O∆[r,r′] is complete with respect to a submultiplicative
norm max{‖ · ‖r , ‖ · ‖r′}, hence is a Banach K 0-algebra. If I is not closed
then O∆I

is not a Banach algebra, but it is a Fréchet space for the (count-
able family of) norms ‖ · ‖r where r ∈ I ∩ qQ<0 . Concretely, this means
that any sequence {fn} in O∆I

converges if and only if {fn} is Cauchy
with respect to the norm ‖ · ‖r for each r ∈ I ∩ qQ<0 .

(2) The ring O∆I
is a principal ideal domain if (and only if) I is a closed

subinterval. In general, O∆I
does not even have to be noetherian. But

17
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since the base field K 0 is discretely valued, the ring O∆I
is a Bézout

domain for any I; i.e., any finitely generated ideal ofO∆ is principal. (This
follows from the work of Lazard [Laz62].) Finitely presented modules over
a Bézout domain behave like finitely generated modules over a principal
ideal domain. See §6.2.7 for an overview of where these properties come
from, and [Ked04, §2.4] or [Ked05b, §2.9] for more detail about the Bézout
properties.

For f(u) :=
∑
n∈Z anu

n ∈ O∆I
where an ∈ K 0, one can check that g(u) :=∑

n∈Z σK 0(an)uqn ∈ O∆
I1/q

, where I1/q ⊂ [0, 1) is the subinterval whose endpoints
are qth root of the endpoints of I. So we obtain a σK 0-semilinear ring morphism
σ : O∆I

→ O∆
I1/q

by setting σ(f(u)) := g(u). Note that σ is flat because O∆I
is a

Bézout domain and σ makes O∆
I1/q

into a torsion-free O∆I
-module. Furthermore,

one can check that σ is a finite map, granting that the qth power map on k is a finite
map (which we assumed at the very beginning of §1.3). Since we have I = I1/q

when I = [0, 1) or I = (0, 1) (and not otherwise), σ is an endomorphism of O∆ and
O∆(0,1) .

Since σ : O∆I
→ O∆

I1/q
is not K 0-linear but σK 0 -semilinear, it does not give

rise to a morphism ∆I1/q → ∆I in the sense of classical rigid-analytic geometry1.
Instead, we should linearize σ to obtain ∆I1/q → σ∗K 0

∆I the map induced on the
rigid-analytic spaces, where σ∗K 0

∆I is the scalar extension of ∆I under σK 0 in the
sense of [BGR84, §9.3.6]. The geometric map ∆→ σ∗K 0

∆ is not an endomorphism
on ∆, whereas σ is an endomorphism of O∆ (over σK 0). This is not a serious
problem but causes some annoying expository issues. We will avoid using rigid-
analytic geometry when this issue comes up. Alternatively, one may handle this
issue by identifying σ∗K 0

∆ with ∆; in other words, by identifying an Oσ∗
K 0

∆-
module with a sheaf on ∆ where O∆-multiplication has been twisted by σ−1

K 0
(for which we need to assume that k is perfect when o0 = Fq[[π0]]) – under this
identification, σ∆ becomes an endomorphism of ∆ and induces the continuous K 0-
algebra map defined by u 7→ uq on the global sections. We do not take this point
of view.

Definition 2.1.2. The Robba ring R is the rising union of the rings of rigid-
analytic functions on some open annulus with outer radius 1. The bounded Robba
ring Rbd is the rising union of the rings of rigid-analytic functions bounded near
the outer radius. In other words,

R := lim−→
r→1−

Γ(∆[r,1),O∆)

Rbd := lim−→
r→1−

Γ(∆[r,1),O∆)bd,

where Γ(∆[r,1),O∆)bd denotes bounded rigid-analytic functions on ∆[r,1).
The Robba ring R is not noetherian, but is a Bézout domain (being a rising

union of Bézout domains). The subring Rbd is a field with the following discrete
valuation:
(2.1.2.1) vRbd(f) = lim

γ→∞
wγ(f), for f ∈ Rbd,

1This issue is resolved if we are willing to use Berkovich spaces, which has better functorial
properties.
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where wγ(f) := − logq ‖f‖r is the additive valuation.
Let øRbd be the valuation ring. One can check that π0 ∈ øRbd is a uniformizer,

k((u)) is the residue field, and oR̂bd
∼= oE where the completion on the left-hand side

is with respect to the π0-adic topology. We also remark that σ∆ : O∆I
→ O∆

I1/q

induces “Frobenius” endomorphisms of R, Rbd, and øRbd .
It is immediate that:

(2.1.2.2) S[1/π0] = O∆ ∩Rbd.

In particular, S = O∆ ∩øRbd .

2.1.3. Let P(u) ∈ S(= W [[u]]), as defined in §1.3.3. Recall that P(u) is a
S×-multiple of an Eisenstein polynomial in W [u] (and in fact, is an Eisenstein
polynomial if o0 = Zp). Therefore σn(P(u)) is also a S×-multiple of an Eisenstein
polynomial in W [u], and in particular generates a maximal ideal in S[ 1

π0
].

Denote by xn ∈∆ the unique point where σn(P(u)) vanishes. Note that if the
residue field K 0(x0) at x0 is separable over K 0, then the residue field K 0(xn) is
separable for all n ≥ 0. Now we define a convergent infinite product

(2.1.3.1) λ :=
∏
n≥0

σn
(
P(u)
P(0)

)
,

which is a rigid-analytic function on ∆ and has simple zeroes exactly at {xn}n≥0
and no other zeroes. From the construction, we have

(2.1.3.2) σ(λ) = P(0)
P(u) · λ

In particular, O∆[1/λ] is stable under σ inside Frac(O∆).
Let O∆,xn be the ring of germs of rigid-analytic functions at xn ∈∆, which is

known to be a discrete valuation ring [BGR84, §7.3.2]. Since O∆̂,xn is faithfully flat
over O∆,xn , we may study analytic local properties of a coherent sheaf at xn ∈ ∆
via completed stalks at xn. In fact, O∆̂,xn can be thought of as the σn(P(u))-adic
completion of O∆, or equivalently, the σn(P(u))-adic completion of S[ 1

π0
]; for the

proof, we take the global sections of the short exact sequence of coherent sheaves

0 // O∆
σnP(u)i// O∆ // O∆/(σnP(u))i // 0

and use that the global sections functor Γ(∆, ·) is exact on coherent sheaves. As a
consequence of this argument, the residue field K 0(xn) at xn ∈∆ is isomorphic to
O∆/(σnP(u)) ∼← S[ 1

π0
]/(σnP(u)). We often write K := K 0(x0) ∼= S[ 1

π0
]/P(u).

We have a canonical K 0-algebra isomorphism O∆̂,xn
∼= K 0(xn)[[σn(P(u))]]

lifting the residue field identification, when K /K 0 is separable. But if o0 =
Fq[[π0]] then such an isomorphism can fail to exist, so in general we avoid using
this isomorphism.

For n,m ≥ 0, the Frobenius endomorphism σn : O∆ → O∆ induces, on com-
pleted local rings, local injections

(2.1.3.3) σn : O∆̂,xm ↪→ O∆̂,xn+m ,

which are σn-semilinear inclusions ofO∆-algebras carrying the uniformizer σm(P(u))
to the uniformizer σn+m(P(u)). By linearizing it over O∆, we obtain the following
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isomorphism:

(2.1.3.4) γn,m : O∆ ⊗σn,O∆ O∆̂,xm
∼−→ O∆̂,xn+m .

That this natural map is isomorphism uses that σ : O∆ → O∆ is finite and flat.
Recall that in the case when o0 = Fq[[π0]], the finiteness of σ follows from the
assumption that k has a finite p-basis.

We also obtain σnK 0
-semilinear inclusions σn : K 0(xm) ↪→ K 0(xn+m) by

reducing the map (2.1.3.3) modulo maximal ideals. When K /K 0 is separable
then via the canonical isomorphism O∆̂,xm

∼= K 0(xm)[[σmP(u)]] for each m we
can view the map (2.1.3.3) as σn : K 0(xm)[[σm(P(u))]]→ K 0(xn+m)[[σn+mP(u)]]
which restricts to the natural map σn : K 0(xm) ↪→ K 0(xn+m) on coefficients and
σm(P(u)) 7→ σn+m(P(u)). We do not us this later, since it is not available when
K /K 0 is not separable.

Remark 2.1.4 (The case o0 = Zp). Using the notations from §1.3.1.2, if n > 0
then K 0(xn) and K 0(π(n)) do not not have to be isomorphic extensions of K 0.
The former is generated over K 0 bya root of the irreducible polynomial σn(P(u)),
while the latter is generated over K 0 by a root of P(upn). We have σnK 0

P(upn) =
σnP(u), where σK 0 acts on the coefficients.

2.1.5. “Conversion” from Hartl’s Dictionary. We momentarily assume that
o0 = Fq[[π0]]. Then we may consider the rigid-analytic open unit disk over K
and use π0 as its “coordinate.”2 This open unit disk will be denoted, in this paper,
by ∆K , to emphasize that the disk is defined over K. For a subinterval J ⊂ [0, 1)
with endpoints in qQ60 ∪ {0}, we let ∆K,J denote the subdomain of ∆K whose
points x satisfy π0(x) ∈ J . For f(π0) :=

∑
n∈Z αnπ

n
0 ∈ O∆K,J

where αn ∈ K,
one can check that g(π0) :=

∑
n∈Z(αn)qπn0 ∈ O∆

K,J1/q , where J1/q ⊂ [0, 1) is the
subinterval whose endpoints are qth root of the endpoints of J . So we obtain a
σK-semilinear ring morphism σ : O∆K,J

→ O∆
K,J1/q by setting σ(f(π0)) := g(π0).

Since we assumed that K has a finite p-basis, the qth power map σK : K → K
is finite and flat so σ is finite and flat. In [Har10, Har09], Hartl works with ∆K

instead of ∆.
Put I := [q−s, q−r] and J := [q−1/r, q−1/s] for some positive rational numbers

r, s. The K-algebra O∆K,J
naturally sits inside of the K-vector space K[[π0,

1
π0

]],
which naturally sits in the k-vector space k[[π0,

1
π0
, u, 1

u ]] of 2-variable infinite-tailed
formal Laurent series over k. On the other hand, the K 0-algebra O∆I

sits in-
side of the K 0-vector space K 0[[u, 1

u ]], which naturally sits in the k-vector space
k[[π0,

1
π0
, u, 1

u ]]. One can see that O∆I
and O∆K,J

define the same subspace of
k[[π0,

1
π0
, u, 1

u ]], and has the same multiplication law. (Indeed, one can charac-
terize the K 0-subspace O∆I

⊂ K 0[[u, 1
u ]] via some “growth condition” of the

coefficients as worked out in §6.1.2, and one has a similar description of the K-
subspace O∆K,J

⊂ K[[π0,
1
π0

]]. Then, one directly checks that they define the
same k-subspace of k[[π0,

1
π0
, u, 1

u ]].) From this, one can also see that the functions
bounded near the boundary of ∆ correspond functions which have an isolated pole
at the origin of ∆K , and vice versa. In particular, one can recover O∆, the Robba

2This has no “geometric” analogue for o0 = Zp, but Oint
∆(0,1)

can be thought of as an analogue

of O∆K
.
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ring, and the bounded Robba ring using ∆K .

O∆ = {
∑
i∈Z

aiπ
i
0 ∈ Γ(∆̇K ,O∆K

)| ai ∈ oK , ∀i}

R = lim−→
r→0+

Γ(∆K,(0,r],O∆K
)

Rbd = lim−→
r→0+

Γ(∆K,[0,r],O∆K
)[ 1
π0

],

where ∆̇K is the punctured open unit disk over K with coordinate π0.
The advantage of using Hartl’s ∆K over using ∆ is that K does not have to be

discretely valued.3 (The right sides of above equations make sense even if K is not
discretely valued.) One can even replace K by any affinoid K-algebra and develop
the theory for “families”, which makes the argument in [Har10, §3] work. It is very
useful to allow K to be an algebraically closed ground field. For example, using
∆CK we can give natural definitions for the following analytic rings, which are also
defined in §6.1.10:

Ralg = lim−→
r→0+

Γ(∆CK ,(0,r),O∆CK
)(2.1.5.1)

Ralg,bd = lim−→
r→0+

Γ(∆CK ,[0,r),O∆CK
)[ 1
π0

](2.1.5.2)

These rings play a crucial role in “Dieudonné-Manin type” classification (Theorem
4.1.2).

2.2. ϕ-modules of finite P-height

Let (R, σ) be a σ-ring, and we always assume σ-flatness unless stated otherwise.
For anyR-moduleM , we write σ∗M := R⊗σ,RM . A finitely presentedR-moduleM
equipped with an R-linear map ϕ : σ∗M →M is called a (ϕ,R)-module, or simply
a ϕ-module if there is no risk of confusions. A morphism (M,ϕM ) → (N,ϕN ) of
ϕ-modules is an R-linear map f : M → N such that f ◦ ϕM = ϕN ◦ σ∗f . For two
ϕ-modules (M,ϕM ) and (N,ϕN ), the tensor product M ⊗RN is again a ϕ-module
via ϕM ⊗ ϕN .

From now on, assume further that (R, σ) is defined over (S, σ), so P(u) is
viewed as an element of R. We further assume that π0 and P(u) are not zero-
divisors in R. The main examples of such R are S, oE , E , O∆, R, and Rbd.

Definition 2.2.1 (ϕ-module of finite P-height). We call a (ϕ,R)-module (M,ϕ)
is of finite P-height if M is a locally free4 R-module and cokerϕ is killed by some
power of P(u). We say that (M,ϕ) is of P-height 6 h if P(u)h ·cokerϕ = 0. We
let ModR(ϕ) denote the category of ϕ-modules over R of finite P-height, and let
ModR(ϕ)6h denote the full subcategory of ModR(ϕ) whose objects are of P-height
6 h.

If P(u) ∈ R× (for example, if R = oE ,R,Rbd), then a ϕ-module (M,ϕM ) is of
finite P-height if and only if ϕM is an isomorphism. Hence we make the following
definition.

3In fact, Hartl proves Theorem 4.3.4 of this paper allowing more general K than discretely
valued ones, with the statement modified if K is not discretely valued.

4A locally free module is always assumed to be of constant rank.
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Definition 2.2.2. An ϕ-module (M,ϕ) over R is étale if ϕ is bijective. The
category of étale ϕ-modules over R is denoted by ModétR(ϕ) taking morphisms to
be those of ϕ-modules. We denote by Modét,free

R (ϕ) the full subcategory of étale
ϕ-modules whose underlying R-modules are free. We denote by Modét,tor

R (ϕ) the
full subcategory of étale ϕ-modules whose underlying R-modules are annihilated
by some power of π0.

Since torsion étale ϕ-modules play important roles in proofs (even though state-
ments may only concerns finite free étale ϕ-modules), we do not require R-freeness
in the definition of étale ϕ-modules.

2.2.3. Injectivity of ϕ. The following lemma can be useful to prove the injec-
tivity of ϕ in many cases.

Lemma 2.2.3.1. Let (R, σ) be a σ-ring over (S, σS) and let (M,ϕM ) be a ϕ-
module over R. Suppose that there exists an R-algebra R′ (not necessarily a σ-ring)
such that the natural mapsM → R′⊗RM and idR′ ⊗ϕM : R′⊗R (σ∗M)→ R′⊗RM
are injective. Then, the map ϕM is injective.

Proof. It follows from chasing the diagram below.

σ∗M
� � //

ϕM

��

R′ ⊗R (σ∗M)� _

idR′ ⊗ϕM
��

M
� � // R′ ⊗RM

�

Corollary 2.2.3.2. Assume that P(u) ∈ R is not a zero-divisor (as assumed
at the beginning of the section). For any M ∈ ModR(ϕ),5 the map ϕM : σ∗M→M
is injective.

Proof. Since P(u) ∈ R is not a zero-divisor, the free R-module M has no
non-trivial P(u)-torsion. So we obtain the corollary by applying the above lemma
to R′ = R[ 1

P(u) ]. �

2.2.4. Formal Properties. Here we record some immediate properties, which
mostly follow from σ-flatness of R.

(1) For a short exact sequence 0 → M ′ → M → M ′′ → 0 of ϕ-modules, if
two of them are étale (respectively, of finite P-height and all three terms
are free), then so is the third. If M is of P-height 6 h, then M ′ and M ′′
are also of P-height 6 h. To verify the claims on P-height, we use the
injectivity of ϕ (Corollary 2.2.3.2).

(2) (scalar extension)6 Let (R, σ) f−→ (R′, σ′) be a morphism of σ-flat rings
where σ′ lies over σ; i.e., σ′ ◦ f = f ◦σ. Let M be a (ϕ,R)-module. Then,
the “scalar extension” R′ ⊗RM is naturally a (ϕ,R′)-module via R′ ⊗ ϕ:
this makes sense as a Frobenius structure, using

R′ ⊗σ′,R′ (R′ ⊗f,RM) ∼= R′ ⊗f,R (R⊗σ,RM) id⊗ϕ−−−→ R′ ⊗f,RM

5We write M ∈ Modét
R (ϕ) to mean M ∈ Ob(Modét

R (ϕ)). We keep this convention throughout
the paper.

6We do not have to require σ-flatness for these claims, except for the étaleness assertion.
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Moreover, if M is of finite P-height (respectively, étale), so is R′ ⊗f,RM .
(3) The condition of being of finite P-height (respectively, étale) is stable un-

der ⊗-product. The rank-1 free module R together with the linearization
of ϕ := idR⊗σ defines the “neutral object” among ϕ-modules in the sense
that it is the “left and right identity” under ⊗-product. (Under the iden-
tification R ⊗R,σ R ∼= R by

∑
ai ⊗ bi 7→

∑
aiσ(bi), the map ϕ = idR⊗σ

induces idR : R→ R.) We often let R denote this neutral object.
Etale ϕ-modules enjoy further nice properties.
(4) Internal Hom is defined in ModétR(ϕ): since we have a natural isomorphism

HomR(σ∗M,σ∗M ′) ∼= σ∗HomR(M,M ′) for finitely presented R-modules
M and M ′, we define (HomR(M,M ′), f 7→ ϕM ′ ◦ f ◦ ϕ−1

M ) ∈ ModétR(ϕ),
where f ∈ σ∗HomR(M,M ′) ∼= HomR(σ∗M,σ∗M ′).

(5) On finite free objectsM ∈ Modét,free
R (ϕ), one can define the duality functor

M∗ := HomR(M,R) by taking the internal hom into the “neutral object”
(R, idR⊗σ).

(6) Duality for torsion étale ϕ-modules is not a good concept in general. But if
R is a discrete valuation ring, we may show thatM∗ := HomR(M,Frac(R)/R)
with a natural ϕM∗ is a good duality functor. More specifically, we es-
sentially interpret this as in (4) except Frac(R)/R is not an object of
Modét,tor

R (ϕ). Nonetheless, all R-linear morphism fromM into Frac(R)/R
factors through some finite submodule m−NR R/R ⊂ Frac(R)/R for N � 0
since M is of finite length, so there is no problem.

Remark 2.2.5. To give a natural ϕ-module structure on HomR(M,M ′) in
(4), we need to invert ϕM . If we try to carry out the same construction for non-
étale ϕ-module M of finite P-height, then the ϕ-structure on the internal Hom
HomR(M,M ′) will pick up a “pole” at the ideal P(u)R. (At the beginning of the
section, we assume that P(u) is not a zero divisor in R.)

Next, we define Tate objects and Tate twist.

Definition 2.2.6. For n ∈ Z≥0, the Tate object R(n) is the ϕ-module

R(n) :=
(
R, P(u)n ·(idR⊗σ)

)
.

For (M,ϕM ) ∈ ModR(ϕ), the Tate twist M(n) is the tensor product M(n) :=
M ⊗R R(n) ∼= (M, P(u)n ·ϕM ).

It is clear that R(n) ∼= R(1)⊗n. For n > 0, we writeM(−n) := (M, P(u)−n·ϕM )
if P(u)−n·ϕM is well defined, which is always the case if P(u) ∈ R×. It follows that(
M(n)

)
(n′) ∼= M(n+ n′) whenever both sides are well-defined.

Note that the definition of R(n) depends upon the specific element P(u) ∈ R,
not just upon the ideal P(u)·R. In the case o0 = Zp, our normalization P(0) = p
will play a role in §4.3.6 and §5.2.13.

2.2.7. Isogeny. Recall that ModR(ϕ) denotes the category of (ϕ,R)-modules
of P-height 6 h (Definition 2.2.1). A morphism f : M →M ′ in ModR(ϕ) is called
an isogeny if f is injective and coker f is killed by some power of π0, say by πN0 .
Then, there exists a unique g : M ′ →M such that f ◦ g = πN0 and g ◦ f = πN0 , by
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the following commutative diagram

M
f //

πN0

��

M ′ // //

πN0
��

∃!g}
}

~~}
}

coker f

0
��

M
f

// M ′ // // coker f.

Here the uniqueness of g follows from our assumption that π0 is not a zero divisor
in R. Hence we can define the isogeny category ModR(ϕ)[ 1

π0
] by formally inverting

π0 on morphisms.
The natural functor ModR(ϕ)[ 1

π0
]→ ModR[ 1

π0
](ϕ) which sends M to M [ 1

π0
] is

fully faithful. Using this, we identify the isogeny class containing M with M [ 1
π0

].
This functor does not have to be essentially surjective unless R = R[ 1

π0
]. For

example, if R = S or oE then the functor is not essentially surjective.

2.2.8. Vector Bundle on ∆ with Frobenius Structure. We will see later (in
§6.1.5) that one can view Mod∆(ϕ) as the category of vector bundles on ∆ equipped
with a certain nice Frobenius structure in the following sense. ForM∈ Mod∆(ϕ),
let M̃ and ˜(σ∗M) be the vector bundles over ∆ with global sectionsM and σ∗M,
respectively. Then ϕ : σ∗M→M corresponds to a map ϕ̃ : σ̃∗M→ M̃ of coherent
O∆-modules, and this is an isomorphism outside x0 ∈ ∆ (which is the point cut
out by P(u) = 0).

By the discussion of §2.2.4, the scalar extension M → O∆ ⊗S M defines a
functor ModS(ϕ) → Mod∆(ϕ) that factors through the isogeny category of the
source category, so we obtain a functor

(2.2.8.1) ModS(ϕ)[ 1
π0

]→ Mod∆(ϕ).

We will see, after some nontrivial work, that the essential image of this functor is
precisely the objects pure of slope 0 in the sense of Kedlaya (for the case o0 = Zp)
and Hartl (for the case o0 = Fq[[π0]]). This is proved in Proposition 4.3.3 of this
paper.

2.2.9. Hodge-Pink type. We now work with the case R = S[ 1
π0

] or O∆. Since
O∆ is a Bézout domain and S[ 1

π0
] is a principal ideal domain, we have a struc-

ture theorem for finitely presented R-modules. Furthermore, the natural inclusion
S[ 1

π0
] ↪→ O∆ induces an isomorphism between P(u)-adic completions; in particu-

lar, we have an isomorphism S[ 1
π0

]/P(u)w ∼−→ O∆/P(u)w for any w > 0.
A Hodge-Pink type v is a collection of integersmw for each non-negative integer

w, such that only finitely many mw are nonzero. We call n :=
∑
wmw the rank of

v. If mw = 0 for all w /∈ [0, h], we say v is of P-height 6 h, and we then define a
quotient Λ̄v of (R/P(u)h)⊕n as follows.

(2.2.9.1) Λ̄v ∼=
⊕
w>0

(
S[ 1

π0
]

(P(u)w)

)mw
∼=

⊕
0≤w≤h

(
O∆

(P(u)w)

)mw
.

Although the term for w = 0 does not influence Λ̄v, m0 may be positive and in
(2.2.9.1) we are viewing Λ̄v as a quotient of (R/P(u)h)⊕n. Any R/P(u)h-module
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which can be generated by n elements is isomorphic to Λ̄v for a unique v with rank
n and P-height 6 h.

LetM be a (ϕ,R)-module of P-height6 h. Assume furthermore that rankM =
n. Then the cokernel of ϕM, being annihilated by P(u)h, is isomorphic to Λ̄v for
a unique Hodge-Pink type v of rank n (and necessarily of P-height 6 h). We say
M is of Hodge-Pink type v if rankM = rank v and cokerϕM ∼= Λ̄v as R-modules.
We say w ∈ Z≥0 is a Hodge-Pink weight of M if mw 6= 0, and we call mw the
multiplicity of w forM.

The following equivalent formulation can be useful. Keeping the notations as
above,M is of Hodge-Pink type v if and only if there exists a choice of R-basis for
M which induces the following commutative diagram:

(2.2.9.2) (R/P(u)h)⊕n ∼ //

����

M/P(u)h ·M

����
Λ̄v ∼ // cokerϕM

For M ∈ ModS(ϕ)6h, the cokernel of ϕM can be a non-trivial extension among
S/P(u)ws, so inverting π0 is crucial to obtain the simple form as above. The point
is that S[ 1

π0
] is a principal ideal domain while S is not.

Remark 2.2.10. In due course, we discuss the relationship between the notion
of Hodge-Pink type/weights and the notion of Hodge-type/Hodge-Tate weights for
crystalline GK -representations in the case o0 = Zp.

2.2.11. Generalized ϕ-module of finite P-height. As previously, assume that
R be a S-algebra with no non-zero P(u)-torsion (i.e., we have R ⊂ R[ 1

P(u) ]).
This condition is satisfied if R is a domain and P(u) 6= 0 in R. Then we can
make the following generalization of ModR(ϕ) by allowing ϕ to have a “pole” at
P(u)·R. Consider a finitely generated locally free R-module M , equipped with a
R[ 1
P(u) ]-linear map ϕ : (σ∗M)[ 1

P(u) ] ∼−→ M [ 1
P(u) ]. We call such a pair (M,ϕ) a

generalized (ϕ,R)-module of finite P-height or a generalized (ϕ,R)-module if P is
understood. If P(u) ∈ R×, then they are just étale ϕ-modules. In general, the
category of generalized ϕ-modules of finite P-height contains ModR(ϕ) as the full
subcategory of objects (M,ϕ) such that ϕ restricts to a map σ∗M → M , and is
thereby equivalent to ModR(ϕ) if P(u) ∈ R×. For any N � 0 (depending on M),
the map P(u)N ·ϕ restricts to σ∗M →M , so (M,P(u)N ·ϕ) ∈ ModR(ϕ).

We can extend all the natural operations on ModR(ϕ) as in §2.2.4 to generalized
ϕ-modules. For example, we can define duals and internal homs for generalized ϕ-
modules of finite P-height, as suggested earlier at Remark 2.2.5. In particular,
we can define the Tate objects R(n) for all n ∈ Z, so R(−n) = R(n)∗. For any
generalized ϕ-module (M,ϕ), the Tate twistM(n) := M⊗RR(n) for n� 0 becomes
an actual ϕ-module.

Most of our results on ModR(ϕ) can extend to generalized ϕ-modules by Tate
twist, and some results and definitions can be stated more neatly using generalized
ϕ-modules. But we do not crucially use this notion. For o0 = Fq[[π0]], the definition
of generalized ϕ-module over S is exactly that of a local shtuka over oK . (See
Definition 7.1.1.)
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2.3. Hodge-Pink structure

In this subsection, we define the objects (so called, isocrystals with Hodge-Pink
structure) which are the equi-characteristic replacement for “filtered isocrystals”.
In §3.2 we will see how these objects arise from Mod∆(ϕ) and ModS(ϕ)[ 1

π0
]. This

subsection is written based on [Har10, §2.2].
We call an étale ϕ-module over K 0 an isocrystal, or more precisely a isocrystal

over k. Recall that x0 ∈ ∆ is the point cut out by P(u) = 0, and we denoted by
K the residue field at x0 ∈ ∆. In §2.1.3 we have seen that there is a canonical
isomorphism O∆̂,x0

∼= K [[P(u)]] as K 0-algebras when K /K 0 is separable, and
in general P(u) is a uniformizer of O∆̂,x0 .

Definition 2.3.1. For a finite-dimensional K 0-vector spaceD, we put7 D̂x0 :=
O∆̂,x0 ⊗K 0D. A Hodge-Pink structure8 on D is a O∆̂,x0 -lattice Λ inside D̂xo [ 1

P(u) ] ∼=
O∆̂,x0 [ 1

P(u) ]⊗K 0 D. A Hodge-Pink structure Λ on D is effective if Λ contains the
standard lattice D̂x0 . An effective Hodge-Pink structure Λ is of P-height 6 h if Λ
is contained in P(u)−h ·D̂x0 .

Let Λ and Λ′ be Hodge-Pink structures on D and D′, respectively. We say that
a K 0-linear map f : D → D′ respects Hodge-Pink structures if id⊗f : D̂x0 [ 1

P(u) ]→
D̂′x0

[ 1
P(u) ] takes Λ into Λ′, where D̂′x0

:= O∆̂,x0 ⊗K 0 D
′.

An isocrystal with Hodge-Pink structure (respectively, with effective Hodge-Pink
structure) is a tuple (D,ϕ,Λ), where (D,ϕ) is an isocrystal and Λ is a Hodge-Pink
structure (respectively, an effective Hodge-Pink structure) on the underlying K 0-
vector space D. We denote byHPK(ϕ) the category of isocrystals with Hodge-Pink
structure, where a morphism is a K 0-linear map on the underlying vector spaces
which is ϕ-compatible and respects Hodge-Pink structures. We denote byHP>0

K (ϕ)
(respectively, HP [0,h]

K (ϕ)) the full subcategory of isocrystals with effective Hodge-
Pink structure (respectively, with Hodge-Pink structures of P-height 6 h).

Remark. Originally, Hodge-Pink structures were defined by Pink [Pin97] in
the case o0 = Fq[[π0]], as a “correct” analogue of Hodge structures in function field
arithmetic.

2.3.2. Let D := (D,ϕ,Λ) and D′ := (D′, ϕ′,Λ′) be objects in HPK(ϕ). The
category HPK(ϕ) is equipped with the ⊗-product

(D, ϕ, Λ)⊗ (D′, ϕ′, Λ′) := (D ⊗K 0 D
′, ϕ⊗ ϕ′,Λ⊗O∆̂,x0

Λ′)

and the internal hom via the identification HomK 0(σ∗D,σ∗D′) ∼= σ∗HomK 0(D,D′):

Hom((D,Λ), (D′,Λ′)) := (HomK 0(D,D′), f 7→ ϕ′ ◦ f ◦ ϕ−1,HomO∆̂,x0
(Λ,Λ′)),

which satisfy all the expected properties. One can check that 1 := (K 0, id⊗σ, O∆̂,x0 )
is the “neutral object” inHPK(ϕ) and the contravariant functor (D,Λ) 7→ (D∗,Λ∗) =
Hom((D,Λ),1) defines a duality. The categoryHP>0

K (ϕ) is stable under ⊗-product,
but not under internal hom or duality.

7Later, we will put D := O∆ ⊗K 0 D, so D̂x0 is the completed stalk of D at x0 ∈∆.
8The usual definition of a Hodge-Pink structure is a O∆̂,x0 -lattice Λ inside (O∆̂,x0 )[ 1

P(u) ]⊗
σ∗D. But via the isomorphism ϕ : σ∗D → D one can pass between this definition and the usual
one - including all the statements involving “Hodge-Pink structure.”
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For any integer n, we define the Tate object 1(n) to be:

(2.3.2.1) 1(n) := (K 0e, ϕ(σ∗e) = πn0 e, P(u)−nO∆̂,x0 ).

For any (D,Λ) ∈ HPK(ϕ), we define the n-fold Tate twist to be (D,Λ) ⊗ 1(n) ∼=
(D, P(u)−n ·Λ). Clearly for any Hodge-Pink structure (D,Λ) ∈ HPK(ϕ), the
Hodge-Pink structure (D,Λ)⊗ 1(n) = (D, P(u)−n ·Λ) is effective for n� 0.

A subobject (D′,Λ′) ⊂ (D,Λ) in HPK(ϕ) simply means that the natural
inclusion is a morphism of HPK(ϕ); i.e., D′ ⊂ D is ϕ-stable and Λ′ ⊂ Λ ∩(
D̂′x0

[ 1
P(u) ]

)
. We say that a subobject (D′,Λ′) ⊂ (D,Λ) is saturated9 if Λ′ =

Λ ∩
(
D̂′x0

[ 1
P(u) ]

)
holds, where the intersection is taken inside D̂x0 [ 1

P(u) ]. Similarly,
a quotient (D′′,Λ′′) of (D,Λ) means thatD′′ is a quotient ofD as a K 0-vector space
and that Λ′′ coincides with the image of Λ under the map D̂x0 [ 1

P(u) ] � D̂′′x0
[ 1
P(u) ]

induced by the natural projection. For any saturated subobjects (D′,Λ′) ⊂ (D,Λ),
we can form the quotient (D/D′,Λ/Λ′), and the kernel (D′,Λ′) of the natural pro-
jection (D,Λ) � (D′′,Λ′′) onto a quotient is a saturated subobject such that the
natural projection induces an isomorphism (D/D′,Λ/Λ′) ∼−→ (D′′,Λ′′).

A short exact sequence in HPK(ϕ) (HP>0
K (ϕ), respectively) is defined as a

short exact sequence of underlying K 0-vector spaces which induce a short exact
sequence on the Hodge-Pink structures (i.e., on O∆̂,x0 -lattices Λ’s). The left/right
flanking term is a saturated submodule/quotient of the middle term, and conversely,
any saturated submodule or quotient can be placed in a short exact sequence in an
evident manner.

2.3.3. Hodge-Pink type and Hodge-Pink structures. Let v be a Hodge-Pink
type; i.e., a collection of non-negative integers mw for each integer w, such that
only finitely many mw are nonzero. In §2.2.9 we only considered mw when w is
non-negative. Now we are allowing “negative weights.”

Now we associate such a v to a Hodge-Pink structure Λ on a K 0-vector space
D. First, we define a decreasing filtration on D̂x0 from the Hodge-Pink structure
as follows:

(2.3.3.1) FilwΛ
(
D̂x0

)
:= (D̂x0) ∩ (P(u)w · Λ) for w ∈ Z

where the intersections are taken inside D̂x0 [ 1
P(u) ]. In turn, we obtain a separated

and exhaustive filtration Fil•DK on DK := K ⊗K 0 D by taking the image of this
filtration Fil•Λ

(
D̂x0

)
under the natural projection map D̂x0 � D̂x0/P(u)D̂x0

∼=
DK . Note that grwDK := Filw DK

Filw+1 DK
= 0 for w � 0 and for w � 0.

Definition 2.3.3.2. Let v := {mw := dimK (grw(DK ))}. We say (D,Λ) is
of Hodge-Pink type v. The Hodge-Pink weights for (D,Λ) are w ∈ Z such that
mw 6= 0, and we callmw themultiplicity of w. The Hodge-Pink type for an isocrystal
(D,ϕ,Λ) with Hodge-Pink structure means the Hodge-Pink type for (D,Λ).

If (D,Λ) is of Hodge-Pink type v = {mw}w∈Z, then
∑
wmw equals dimK (K ⊗K 0

D = dimK 0 D. Clearly a Hodge-Pink structure (D,Λ) is effective (respectively, of

9In [Har10, §2.2], saturated subobjects are called “strict subobjects.” We chose to call them
“saturated” because a subobject (D′,Λ′) ⊂ (D,Λ) is saturated if and only if Λ′ ⊂ Λ is saturated.



28 2. FROBENIUS MODULES AND HODGE-PINK THEORY

P-height 6 h) if and only if mw = 0 for all w < 0 (respectively, mw = 0 for all
w /∈ [0, h]).

The following proposition shows the behavior of Hodge-Pink types/weights
under the natural operations, such as duality, tensor product, and internal Hom.

Proposition 2.3.4. Assume that (D,Λ) ∈ HPK(ϕ) has Hodge-Pink weights
{w1, · · · , ws} and each weight wj has multiplicity mj.

(1) The dual (D∗,Λ∗) has Hodge-Pink weights exactly {−w1, · · · ,−ws} and
each weight −wj has multiplicity mj; i.e., the duality inverts the signs of
the Hodge-Pink weights.

(2) Assume (D′,Λ′) ∈ HPK(ϕ) has Hodge-Pink weights {w′1, · · · , w′s′} and
each weight w′i′ has multiplicity m′i′ . Then the tensor product (D⊗D′,Λ⊗
Λ′) induces the tensor product filtration on O∆̂,x0 ⊗K 0(D⊗D′). In particu-
lar the Hodge-Pink weights for the tensor product are {wi+w′i′}i=1,··· ,s, i′=1,··· ,s′

and each weight w has multiplicity
∑
j,j′ mj + m′j′ where the summation

is over (j, j′) such that w = wj + w′j′ .
(3) For the Tate twist (D,Λ)⊗1(n) ∼= (D,P(u)−nΛ), we have that FiliP(u)−nΛ =

Fili−nΛ ; i.e., the Tate twist shifts the filtration. In particular, the Hodge-
Pink weights for the twist (D,P(u)−nΛ) are exactly wj+n with multiplicity
mj.

Using (1) and (2), we can obtain the filtration, Hodge-Pink weights, and mul-
tiplicities for the internal hom, which is left to the reader.

The following easy lemma shows how to recover the Hodge-Pink structure Λ
from the filtration Fil•Λ defined by Λ.

Lemma 2.3.5. Let (D,Λ) ∈ HPK(ϕ), and let FilwΛ(D̂x0) be the filtration on
D̂x0 associated to the Hodge-Pink structure Λ. Then,

Λ =
∑
w∈Z

(
P(u)−w · FilwΛ(D̂x0)

)
= Fil0

(
D̂x0 [1/P(u)]

)
,

where the last term is the 0th filtration for the tensor product filtration on D̂x0 [ 1
P(u) ] ∼=

O∆̂,x0 [ 1
P(u) ]⊗O∆̂,x0

D̂x0 , where we put the P(u)-adic filtration on O∆̂,x0 [ 1
P(u) ].

Let v := {mw}w∈Z be a Hodge-Pink type, and assume that mw = 0 for all
w < 0. In §2.2.9, we associated to v a S[ 1

π0
]-module Λ̄v killed by some power of

P(u) which recovers all mw except m0. The following corollary shows how Λ̄v is
related to any Hodge-Pink structure Λ on D of Hodge-Pink type v.

Corollary 2.3.6. Consider an effective Hodge-Pink structure (D,Λ) ∈ HP>0
K (ϕ)

that is of Hodge-Pink type v := {mw}, so mw = 0 for all w < 0. Then we have

(2.3.6.1) Λ/D̂x0
∼= Λ̄v =

⊕
mw 6=0

(
O∆̂,x0

(P(u)w)

)mw
In §2.2.9, we also defined the notion of Hodge-Pink type on ModS(ϕ)[ 1

π0
]. Later

in §3.2.6, we will define a functor H : ModS(ϕ)[ 1
π0

] → HP>0
K (ϕ) which preserves

Hodge-Pink types, so the notion of Hodge-Pink type for these two categories is
compatible.
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2.3.7. Weak admissibility. Let (D,ϕ,Λ) ∈ HPK(ϕ) be of rank 1; i.e., D is a
1-dimensional vector space over K 0. Necessarily, Λ = P(u)−h·D̂x0 ⊂ D̂x0 [ 1

P(u) ] for
a unique h ∈ Z. We define the Hodge number for (D,ϕ,Λ) to be tH(D,Λ) := h. We
often write tH(D) if Λ is understood. For any K 0-basis e ∈ D, there is a nonzero
element αe ∈ K ×

0 such that ϕ(σ∗e) = αe · e. Note that ordπ0(αe) is independent
of the choice of basis though αe is not. We define the Newton number for the
isocrystal (D,ϕ) to be tN (D) := ordπ0(αe).

Since the category HPK(ϕ) has an obvious notion of exterior products (us-
ing ⊗-products and quotients), we define Hodge and Newton numbers for any
(D,ϕ,Λ) ∈ HPK(ϕ) as follows: tH(D) := tH(detD) and tN (D) := tN (detD).
Now, we can define “weak admissibility” for Hodge-Pink structures.

Definition 2.3.7.1. An object (D,Λ) ∈ HPK(ϕ) is called weakly admissible if
the following properties hold:

(1) tH(D) = tN (D).
(2) For any subobject (D′,Λ′) ⊂ (D,Λ), we have tH(D′,Λ′) ≤ tN (D′).

The full subcategory of isocrystals D with a weakly admissible Hodge-Pink struc-
ture Λ will be denoted byHPwaK (ϕ). We similarly defineHPwa,>0

K (ϕ) andHPwa,[0,h]
K (ϕ)

as full subcategories in HP>0
K (ϕ) and HP [0,h]

K (ϕ) consisting of weakly admissible
objects.

Lemma 2.3.7.2. Condition (2) in Definition 2.3.7.1 is equivalent to:
(2)′ For any saturated subobject (D′,Λ′) ⊂ (D,Λ), we have tH(D′,Λ′) ≤
tN (D′)

In particular, an isocrystal (D,Λ) of rank 1 is weakly admissible if and only if
tH(D) = tN (D).

Proof. It is enough to show (2)′ implies (2). By passing to the determinant
of (D′,Λ′), we may assume that D′ has rank 1. Let (D′,Λ′sat) be the “saturation”
of (D′,Λ′); i.e., Λ′sat := Λ ∩

(
D̂′x0

[ 1
P(u) ]

)
. The saturation Λ′sat necessarily contains

Λ′ by the definition of subobject, so we have tH(D′,Λ′sat) ≥ tH(D′,Λ′). But the
Newton numbers of both subobjects are the same because they only depend on the
underlying isocrystals, not on the Hodge-Pink structure. Therefore, the inequality
tH(D′,Λ′) ≤ tN (D′) follows if it holds for the saturation (D′,Λ′sat). �

Proposition 2.3.8. The full subcategory HPwaK (ϕ) of HPK(ϕ) is closed under
the formation of tensor, symmetric and exterior products, internal homs and dual-
ity, extensions and direct sums. A direct sum (D,Λ)⊕ (D′,Λ′) is weakly admissible
if and only if both factors are weakly admissible. Moreover, HPwaK (ϕ) is an abelian
category.

A direct proof of this proposition is presented in [Pin97, §4,§5]. (Note that
Pink uses the terminology “semistability” to mean our weak admissibility.) The
direct proof is rather tedious but elementary except the assertion about tensor
products which can be proved by adapting Totaro’s argument for weakly admissible
filtered ϕ-modules [Tot96]. It is also possible to deduce these using the rigid-analytic
interpretation of weak admissibility (Theorem 4.3.4) and the theory of slopes.

Since Tate objects 1(n) are weakly admissible for any n ∈ Z, an isocrystal with
weakly admissible Hodge-Pink structure (D,Λ) is weakly admissible if and only if its
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Tate twist (D,Λ)(n) is weakly admissible for some n, by the previous proposition.
One can also directly see this since the Tate twist (D,Λ)(n) increases tN and tH by
n for all subobjects and quotient objects. We also note that if the residue field k is
algebraically closed, then any rank-1 isocrystal with weakly admissible Hodge-Pink
structure is isomorphic to 1(n) for some n ∈ Z. As mentioned in Remark 4.1.3, this
is a direct consequence of the Dieudonné-Manin classification (Theorem 4.1.2).

2.4. Summary of Kisin’s Integral p-adic Hodge Theory

We assume that o0 = Zp throughout the subsection and follow the notations
from §1.3.1.2. We fix the uniformizer π0 = p of Zp. The main purpose of this
subsection is to explain the relationship between crystalline GK -representations
and the semilinear algebra objects introduced so far, which will motivate the later
discussions. Most of the results in this subsection are proved in [Kis06]. We assume
some basic knowledge of crystalline and semi-stable representations (and p-adic
Hodge theory), for which we refer to [Fon94a, Fon94b].

2.4.1. Filtered isocrystals. A filtered isocrystal is (D,ϕ,Fil•DK ), where (D,ϕ)
is an étale ϕ-module10 which is finite-dimensional over K 0 (i.e., an isocrystal) and
Fil•DK is a decreasing separated and exhaustive filtration on DK := K ⊗K 0D by
K -linear subspaces. We also define a filtered (ϕ,N)-module to be (D,ϕ,N,Fil•DK )
where (D,ϕ,Fil•DK ) is a filtered isocrystal and N : D → D is a (necessarily nilpo-
tent) K 0-linear endomorphism such that Nϕ = pϕN . We call N a monodromy
operator. We view a filtered isocrystal as a filtered (ϕ,N)-module by setting N = 0.
We letMF(ϕ)K denote the category of filtered isocrystals, andMF(ϕ,N)K the
category of filtered (ϕ,N)-module with the obvious notions of morphisms. We have
natural definitions of subobjects and quotients; direct sums; tensor products; in-
ternal homs; and duality. We leave the exact formulation to readers, or refer to
[Fon94b].

Recall that a “Hodge-Pink type” in the sense of §2.3.3 is a collection v of
non-negative integers mw for each integer w ∈ Z such that only finitely many mw

are nonzero. We say v := {mw := dimK (grwDK )} is the p-adic Hodge type for
(D,ϕ,N,Fil•DK ), or Hodge type for (D,ϕ,N,Fil•DK ) in short. Note that the
numerical datum v determines the decreasing separated and exhaustive filtration
Fil•DK of DK by its K -subspaces, uniquely up to K -automorphism of DK . We
call w for which mw 6= 0 a Hodge-Tate weight for (D,ϕ,N,Fil•DK ), and mw the
multiplicity of w. Note that the definitions of Hodge type, Hodge-Tate weights,
and their multiplicities have nothing to do with ϕ and N but only use Fil•DK .
We letMF(ϕ)>0

K (respectively,MF(ϕ)[0,h]
K ) denote the full subcategory of filtered

isocrystals such that all the Hodge-Tate weights are non-negative (respectively, are
in [0, h]). We make similar definitions forMF(ϕ,N)>0

K andMF(ϕ,N)[0,h]
K .

We now define the Hodge and the Newton numbers forD := (D,ϕ,N,Fil•DK ).
We first assume that D is 1-dimensional. Then we define the Hodge number
tH(D) = tH(D,Fil•DK ) to be the unique Hodge-Tate weight. To define the New-
ton number tN , choose a basis D ∼= K 0e so ϕ(e) = αee for some αe ∈ K ×

0 . The
Newton number tN (D) = tN (D,ϕ) is ordp(αe). If D is of arbitrary dimension, we

10Following the usual convention, ϕ is a σ-semilinear endomorphism throughout this
subsection.
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define tH(D) := tH(detD) and tN (D) := tN (detD). Note that the Hodge number
only uses the filtration, while the Newton number only uses the Frobenius structure.

A filtered (ϕ,N)-module (D,ϕ,N,Fil•DK ) is called weakly admissible if tH(D) =
tN (D) and the inequality tH(D′) ≤ tN (D′) holds for any ϕ-stable subspace D′ ⊂
D where D′K is given the subspace filtration. We let MF(ϕ)waK (respectively,
MF(ϕ)wa,>0

K ,MF(ϕ)wa,[0,h]
K ) denote the full subcategory of weakly admissible fil-

tered isocrystals (respectively, weakly admissible filtered isocrystals with the condi-
tions on Hodge-Tate weights). We similarly defineMF(ϕ,N)waK ,MF(ϕ,N)wa,>0

K ,
andMF(ϕ,N)wa,[0,h]

K , where now D′ ⊂ D ranges over K 0-subspace stable under
ϕ and N .

From Fontaine’s “period ring formalism,” we obtain a contravariant functor
D∗cris : Repcris

Qp (GK ) → MF(ϕ)waK , and another contravariant functor V ∗cris from
MF(ϕ)K to such (not necessarily finite-dimensional) Qp[GK ]-modules. Similarly
we get D∗st : Repst

Qp(GK ) → MF(ϕ,N)waK and V ∗st from MF(ϕ)K to (not nec-
essarily finite-dimensional) Qp[GK ]-modules such that GK acts continuously on
any GK -stable subspaces of finite Qp-dimension. See [Fon94b] for the definitions.
There are at least four proofs of the following fundamental theorem: [CF00], [Col02],
[Ber07], and [Kis06].

Theorem 2.4.2 (Colmez-Fontaine). The contravariant functor D∗cris (respec-
tively, D∗st) is an anti-equivalence of categories, and V ∗cris (respectively, V ∗st) re-
stricted to weakly admissible objects is its quasi-inverse.

For each n ∈ Z, the Tate object 1MF (n) is a filtered isocrystal defined as
follows: the underlying isocrystal is (K 0e, ϕ(e) = pne) and the associated grading
is concentrated in degree n. Clearly, 1MF (n) is weakly admissible. For any filtered
isocrystal D, we put D(n) := D ⊗ 1MF (n) and call it the n-fold Tate twist of D.
One can check without difficulty that a filtered isocrystal D is weakly admissible
if and only if its Tate twist D(n) for some n ∈ Z is weakly admissible. Later in
Remark 4.1.3, we will see that if the residue field k is algebraically closed, then any
rank-1 weakly admissible filtered isocrystal is isomorphic to some Tate object 1(n).
This follows from Dieudonné-Manin classification (Theorem 4.1.2).

2.4.3. Filtered isocrystals and isocrystals with Hodge-Pink structure. For a
Hodge-Pink structure on a finite dimensional K 0-vector space D, we obtain a
filtration on D̂x0 := O∆̂,x0 ⊗K 0 D, as discussed in §2.3.3. And by reducing the
associated filtration Fil•Λ D̂x0 on D̂x0 modulo P(u) · D̂x0 , we obtain a filtration
Fil•ΛDK ) on DK since DK

∼= D̂x0/P(u)D̂x0 . More precisely,
(2.4.3.1)

FilwΛ DK := FilwΛ D̂x0

FilwΛ D̂x0 ∩ P(u)·D̂x0

= D̂x0 ∩ P(u)wΛ
P(u)D̂x0 ∩ P(u)wΛ

⊂ D̂x0

P(u)·D̂x0

∼= DK .

The assignment (D,ϕ,Λ) 7→ (D,ϕ,Fil•ΛDK ) defines a functor F : HPK(ϕ) →
MF(ϕ)K .

This functor F has a “section” res : MF(ϕ)K → HPK(ϕ), in the sense that
there exists a natural isomorphism F◦res ∼= idMF(ϕ)K

. Namely, for (D,ϕ,Fil•DK ) ∈
MF(ϕ)K , we put res(D,ϕ,Fil•DK ) := (D,ϕ,Λ), where

Λ := Fil0(DK ⊗K O∆̂,x0 [1/P(u)]) =
∑
w∈Z

(FilwDK )⊗K (P(u)−wO∆̂,x0 ).
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The natural isomorphism F ◦ res ∼= idMF(ϕ)K
is immediate from the construction.

Here is the motivation for introducing the functor res. By Theorem 2.4.2,
the category MF(ϕ)waK is equivalent (or anti-equivalent) to the category of crys-
talline representations of GK . On the other hand, we will see later in Corollary
5.2.4 that there exists a fully faithful (contravariant) functor V ∗HP : HPwaK (ϕ) →
RepQp(GK ∞). Kisin’s work [Kis06, §2.1] shows that the functor D∗st ◦ res ◦ V ∗HP :
Repst

Qp(GK )→ RepQp(GK ∞) induced by res is naturally isomorphic to the functor
obtained by restricting the GK -action to GK ∞ . (See §5.2.12 for more discussion.)

We now record some properties of F and res which directly fall out of the
definition. The functors F and res commute with quotients, tensor products (hence,
symmetric and alternating products), internal homs, and duality. Clearly, both
functors F and res preserve the Newton numbers tN on both sides, since each does
nothing on the underlying isocrystal (D,ϕ). They also preserve the Hodge numbers
tH on both sides. In fact, the functors F and res, by construction, “respect” Hodge
type forMF(ϕ)K and Hodge-Pink type for HPK(ϕ) in the following sense: for a
fixed v := {mw}, if (D,ϕ,Fil•DK ) is of Hodge type v, then res(D,ϕ,Fil•DK ) is
of Hodge-Pink type v and similarly for F .

Now we show that the functors F and res take weakly admissible objects in one
category to weakly admissible objects in the other. One can directly show that F
takes a saturated subobject in HPK(ϕ) to a saturated subobject inMF(ϕ)K . In
other words, for a Hodge-Pinks structure (D,Λ) and a K 0-subspace D′, the Hodge-
Pink structure Λ′ := Λ∩D̂′x0

[ 1
P(u) ] forD′ induces the subspace filtration FilwΛ′ D′K =

D′K ∩FilwΛ DK for each w. Since F preserves Hodge and Newton numbers, we have
that (D,ϕ,Λ) ∈ HPK(ϕ) is weakly admissible if and only if F(D,ϕ,Λ) is. The
claim for res also follows from the natural isomorphism F ◦ res ∼= idMF(ϕ)K

.
Even though F and res are not quasi-inverse equivalences of categories in gen-

eral, they are quasi-inverses on rank-1 objects. Indeed, a Hodge-Pink structure
on 1-dimensional K 0-vector space is uniquely determined by its Hodge number,
and the same holds for a filtration on 1-dimensional K 0-vector space. Note also
that this functor HPK(ϕ) → MF(ϕ)K sends the Tate object 1(n) in HPK(ϕ)
to 1MF (n) inMF(ϕ)K . This explains our notations for Tate objects in HPK(ϕ)
and Tate objects inMF(ϕ)K .

2.4.4. For the rest of this subsection, we outline the results from [Kis06] which
are relevant to this work. Let N∇ = −uλ d

du , a K 0-linear derivation on O∆. We
have an equality N∇ ◦ σ = pP(u)

P(0) ·(σ ◦ N∇). For a vector bundle M on ∆ (i.e.,
a finite free O∆-module M), a differential operator NM∇ : M →M over N∇ is a
K 0-linear map such that for any f ∈ O∆ and m ∈M we have the “Leibnitz rule”
NM∇ (f ·m) = N∇(f)·m+ f ·NM∇ (m). Giving such an NM∇ is equivalent to giving a
logarithmic connection ∇M : M →M⊗O∆ Ω∆[ 1

uλ ], as follows: for a given NM∇ ,
set ∇M(m) := NM∇ (m)⊗

(
− du
uλ

)
; for a given ∇M, define

NM∇ :M ∇M−−−→M ⊗O∆ Ω∆[1/uλ] id⊗N∇−−−−−→M,

where N∇ : Ω∆ → O∆ denotes the map ω 7→ −ωλ ω
du induced from the derivation

N∇ = −uλ d
du by the universal property of Ω∆.

Now, we consider M ∈ Mod∆(ϕ) equipped with a differential operator NM∇ :
M→M over N∇ which satisfies NM∇ ◦ ϕM = pP(u)

P(0) ·(ϕM ◦N
M
∇ ); or equivalently,
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a logarithmic connection ∇M which commutes with ϕM. Now, it follows from the
“Leibnitz rule” that NM∇ (u ·m) ∈ u ·M for any m ∈ M, so the reduction of NM∇
modulo u ·M makes sense. We put N := NM∇ mod u·M, and clearly it satisfies
N ◦ ϕ̄ = pϕ̄ ◦N , where ϕ̄ :M/uM→M/uM is the reduction of ϕ modulo uM.
Let Mod∆(ϕ,N∇) be the category of such “(ϕ,N∇)-modules” (M, ϕM, N

M
∇ ), and

Mod∆(ϕ,N∇;N = 0) the full subcategory of Mod∆(ϕ,N∇) whose objects satisfy
N = 0. In terms of the logarithmic connection, N = 0 means that the pole of ∇M
at u = 0 can be removed.

Theorem 2.4.5. [Kis06, §1.2] There exist quasi-inverse equivalences of ⊗-
categories MMF : MF(ϕ,N)>0

K → Mod∆(ϕ,N∇) and DMF : Mod∆(ϕ,N∇) →
MF(ϕ,N)>0

K , which restricts to equivalences of categories MMF : MF(ϕ)>0
K →

Mod∆(ϕ,N∇;N = 0) and DMF : Mod∆(ϕ,N∇;N = 0) → MF(ϕ)>0
K . Un-

der these equivalences of categories, filtered (ϕ,N)-modules (respectively, filtered
isocrystals) with Hodge-Tate weights in [0, h] corresponds to the (ϕ,N∇)-vector bun-
dles (respectively, with N = 0) of P-height 6 h.

In order for this equivalence of categories to be useful, we need to be able to
identify the essential image of weakly admissible objects in Mod∆(ϕ,N∇;N = 0)
and Mod∆(ϕ,N∇).

Theorem 2.4.6. [Kis06, §1.3] A filtered (ϕ,N)-module D ∈ MF(ϕ,N)>0
K is

weakly admissible if and only if there exists M ∈ ModS(ϕ) such that O∆ ⊗S M ∼=
MMF (D).

The proof makes a crucial use of Kedlaya’s slope filtration theorem. The proofs
can be found in [Ked04], [Ked05b], and [Ked07]. The notion of slope for an étale
ϕ-module over R is reviewed in §4.1 below.

One can improve the statement of the theorem, using the following results.
(1) The functor ModS(ϕ)[ 1

p ] → Mod∆(ϕ), M � M ⊗S O∆ is fully faithful
(and the essential image exactly consists of the object which are “pure of
slope 0” in the sense of Kedlaya). In other words, the ϕ-stable S-lattice11
M inM∈ Mod∆(ϕ) is unique up to isogeny if exists. See [Kis06, Lemma
1.3.13], which is also proved in Proposition 4.3.3 in this paper.

(2) The forgetful functor Mod∆(ϕ,N∇;N = 0)→ Mod∆(ϕ); (M, ϕM, N
M
∇ ) 7→

(M, ϕM) is fully faithful, and the essential image has a description in
terms of a certain singular connection given by a concrete formula being
logarithmic. See [Kis06, Lemma 1.3.10] for the proof. We comment on
this in more detail later in §5.2.12.

Combining above results, we obtain the following corollary.
Corollary 2.4.7. Let D be a weakly admissible filtered (ϕ,N)-module with

non-negative Hodge-Tate weights, and let M(D) := M[ 1
p ] where M is a ϕ-stable

S-lattice in MMF (D), whose existence is guaranteed by Theorem 2.4.6. This as-
signment defines a functor of ⊗-categories M : MF(ϕ,N)wa,>0

K → ModS(ϕ)[ 1
p ],

which restricts to a fully faithful functor onMF(ϕ)wa,>0
K .

Furthermore, M induces an equivalence of categories between objects of rank 1
and between objects “of Barsotti-Tate type,” i.e.,MF(ϕ)wa,[0,1]

K
∼−→ ModS(ϕ)61[ 1

p ].

11In this paper, a lattice is always assumed to be locally free of constant rank.
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The failure of the full faithfulness of M onMF(ϕ,N)wa,>0
K is exactly because

M “forgets” the monodromy operator N . See [Kis06, Corollary 1.3.15]. The failure
of the essential surjectivity, if it occurs, comes from the step where we forgets the
differential operator NM∇ . In fact, it is hard to expect to have any more general
essential surjectivity result than the above corollary.12 But the essential image of
MF(ϕ)wa,>0

K under M has a simple discription. See [Kis06, Lemma 1.3.10] and
Proposition ?? of this paper.

While it is hard to associate to a filtered isocrystal (or a filtered (ϕ,N)-module)
an integral structure which corresponds to a GK -stable Zp-lattice in a crystalline
representation, an object in the target category ModS(ϕ)[ 1

p ] has an obvious notion
of “integral structure,” namely a choice of ϕ-stable S-lattice M in the isogeny class
M[ 1

p ] ∈ ModS(ϕ)[ 1
p ]. To interpret the meaning of this integral structure, we now

return to the “Galois representation” side. We first need the following result.

Proposition 2.4.8. [Kis06, proposition 2.1.12] The functor ModS(ϕ)→ ModoE
(ϕ),

defined by M 7→ oE ⊗S M, is fully faithful.

The proof of this innocent-looking proposition requires all the equivalences of
categories we discussed above.

We have an anti-equivalence of categories T ∗E from the category of étale ϕ-
modules free over oE into the category of finite free Zp-modules with continuous
GK ∞

∼= GK-action. (See [Fon90, §A.1.2] or Proposition 5.1.7 of this paper.)
So we can associate to M ∈ ModS(ϕ) a lattice GK ∞ -representation T ∗S(M) :=
T ∗E(oE ⊗S M). The previous proposition shows that the contravariant functor
T ∗S(M) : ModS(ϕ)→ Repfree

Zp (GK ∞) is fully faithful.
Let Rep>0

Zp (GK ∞) denote the essentially image of ModS(ϕ) under the fully
faithful functor T ∗S, and Rep>0

Qp (GK ∞) denote the isogeny category of Rep>0
Zp (GK ∞);

i.e., the category of Qp-representations V of GK ∞ such that there exists a GK ∞ -
stable lattice T ∈ Rep>0

Zp (GK ∞). Clearly, we have an anti-equivalence of categories
V ∗S : ModS(ϕ)[ 1

p ] → Rep>0
Qp (GK ∞). It can be seen, with some work, that if

V ∈ Rep>0
Qp (GK ∞), then any GK ∞-stable lattice in V belongs to Rep>0

Zp (GK ∞).
More precisely, we have the following proposition which is proved in Proposition
5.2.9.

Proposition 2.4.9. If V = T ∗S(M)[ 1
p ], then the set of GK ∞-stable lattices

T ′ in V is naturally in inclusion reversing bijection with ϕ-stable S-lattices M′ ⊂
M[ 1

p ], and M′ is automatically of P-height 6 h if M is.

12See §11.3.13 which indicates that GK∞ -deformation spaces of P-height 6 h usually have
bigger dimension than crystalline or semi-stable deformation spaces with Hodge-Tate weights in
[0, h].
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We now discuss applications of Corollary 2.4.7 to semi-stable and crystalline
GK -representations. Consider the composition of functors

(2.4.9.1)

Repst,>0
Qp (GK )

D∗st
∼=

//MF(ϕ,N)wa,>0
K

M // ModS(ϕ)[1/p]
V ∗S
∼=

// Rep>0
Qp (GK ∞)

� _

��
RepQp(GK ∞),

where Repst,>0
Qp (GK ) is the category of semi-stable representations with non-negative

Hodge-Tate weights, and the second arrow M is as defined in Corollary 2.4.7. All
the arrows become fully faithful13 when we replaceD∗st byD∗cris : Repcris,>0

Qp (GK ) ∼−→
MF(ϕ)wa,>0

K , hence the composition is a fully faithful functor Repcris,>0
Qp (GK ) →

RepQp(GK ∞).
On the other hand, we also have another functor Repst,>0

Qp (GK )→ RepQp(GK ∞)
obtained by restricting a semi-stable GK -representation to a GK ∞-representation.

Theorem 2.4.10. [Kis06, Proposition 2.1.5] The two functors Repst,>0
Qp (GK )→

RepQp(GK ∞), one of which is the restriction to GK ∞ and the other of which is
the composition of functors from (2.4.9.1), are naturally isomorphic. In partic-
ular, the functor obtained by restricting to a GK ∞-representation is fully faith-
ful on Repcris

Qp (GK ). Furthermore, the restriction to GK ∞ of a semi-stable Qp-
representation of GK with non-negative Hodge-Tate weights belongs to Rep>0

Qp (GK ∞).

To digress, note also that Theorem 2.4.2 follows from above; it has been well-
known that the proof of Theorem 2.4.2 reduces to showing that a certain inequality
of dimensions is in fact an equality, which directly follows from above.

Let D be a weakly admissible filtered (ϕ,N)-module with non-negative Hodge-
Tate weights, and choose M ∈ ModS(ϕ) so that M[ 1

p ] = M(D)(Corollary 2.4.7).
The above theorem, combined with Proposition 2.4.9, tells us that the choice of M
exactly corresponds to the GK ∞-stable Zp-lattice of the semi-stable representation
V ∗st(D).

In using the fully faithful functor M : MF(ϕ)wa,>0
K → ModS(ϕ)[ 1

p ] to study
crystalline representations, we face two major roadblocks. First, M is not essentially
surjective. Second, a choice of M ∈ ModS(ϕ) in the isogeny class M[ 1

p ] = M(D)
corresponds to a GK ∞-stable lattice of V ∗cris(D) which is not necessarily GK -stable.
On the other hand, for crystalline GK -representations with Hodge-Tate weights in
[0, 1], we have the following result which completely removes these roadblocks when
p > 2.

Theorem 2.4.11. [Kis06, §2.2]
(1) (Kisin’s classification of Barsotti-Tate groups) If p > 2, then there exists

an anti-equivalence of categories G∗ from ModS(ϕ)61 to the category of
Barsotti-Tate groups over oK . Furthermore, for any M ∈ ModS(ϕ)61

we have a GK ∞-equivariant isomorphism Tp (G∗(M)) ∼= T ∗S(M).

13It is not a deep theorem that D∗cris and D∗st are fully faithful; the hard part is the essential
surjectivity, which requires Theorem 2.4.2
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(2) There exists an anti-equivalence of categories between the isogeny category
of Barsotti-Tate groups over oK and ModS(ϕ)61[ 1

p ]. Furthermore, for
an isogeny class [G] containing a Barsotti-Tate group G/oK

and an object
M[ 1

p ] ∈ ModS(ϕ)61[ 1
p ] which correspond to each other under the anti-

equivalence of categories G∗, we have a GK ∞-equivariant isomorphism
Vp(G) ∼= V ∗S(M[ 1

p ]). In particular, for any crystalline GK -representation
V , there exists a Barsotti-Tate group G/oK

such that V ∼= Vp(G) as a
GK -representations.

One also has a covariant version of Kisin’s classification, by taking duality on
Barsotti-Tate groups (or equivalently, by taking suitable duality on ModS(ϕ)61,
which will be defined in Definition 8.3.2). Theorem 2.4.11(1) was originally con-
jectured by Breuil in [Bre98] for all primes p including p = 2. For p > 2 Kisin
[Kis06, §2.2, § A] proved the conjecture. Allowing p = 2, Kisin [Kis09a] proves this
conjecture for connected Barsotti-Tate groups using a certain full subcategory of
ModS(ϕ)61; his proof rests on Zink’s theory of windows and displays. (Under the
contravariant correspondences, G∗(M) is connected if ϕM is “topologically nilpo-
tent.”) It is conjectured that Kisin’s classification of Barsotti-Tate groups should
hold for p = 2 without the connectedness assumption.

As a consequence, if p > 2 then any GK ∞-stable Zp-lattice of crystalline rep-
resentation with Hodge-Tate weights in [0, 1] is GK -stable. Therefore ModS(ϕ)61

classifies GK -stable Zp-lattices crystalline representations with Hodge-Tate weights
in [0, 1].

2.4.12. Overview of Part I, §3–§7. In this work, we shall study Rep>0
Qp (GK ∞),

which is classified by ModS(ϕ)[ 1
p ]. As stated above, we have a fully faithful functor

ModS(ϕ)[ 1
p ] → Mod∆(ϕ), defined by the scalar extension S → O∆, where the

essential image is the full subcategory of ϕ-vector bundles “pure of slope 0” in
the sense of Kedlaya. At the first part of what follows, we shall prove results
analogous to [Kis06, §1], but without using the differential operator NM∇ (which is
not available in the equi-characteristic case).

The role of NM∇ is quite limited in [Kis06, §1]. There are two places where NM∇
is used, one of which is avoidable and the other not. One place where NM∇ is used
is the “Dwork’s trick” argument in the proof of Theomem 2.4.6. We carry out this
step only using the Frobenius map ϕ; see Proposition 4.2.1. (An analogous situation
can be found in [Ked05a], which carries out the “Dwork’s trick” step [dJ98] in the
proof of de Jong’s theorem only using the Frobenius structure.)

Kisin [Kis06, (1.2)] crucially used NM∇ in order to show that DMF andMMF

are quasi-inverse equivalences of categories betweenMF(ϕ)>0
K and Mod∆(ϕ,N∇;N =

0). In fact, we should not get equivalences of categories between Mod∆(ϕ) and
MF(ϕ)>0

K , because the forgetful functor Mod∆(ϕ,N∇;N = 0)→ Mod∆(ϕ) is not
an equivalences of categories. On the other hand, the construction ofDMF does not
involve NM∇ (more precisely, the construction only uses that NM∇ mod u·M = 0),
and the construction of the filtration from M ∈ Mod∆(ϕ) suggests that one may
be able to factor DMF as Mod∆(ϕ) → HP>0

K (ϕ) F−→MF(ϕ)>0
K where the second

map is defined in §2.4.3. See [Kis06, (1.2.7)] for the construction. In fact, this idea
works and we obtain quasi-inverse equivalences of categories D and M between
HP>0

K (ϕ) and Mod∆(ϕ). This is proved in Propositions 3.2.1 and 3.2.5.
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Next, we will interpret the weak admissibility of (D,ϕ,Λ) ∈ HP>0
K (ϕ) in terms

of M(D,ϕ,Λ) being pure of slope 0 in the sense of Kedlaya [Ked04, Ked05b,
Ked07]. But recall that this full subcategory of pure slope 0 objects is equiva-
lent to ModS(ϕ)[ 1

p ], so we obtain an equivalence of categories H : HPwa,>0
K (ϕ) ∼−→

ModS(ϕ)[ 1
p ]. By composing with the anti-equivalence of categories T ∗S : ModS(ϕ)[ 1

p ]→
Rep>0

Qp (GK ∞) we obtain an anti-equivalence of categories V ∗HP : HPwa,>0
K (ϕ) ∼−→

Rep>0
Qp (GK ∞). This anti-equivalence of categories plays an important role in the

study of deformations later in §11.
Having eliminated the differential operators NM∇ , we now have a reasonable

analogue for o0 = Fq[[π0]] by replacing various ϕ-modules with the analogous con-
structions for o0 = Zp. In fact, most of the proofs work in this equi-characteristic
analogue with few modifications. This equi-characteristic theory may be thought of
as an “equi-characteristic analogue of Fontaine’s p-adic Hodge theory,” as observed
by Genestier-Lafforgue [GL] and Hartl [Har10, Har09].

Remark 2.4.13 (The case o0 = Fq[[π0]]). Instead of considering Hodge-Pink
structures, one might want to consider the filtration on D ⊗K 0 K obtained by
reducing (2.3.3.1) modulo P(u), as in the p-adic case. In fact, one obtains the same
Hodge-Pink weights and multiplicities using this filtration on D ⊗K 0 K . With
the absence of the differential operator NM∇ as in [Kis06], however, it turns out
that the category of isocrystals D with filtration on DK does not have enough
information to build an equivalence of categories with Mod∆(ϕ). See also [Har10,
Rmk 2.2.3] for more discussion on the inadequacy of “filtered ϕ-module” in the
equi-characteristic setting.





CHAPTER 3

Hodge-Pink theory and rigid analytic ϕ-vector bundles

In this section, we give construct a vector bundle over the open unit disk from
an isocrystal with Hodge-Pink structure. The construction is closely related to
Kisin’s work [Kis06, (1.2)] which was motivated by Berger’s work [Ber07, §II, III]
in the (ϕ,Γ)-module setting. Our construction differs from Kisin’s in that we work
with Hodge-Pink structures instead of filtered (ϕ,N)-modules (hence the theory
works in the equi-characteristic setting), and we use Frobenius structure but avoid
differential structure.

3.1. Construction

Let D := (D,ϕ,Λ) ∈ HP>0
K (ϕ) throughout this section; i.e., we assume that all

the Hodge-Pink weights for D are non-negative. We would like to construct a vector
bundleM(D) ∈ Mod∆(ϕ) such thatM(D)/uM(D) ∼= D andM(D)x̂0

∼= Λ.
We state the following classical lemma without proof, which will be useful:

Lemma 3.1.1. Let I ⊂ [0, 1) be a sub-interval, M be a finite free O∆I
-module

and N ⊂ M be an O∆I
-submodule. Then N ⊂ M is closed if and only if N is

finite free.

Proof. The hard part is “only if” direction, which is reduced to the case when
M is free of rank 1 by [Ked04, Lemma 2.4]. This case is handled by [Laz62, (7.3)].
The proof crucially uses that O∆I

is a Bézout domain, which uses the discrete
valuation of K 0 (or more generally, the spherical completeness). �

3.1.2. By §2.2.4, the scalar extension O∆ ⊗K 0 D is an étale ϕ-module over
O∆. For each non-negative integer n, define

ιn : O∆ ⊗K 0 D
id⊗ϕ−n

D−→ O∆ ⊗K 0 (σ∗nD)
↪−→ O∆̂,xn ⊗K 0 (σ∗nD) ∼= O∆̂,xn ⊗σn,O∆̂,x0

(O∆̂,x0 ⊗K 0 D),

where σn : O∆̂,x0 ↪→ O∆̂,xn is induced by σn : O∆ → O∆, as discussed at (2.1.3.3).
We set D := O∆ ⊗K 0 D.

Now we extend ιn to the following map:
(3.1.2.1) ιn : D[1/λ]→ O∆̂,xn [1/λ]⊗

σn,O∆̂,x0
D̂x0 .

The target of this map carries the tensor product filtration, where the second factor
D̂x0 carries the filtration coming from the Hodge-Pink structure Λ, as defined in
(2.3.3.1), and the first factor O∆̂,xn [ 1

λ ] has a decreasing filtration defined by λi ·
O∆̂,xn = (σnP(u))i · O∆̂,xn . Also, observe that the target of this map is naturally
isomorphic to D̂xn [ 1

λ ] using ϕ−nD : D ∼−→ σ∗nD over K 0 (i.e., not respecting how D

“naturally” sits in each if n > 0), where D̂xn is the completed stalk of D at xn ∈∆.

39
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3.1.3. Set
Mn(D) := (ιn)−1(Fil0(D̂xn [1/λ])

)
M(D) :=

⋂
n≥0
Mn(D) = {x ∈ D[1/λ] : ιn(x) ∈ Fil0(D̂xn [1/λ]), ∀n ≥ 0},

Let h be the maximum among Hodge-Pink weights for (D,Λ). Then we have
D ⊂M(D) ⊂Mn(D) ⊂ (λ−h·D). Clearly eachMn(D), henceM(D), is closed in
λ−h ·D, so by Lemma 3.1.1,bothMn(D) andM(D) are finite free O∆-modules.

The inclusions induce isomorphismsD[ 1
λ ] ∼−→M(D)[ 1

λ ] ∼−→Mn(D)[ 1
λ ]. In other

words, D, Mn(D), and M(D), viewed as coherent sheaves on ∆, are naturally
isomorphic outside the zero locus {xn}n≥0 of λ. To study the local behavior of
M(D) near xn, we look at the completed stalks and make use of the following fact:
the inclusion M(D) ⊂ Mn(D) induces an isomorphism near xn, and ιn induces
the isomorphism below, which can be seen from the definition.
(3.1.3.1) M(D)x̂n

∼−→ Mn(D)x̂n
∼−→ Fil0(D̂xn [1/λ]).

In particularM(D)x̂0 = Λ inside of D̂x0 [ 1
λ ], by Lemma 2.3.5.

By §2.2.4(2), the natural ϕ-module structure on D := O∆⊗K 0 D is étale since
D is an étale ϕ-module. So the O∆-linear isomorphism ϕD : σ∗D → D induces
an O∆[ 1

λ ]-linear isomorphism ϕD[ 1
λ ] : (σ∗D)[ 1

λ ] ∼−→ D[ 1
λ ]. We will prove that the

O∆-submoduleM(D) ⊂ D[ 1
λ ] is ϕD-stable; i.e., σ∗

(
M(D)

)
is carried intoM(D).

Once this is done, we show that the induced ϕ-structure on M(D) over O∆ is of
finite P-height by “analytic-local” argument.

3.1.4. Rank-1 example. Before we move on, let us work outM(D,Λ) when D
is of rank 1 and the Hodge-Pink structure Λ is effective. We choose a K 0-basis
e ∈ D, and write ϕ(σ∗e) = αe · e for some αe ∈ K ×

0 . Since Λ = P(u)−hD̂x0

for some h > 0, we obtain Mn(D,Λ) = (σn(P(u)))−hD for all n > 0. Therefore,
M(D,Λ) = λ−hD, which is stable under ϕD[ 1

λ ] : σ∗D[ 1
λ ] → D[ 1

λ ]. We can also
compute ϕD[ 1

λ ] onM(D,Λ) = λ−hD for the O∆-generator λ−he, as follows (using
the definition of λ in §2.1.3):

(3.1.4.1) ϕ(σ∗(λ−he)) = αe

(
P(u)
P(0)

)h
·(λ−he).

If dimK 0 D > 1, then it may be much harder to compute M(D,Λ) explicitly;
M(D,Λ) may not have a simple expression such as λ−hD.

Proposition 3.1.5. Let D := (D,ϕD,Λ) ∈ HP>0
K (ϕ). Then, ϕD[ 1

λ ] : (σ∗D)[ 1
λ ] ∼−→

D[ 1
λ ] restricts to ϕ : σ∗M(D)→M(D). Furthermore, we have an isomorphism

(3.1.5.1) cokerϕ ∼= Λ/(D̂x0) ∼=
⊕
w>0

(O∆̂,x0 /P(u)w)mw ,

where the right side is a finite direct sum.

Upon verifying the proposition, we would obtain a functor M : HP>0
K (ϕ) →

Mod∆(ϕ) because one can check that if a K 0-linear map f : D → D′ respects
Hodge-Pink structures on both sides then O∆[ 1

λ ]⊗ f : D[ 1
λ ]→ D′[ 1

λ ] takesMn(D)
intoMn(D′) for each n ≥ 0, henceM(D) intoM(D′). The proposition also says
that we can recover the Hodge-Pink type of an effective Hodge-Pink structure D
fromM(D), since cokerϕ ∼= Λ/D̂x0 . (See Corollary 2.3.6.)
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Proof. When o0 = Zp, this proposition can be read off from the proof of
[Kis06, Lemma 1.2.2]. The same argument goes through with few modifications
when o0 = Fq[[π0]]. The statement can be checked locally at each point on ∆.
Having that D[ 1

λ ] = M(D)[ 1
λ ], it is enough to verify the result locally at xn, for

each n ≥ 0.
Let h be the maximum of the Hodge-Pink weights for D so that we have

M(D) ⊂Mn(D) ⊂ λ−h·D. In (2.1.3.4) we have seen that σ : O∆ → O∆ induces an
O∆-isomorphism γn,1 : σ∗O∆̂,xn

∼−→ O∆̂,xn+1 , where σ∗O∆̂,xn := O∆⊗σ,O∆O∆̂,xn .
We have the following commutative diagram which shows how ιn and ϕ interact.

(3.1.5.2)

λ−h ·(σ∗D)
σ∗ιn //

ϕD=id⊗ϕD '

��

σ∗
(
σnP(u))−h ·

(
O∆̂,xn ⊗K 0 (σ∗nD)

))
'

(σn+1P(u))−h ·
((
σ∗O∆̂,xn

)
⊗K 0

(
σ∗nD

))
γn,1⊗id'

��

λ−h ·D
ιn+1 // (σn+1P(u))−h ·

(
σ∗n+1(O∆̂,xn+1 ⊗K 0 D

))

.

Choose an interval In, so that ∆In contains xn but does not contain xm for
m 6= n. We can further assume that (In)1/q = In+1 for all n ≥ 0, so that we have
σ : O∆In

→ O∆In+1
for each n. Then, since (λ−h · D)/Mn(D) is supported on the

(discrete) zero locus of λ, we have the following exact sequence

(3.1.5.3) 0→Mn(D)In
n−→ λ−h ·DIn

ιn−→ (σnP(u))−h · D̂xn
Fil0(D̂xn [1/λ])

→ 0

Indeed, the cokernel of n is supported at xn from the choice of In, so the right
exactness follows from the isomorphism (3.1.3.1) and the definition of λ. Let us
denote by Qn the cokernel of n.

Combining (3.1.5.2) and (3.1.5.3), we obtain the following commutative dia-
gram of coherent sheaves on ∆In+1 :

0 //
(
σ∗Mn(D)

)
In+1

//

∃
���
�
�

(
λ−h ·(σ∗D)

)
In

σ∗ιn //

(ϕD)In+1 '
��

(σ∗Qn)In+1
//

γn,1⊗id '
��

0

0 //Mn(D)In+1
// λ−h ·DIn+1

ιn+1 // (Qn)In+1
// 0

Hence, the left vertical arrow induced by ϕD[ 1
λ ] exists and is an isomorphism. Since

the inclusionM(D) ⊂ Mn(D) induces an isomorphism at xn (as may be seen on
completed stalks using (3.1.3.1)), we conclude that ϕD : σ∗(λ−h ·D) → λ−h ·D
restricts to an isomorphism ϕxn+1 : (σ∗M(D))xn+1

∼−→M(D)xn+1 for all n ≥ 0.
Now, it is left to verify the lemma at x0. From the isomorphism D[ 1

λ ] ∼−→
M(D)[ 1

λ ] induced by the natural inclusion, we obtain (σ∗D)[ 1
σ(λ) ] ∼−→ (σ∗M(D))[ 1

σ(λ) ].
Since σ(λ) does not vanish at x0 ∈ ∆ (by definition or by (2.1.3.2)), the natural
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map (σ∗D)x0 →
(
σ∗M(D)

)
x0

induced by the natural inclusion is an isomorphism.
So we have the following maps:(

σ∗M(D)
)
x0

(σ∗D)x0
'oo ϕD

∼=
// (D)x0

� � //M(D)x0

This proves that ϕD[ 1
λ ] : (σ∗D)[ 1

λ ] → D[ 1
λ ] restricts to a map ϕ : σ∗M(D) →

M(D), and that
cokerϕ ∼−→M(D)x̂0 /D̂x0

∼−→ Λ/D̂x0 ,

where the second isomorphism follows from n = 0 case of (3.1.3.1) and from Lemma
2.3.5. This proves the isomorphism (3.1.5.1). �

Proposition 3.1.6. The functorM : HP>0
K (ϕ)→ Mod∆(ϕ) is an exact func-

tor of ⊗-categiries. In other words,M satisfies the following properties.
(1) M commutes with ⊗-products.
(2) M takes a short exact sequence of the source category into that of the
target category.

Proof. SinceM(D) is a coherent sheaf on ∆, it suffices to check these prop-
erties on completed stalks at each point of ∆. We also have D[ 1

λ ] =M(D)[ 1
λ ].

For D,D′ ∈ HP>0
K (ϕ), we obtain a natural mapM(D)⊗M(D′)→M(D⊗D′)

from the universal property of ⊗-product, which is clearly an isomorphism outside
{xn}. Now we use (3.1.3.1) to conclude that this natural map is an isomorphism
at xn for each n.

For a short exact sequence 0 → (D′,Λ′) → (D,Λ) → (D′′,Λ′′) → 0 in
HP>0

K (ϕ), one gets a sequence of maps 0→M(D′)→M(D)→M(D′′)→ 0. It is
enough to check the exactness completed stalks at xn, for which we use (3.1.3.1). �

3.2. Equvalence of categories

In this subsection, we construct a functor D : Mod∆(ϕ) → HP>0
K (ϕ), which

will shown to be a quasi-inverse to the functor M constructed in the previous
subsection.

LetM∈ Mod∆(ϕ); i.e., a (ϕ,O∆)-module of finite P-height, and consider the
ϕ-module M/uM, which is an isocrystal (i.e., an étale ϕ-module over K 0) since
P(0) is a unit in K 0. Hence the scalar extension O∆ ⊗K 0 (M/uM) is an étale
ϕ-module on ∆ by §2.2.4(2). We set
(3.2.0.1) D(M) := (O∆ ⊗K 0 (M/uM), O∆ ⊗ ϕ)

To give a Hodge-Pink structure onM/uM, we need the following lemma. The
case o0 = Zp can be extracted from the proof of [Kis06, Lemma 1.2.6] (except the
functorial property; i.e., (2) in the statement below). The same proof also works if
o0 = Fq[[π0]].

Proposition 3.2.1. For M ∈ Mod∆(ϕ), there exists a unique O∆-linear “ϕ-
compatible section” ξ : D(M)→M. In other words, there exists a unique ξ which
reduces to the identity map modulo u and commutes with ϕ-structures on both sides.
Furthermore, ξ enjoys the following properties:

(1) The section ξ induces an isomorphism D(M)[1/λ] ∼−→ M[1/λ]. Further-
more, on any ∆I which contains x0 and does not contain xn for n 6= 0,
the images of ξ and ϕM coincide.
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(2) Consider M,M′ ∈ Mod∆(ϕ). Let ξ and ξ′ be the unique ϕ-compatible
sections for M and M′, respectively. Then, for any morphism f :M→
M′ of Mod∆(ϕ), the following diagram commutes:

(3.2.1.1) D(M) ξ //

O∆⊗f̄
��

M

f

��
D(M′) ξ′ //M′,

where f̄ :M/uM→M′/uM′ is the reduction of f modulo u.

Remark 3.2.2. Before we begin the proof, let us discuss a consequence of
the lemma. We view M̂x0 as an effective Hodge-Pink structure for the isocrystal
M/uM. We define a functor D : Mod∆(ϕ)→ HP>0

K (ϕ), as follows:

(3.2.2.1) D(M, ϕM) =
(
M/uM, ϕM mod uM, M̂x0

)
,

The functor D carries a morphism f : M → M′ of Mod∆(ϕ) to a morphism
(f mod uM) : M/uM → M′/uM′. This defines a morphism of HP>0

K (ϕ) (i.e.,
takes the Hodge-Pink structure of the source into that of the target) essentially
because of the functoriality of the ϕ-compatible section (Proposition 3.2.1(2)).

3.2.3. Rank-1 Example. Before we prove Proposition 3.2.1, we work out the
rank-1 case. Let M ∈ Mod∆(ϕ) be of rank 1 over O∆ and set D := M/uM
equipped with ϕ̄ := ϕM mod uM. We choose a O∆-basis e ∈ M, and denote by
ē ∈ D the image of e under the natural projection. Since ϕM(σ∗e) spans P(u)hM

for a suitable h > 0, we may write ϕM(σ∗e) = αe

(
P(u)
P(0)

)h
·e for some αe ∈ K ×

0 .
Then we have ϕ̄(σ∗ē) = αe ·ē. Therefore, we have ϕM(σ∗(λh ·e)) = αe ·(λh ·e), and
λ(0) = 1 (or rather, λ ≡ 1 mod u), so λh ·e reduces to ē modulo uM. This shows
that ē 7→ λhe induces a ϕ-compatible map ξ : O∆ ⊗K 0 D →M. By Proposition
3.2.1, this is the unique such map. Following the recipe of Remark 3.2.2, we obtain a
Hodge-Pink structure Λ = λ−hD̂x0 = P(u)−hD̂x0 . This defines D(M) ∈ HP>0

K (ϕ)
of rank 1.

From the above discussion and §3.1.4, it is not difficult to show thatM and D
are quasi-inverse equivalences between categories of rank-1 objects. The equivalence
will be generalized to an arbitrary rank later in Proposition 3.2.5(3).

Proof of Proposition 3.2.1. We proceed in four steps.
(1) existence of ξ

Recall that O∆ is a Fréchet space with respect to norms ‖ · ‖r for r ∈ qQ<0 . See
§2.1.1 for the definition of the norms. By choosing aO∆-basis {ei}i=1,···d forM, one
can define a norm ‖ · ‖r onM by taking the maximum of ‖ · ‖r on coefficients, which
makesM a Fréchet space. The topology onM generated by ‖ · ‖r is independent
of the choice of basis forM. Likewise, σ∗n(M) is a Fréchet space for all n > 0.

Starting from any K 0-linear section s0 : M/uM→M, which does not have
to be ϕ-compatible, we would like to construct a new section s : M/uM → M
such that s ◦ ϕ̄ = ϕM ◦ σ∗s. Here we give a formula for s, and will show that it is
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well-defined.
(3.2.3.1)
s := s0+

∑
i≥0

(ϕi+1
M ◦σ

∗i+1s0◦ϕ̄−(i+1)−ϕiM◦σ∗
is0◦ϕ̄−i) = “ lim

i→∞
(ϕiM◦σ∗

is0◦ϕ̄−i) ”

Since ϕ̄ : σ∗(M/uM)→M/uM is bijective, ϕ̄−1 makes sense. If the right side is
well defined, then it clearly satisfies s ◦ ϕ̄ = ϕM ◦ σ∗s. SinceM is a Fréchet space,
it is enough to check the convergence for each norm ‖ · ‖r.

We have uniquely ϕM(σ∗ej) =
∑d
i=1 aijei where σ∗ej := 1⊗ej ∈ σ∗(M/uM)

and aij ∈ O∆. Take a non-negative integer b such that qb ≥ maxi,j{‖aij‖r}.
(Note that b depends on r.) Then we have ‖ϕM(σ∗ei)‖r ≤ qb ‖ei‖r, and it follows
that ‖ϕM(σ∗m)‖r ≤ qb ‖m‖r for any m ∈ M by using the inequality ‖σ(f)‖r =
‖f‖r1/q ≥ ‖f‖r (which follows from the maximum modulus principle).

Take any oK 0 -lattice L ⊂ M/uM. Increase b so that we have ϕ−1(L) ⊂
π−b0 (σ∗L). (So now, b depends on both r and L.) Since im

(
ϕM ◦ σ∗s0 ◦ ϕ̄−1 − s0

)
⊂

uM, we set L̃ := u−1 (ϕM ◦ σ∗s0 ◦ ϕ̄−1 − s0
)

(L) ⊂M. Now we have∥∥∥(ϕi+1
M ◦ (σ∗)i+1s0 ◦ ϕ̄−(i+1) − ϕiM ◦ (σ∗)is0 ◦ ϕ̄−i

)
(L)
∥∥∥
r

≤ qib
∥∥∥uqiϕiM((σ∗)iL̃)

∥∥∥
r
≤ q2ibrq

i
∥∥∥L̃∥∥∥

r
,

where
∥∥∥L̃∥∥∥

r
:= sup

m∈L̃{‖m‖r}, which is clearly finite. (We normalized the ab-

solute value so that |π0| = 1
q .) Observe that q2ibrq

i → 0 as i → ∞ for any
r ∈ (0, 1) and any non-negative b (hence for any choice of L). For any x ∈M/uM,
choosing L to contain x proves that the formula for s(x) makes sense. Now let
ξ := id⊗s : O∆ ⊗K 0 (M/uM)→M.

(2) uniqueness of ξ and diagram (3.2.1.1)
Consider M,M′ ∈ Mod∆(ϕ) and an O∆-linear ϕ-compatible map f : M →M′.
Let f̄ : M/uM → M′/uM′ be the reduction of f modulo u. Consider some ϕ-
compatible sections s :M/uM→M and s′ :M′/uM′ →M′, and we show that
f ◦ s = s′ ◦ f̄ . This shows the commutative diagram (3.2.1.1), and the uniqueness
of ξ also follows from the case whenM =M′ and f = idM.

Observe that both f ◦ s and s′ ◦ f̄ are ϕ-compatible mapM/uM→M′ such
that the post-composition of both with the natural projection M′ �M′/uM′ is
f̄ . So we have im(f ◦ s− s′ ◦ f̄) ⊂ uM′. From the ϕ-compatibility, we obtain:

ϕiM′ ◦
(
σ∗i(f ◦ s− s′ ◦ f̄)

)
= (f ◦ s− s′ ◦ f̄) ◦ ϕ̄i,

for any positive integer i. Since ϕ̄ : σ∗(M/uM)→M/uM is an isomorphism, we
deduce from above equality that im(f ◦ s− s′ ◦ f̄) ⊂ uqiM′ for any positive integer
i, so we have f ◦ s− s′ ◦ f̄ = 0.

(3) claims on im(ξ)
Since ξ is an isomorphism modulo u, ξ induces an isomorphism on stalks at the
origin, so it is an isomorphism on some neighborhood of the origin. Let ∆6r

denote the rigid analytic closed disk of radius r centered at 0 over K 0. Take r
such that ∆6r contains x0 and not xn for n 6= 0, and choose i such that ξ6rqi is an
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isomorphism. Since ξ is ϕ-compatible, we have the following commutative diagram

σ∗D(M) σ∗ξ //

∼=
��

σ∗M

ϕM

��
D(M) ξ //M

If i > 1, the right vertical arrow is an isomorphism on ∆6rqi−1 by the finite
P-height condition. So we get that ξ6rqi−1 is an isomorphism. And when i = 1,
the above diagram exactly tells that the image of ξ6r coincides with the image of
ϕM,6r. Hence the cokernel of ξ6r is killed by some power of P(u), say P(u)h.

By repeating this argument for ∆6rq−n with n > 0, we obtain that the cokernel

of ξ6rq−n is killed by
(∏n

i=0 σ
i
(P(u)
P(0)

))h
for all n > 0. Therefore, coker ξ is killed

by λh. �

Remark 3.2.4. In this remark, we show that (D,ϕD,Λ) := D(M) can be
easily computed if ϕM is explicitly given (with respect to a basis). The only
possibly non-trivial part is to compute the Hodge-Pink structure Λ, which can be
done as follows.

ChooseM∈ Mod∆(ϕ) and fix an O∆-basis {e1, · · · , en} ofM. We let ei also
denote its image in Λ := M̂x0 . Let ēi to denote the image of ei in D := M/uM
and view it as an element in D̂x0 . We want to give a basis of Λ in terms of
ξ̂x0(ei). So Proposition 3.2.1(1) shows that the ξ̂x0(ei) and the ϕM(σ∗ei) generate
the same submodule in Λ, so

∑
i a
ij ξ̂x0(ei) generates Λ, where (aij) = (aij)−1 with

(aij) ∈ GLn(O∆[ 1
P(u) ]) is the matrix representation of ϕM for the chosen basis;

i.e., ej =
∑
j a

ijϕM(σ∗ei).

Having definedM : HP>0
K (ϕ)→ Mod∆(ϕ) and D : Mod∆(ϕ)→ HP>0

K (ϕ), it
is quite straightforward to check the following:

Proposition 3.2.5. The functor D : Mod∆(ϕ)→ HP>0
K (ϕ) is an exact equiv-

alence of ⊗-categories. More precisely, we have the following properties:
(1) D commutes with ⊗-products.
(2) D takes a short exact sequence of the source category into that of the
target category.
(3) M and D are quasi-inverse to each other.

Since the functorsM andD commute with⊗-products (in particular, with Tate
twists), we can extend them to quasi-inverse equivalences of ⊗-categories between
HPK(ϕ) and generalized ϕ-modules over O∆ defined at §2.2.11.

Proof. First two claims are straightforward from Proposition 3.2.1, espe-
cially from the uniqueness of ξ. By construction, the underlying isocrystal for
(D ◦ M)(D,Λ) is naturally isomorphic to D. That this isomorphism takes the
Hodge-Pink structure for (D ◦ M)(D,Λ) isomorphically onto Λ follows from the
isomorphism (3.1.3.1) and Lemma 2.3.5. This shows the natural isomorphism
D ◦M ∼−→ id.

Recall that (M◦D)(M) is constructed as a submodule of D[1/λ], where D :=
O∆ ⊗K 0 (M/uM). We view M as a submodule of D[1/λ] via M ⊂ M[1/λ] ∼←
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D[1/λ] where the isomorphism is induced from the unique ϕ-compatible section ξ :
D →M (Proposition 3.2.1). To obtain a functorial isomorphism (M◦D)(M) ∼=M,
we show that both sides defines the same O∆-submodule of D[1/λ]. It is enough
to check locally at xn for each n.

The completed stalks of both at x0 define the same O ∆̂,x0 -lattice Λ inside
D̂x0 [1/λ]. So for ∆6r which contains x0 but not xn for n 6= 0, we have an equality
(M◦D)(M)6r = M6r inside D(M)6r[1/λ]. By pulling back (M◦D)(M)6r =
M6r by σn, we obtain

(
σn(M◦D)(M)

)
6r1/qn = (σnM)6r1/qn . SinceM is of finite

P-height, ϕnM is an isomorphism outside x0 and the same holds for (M◦D)(M).
Therefore we have (M◦D)(M) =M. �

3.2.6. Relation with (ϕ,S)-modules of finite P-height. Let us define the fol-
lowing functor of ⊗-categories:
(3.2.6.1)
H : ModS(ϕ)[1/π0]→ HP>0

K (ϕ), H(M[1/π0]) = D(O∆ ⊗S[1/π0] M[1/π0]).
One can directly see that the functor H preserves the Hodge-Pink type; more

precisely, M[ 1
π0

] ∈ ModS(ϕ)[ 1
π0

] is of Hodge-Pink type v if and only if H(M[ 1
π0

])
is of Hodge-Pink type v. This follows from the definitions of Hodge-Pink type,
together with Proposition 3.1.5. (Note that S[ 1

π0
]/(P(u)w) ∼= O∆/(P(u)w).)

In next section, we show that H is fully faithful (or equivalently, the scalar
extension functor ModS(ϕ)[ 1

π0
] → Mod∆(ϕ) is fully faithful) and the essential

image is exactly the full subcategory of weakly admissible objects. Similarly, we
may extend H to a fully faithful functor from the isogeny category of generalized
ϕ-modules over O∆ to HPK(ϕ), with an essential image HPwaK (ϕ).

For the case o0 = Fq[[π0]], it is proved by Genestier-Lafforgue [GL, Lemma
2.8] that H induces an equivalence of categories ModS(ϕ)[ 1

π0
] → HPwa,>0

K (ϕ). (A
proof can be found in Hartl [Har10, Theorem 2.5.3].) In the next section, we give
a slightly different proof which is closely related to Kisin’s proof for [Kis06, Thm
1.3.8]. Our proof also works for the case of o0 = Zp, which has not been studied as
far as the author is aware of.



CHAPTER 4

Weakly admissible Hodge-Pink structure

In this section, we prove that the functor H : ModS(ϕ)[ 1
π0

]→ HP>0
K (ϕ) defined

in (3.2.6.1) is fully faithful and that the essential image is exactlyHPwa,>0
K (ϕ). (See

Theorem 4.3.4 for the precise statement.) The key step is to show that weak admis-
sibility on HP>0

K (ϕ) is equivalent to the “pure-of-slope-0” condition on Mod∆(ϕ),
under the equivalences of categories M and D. The main technical ingredient
for the key step is the slope filtration theorem, which was proved by Kedlaya
[Ked04, Ked05b, Ked07] in the case of o0 = Zp, and by Hartl [Har10, Theorem
1.7.7.] in the case of o0 = Fq[[π0]]. Below we review the theory of slopes and state
relevant properties without proof.

The idea of relating the “pure-of-slope-0” condition and weak admissibility of
filtered (ϕ,N)-modules originally came from Berger [Ber07, §IV]. Our approach
is more akin to Kisin’s variant [Kis06, (1.3)]. In the p-adic setting, the difference
with Kisin’s approach and ours is that Kisin used a logarithmic connection [Kis06,
Lemma 1.3.5] for the “Dwork’s trick” step, while we solely work with Frobenius
structure so the same argument works in the analogous equi-characteristic setting;
see Proposition 4.2.1. Note that there is no good analogue of the logarithmic
connections in the equi-characteristic setting.

4.1. Review of slopes

For completeness of the exposition, we give a definition of slope and state the
slope filtration theorem of Kedlaya in the p-adic setting and Hartl in the equi-
characteristic setting.

4.1.1. Simple objects. We define the slope using the “Dieudonné-Manin classi-
fication” over Ralg. (See §6.1.10 for the definition of Ralg.) For these, we need to
define basic “building blocks.”

Let k̄/k be an algebraic closure, and recall that F0 := o0[ 1
π0

]. Let R be an F0-
algebra, equipped with an endomorphism σ : R→ R that fixes F0. In the intended
applications R will be one of the following:

(1) (The case o0 = Zp) a complete field extension K 0(k̄) over K 0 where
K 0(k̄) := W (k̄)[ 1

p ], equipped with the Witt vector Frobenius endomor-
phism σ.

(2) (The case o0 = Fq[[π0]]) a complete field extension K 0(k̄) over K 0 where
K 0(k̄) := k̄((π0)), equipped with the unique continuous endomorphism σ
such that σ(π0) = π0 and σ(α) = αq for all α ∈ k̄. (If k is not perfect,
which is allowed when o0 = Fq[[π0]], then K 0(k̄) is not the completion of
the maximal unramified extension of K 0.)

47
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(3) the Robba rings Ralg and Ralg,bd equipped with the natural Frobenius
endomorphism σ, introduced in §6.1.10.

We define the following étale ϕ-module (Md,n, ϕ) ∈ ModétR(ϕ) for any d, n ∈
Z>0:

Md,n :=
n⊕
i=1

(R · ei)

ϕ(σ∗ei) = ei+1, i 6= n

ϕ(σ∗en) = πd0 · e1

In particular, since σ(π0) = π0, for any m ∈ Md,n we have ϕn(σ∗nm) = πd0 · m.
(We define slopes and slope filtrations so thatMd,n is “pure of slope d/n.”) Observe
thatMd,n has a nontrivial proper ϕ-stable subobject if d and n are not coprime.

Theorem 4.1.2 (Dieudonné-Manin Classification). Let (R, σ) be either (K 0(k̄), σ)
or (Ralg, σ). Then anyM∈ Modét,free

R (ϕ) is isomorphic to a direct sum
⊕c

j=1M(dj ,nj),
where dj ∈ Z and nj ∈ Z>0 satisfy (dj , nj) = 1 for each j. The pairs (dj , nj) are
uniquely determined up to permutation.

Proof. If o0 = Zp, then Kedlaya [Ked05b, Theorem 4.5.7] proves the theorem
simultaneously for both R = K 0(k̄) = W (k̄)[ 1

p ] and R = Ralg. Simpler proofs
for the case R = W (k̄)[ 1

p ] can be found in [Die55], [Man63], [Kat79], and [Ked04,
Theorem 5.6]. If o0 = Fq[[π0]], then the theorem for R = K 0(k̄) = k̄((π0)) is proved
in [Lau96, §A 2.1]. The theorem for the case R = Ralg is proved in to [HP04,
Theorem 11.1, Corollary 11.8]. �

Remark 4.1.3. We record the following special case of the theorem: for any
rank-1 étale ϕ-module D ∈ Modét,free

K (k̄) (ϕ), one can find a basis e ∈ M so that
ϕ(σ∗e) = πd0 · e for some d ∈ Z. This gives a classification of rank-1 isocrystals
with weakly admissible Hodge-Pink structure, and rank-1 weakly admissible filtered
isocrystals if o0 = Zp.

4.1.4. Slope. Let M be an étale ϕ-module of rank n over Ralg. The degree1
of M, which is denoted by deg(M), is the unique integer d such that detM ∼=
Md,1, which is always well-defined by Theorem 4.1.2. The ratio sl(M) := d/n
of d := deg(M) and n := rankR(M) is called the slope of M. In more con-
crete terms, if M ∼=

⊕c
j=1M(dj ,nj), then we have deg(M) =

∑
j dj and sl(M) =(∑

j dj

)
/
(∑

j nj

)
. Clearly, we have deg(M) = sl(detM).

We say that M is pure2 of slope s = d/n, where d/n is a reduced fraction, if
M ∼= M⊕cd,n for some c. The full subcategories of étale ϕ-modules pure of slope s
will be denoted by Modsl=s

Ralg(ϕ).
For a ϕ-module M free over a base ring contained in Ralg (for example, over

Ralg,bd, R, Rbd, or O∆), the degree and the slope of M are defined to be the
degree and the slope of Ralg ⊗M, respectively. One can check that the degree

1This definition of degree differs by sign from Hartl’s definition [Har10, Def 1.5.1]. As Hartl
remarked, Hartl’s definition follows the “geometric” convention whereas this definition follows the
“arithmetic” convention.

2Sometimes, it is called isoclinic of slope s.
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for M ∈ ModRbd(ϕ) or M ∈ ModRalg,bd(ϕ) coincides with the valuation of the
determinant of any Frobenius matrix.

We say thatM is pure of slope s if Ralg ⊗M is so. We use superscript sl = s
to denote the full subcategories of étale ϕ-modules pure of slope s, for example,
Modsl=s

R (ϕ), Modsl=s
Rbd (ϕ), Modsl=s

∆ (ϕ), and so on.
We state the following proposition without proof, which will be used later in

proving Theorem 4.3.4.
Proposition 4.1.5. The ϕ-modulesMd,n over Ralg satisfy Homϕ(Md,n,Md′,n′) =

0 if and only if d/n > d′/n′. In particular, any ϕ-submodule of Md,n has slope
6 d/n.

If o0 = Zp, then the proposition is just [Ked05b, Proposition 4.1.3(a)]. If
o0 = Fq[[π0]], then by a standard argument (e.g. [Har10, Proposition 1.4.1]) we are
reduced to [HP04, Proposition 8.5].

For anyMalg ∈ ModRalg(ϕ), we have an isomorphismMalg ∼=
⊕c

i=1(Mdi,ni)⊕ai
from the Dieudonné-Manin decomposition. By re-indexing if necessary, one can ar-
range to have d1/n1 < d2/n2 < · · · < dc/nc. The following filtration is called the
slope filtration forMalg:
(4.1.5.1)

0 =Malg
0 ⊂Malg

1 ⊂ · · · ⊂ Malg
c =Malg, whereMalg

j :=
⊕
i≤j

(Mdi,ni)
⊕ai

If M ∈ ModR(ϕ), then the following (very difficult) theorem asserts that the
slope filtration for Ralg ⊗RM descends over R.

Theorem 4.1.6 (Slope Filtration Theorem).
(1) The scalar extension functor Modsl=s

Rbd (ϕ)→ Modsl=s
R (ϕ) is an equivalence

of categories. In particular, any M ∈ Modsl=s
R (ϕ) uniquely descends to

Mbd ∈ Modsl=s
Rbd (ϕ)

(2) For any M ∈ ModR(ϕ), there exists a unique and canonical filtration
(called the slope filtration) 0 =M0 ⊂M1 ⊂ · · · ⊂ Mc =M by saturated
ϕ-stable R-submodules such that each subquotient Mi/Mi−1 is pure of
slope si and s1 < s2 < · · · < sc. Furthermore, the slope filtration for
Ralg ⊗RM is exactly {Ralg ⊗RMi}.

Proof. If o0 = Zp, then the first part is [Ked05b, Theorem 6.3.3] and the
second part is [Ked04, Theorem 6.10]. If o0 = Fq[[π0]], then the first part is [Har10,
Corollary 1.7.6] and the second part is [Har10, Theorem 1.7.7]. �

For the future reference, we give a useful characterization of étale ϕ-module
(over Rbd or R) pure of slope 0.

Lemma 4.1.7. An étale ϕ-module Mbd finite free over Rbd is pure of slope 0
if and only if there exists a ϕ-compatible isomorphismMbd ∼= Rbd ⊗øRbd M

int for
some étale ϕ-module Mint over øRbd . Similarly, an étale ϕ-module M finite free
over R is pure of slope 0 if and only if there exists a ϕ-compatible isomorphism
M∼= R⊗øRbd M

int for some étale ϕ-moduleMint over øRbd .
Proof. The claim for étale (ϕ,R)-modules is reduced to the claim for étale

(ϕ,Rbd)-modules by Theorem 4.1.6(1). LetMbd ∈ Modsl=0
Rbd (ϕ) be pure of slope 0

and of Rbd-rank n. By definition, we have a ϕ-compatible isomorphism
Malg,bd := Ralg,bd ⊗RbdMbd ∼= (M0,1)⊕n ,
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where M0,1 is the simple object over Ralg,bd defined in §4.1.1. In particular,
Malg,bd has a ϕ-stable oRalg,bd -lattice Malg,int which is an étale ϕ-module over
oRalg,bd . (Indeed, this claim holds forM0,1, hence for any finite direct sum thereof.)
We put Mint := Malg,int ∩ Mbd, where the intersection is taken inside Malg,bd.
Clearly,Mint is a ϕ-stable øRbd -lattice ofMbd. Furthermore,Mint is an étale ϕ-
module over øRbd , which can be seen by taking the faithfully flat scalar extension
oRalg,bd ⊗øRbd M

int ∼=Malg,int.
Conversely, assume that we have a ϕ-compatible isomorphismMbd ∼= R⊗øRbd

Mint for some étale ϕ-module Mint over øRbd . Let M1 be the smallest non-zero
slope filtration ofM := R⊗øRbdM

int which is pure of slope d1/n1 where d1 and n1
are coprime. We putMint

1 :=M1∩Mint, where the intersection is taken insideM.
ThenMint

1 is a ϕ-stable étale oRalg,bd -lattice inMalg
1 , which cannot happen if the

slope s1 is negative. This shows that any successive quotientMj/Mj−1 of the slope
filtration for M is pure of some slope sj > 0 for each j > 1. On the other hand,
the top exterior power detM is pure of slope 0, since Ralg ⊗R detM ∼= Md,1 for
some d > 0 and admits an étale oRalg,bd -lattice oRalg,bd ⊗øRbd detMint. (Note that
Md,1 admits an étale oRalg,bd -lattice only when d = 0.) Since we showed that each
successive quotientMj/Mj−1 of the slope filtration is pure of some non-negative
slope, that detM is pure of slope 0 implies thatM is pure of slope 0 (so in turn,
Mbd is pure of slope 0). �

4.2. “Dwork’s trick” for ϕ-modules

The aim of this subsection is to prove the following: for any M ∈ Mod∆(ϕ),
the slope filtration for R⊗O∆M extends uniquely to a filtration ofM by ϕ-stable
saturated O∆-submodules ofM. The crucial difference with [Kis06, Lemma 1.3.5]
is that our proof only uses the Frobenius map ϕ, not a logarithmic connection. The
argument works for both cases o0 = Zp and o0 = Fq[[π0]]. A similar situation can
be found in the proof of de Jong’s theorem: Dwork’s trick [dJ98, Prop 6.4] can be
carried out without a connection. See [Ked05a, §5].

Let R be a Bézout domain, and let M be a finite free R-module. We say that
an R-submodule N ⊂ M is saturated if N is finitely presented (or equivalently,
finite free) and the quotient M/N has no nontrivial R-torsion. Since flatness and
torsionfree-ness coincide over a Bézout domain, it is equivalent to require thatM/N
is free over R. In particular, if N ⊂M is saturated, then an R-basis of N extends
to an R-basis of M .

Proposition 4.2.1. Let M ∈ Mod∆(ϕ), and let NR ⊂ MR be a ϕ-stable
saturated submodule over R. Then there exists a ϕ-stable saturated submodule N ⊂
M such that R⊗O∆ N ∼= NR.

Corollary 4.2.2. Let M ∈ Mod∆(ϕ) and 0 = MR,0 ⊂ MR,1 ⊂ · · · ⊂
MR,c = MR be the slope filtration for MR := R ⊗O∆ M. Then for each MR,i,
there exists a saturated ϕ-stable submoduleMi ⊂M such that R⊗O∆Mi

∼=MR,i.

Proof of Proposition. We show the existence of N in the following steps
(4.2.3)–(4.2.6).

4.2.3. Uniqueness. Let I be either (r, 1) or [r, 1) for some 0 ≤ r < 1, and assume
that there exists a saturated submodule NI ⊂MI such that R⊗O∆I

NI = NR as
a submodule ofMR. Then we have an equality NI =MI ∩ NR inside MR. This
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can be seen, for example, by choosing a O∆I
-basis for NI and extending it to a

O∆I
-basis forMI . Therefore, such NI is unique if exists. By taking I = [0, 1), we

obtain the uniqueness assertion of the proposition.

4.2.4. Reduction to the case when rankR(NR) = 1. This can be done by the
following well-known trick. If the proposition holds for rank-1 submodules, then
detNR of extends to “detN ” over O∆. (Note that N is finite free since it is closed
inM.) Now one can check that N := {m ∈M|m∧ x = 0, ∀x ∈ “ detN ”} extends
NR.

From now on, assume that rankR(NR) = 1 and let I be either (r, 1) or [r, 1)
for some 0 ≤ r < 1. Consider the submodule NI := MI ∩ NR in MI , which can
be seen to be saturated inside MR. Therefore we have R ⊗O∆I

NI = NR if and
only if NI 6= {0}. In particular, if N :=M∩NR 6= {0}, then R⊗O∆ N = NR.

Claim 4.2.5. There exists a unique saturated submodule N(0,1) ⊂M(0,1), such
that R⊗O∆(0,1)

N(0,1) = NR.

This claim is exactly [Kis06, Lemma 1.3.4] if o0 = Zp, and the same proof
works for o0 = Fq[[π0]]-case. We give a proof below, closely following the argument
of [Kis06, Lemma 1.3.4].

Since NR is finitely presented, there exists r ∈ (0, 1) and a saturated O∆(r,1) -
submodule N(r,1) ⊂M(r,1) such that R⊗O∆(r,1)

N(r,1) = NR. The Frobenius map
ϕ on NR induces ϕ : σ∗(N(r,1))→ N(r1/q,1), where σ∗(N(r,1)) is the scalar extension
by σ : O∆(r,1) → O∆(r1/q,1)

.
We set N(rq,1) :=M(rq,1) ∩N(r,1), which is a saturated submodule ofM(rq,1).

As mentioned in §4.2.4, in order to show that R ⊗O∆(rq,1)
N(rq,1) = N(r,1), it is

enough to show that N(rq,1) is non-zero. For this, we look at the following diagram
with left exact rows.

0 // σ∗
(
N(rq,1)

)
//

ϕ

��

σ∗
(
M(rq,1)

)
⊕ σ∗

(
N(r,1)

)
//

ϕ⊕ϕ
��

σ∗
(
M(r,1)

)
ϕ

��
0 // N(r,1) //M(r,1) ⊕N(r1/q,1) //M(r1/q,1),

where the left horizontal maps are diagonal inclusions and the right horizontal maps
are defined by (a, b) 7→ a−b. The top row is left exact since σ is flat. (Recall that a
torsion free module over a Bézout domain is always flat.) Furthermore, the central
and right vertical maps are injective, so the cokernels of both maps are torsion
modules. It follows that the cokernel of the left vertical map is also torsion, which
proves that N(rq,1) is nonzero.

By repeating this process, we obtain a vector bundle N(rqn ,1) of rank-1 for
each n, which glues to give a vector bundle N(0,1) of rank-1. By construction,
N(0,1) ⊂M(0,1) is saturated and we have R⊗O∆(0,1)

N(0,1) = NR. The uniqueness
of such N(0,1) follows from (4.2.3). (Here, we identify a vector bundle of rank n on
∆I with its global sections, which is necessarily a free O∆I

-module of rank n. See
§6.1.5 for more discussions.)

4.2.6. Extending N(0,1) to N . This is the key step. Roughly speaking, we ex-
tend a saturated O∆(0,1) [ 1

λ ]-submodule N(0,1)[ 1
λ ] ⊂M(0,1)[ 1

λ ] to a saturated O∆[ 1
λ ]-

submodule N [ 1
λ ] ⊂M[ 1

λ ], and glue N [ 1
λ ] and N(0,1) to obtain N . The point is that
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we have the ϕ-compatible section ξ : O∆ ⊗K 0 (M/uM) ↪→M, whose cokernel is
killed by some power of λ (Proposition 3.2.1). We use this to find a basis forM[ 1

λ ]
which makes the “ϕ-matrix” very simple.

Let ē1, · · · , ēn be a K 0 basis forM/uM, and we put ei := ξ(1⊗ēi). Then {ei}
is a O∆[ 1

λ ]-basis forM[ 1
λ ]. By construction, the matrix for ϕM[ 1

λ ] with respect to
the basis {ei} is the same as the matrix for ϕ̄ := ϕM/uM with respect to the basis
{ēi}. In particular, all the entries of this matrix lie in K 0. (In fact, if ϕ̄(σ∗ēj) =∑
i αij ēi with αij ∈ K 0, then we have ϕ(σ∗ej) = ξ (ϕ(σ∗ēj)) =

∑
i αijei.)

Let ∆K 0(k̄) be the open unit disk over K 0(k̄), and letMK 0(k̄) denoteO∆K 0(k̄)
⊗O∆

M. By the Dieudonné-Manin decomposition over K 0(k̄) (Theorem 4.1.2), we can
find a K 0(k̄)-basis {ē′j} for MK 0(k̄)/uMK 0(k̄)

∼= K 0(k̄) ⊗K 0 (M/uM) so that
ϕn(σ∗nē′j) = π

dj
0 ē′j . We put e′j := ξK 0(k̄)(1⊗ ē′j), where ξK 0(k̄) = O∆K 0(k̄)

⊗ ξ. By
construction the bases {e′j} and {ei} are related by GLn(K 0(k̄)). Since ξK 0(k̄) is
ϕ-compatible by construction, the matrix for ϕMK 0(k̄)

[ 1
λ ] with respect to the basis

{e′i} is in GLn(K 0(k̄)) by the same argument as above.
Let ∆K 0(k̄),(0,1) be the punctured open unit disk over K 0(k̄). Choose a

O∆K 0(k̄),(0,1)
-basis e ∈ N(0,1), and express it as a linear combination of ei as follows:

e = 1
g

n∑
i=1

fiei = 1
g

n∑
i=1

f ′ie′i, fi, g ∈ O∆(0,1) ,

where g divides 6 a for a ≥ 0. We choose fi and g so that fi and λ generate the
unit ideal in O∆(0,1) . As above, f ′j ∈ O∆K 0(k̄),(0,1)

are K 0(k̄)-linear combinations
of fi and conversely. Then the proposition can be reduced to the following claim.

Claim 4.2.6.1. There exists f ′ ∈ O∆K 0(k̄),(0,1)
such that f ′j = c′j · f ′ where

c′j ∈ K 0(k̄).

Let us grant the claim for a moment. Since fi are K 0(k̄)-linear combinations
of f ′j , we can write fi = c′′i · f ′ for c′′i ∈ K 0(k̄). Hence, the ratio for nonzero fi
and fj satisfies fi/fj = c′′i /c

′′
j ∈ K 0(k̄) ∩ Frac(O∆(0,1)) = K 0, so we may write

fi = ci · f , for some ci ∈ K 0 and some f ∈ O∆(0,1) that is coprime to λ by our
choice of fi. Set

e0 := 1
f

e = 1
g

n∑
i=1

ciei.

Observe that e0 is an element in N(0,1) = N(0,1)[ 1
f ]∩N(0,1)[ 1

λ ] and generates N(0,1)

over O∆(0,1) . Furthermore, e0 belongs toM =M[ 1
λ ]∩M(0,1). Now, N := O∆·e0 ⊂

M is the submodule which extends NR.
It is left to prove Claim 4.2.6.1. Let α ∈ O∆(0,1) be such that ϕn(σ∗ne) = αe,

where n is the rank ofM. Since ϕn(σ∗ne′j) = π
dj
0 e′j , we obtain, for each j,

α
f ′j
g

= π
dj
0 · σn(

f ′j
g

) = π
dj
0 ·

σn(f ′j)
σn(g) ,

Here, the divisions are performed inside Frac
(
O∆K 0(k̄),(0,1)

)
. So we get that ασn(g)·

f ′j = π
dj
0 g ·σn(f ′j). Hence, for any pair of nonzero f ′i and f ′j , we have σn( f

′
i

f ′
j
) =

π
di−dj
0

f ′i
f ′
j
. By lemma 4.2.6.3, we are reduced to the following claim:
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Claim 4.2.6.2. Let f =
∑
i∈Z anu

n ∈ K 0(k̄)[[u, 1
u ]], and assume that πd0σn(f) =

f for some d ∈ Z. Then d = 0 and f ∈ K 0(k̄), which is fixed by σn. (In other
words, f ∈W (Fpn) if o0 = Zp, and f ∈ Fqn((π0)) if o0 = Fq[[π0]].)

The equation
∑
i∈Z π

d
0σ

n(an)uqn =
∑
i∈Z anu

n forces that an = 0 for n 6= 0.
Since σ : K 0(k̄)→ K 0(k̄) preserves π0-order, d = 0 and σn(a0) = a0.

To complete the proof of the proposition. it is left to show the following lemma:
�

Lemma 4.2.6.3. Let F be a complete discretely valued field with residue char-
acteristic p. For any subinterval I ∈ [0, 1) with endpoints in {0} ∪ pQ60 , let ∆F,I

be the subdomain of the open unit disk over F with coordinate u which is defined
by the “suitable” boundary condition corresponding to I. Then the natural map
Frac(O∆F,I

) → F [[u, 1
u ]] of F -vector spaces, which sends a “meromorphic” func-

tion f to its formal infinite-tailed Laurent expansion in u, is injective.

Note that F [[u, 1
u ]] does not have a natural ring structure; the expression

(
∑
i∈Z αiu

i) ·(
∑
j∈Z βju

j) =
∑
n∈Z(

∑
i+j=n αiβj)un for αi, βj ∈ F does not make

sense without any convergence assumption on (possibly infinite) sums
∑
i+j=n αiβj

for each n ∈ Z. Therefore the natural inclusion O∆F,I
↪→ F [[u, 1

u ]] does not imply
the lemma.

Proof. Choose f, g ∈ O∆F,I
so that the formal Laurent expansion of f/g is

zero. Then we want to show that f = 0. We first handle the case when I = [r, r]
for some r ∈ pQ60 . Then for any point x ∈ ∆F,[r,r] such that g(x) 6= 0, (f/g)(x)
makes sense and is zero. In particular, f(x) = 0 for all but finitely many points
x ∈∆F,[r,r]. But since the zero locus of f is a “closed” affinoid subdomain, f(x) = 0
for any point x ∈ ∆F,[r,r]. Therefore f = 0 (since the sup norm on ∆F,[r,r] is a
norm, not just a semi-norm.)

Now assume that I has a non-zero length. Then we can find a closed subinterval
J ⊂ I such that g does not vanish in ∆F,J . This implies that g is a unit in O∆F,J

by
Remark 6.2.3(1) and Proposition 6.2.6.1 (or by some direct computation), so f/g is
a rigid-analytic function on ∆F,J . But since the natural map O∆F,J

→ F [[u, 1
u ]] is

injective, we obtain f = 0 in O∆F,J
. Since the natural “restriction” map O∆F,I

→
O∆F,J

is injective, so f = 0 in O∆F,I
. �

4.3. ϕ-vector bundle pure of slope 0 and weak admissibility

Recall that Modsl=0
∆ (ϕ) ⊂ Mod∆(ϕ) denotes the full subcategory of ϕ-vector

bundles pure of slope 0; i.e., M such that Ralg ⊗O∆ M is pure of slope 0. We
first show that the scalar extension functor induces an equivalence of categories
ModS(ϕ)[ 1

π0
] ∼−→ Modsl=0

∆ (ϕ), up to a certain technical lemma whose proof will
be given later in §6.3. Next, we show that the weak admissibility on HP>0

K (ϕ) is
equivalent to the “pure-of-slope-0” condition on Mod∆(ϕ) under the equivalences
of categories M and D. The proof uses the slope filtration on M ∈ Mod∆(ϕ) by
ϕ-stable saturated O∆-submodules (Corollary 4.2.2). Combining these two results,
we see that the functor H, defined in (3.2.6.1), induces an equivalence of categories
ModS(ϕ)[ 1

π0
] ∼−→ HPwa,>0

K (ϕ).
We start with the following well-known lemma, which we call the “extension

lemma.”



54 4. WEAKLY ADMISSIBLE HODGE-PINK STRUCTURE

Lemma 4.3.1. LetMbd be a finite free S[ 1
π0

]-module3, and M a finite free oE -
module such that there exists an E-isomorphism α : E⊗S[ 1

π0
]Mbd ∼−→ E⊗oEM . Then

there exists a finite free S-module M, and isomorphisms β : S[ 1
π0

]⊗S M
∼−→Mbd

and γ : oE ⊗S M
∼−→ M over S[ 1

π0
] and oE , respectively, such that α ◦ β = γ; the

triple (M, β, γ) is unique up to unique isomorphism.
If M and Mbd are ϕ-modules over their respective base rings and α is a ϕ-

compatible isomorphism, then one can give a unique ϕ structure on M so that β
and γ are ϕ-compatible. If, furthermore,M is an étale ϕ-module and the cokernel of
ϕMbd : σ∗Mbd →Mbd is annihilated by P(u)h then the cokernel of ϕM : σ∗M→M
is annihilated by P(u)h; i.e., M ∈ ModS(ϕ)6h.

Therefore, the above lemma can be viewed as an analogue of the result that on
a smooth surface, a vector bundle defined outside a closed point uniquely extends
over the point.

Proof. Let us first handle the case without ϕ-structure. Let S(π0) be the lo-
calization of S[ 1

u ] at the prime ideal π0S[ 1
u ]. Note that oE is the π0-adic completion

of S(π0). We first observe the following general fact whose proof is immediate:

Claim. Let R be a discrete valuation ring with maximal ideal mR, and R̂ the
mR-adic completion of R. Let F := FracR and F̂ := Frac R̂. Let V be a finite-
dimensional vector space over F . Then there exists a natural bijective correspon-
dence between the set of R-lattices M in V and the set of R̂-lattices M̂ in F̂ ⊗F V ,
as follows: M 7→ R̂⊗RM and M̂ 7→ V ∩ M̂ where the intersection is taken inside
F̂ ⊗F V .

Applying this claim to R = S(π0) and V := Frac S ⊗S[ 1
π0

]Mbd, we obtain a
unique S(π0)-lattice M(π0) in V such that oE ⊗S(π0) M(π0) = M in E ⊗S[ 1

π0
]Mbd.

(Note that we view M as an oE -lattice in E ⊗S[ 1
π0

]Mbd via the isomorphism α :
E ⊗S[ 1

π0
]Mbd ∼−→ E ⊗oEM .) Now M(π0) “smears out” to a vector bundle over some

open neighborhood of (π0) ∈ Spec S[ 1
u ]. Gluing this withMbd (a vector bundle on

Spec S[ 1
π0

]) we obtain a vector bundle M(∗) on (Spec S) − V (mS) where V (mS)
is the closed point of Spec S. By [SGA, 2, Exp XI, Corollaire 3.8] we obtain a
unique vector bundle M on Spec S which extends M(∗). By construction, we are
naturally given isomorphisms β : S[ 1

π0
]⊗S M

∼−→Mbd and γ : oE ⊗S M
∼−→M over

S[ 1
π0

] and oE , respectively, as asserted in the statement. Furthermore, we have by
construction that M = Mbd ∩M inside E ⊗S[ 1

π0
] Mbd (which is identified with

E ⊗oE M via α).
Let us prove the claim regarding ϕ-structure. Clearly, M = Mbd ∩ M is a

ϕ-stable S-submodule of both Mbd and M . Now, assume that M is an étale ϕ-
module and P(u)h annihilates the cokernel of ϕMbd : σ∗Mbd → Mbd. Using β,
ϕM : σ∗M → M has cokernel killed by P(u)h after inverting π0. But cokerϕM

vanishes after scalar extention to Ŝ(π0) = oE due to γ, so cokerϕM has no nontrivial
π0-torsion. In other words, cokerϕM is killed by P(u)h. �

3We use the notationMbd because S[ 1
π0

] is the ring of bounded global rigid-analytic functions
on the open unit disk.
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We need another auxiliary lemma, which we call a “gluing lemma” or “matrix
factorization lemma.” We give the full proof later in §6.3.

Proposition 4.3.2. For any A ∈ GLn(R), there exists U ∈ GLn(O∆) and
V ∈ GLn(Rbd) such that A = UV .

Proof. If o0 = Zp, then the proposition is exactly [Ked04, Prop 6.5]. The
discussion in [Ked04, §6] carries over word-by-word to the case of o0 = Fq[[π0]].
For interested readers, see §6.3 of this paper. �

Now we are ready to prove the following:

Proposition 4.3.3. The scalar extension M[ 1
π0

] 7→ O∆ ⊗S[ 1
π0

] M[ 1
π0

] induces
an equivalence of ⊗-categories ModS(ϕ)[ 1

π0
] ∼−→ Modsl=0

∆ (ϕ). Furthermore, a three-
term complex (†) : 0 → M′[ 1

π0
] → M[ 1

π0
] → M′′[ 1

π0
] → 0 is short exact in

ModS(ϕ)[ 1
π0

] if and only if O∆ ⊗ (†) is short exact in Modsl=0
∆ (ϕ).

Proof. For any M ∈ ModS(ϕ), the scalar extension O∆ ⊗S M is necessarily
pure of slope 0. In fact, øRbd⊗SM is an étale ϕ-module since P(u) ∈ (øRbd)×, and
is a ϕ-stable øRbd -lattice of R⊗S M. Now, the claim follows from the discussion in
Lemma 4.1.7. The exactness assertion follows since O∆ is faithfully flat over S[ 1

π0
]

by Proposition 6.2.8.
Fix any M ∈ Modsl=0

∆ (ϕ), free of rank n. By Theorem 4.1.6(1), there exists
MRbd ∈ Modsl=0

Rbd (ϕ) such that R ⊗RbdMRbd ∼= MR. Hence MR carries two R-
bases: one from O∆-basis forM and the other from Rbd-basis forMRbd . They are
related by a matrix in GLn(R), but the preceeding “gluing lemma” (Proposition
4.3.2) implies that one can modify the chosen bases so that they coincide inMR.

Let Mbd be the S[ 1
π0

]-span of this common basis. Since S[ 1
π0

] = Rbd ∩ O∆,
we have an equality Mbd = MRbd ∩M as a submodule of MR. Therefore Mbd

is a ϕ-stable S[ 1
π0

]-submodule of both MRbd and M. Now we obtain the full
faithfulness as follows. Assuming M = O∆ ⊗S M for some M ∈ ModS(ϕ), the
construction above gives Mbd = M[ 1

π0
]. And thanks to Theorem 4.1.6(1), any

morphisms M⊗S O∆ →M′ ⊗S O∆ of Mod∆(ϕ) restrict to M[ 1
π0

]→M′[ 1
π0

].
For the essential surjectivity, the “extension lemma” (Lemma 4.3.1) produces

the ϕ-stable S-lattice M of bothMbd and oE ⊗RbdMRbd , which is of P-height 6 h
ifMbd is. On the other hand, ifM∼= O∆ ⊗S[ 1

π0
]Mbd is of P-height 6 h, then so

isMbd by the faithful flatness of O∆ over S[ 1
π0

] (Proposition 6.2.8). �

Theorem 4.3.4. Let D ∈ HP>0
K (ϕ). Then D is weakly admissible if and only

if M(D) is pure of slope 0. In particular, H : M[ 1
π0

] 7→ D
(
O∆ ⊗S[ 1

π0
] M[ 1

π0
]
)

induces an equivalence of categories ModS(ϕ)[ 1
π0

]→ HPwa,>0
K (ϕ). Furthermore, a

three-term complex (†) : 0 → M′[ 1
π0

] → M[ 1
π0

] → M′′[ 1
π0

] → 0 is short exact in
ModS(ϕ)[ 1

π0
] if and only if H(†) is short exact in HPwa,>0

K (ϕ).

Proof. Granting that D is weakly admissible if and only ifM(D) is pure of
slope 0, it follows from Propositions 4.3.3 and 3.2.5(3) that H : ModS(ϕ)[ 1

π0
] →

HP>0
K (ϕ) is fully faithful with essential image HPwa,>0

K (ϕ). The exactness asser-
tion follows from Propositions 3.1.6(2) and 3.2.5(2), and the exactness assertion of
Proposition 4.3.3.
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We first verify that
(4.3.4.1) deg(M(D)) = tN (D)− tH(D)
SinceM(·) commutes with ⊗-product (Proposition 3.1.6), one can replace D with
its determinant and reduce the verification of the equality (4.3.4.1) to the rank-1
case. In the rank-1 case, (4.3.4.1) can be directly read off from the computation of
M(D) which is done in §3.1.4, especially from (3.1.4.1). This verifies (4.3.4.1), and
proves the theorem for the rank-1 case.

Now, assume that M(D) is pure of slope 0 and of any rank. Then for any
subobjectD′, we have deg(M(D′)) ≥ 0. In fact, this can be checked after extending
scalars to Ralg, and then the claim follows from Proposition 4.1.5. By (4.3.4.1), it
implies that D is weakly admissible.

Now, assume that D is an isocrystal with weakly admissible effective Hodge-
Pink structure. By Corollary 4.2.2, we have the following “slope filtration” for
M(D) by ϕ-stable saturated modules on ∆:

0 =M0 ⊂M1 ⊂ · · · ⊂ Mc =M(D)
Let si be the unique slope for Mi/Mi−1 and ni be the rank of Mi/Mi−1. Put
Di := D(Mi). By extending scalars to Ralg and applying the Dieudonné-Manin
classification (Theorem 4.1.2), one can see that deg(M(D)) =

∑
sini and deg(M1) =

s1n1. The weak admissibility implies
∑
sini = deg(M(D)) = tN (D)− tH(D) = 0

and deg(M1) = tN (D1)− tH(D1) ≥ 0, so si ≥ 0. But since s1 < si for any i 6= 1,
we must have c = 1 and s1 = 0; i.e.,M(D) is pure of slope 0. �

Remark 4.3.5. Since H commutes with ⊗-products (in particular, with Tate
twists), we may immediately extend the above theorem, as follows: there exists
an equivalence of categories H from generalized ϕ-modules over S as in §2.2.11 to
isocrystals with weakly admissible Hodge-Pink structures, which commutes with
all the natural operations, such as ⊗-products, internal homs, and duality.

4.3.6. Rank-1 example. Let D be a rank-1 isocrystal with weakly admissible
effective Hodge-Pink structure, and we put D̂x0 := O∆̂,x0 ⊗K 0 D. We choose a
K 0-basis e ∈ D and write ϕD(σ∗e) = (απh0 )·e for some α ∈ W× and h > 0. By
weak admissibility the Hodge-Pink structure is Λ = P(u)−hD̂x0 .

In §3.1.4, we have seen that M(D) = λ−hD ⊂ D[ 1
λ ], where D := O∆ ⊗K 0

D ∼= O∆ · e by choosing a K 0-basis e for D. We choose the following O∆-
basis e′ := λ−he ∈ M(D) of M(D), so we have by (3.1.4.1) that ϕM(D)(σ∗e′) =

απh0

(
P(u)
P(0)

)h
e′ = αP(u)he′, using our normalization P(0) = π0.

Clearly M := S·e′ is a ϕ-stable S-lattice inM(D). By Proposition 4.3.3, such
a S-lattice M is unique up to isogeny. Therefore H(M[ 1

π0
]) = D where M ∼= Se′

with ϕM(σ∗e′) = (αP(u)h)·e′ andD is as above. Applying this to the case α = 1, we
obtain H(S(h)[ 1

π0
]) = 1(h) where S(h) is the Tate object as defined in Definition

2.2.6 and is the Tate object 1(h) as defined in (2.3.2.1). Note that we used the
normalization P(0) = π0 for getting H(S(h)) = 1(h); otherwise, the formula would
involve some suitable “unramified twist” corresponding to P(0)/π0 ∈W×.



CHAPTER 5

π0-adic GK-representation of finite P-height

Let Repo0(GK) denote the category of finitely generated (not necessarily free)
o0-modules with continuous linear GK-action, with the obvious notion of morphism.
We also let Repfree

o0
(GK) (respectively, Reptor

o0
(GK)) denote the full subcategory of

Repo0(GK), whose objects have free (respectively, torsion) underlying o0-modules.
We have obvious notions of ⊗-product, internal hom, and duality for this category.

In this section, we construct a contravariant functor T ∗S : ModS(ϕ)→ Repfree
o0

(GK),
and show that it is fully faithful. The construction of T ∗S uses Fontaine’s theory of
étale ϕ-modules (or its variant for o0 = Fq[[π0]]). To show the full faithfulness, we
use equivalences of categories discussed in §3–§4. The essential image of T ∗S will be
the main object of study in the later part of our work.

5.1. Étale ϕ-modules and π0-adic representations of GK
Fontaine’s theory of étale ϕ-moduless [Fon90, §A1.2] gives a classification of Zp-

lattice GK-representations via étale ϕ-modules over oE ; in other words, an equiva-
lence of categories between Repo0(GK) and ModétoE (ϕ) when o0 = Zp. But in fact,
Fontaine’s argument carries over to prove the “same” equivalence of categories for
o0 = Fq[[π0]]. In this subsection, we reproduce [Fon90, §A1.2] in a way that works
for both cases o0 = Zp and o0 = Fq[[π0]]. In this subsection (§5.1), we do not
assume that K has a finite p-basis. This will come up later in §8.1.12.

5.1.1. More Rings. We first define some more rings we need. Recall that K =
k((u)) where k is a field of characteristic p > 0.

oEur the maximal unramified extension (i.e., strict henselization) of oE
Eur the fraction field of oEur

oÊur the π0-adic completion of oEur

Êur fraction field of oÊur

By the universal property of strict henselization, there exists a unique map
σ : oEur → oEur over σ : oE → oE which reduces to the qth power map on the
residue field Ksep. Since this σ on oEur is an isometry for the valuation topology, it
continuously extends to σ : oÊur → oÊur . Using this σ, all the rings above become
σ-flat.

If o0 = Fq[[π0]], we can write oÊur ∼= Ksep[[π0]] and Êur ∼= Ksep((π0)), and σ
acts as the qth power on the coefficients of π0-adic expansions (i.e., on Ksep) and
the identity on π0.

The natural action of GK ∼= Gal(Eur/E) on oEur extends to oÊur and Êur via
isometry, and this action commutes with the Frobenius σ (by the universal property
of the strict henselization). Also, we have (oÊur )GK = oE ; this can be seen from
Krasner’s lemma (or by noting that GK acts only on “coefficients” in the p-adic

57
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Teichmüller expansions if o0 = Zp, or in the formal power series expansion via
oÊur ∼= Ksep[[π0]] if o0 = Fq[[π0]]).

5.1.2. Duality. The categories Repo0(GK) and ModétoE (ϕ) are equipped with ⊗-
products and internal homs which satisfy all the “natural” compatibilities. We also
have “duality” for these categories, but since we allowed torsion objects we need
to treat free objects and torsion objects separately. We define duality on free and
torsion objects in Repo0(GK) as follows:

T ∗ :=
{

Homo0(T, o0), for T ∈ Repfree
o0

(GK)
Homo0(T, F0/o0), for T ∈ Reptor

o0
(GK),

where o0 and F0/o0 are given the trivial GK-action. Even though F0/o0 is not
finitely generated (hence not an element of Repo0(GK)), any o0-linear map from a
torsion object T into F0/o0 factors through some finite submodule 1

πN0
o0/o0 ⊂ F0/o0

for N � 0 depending on T . So T ∗ can always be written as some internal hom,
whether T is torsion or free.

Similarly, we define duality on free and torsion objects in ModétoE (ϕ):

M∗ :=
{

HomoE (T, oE), for M ∈ Modét,free
oE

(ϕ)
HomoE (T, E/oE), for M ∈ Modét,tor

oE
(ϕ),

where the ϕ-module structures on oE and E/oE are given by linearizing the σ on oE
and E , respectively. Again, even though E/oE is not finitely generated, any oE -linear
maps from any torsion object M into E/oE factor through some finite submodule

1
πN0

oE/oE ⊂ E/oE for N � 0. So M∗ can be written as some internal hom, whether
M is torsion or free.

For the rest of this subsection, we will construct quasi-inverse equivalences
between Repo0(GK) and ModétoE (ϕ), which respects all the natural operations, such
as ⊗-products, internal homs, and duality.

5.1.3. For T ∈ Repo0(GK), we define

(5.1.3.1) DE(T ) := (oÊur ⊗o0 T )GK ,

where GK acts on the both factors of T ⊗o0 o Êur . Since σ and the natural GK-
action on oÊur commute, the ⊗-product Frobenius structure ϕ : σ∗

(
oÊur ⊗o0 T

)
→

o Êur ⊗o0 T restricts to ϕ : σ∗DE(T ) → DE(T ). The following lemma tells that
DE(V ) is in fact an étale ϕ-module over oE .

Lemma 5.1.4. For any T ∈ Repo0(GK), the natural map
(5.1.4.1) oÊur ⊗oE DE(T )→ oÊur ⊗o0 T

is a GK-equivariant isomorphism of ϕ-modules.

Remark 5.1.5. Before we begin the proof, let us discuss formal consequences
of the isomorphism (5.1.4.1), together with the faithful flatness of o Êur over oE .
All the properties below can be checked after some faithfully flat scalar extension,
namely by applying oÊur ⊗oE (·), and then one can use the isomorphism (5.1.4.1).

(1) DE(T ) is a finitely generated oE -module, so it is an étale ϕ-module. In
particular, we obtain a functor DE : Repo0(GK)→ ModétoE (ϕ).

(2) A o0[GK ]-module T is free of o0-rank n (respectively, a finite torsion o0-
module of length n) if and only if DE(T ) is so as an oE -module
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(3) A complex (∗) in Repo0(GK) is exact if and only if DE(∗) is exact in
ModétoE (ϕ).

(4) For any T, T ′ ∈ Repo0(GK), the natural map DE(T ) ⊗oE DE(T ′) →
DE (T ⊗o0 T

′) is a ϕ-compatible isomorphism.
(5) For any T, T ′ ∈ Repo0(GK), the natural mapDE (Homo0(T, T ′))→ HomoE (DE(T ), DE(T ′))

is a ϕ-compatible isomorphism. In particular, trivially DE(o0) = oE (re-
spectively, with the natural GK-action and ϕ-structure) and DE(F0/o0) =
E/oE (or rather, DE sends the direct system { 1

πn0
oE/oE} to { 1

πn0
o0/o0}),

we conclude that the natural map DE(T ∗)→ (DE(T ))∗ is a ϕ-compatible
isomorphism.

Using the duality we can define a contravariant version of the functor D∗E(·), which
is often more useful. But for this, we need to treat torsion and free cases separately:
(5.1.5.1)

D∗E(T ) := DE(T ∗) ∼=
{

Homo0[GK ](T, Eur/oEur), for T ∈ Reptor
o0

(GK)
Homo0[GK ](T, oÊur ), for T ∈ Repfree

o0
(GK).

Since DE commutes with the duality by (5) above, we have D∗E(T ) ∼= (DE(T ))∗.
One can also formulate Lemma 5.1.4 using D∗E(·), and show the properties listed
above assuming that all o0[GK ]-modules involved are either all finite free over o0
or all finite torsion o0-modules.

Proof of Lemma 5.1.4. First, it can be seen that the map (5.1.4.1) is GK-
equivariant and ϕ-compatible, so we only need to show it is an isomorphism as
oE -modules.

If πo · T = 0, then the map (5.1.4.1) being an isomorphism basically follows
from classical Galois descent theory. If πN0 · T = 0, then we use the induction on
N ; consider the exact sequence 0 → πN−1

0 T → T → T/πN−1
0 T → 0, and since the

statement is true for the flanking terms, it is true for the middle term.
For the general case, we use the “dictionary” between oE -modulesM and projec-

tive systems {M/πn0M}n (Proposition 7.4.1). For any T ∈ Repo0(GK), observe that

lim←−
n

DE(T/πn0 T ) ∼= DE(T ); in other words, the natural map
(

lim←−n (oEur/πn0 )⊗ T
)GK

→

lim←−n
[
((oEur/πn0 )⊗ T )GK

]
is an isomorphism which can be seen directly by the ex-

plicit description of GK-action on lim←−n (oEur/πn0 )⊗ T .
Since we proved Lemma 5.1.4 for torsion representations, it follows from Re-

mark 5.1.5 that the functor DE is exact for torsion representations. So we have the
following right exact sequence for any integers n and N :

DE(T/πn+N
0 T ) πn0−−→ DE(T/πn+N

0 T )→ DE(T/πn0 T )→ 0.
(One can check the exactness after applying o Êur ⊗oE (·), and then use that the
natural map (5.1.4.1) is an isomorphism for torsion GK-representation, which we
have already proved.) In particular, each transition map induces an isomorphism
(oE/πn0 ) ⊗ DE(T/πn+1

0 T ) ∼−→ DE(T/πn0 T ). Moreover, we have already seen that
DE(T/π0T ) is finite-dimensional over oE/(π0). Therefore by passing to the pro-
jective limit over N , we conclude that DE(T ) is finitely generated over oE such
that the natural map (oE/πn0 ) ⊗oE DE(T ) ↪→ DE(T/πn0 T ) is an isomorphism. We
finally conclude the map (5.1.4.1) is an isomorphism by the “dictionary” between
oÊur -modules M and projective systems {M/πn0M}n. (See Proposition 7.4.1.)
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The étale-ness can be checked after a faithfully flat scalar extension oÊur ⊗oE (·),
and the target of the isomorphism (5.1.4.1) is clearly an étale ϕ-module. �

5.1.6. Next, we construct a functor T E(·) : ModétoE (ϕ) → Repo0(GK), which
will be shown to be a quasi-inverse to the functor DE . For any M ∈ ModétoE (ϕ), we
let
(5.1.6.1) T E(M) := (oÊur ⊗oE M)ϕ=1 = {x ∈ oÊur ⊗oE M | ϕ(σ∗x) = x}.
The GK-action on o Êur ⊗oE M via the the first factor restricts to an action on
T E(M) since the Frobenius map and GK-action commute.

As previously, we can use the duality to define a contravariant version of the
functor T E(M), for which we should treat torsion and free cases separately:
(5.1.6.2)

T ∗E(M) := T E(M∗) =
{

HomoE ,ϕ(M, Eur/oEur), for M ∈ Modét,tor
oE

(ϕ)
HomoE ,ϕ(M, oÊur ), for M ∈ Modét,free

oE
(ϕ),

In fact, we will see below that T E will also commute with the duality; i.e., there
exists a natural isomorphism T E(M∗) ∼= (T E(M))∗. We leave it to readers to
formulate the next proposition (Proposition 5.1.7) using the contravariant functor
T ∗E and assuming that all étale ϕ-modules involved are either all finite free over oE
or all finite torsion oE -modules.

Proposition 5.1.7.
(1) For any M ∈ ModétoE (ϕ) the natural map

(5.1.7.1) oÊur ⊗o0 T E(M)→ oÊur ⊗oE M

is a GK-equivariant isomorphism of ϕ-modules. In particular, T E(M) is
finitely generated as an o0-module, and M is free of oE -rank n (respec-
tively, a finite torsion oE -module of length n) if and only if T E(M) is so
as an o0-module.

(2) The functors DE and T E are quasi-inverse anti-equivalences between ModétoE (ϕ)
and Repo0(GK), which are exact and commute with ⊗-products, internal
homs, and duality. Moreover, DE and T E restrict to quasi-inverse anti-
equivalences between Modét,free

oE
(ϕ) and Repfree

o0
(GK) (respectively, between

Modét,tor
oE

(ϕ) and Reptor
o0

(GK)).

The proposition for the case o0 = Zp is proved in [Fon90, A, §1.2]. When
o0 = Fq[[π0]], the proposition for objects killed by π0 can be obtained from [Kat73,
Proposition 4.1.1].

Proof. Using the same argument as before, one can show (1) implies (2),
aside from the quasi-inverse claim. In order to construct a natural isomorphism
T E ◦ DE ∼= id, it is enough to show the image of the GK-equivariant injective
map T ↪→ oÊur ⊗o0 T is exactly (oÊur ⊗o0 T )ϕ=1. Since this inclusion has an o0-
linear section (as o0 → o Êur does, via successive approximation) and the image
is contained in (o Êur ⊗o0 T )ϕ=1, it is enough to show (o Êur ⊗o0 T )ϕ=1 ∼= T as
abstract o0-modules (i.e., forgetting their embeddings into o Êur ⊗o0 T ). By the
structure theorem for finitely generated modules over a principal ideal domain, we
are reduced to showing (oÊur )ϕ=1 = o0 and

(
oÊur /(πd0)

)ϕ=1 = o0/(πd0). The other
natural isomorphism DE ◦T E ∼= id can be obtained by applying (·)GK to the natural
isomorphism (5.1.7.1).
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Now, let us give a proof of (1). By the same argument as in the proof of
the Lemma 5.1.4, it is enough to handle the case when π0 · M = 0, which we
assume from now on. (For the limit argument, we have lim←−

n

(M/πn0M)ϕ=1 ∼−→(
lim←−nM/πn0M

)ϕ=1
by the o0-linearity of ϕ, and so the rest of the argument goes

unchanged.)
Let M be an étale ϕ-module over K ∼= oE/(π0). We would like to show that

the natural map
Ksep ⊗Fq T E(M)→ Ksep ⊗K M

is a GK-equivariant isomorphism of ϕ-modules. This statement for q = p is proved
in [Fon90, A, Proposition 1.2.6], which carries over for any q, as follows.

We will in fact prove the contravariant version of the statement, namely for
π0 ·M = 0, the natural map

(5.1.7.2) Ksep ⊗Fq T
∗
E(M)→ Ksep ⊗K M∗ ∼= HomK(M,Ksep),

is a GK-equivariant isomorphism of ϕ-modules, where M∗ is the dual étale ϕ-
module in the sense of §5.1.2.

Define

AM := SymK(M)
〈mq − ϕ(σ∗m)|∀m ∈M〉 ,

which is clearly a finite étale algebra over K of rank qrankKM . Observe that
T ∗E(M) = Homalg /K(AM ,Ksep). So by counting, we conclude that dimFq T

∗
E(M) =

rankKM . (In fact, one can naturally give SpecAM a structure of group scheme with
o0/(π0)-action in such a way that (SpecAM )(Ksep) ∼= T ∗E(M) is a GK-equivariant
isomorphism of o0-modules. See §7.2 for more discussions.)

Now since the both sides of (5.1.7.2) have the sameKsep-dimension, it is enough
to show the injectivity. Assumem1, · · · ,mr ∈ T ∗E(M) are linearly independent over
Fq but not over Ksep. Assume, furthermore, that r > 1 is the minimum cardinality
of a set with this property. We may assume

∑r
i=1 cimi = 0 for some ci ∈ Ksep

with c1 = 1. By applying ϕ, we also obtain
∑r
i=1 c

q
imi = 0, so by subtracting

we get a Ksep-linear dependence relation
∑r
i=2(cqi − ci)mi = 0 with fewer than

r elements. By our choice of r we get cqi = ci for all i, which contradicts to the
Fq-linear independence of {mi}. �

5.1.8. Contravariant Theory. It is often much more convenient to work with the
contravariant functors T ∗E and D∗E . It is a formal consequence of Lemma 5.1.4 and
Proposition 5.1.7 that T ∗E and D∗E are quasi-inverse exact anti-equivalences of cate-
gories between suitable source and target categories; commute with ⊗-products, in-
ternal homs, and duality; and satisfy various other properties as asserted in Lemma
5.1.4 and Proposition 5.1.7.

When working with these contravariant functors, one often needs the fact that
T ∗E and D∗E “commute” with the reduction mod πn0 . The following lemma shows
that this is indeed the case, but it is not completely trivial because the functors are
defined differently for torsion and finite free objects.

Lemma 5.1.9. Let f : M ′ → M be an “isogeny” of étale ϕ-modules finite free
over oE ; i.e., f [ 1

π0
] : M ′[ 1

π0
]→M [ 1

π0
] is an isomorphism. Then we have a natural

isomorphism T ∗E(coker f) ∼= coker(T ∗E(f)), where T ∗E(f) : T ∗E(M) → T ∗E(M ′) is the
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map induced from f . In particular, if M is an étale ϕ-module finite free over oE
then we have a natural isomorphism (o0/π

n
0 )⊗o0 T

∗
E(M) ∼= T ∗E((o0/π

n
0 )⊗o0 M).

Similarly for any isogeny f : T ′ → T of o0-lattice GK-representations, we have
a natural isomorphism D∗E(coker f) ∼= coker(D∗E(f)).

Proof. We view bothM ′ andM as submodules ofM ′[ 1
π0

] via the isomorphism
f [ 1
π0

], and replace f with the natural inclusion. We also view T ∗E(M) and T ∗E(M ′) as
submodules of HomoE ,ϕ(M ′, Êur) via the natural inclusion oÊur ↪→ Êur := oÊur [ 1

π0
].

Then T ∗E(f) is the natural inclusion T ∗E(M) ↪→ T ∗E(M ′), whose cokernel is isomor-
phic to HomoE ,ϕ(M/M ′, Eur/oEur). The same argument also shows the claim for
D∗E . �

5.1.10. We comment on the classifications of F0-representation of GK . Let
RepF0(GK) be the category of finite-dimensional F0-vector spaces with continuous
GK-action. For any (ρ, V ) ∈ RepF0(GK), there exists an GK-stable o0-lattice T ⊂
V . (This follows from the compactness of GK .) In other words, the category
RepF0(GK) is equivalent to the isogeny category Repo0(GK)[ 1

π0
] ∼= Repfree

o0
(GK)[ 1

π0
].

Therefore, the quasi-inverse equivalences of categories T E and DE induce quasi-
inverse equivalences of categories V E : Modét,free

oE
(ϕ)[ 1

π0
] ∼−→ RepF0(GK) and DE :

RepF0(GK) ∼−→ Modét,free
oE

(ϕ)[ 1
π0

]. The same statement holds for the contravariant
versions, so we obtain quasi-inverse anti-equivalences of categories V ∗E and D∗E .

5.2. Main theorem and GK-representations of finite P-height

Consider the functor ModS(ϕ) → Modét,free
oE

(ϕ) defined by scalar extension
M 7→ oE ⊗S M. In this subsection, we show that this functor is fully faithful
(Theorem 5.2.3). Since the target category has an anti-equivalence of categories
with Repfree

o0
(GK) via T ∗E , this implies the full faithfulness of the contra-variant

functor T ∗S : M 7→ T ∗E(oE ⊗S M) from ModS(ϕ) to Repfree
o0

(GK). This theorem
was first proved by Kisin [Kis06, Proposition 2.1.12] for o0 = Zp, and our proof is
closed related to his. In the case of o0 = Fq[[π0]], it is known that ModS(ϕ) and
ModoE

(ϕ) classify certain kind of π0-divisible groups over oK and K, respectively.
(See §7.3 for the precise statement and a proof.) Therefore, the full faithfulness of
ModS(ϕ) → ModoE

(ϕ) can be viewed as an equi-characteristic analogue of Tate’s
theorem [Tat67, §4.2].

5.2.1. For M ∈ ModS(ϕ), we associate a o0[GK ]-module
T ∗S(M) := T ∗E (oE ⊗S M) ∼= HomS,ϕ(M, oÊur ),

which defines a contravariant exact functor T ∗S : ModS(ϕ) → Repfree
o0

(GK) com-
patible with ⊗-products.

We need one more lemma for the proof of the main theorem. Compare with
[Kis06, Lemma 2.1.9].

Lemma 5.2.2. Let f : M→M′ be a morphism in ModS(ϕ) such that oE ⊗ f :
oE ⊗S M→ oE ⊗S M′ is an isomorphism. Then f is an isomorphism.

Proof. Since f is a morphism of free S-modules of same (finite) rank, it is an
isomorphism if its determinant is. Hence, we may assume that M and M′ are free
of rank 1. Since oE ⊗ f is an isomorphism in Modét,free

oE
(ϕ) and oE is the π0-adic

completion of S[ 1
u ], it is enough to show that f is an isogeny – in other words,
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f is an isomorphism in ModS(ϕ)[ 1
π0

]. For this claim, we use the equivalence of
categories H : ModS(ϕ)[ 1

π0
]→ HPwa,>0

K (ϕ) (Theorem 4.3.4)1.
We set (D,Λ) := H(M) and (D′,Λ′) := H(M′). Note that H(f) is a non-zero

morphism of isocrystals with weakly admissible Hodge-Pink structures. Since D
and D′ are 1 dimensional, H(f) : D → D′ induces an isomorphism of isocrystals,
so tN (D) = tN (D′). Let h denote this common Newton number. By the weak
admissibility, we have h = tH(D) = tH(D′). Hence Λ = P(u)−h ·(O∆̂,x0 ⊗K 0 D)
and Λ′ = P(u)−h ·(O∆̂,x0 ⊗K 0 D

′), so H(f) : Λ→ Λ′ is visibly an isomorphism in
HPwa,>0

K (ϕ), which shows that f is an isogeny. �

Now we are ready to prove the main theorem. Compare with [Kis06, Proposi-
tion 2.1.12].

Theorem 5.2.3. The functor ModS(ϕ) → Modét,free
oE

(ϕ) defined by M →
oE⊗S M is fully faithful. Equivalently, the contravariant functor T ∗S : ModS(ϕ)→
Repfree

o0
(GK) is fully faithful.

Proof. Let M0 be a finitely generated torsion-free (not necessarily free) S-
module equipped with a map ϕM0 : σ∗M0 → M0 such that coker(ϕM0) is killed
by P(u)h for some h. Then, we can “saturate” M0 to get another ϕ-module Msat

0 ,
which is finite free over S and contains M0 with cokerϕMsat

0
killed by P(u)h.

Indeed, define Msat
0 := (M0[ 1

π0
]) ∩ (oE ⊗S M0) with its evident ϕ-structure, where

the intersection is taken inside E ⊗S M0. Both oE ⊗S M0 and M0[ 1
π0

] are torsion-
free, hence free over oE and S[ 1

π0
], respectively. By the proof of Lemma 4.3.1, Msat

0
is finite free over S and it recovers M0[ 1

π0
] and oE ⊗S M0. Lemma 4.3.1 also shows

that since cokerϕM0 is killed by P(u)h, the same holds for cokerϕMsat
0
.

Now suppose that M1 and M2 are in ModS(ϕ) and put Mi := oE ⊗S Mi for
i = 1, 2. Given a morphism f : M1 → M2 in Modét,free

oE
(ϕ), we would like to show

that it restricts to M1 →M2.
Let us first handle the case when M = M1 = M2 and f = id; i.e., Mi (i = 1, 2)

are ϕ-stable S-lattices in M and we seek to prove M1 = M2 if they are both of
finite P-height. Clearly M1 + M2 defines a ϕ-stable submodule of M of finite P-
height, and it is finitely presented over S, so the inclusion Mi ↪→ (M1 + M2)sat is
an equality by Lemma 5.2.2. Therefore M1 = M2.

Now we handle the general case. By replacing f by (1, f) : M1 →M1⊕M2 and
M2 by M1⊕M2, we may assume that f is injective, so we can regard Mi (i = 1, 2)
as (ϕ,S)-submodules of M2. As in the special case treated above, (M1 + M2)sat ∈
ModS(ϕ) is another ϕ-stable S-lattice ofM2, so the inclusion M2 ↪→ (M1 +M2)sat

is an equality by Lemma 5.2.2. Therefore, M1 ⊂ (M1 + M2)sat = M2. �

Corollary 5.2.4. The contravariant functor V ∗S : ModS(ϕ)[ 1
π0

]→ RepF0(GK)
is fully faithful, and there exists a fully faithful exact functor V ∗HP : HPwaK (ϕ) →
RepF0(GK) which commutes with ⊗-products and such that we have a natural iso-
morphism V ∗S

∼= V ∗HP ◦H of functors ModS(ϕ)[ 1
π0

]→ RepF0(GK).
Proof. The first claim directly follows from the above theorem. In order to

prove the second claim, consider the following contravariant functor V ∗S ◦ H
−1 :

HPwa,>0
K (ϕ) → RepF0(GK) which commutes with ⊗-products (in particular, with

1In fact, we only need the full faithfulness of the functor H : ModS(ϕ)[ 1
π0

]→HPwa,>0
K (ϕ).
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Tate twists), where H−1 : HPwa,>0
K (ϕ) → ModS(ϕ)[ 1

π0
] is a quasi-inverse of H

defined by H−1(D) = M[ 1
π0

] where M[ 1
π0

] is the unique ϕ-stable S[ 1
π0

]-lattice of
finite P-height inM(D). Now, we set V ∗HP(D) ∼=

(
(V ∗S ◦H

−1)(D(N))
)

(−N) with
N big enough so that D(N) is effective. This definition is independent of N , and
the functor V ∗HP satisfies all the desired properties. �

Lemma 5.2.5. A three-term complex D• : 0 → D′ → D → D′′ → 0 of
isocrystals with weakly admissible Hodge-Pink structures is short exact if and only
if V ∗HP(D•) is short exact in RepF0(GK).

Similarly, a three-term complex M• : 0 → M′ → M → M′′ → 0 in ModS(ϕ)
is short exact if and only if T ∗S(M•) is short exact in Repfree

o0
(GK).

Proof. By Proposition 5.1.7(2) and S-flatness of oE , T ∗S is an exact functor
(i.e., T ∗S takes a short exact sequence in ModS(ϕ) to a short exact sequence in
Repfree

o0
(GK)). Using the exactness assertion of Theorem 4.3.4, V ∗HP is an exact

functor. So it suffices to prove the “if” assertions.
Now let us assume that V ∗HP(D•) is short exact in RepF0(GK) and show that

D• is short exact. By assumption, we have dimK 0 D = dimK 0 D
′ + dimK 0 D

′′

since V ∗HP is rank-preserving. It immediately follows that D• is short exact for the
underlying isocrystals (without Hodge-Pink structures).

Let Λ′, Λ, and Λ′′ be the (weakly admissible) Hodge-Pink structures for D′,
D, and D′′, respectively. It remains to show that the natural inclusions Λ′ ↪→
(Λ′)sat := Λ ∩ O ∆̂,x0 [ 1

P(u) ] ⊗K 0 D
′ and Λ/Λ′ ↪→ Λ′′ of Hodge-Pink structures

on D′ and D′′, respectively, are isomorphisms. This claim can be checked after
passing to the determinants. Let us first replace D′ with its determinant and put
h′ := tN (D′). By weak admissibility, Λ′ = P(u)−h′D̂′x0

where D̂′x0
= O∆̂,x0 ⊗K 0D

′,
and (Λ′)sat ∼= P(u)−h′sD̂′x0

for some h′s ≥ h′ (since Λ′ ⊂ (Λ′)sat). On the other hand,
by weak admissibility of (D,Λ) we have h′s ≤ tN (D′) = h′. This shows that D• is
left exact. Now we replace D′′ with its determinant and put h′′ := tN (D′′). Since
both Λ/Λ′ and Λ′′ are weakly admissible by Proposition 2.3.8 and by assumption,
we obtain that Λ/Λ′ ∼−→ Λ′′ = P(u)−h′′D̂′′x0

. This shows that D• is exact.
Now let show the lemma for T ∗S. Assume that T ∗S(M•) is a short exact se-

quence. It follows from Corollary 5.2.4 that we have V ∗HP
(
H(M•[ 1

π0
])
)
∼= T ∗S(M•)[ 1

π0
],

and that H(M•[ 1
π0

]) is a short exact sequence in HPwa,>0
K (ϕ). By the exact-

ness assertions of Theorem 4.3.4, M•[ 1
π0

] is a short exact sequence, so M• is left
exact. Furthermore, the natural map M/M′ → M′′ is an isomorphism since
the natural map T ∗S(M′′) → ker[T ∗S(M) � T ∗S(M′)] is an isomorphism and
T ∗S is fully faithful (Theorem 5.2.3). Note that we have a natural isomorphism
T ∗S(M/M′) ∼= ker[T ∗S(M)� T ∗S(M′)]. �

Remark 5.2.6. Since the functor T ∗S commutes with ⊗-products (in particular,
with Tate twists), we may extend T ∗S to a functor on generalized ϕ-modules over
S (see §2.2.11), and the theorem implies that this T ∗S is fully faithful. Unlike
ModS(ϕ), the category of generalized ϕ-modules have duality and internal hom. It
is not hard to show that the functor T ∗S commutes with these operations.

5.2.7. From now on, we focus on the essential image of T ∗S : ModS(ϕ) →
Repfree

o0
(GK). But this subcategory is not stable under the natural duality in
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Repfree
o0

(GK), while any “good” class of representations should be stable under the
natural operations such as ⊗-product, duality, and internal hom. So we consider a
slightly larger full subcategory which is stable under all these operations.

As suggested in Remark 5.2.6, one possible solution is to consider the essential
image of generalized ϕ-modules over S under T ∗S. This full subcategory has the
following alternative description. We put o0(r) := T ∗S(S(r)) if r ≥ 0 and o0(r) :=
(o(−r))∗ if r < 0. For any T ∈ Repo0(GK), we put T (r) := T ⊗o0 o0(r). If
o0 = Zp then GK acts on o0(1) by the restriction of the p-adic cyclotomic character
to GK ∞

∼= GK ; and if o0 = Fq[[π0]] then GK acts on o0(1) by the Lubin-Tate
character; i.e., the character obtained by the Lubin-Tate formal group (as is verified
in Example 7.3.7(3)).

Definition 5.2.8. A o0-lattice GK-representation T ∈ Repfree
o0

(GK) is of finite
P-height if for some r ∈ Z, there exists M ∈ ModS(ϕ) such that T (r) ∼= T ∗S(M).
We say that T is of P-height 6 h if there exists M ∈ ModS(ϕ)6h of P-height 6 h,
such that T ∼= T ∗S(M).

We say that V ∈ RepF0(GK) is of finite P-height if there exists a GK-stable
o0-lattice T ⊂ V which is of finite P-height. Similarly, we say that V is of P-height
6 h if there exists a GK-stable o0-lattice T ⊂ V which is of P-height 6 h.

We let Repfree,P
o0

(GK) and RepPF0
(GK) denote the full subcategories of GK-

representations of finite P-height. We let Repfree,6h
o0

(GK) and Rep6h
F0

(GK) denote
the full subcategories of representations of P-height 6 h.

The full subcategories Repfree,P
o0

(GK) and RepPF0
(GK) are stable under⊗-product,

duality, and internal hom of the ambient categories. But the P-height 6 h con-
dition is not stable under any of these operations. Note also that RepPF0

(GK) is
exactly the essential image of HPwaK (ϕ) by V ∗HP .

The following proposition says that for an F0-representation of P-height 6 h,
any GK-stable o0-lattice is of P-height 6 h. Compare with [Kis06, Lemma 2.1.15].

Proposition 5.2.9. Let V ∼= T ∗S(M)[ 1
π0

], and assume that M is of P-height
6 h. Then the map M′ 7→ T ∗S(M′) is a bijection between ϕ-stable S-lattices M′ ⊂
M[ 1

π0
] which are of P-height 6 h and GK-stable lattices T ′ ⊂ V .

Proof. We need to produce, for a given GK-stable lattice T ′ ⊂ V , a ϕ-stable
S-lattice M′ ⊂ M[ 1

π0
] which is of P-height 6 h. By Proposition 5.1.7, we have a

ϕ-stable oE -lattice M ′ ⊂ E ⊗S M such that T ∗E(M ′) ∼= T ′. Now, it follows from the
proof of Lemma 4.3.1 that there exists a common ϕ-stable S-lattice M′ of bothM ′
and M[ 1

π0
], which is of P-height 6 h. �

We digress to study the case of P-heights 6 0.

Proposition 5.2.10. Any T ∈ Repfree
o0

(GK) is unramified if and only if there
exists an étale (ϕ,S)-module M such that T ∼= T ∗S(M) as GK-representations. In
particular, any unramified o0-lattice GK-representation is of P-height 6 h for any
h > 0.

This proposition can be thought of as an analogue of the fact that a p-adic
GK -representation V is crystalline of Hodge-Tate weight 0 if and only if V is
unramified. From this together with [Kis06, Proposition 2.1.5] one can also deduce
the proposition for the case o0 = Zp. (Note that GK ∞/IK ∞

∼−→ GK /IK .)
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Proof. First, assume that T ∈ Repfree
o0

(GK) is unramified and we seek an
étale S-lattice in the étale ϕ-module D∗E(T ) := Homo0[GK ](T, o Êur ). Since IK
acts trivially on T , any o0[GK ]-map l : T → o Êur factors through (o Êur )IK ∼=
(Ŵ sh[[u]][ 1

u ])̂ ∼= oE⊗̂W Ŵ sh, where (̂·) denotes the π0-adic completion and Ŵ sh

denotes the π0-adic completion of the strict henselization of W . (Recall that
W = W (k) if o0 = Zp, and W = k[[π0]] if o0 = Fq[[π0]].) So we have a natu-
ral isomorphism of ϕ-modules:
(5.2.10.1) D∗E(T ) ∼= oE⊗̂WU∗(T ) ∼← oE ⊗W U∗(T ),

where U∗(T ) := Homo0[GK ](T, Ŵ sh) equipped with the ϕ-structure induced from
the natural Frobenius endomorphism σ : Ŵ sh → Ŵ sh.2 We can deduce from the
first isomorphism in (5.2.10.1) that U∗(T ) is finitely generated overW since it is π0-
adically separated and complete, so we obtain the second isomorphism in (5.2.10.1).
Furthermore, it follows from (5.2.10.1) that U∗(T ) is an étale (ϕ,W )-module (using
that oE is fully faithful over W ). So M := S⊗W U∗(T ) is an étale (ϕ,S)-module,
and we have T ∼= T ∗S(M) by construction.

Now, let us show that T ∗S(M) is unramified if M is an étale (ϕ,S)-module.
Consider an étale (ϕ,W )-module M/uM where the ϕ-structure is given by the
reduction ϕ̄ of ϕ : σ∗M→M modulo uM. We first show that the natural projection
M�M/uM has a unique ϕ-compatible section, so it gives a natural isomorphism
M
∼← S⊗W (M/uM) of ϕ-modules. The proof is analogous to Proposition 3.2.1 (but

easier). Let s0 : M/uM → M be a section which is not necessarily ϕ-compatible,
and consider
(5.2.10.2)
s := s0 +

∑
i≥0

(ϕi+1 ◦σ∗i+1s0 ◦ ϕ̄−(i+1)−ϕi ◦σ∗is0 ◦ ϕ̄−i) = “ lim
i→∞

(ϕi ◦σ∗is0 ◦ ϕ̄−i) ”

If the right side is well-defined, then it clearly satisfies s ◦ ϕ̄ = ϕ ◦ σ∗s. Since s0 is
a section, the image of ϕ ◦ σ∗s0 ◦ ϕ̄−1 − s0 is contained in uM. By induction we
obtain
(5.2.10.3) im(ϕi+1 ◦ σ∗i+1s0 ◦ ϕ̄−(i+1) − ϕi ◦ σ∗is0 ◦ ϕ̄−i) ⊂ uq

i

M.

Therefore the right side of (5.2.10.2) converges (u-adically). The proof of uniqueness
is identical as in the proof of Proposition 3.2.1.

Now, let us consider T ∗S(M)[ 1
π0

] ∼= HomK 0,ϕ(D, Êur) whereD := (M/uM)[ 1
π0

].
(Recall that K 0 = W [ 1

π0
].) We claim that any ϕ-compatible map l : D → Êur

factors through Ŵ sh[ 1
π0

]. (This shows that T ∗S(M) is unramified since IK acts
trivially on Ŵ sh.) To show the claim, it is enough to show that any map l : W sh⊗W
D → Êur of (ϕ, Ŵ sh[ 1

π0
])-modules factors through Ŵ sh[ 1

π0
]. In the case o0 =

Fq[[π0]], we may further assume that the residue field ksep of Ŵ sh is algebraically
closed; if any ϕ-compatible map k̄((π0))⊗K 0 D →

(
k̄((u))

)sep((π0)) factors through
k̄((π0)) then any ϕ-compatible map ksep((π0))⊗K 0 D → Ksep((π0)) factors through
ksep((π0)), because k̄((π0)) ∩ Êur = Ŵ sh[ 1

π0
] where the intersection is taken inside(

k̄((u))
)sep((π0)). (Recall that Ŵ sh ∼= ksep[[π0]] and Êur ∼= Ksep((π0)).)

2The Frobenius endomorphism σ : Ŵ sh → Ŵ sh can be obtained by restricting σ : oÊur →
oÊur . By the universal property of strict henselization, σ is a unique endomorphism σ : Ŵ sh →
Ŵ sh which extends σ : W →W and reduces to the qth power map σ : ksep → ksep modulo π0.
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Now, we rename Ŵ sh[ 1
π0

] as K 0,W sh[ 1
π0

]⊗K 0D as D, and Êur as E if o0 = Zp;
and we rename k̄((π0)) as K 0, k̄((π0)) ⊗K 0 D as D, and

(
k̄((u))

)sep((π0)) as E if
o0 = Fq[[π0]]. By Dieudonné-Manin decomposition (Theorem 4.1.2), we can find
a K 0-basis {ei} for D such that ϕD(σ∗ei) = ei for each i. For any ϕ-compatible
map l : D → E , l(ei) ∈ E satisfies σ(l(ei)) = l(ei) for each i (i.e., l(ei) ∈ o0[ 1

π0
] for

each i), so clearly the image of l lies in K 0. �

We record the following corollary of the proof. Define an o0[GK/IK ]-module
TW (U) := (Ŵ sh⊗W U)ϕ=1 and T ∗W (U) := TW (U∗) for any finite free étale (ϕ,W )-
module U ; and (ϕ,W )-modules U(T ) := (Ŵ sh ⊗W T )GK and U∗(T ) := U(T ∗) for
any unramified o0-lattice GK-representation.

Corollary 5.2.11. The assignments TW and U define quasi-inverse rank-
preserving exact equivalences of categories between Repfree

o0
(GK/IK) and the cate-

gory of finite free étale (ϕ,W )-modules which respects ⊗-products, internal homs,
and duality. Furthermore, we have a natural isomorphism DE(T ) ∼= oE ⊗W U(T )
of étale (ϕ, oE)-modules for any T ∈ Repfree

o0
(GK/IK) and a natural GK-equivariant

isomorphism TW (U∗) ∼= T ∗S(S⊗W U) for any finite free étale (ϕ,W )-module U .

5.2.12. Relation with Weakly Admissible Filtered Isocrystals. This section is
a continuation of §2.4; throughout this paragraph, we assume that o0 = Zp and we
identify GK with GK ∞ . In §2.4.3, we defined a functor res :MF(ϕ)K → HPK(ϕ).
We extend this functor to res : MF(ϕ,N)K → HPK(ϕ) so that res(D) is weakly
admissible if and only if D is weakly admissible. We define this functor via the
rigid analytic technique we discussed in §3–§4. By theorem of Colmez-Fontaine
(Theorem 2.4.2) and Corollary 5.2.4, the natural functors V ∗st : MF(ϕ,N)waK →
RepQp(GK ) and V ∗HP : HPwaK (ϕ)→ RepQp(GK ∞) are fully faithful with expected
essential images. We interpret the functor res in terms of the associated Galois
representations.

We have the following diagrams of functors which commute up to natural iso-
morphisms.

MF(ϕ,N)wa,>0
K

MMF //
� _

��

Mod∆(ϕ,N∇)
DMF
oo � _

��

HPwa,>0
K (ϕ)

M //
� _

��

Modsl=0
∆ (ϕ)

D
oo

� _

��
MF(ϕ,N)>0

K

MMF // Mod∆(ϕ,N∇)
DMF

oo HP>0
K (ϕ)

M // Mod∆(ϕ)
D

oo

The first commutative diagram was obtained by Kisin [Kis06, §1], and the second
commutative diagram was obtained from the results in §3-§4. The top row of the
first square restricts to equivalences of categoriesMF(ϕ)wa,>0

K
∼= Modsl=0

∆ (ϕ,N∇;N =
0) and similarly for the bottom row.

Now, by passing to the ϕ- or (ϕ,N∇)- vector bundles on ∆ using the equiv-
alences of categories, we can define the covariant functor res : MF(ϕ,N)wa,>0

K →
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HPwa,>0
K (ϕ) as the composition across the top in the following diagram which com-

mutes up to isomorphism:
(5.2.12.1)

res :MF(ϕ,N)>0
K

MMF

∼=
// Mod∆(ϕ,N∇) // Modsl=0

∆ (ϕ)
D

∼=
// HP>0

K (ϕ),

res :MF(ϕ,N)wa,>0
K

∼= //

M ,,YYYYYYYYYYYYYYYYYYYYYYYYYY

?�

OO

Modsl=0
∆ (ϕ,N∇) //

?�

OO

Modsl=0
∆ (ϕ)

∼= //
?�

OO

HPwa,>0
K (ϕ)

?�

OO

ModS(ϕ)[1/p]

∼=

OO

H

∼=
77nnnnnnnnnnnn

where the functors in the middle in both rows are defined by forgetting the differ-
ential operator N∇, and M is defined in Corollary 2.4.7. The natural isomorphism
in the left in the second row was obtained by Kisin [Kis06, Theorem 1.3.8] (see
also Theorem 2.4.6 and the discussion that follows), and the natural isomorphism
in the right in the second row is obtained from Theorem 4.3.4. (In particular, for
any D ∈ MF(ϕ,N)>0

K , res(D) is weakly admissible if and only if D is weakly ad-
missible.) Since each arrow commutes with ⊗-products (in particular, with Tate
twists), we can extend it to res : MF(ϕ,N)K → HPK(ϕ). One can check with-
out difficulty that the restriction res to the objects with N = 0 coincides with the
functorMF(ϕ)K → HPK(ϕ) that is defined in §2.4.3, by unwinding the construc-
tion ofMMF . (See the beginning of [Kis06, (1.2)] for the construction ofMMF .)
Furthermore, the functor res : MF(ϕ)waK → HPwaK (ϕ) is fully faithful by Kisin’s
theorem (stated in Corollary 2.4.7).

The functor res : MF(ϕ,N)K → HPK(ϕ) is exact and commutes with all
the natural operations, such as ⊗-products, internal homs, and duality. Also, res
preserves the Newton number tN and the Hodge number tH . (It is enough to check
on rank-1 objects, so N = 0 and the claim follows from §2.4.3.) Furthermore, for
D ∈ MF(ϕ,N)waK and for a collection v := {mw}w∈Z of non-negative integers, D
is of Hodge type v if and only if res(D) is of Hodge-Pink type v. This can be seen
from [Kis06, Lemma 1.2.1].

Recall that we have the following anti-equivalences of categories: V ∗st :MF(ϕ,N)waK
∼−→

Repst
Qp(GK ), V ∗cris :MF(ϕ)waK

∼−→ Repcris
Qp (GK ), and V ∗HP : HPwaK (ϕ) ∼−→ RepPQp(GK ∞).

(See Theorem 2.4.2 and comments to it for the statement and the bibliographic
note for the former, and Corollary 5.2.4 for the latter.) Thus res :MF(ϕ,N)waK →
HPwaK (ϕ) induces a functor Repst

Qp(GK ) → RepPQp(GK ∞), which is naturally iso-
morphic to the functor obtained by restricting the GK -action to GK ∞ by [Kis06,
Corollary 2.1.14]. Furthermore, this functor is fully faithful when restricted to the
full subcategory of crystalline representation. We summarize the discussion by the
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following diagram of functors which commutes up to isomorphism.

(5.2.12.2) MF(ϕ,N)wa,>0
K

res //

M %%LLLLLLLLLL

V ∗st
∼=

��

HPwa,>0
K (ϕ)

V ∗HP∼=

��

ModS(ϕ)[ 1
p ]

H
∼=

::ttttttttt

V ∗S

∼=

$$IIIIIIIII

Repst,>0
Qp (GK ) // Rep>0

Qp (GK ∞)

MF(ϕ)wa,>0
K

� � res //
s�

M %%KKKKKKKKKK

V ∗cris
∼=

��

HPwa,>0
K (ϕ)

V ∗HP∼=

��

ModS(ϕ)[ 1
p ]

H
∼=

::ttttttttt

V ∗S

∼=

$$IIIIIIIII

Repcris,>0
Qp (GK ) � � // Rep>0

Qp (GK ∞)

5.2.13. Rank-1 examples: Tate objects. Consider the Tate object S(h) for some
h > 0 as defined in Definition 2.2.6; i.e., S(h) ∼= S ·e equipped with ϕ(σ∗e) =
P(u)he. In the case o0 = Fq[[π0]], we will show later in §7.3.7 that T ∗(S(h)) ∼= χhLT
for any h > 0, where χLT is the Lubin-Tate character. We now show an analogue
of this fact for the case o0 = Zp: identifying GK with GK ∞ as in §1.3.1.2, we have
T ∗S(S(h)) ∼= χhcyc|GK∞

for any h > 0, where χcyc is the p-adic cyclotomic character.
Recall that χhcyc

∼= V ∗cris(1MF (h)) where 1MF (h) is the Tate object inMF(ϕ)K ;
i.e., the (unique) weakly admissible filtered isocrystal with the underlying isocrystal
(K 0e, ϕ(σ∗e) = phe). (By weak admissibility, the associated grading to the filtra-
tion is concentrated in degree h.) We have seen in §2.4.3 that res(1MF (h)) = 1(h)
where 1(h) is the Tate object in HPK(ϕ) as defined in (2.3.2.1). Therefore we
have V ∗cris(1MF (h))|GK∞

∼= V ∗HP(1(h)) by (5.2.12.2). On the other hand, we have
seen that H(S(h)[ 1

p ]) = 1(h) in §4.3.6 so by definition of V ∗HP (Corollary 5.2.4) we
have V ∗HP(1(h) ∼= T ∗S(S(h))[ 1

p ]. This shows that the desired GK ∞ -isomorphism
T ∗S(S(h)) ∼= χhcyc|GK∞

for any h > 0.





CHAPTER 6

Appendix I: Some non-archimedean functional analysis

The aim of this appendix is to prove Proposition 4.3.2. When o0 = Zp, Propo-
sition 4.3.2 is proved in [Ked04, Prop 6.5], and the same proof also works in the case
o0 = Fq[[π0]]. We also review basic properties of the analytic rings O∆, R, etc.,
and the theory of Newton polygons which will be used in the proof of Proposition
4.3.2.

6.1. Rigid-analytic disks

In this subsection, we review basic properties of O∆ and R, and give a precise
definition of Ralg.

Definition 6.1.1. For each r ∈ qQ<0 , we define the following multiplicative1
norm on S[ 1

π0
, 1
u ]:

(6.1.1.1) ‖f‖r = max
i�−∞

{|ai| ri} = max
x
{ |f(x)| }

where f(u) =
∑
i�−∞ aiu

i ∈ S[ 1
π0
, 1
u ] and the second maximum is taken among

x ∈ CK 0 such that |x| = r.

By taking logarithm, we obtain the following valuation wγ for S[ 1
π0

]:

(6.1.1.2) wγ(f) = min
i≥0
{v(ai) + γ · i} = min

x
{ v(f(x)) },

where γ = − logq r and all the other notations are as above.
If f ∈ S[ 1

π0
], then by the maximum modulus principle ‖f‖r is the maximum

among |f(x)| for all x ∈ CK 0 which satisfy |x| ≤ r.

6.1.2. Closed disks and annuli. Let T6r be the following affinoid K 0-algebra:

(6.1.2.1) T6r := {
∑
i≥0

aiu
i ∈ K 0[[u]], such that |ai| ri → 0 as i→∞},

(In the valuation language, the above condition translates to v(ai) + γ ·i → ∞ as
i → ∞, where γ = − logq r.) This condition is nothing but convergence on the
closed disk of radius r in CK 0 . One can check without difficulty that T6r is the
completion of S[ 1

π0
] with respect to the norm ‖ · ‖r, and with this norm T6r becomes

an affiniod K 0-algebra. Note that ‖ · ‖r is precisely the “sup norm” over the closed
disk of radius r (by the maximum modulus principle). We set ∆6r := Sp (T6r),
and call it the rigid-analytic closed disk of radius r.

1This is obviously submultiplicative, and can be seen to be multiplicative. See [Ked05b,
Lemma 2.1.7], for example.
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Let I := [r1, r2] ⊂ (0, 1) be a closed subinterval away from 0 and 1, with
endpoints in qQ (allowing r1 = r2), and let TI be the following affiniod K 0-algebra:
(6.1.2.2)
T[r1,r2] := {

∑
i∈Z

aiu
i ∈ K 0[[u, 1

u
]], such that lim

i→−∞
|ai| ri1 = 0 and lim

i→∞
|ai| ri2 = 0}.

One can check without difficulty that TI is the completion of S[ 1
u ,

1
π0

] with respect
to the following submultiplicative “sup norm”:

(6.1.2.3)

∥∥∥∥∥∥
∑
i≥−N

aiu
i

∥∥∥∥∥∥
[r1,r2]

= max
i
{|ai| ri1, |ai| ri2} = max{ ‖f‖r1 , ‖f‖r2 }.

By maximum modulus principle, this is same as the maximum of |f(x)| for x ∈ CK 0

with |x| ∈ [r1, r2], and with this norm TI becomes an affiniod K 0-algebra. We
define the rigid-analytic closed annulus ∆I := Sp(TI). (If r := r1 = r2 then we get
a rigid-analytic circle of radius r.)

To allow I := [0, r], we often write T[0,r] := T6r and ∆[0,r] := ∆6r. It is well
known that TI , for any closed subinterval I ⊂ [0, 1) with endpoints in qQ ∪ {0}, is
a principal ideal domain. We make a further remark on this later at §6.2.7.

6.1.3. Open disks, annuli and punctured disks. As before, the endpoints of any
subinterval I ⊂ [0, 1) that we consider are always assumed to lie in qQ<0 ∪{0}. For
any subinterval I ⊂ [0, 1), we define a rigid-analytic space ∆I :=

⋃
J∈J ∆J with

{∆J}J∈J as an admissible affinoid chart, where J is a set of closed subintervals
J ⊂ I with endpoints in qQ<0 ∪ {0}, such that

⋃
J∈J J = I. Concretely, the set of

CK 0 points of ∆I is exactly {x ∈ CK 0 : |x| ∈ I}, and the structure sheaf O∆I

is obtained by “gluing” O∆J
. We call ∆<r := ∆[0,r) the rigid-analytic open disk

of radius r, and we denote by ∆ := ∆<1 the rigid-analytic open unit disk. We
write ∆̇ := ∆(0,1) to denote the rigid-analytic punctured open unit disk. Note that
distinct choices of J yield the same rigid-analytic space [BGR84, 9.1]. In particular,
if I is already a closed interval, then the above construction yields the affinoid
variety ∆I := Sp(TI). If I = [0, r), then we may choose J := {[0, r′] : r′ < r}
so we regard ∆<r as a rising union of closed disks ∆6r′ for 0 < r′ < r. Similarly,
if 0 /∈ I, then we may choose a suitable J so that ∆I is a rising union of closed
annuli. From now on, we always choose such J .

For closed subintervals J ′ ⊂ J ⊂ [0, 1), we have the natural continuous inclusion
TJ ↪→ TJ′ of affinoid K 0-algebras. Furthermore, if both J and J ′ contain 0, then
the inclusion has the dense image since TJ contain S[ 1

π0
] which is dense in TJ′ .

The same holds if both J and J ′ are away from 0, since TJ contains S[ 1
π0
, 1
u ] which

is dense in TJ′ . So choosing J for ∆I as above, we obtain a projective system
{TJ}J∈J such that each transition map is continuous with dense image2, which
can be thought of as the “Mittag-Leffler” condition for Banach modules. Now
applying the sheaf axioms, we obtain that the ring of global sections is Γ(O∆I

) =
lim←−J∈J TJ (=

⋂
J∈J TJ), where the transition maps are as above. This is a Fréchet

2This says that the rising union ∆I =
⋃
j∈J ∆J , where J is as above, is a (non-archimedean

analogue of) “Stein exhaustion” relative to O∆I
in the sense of [GR79, IV.§1, Definition 6].
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space3 for the topology generated by the sup-norms on ∆J for J ∈ J . (Recall that
J is always countable.) It follows from the denseness of the image of each transition
map that the image of the natural map Γ(O∆I

) ↪→ TJ has a dense image.4
The rings of rigid analytic functions Γ(O∆I

) naturally sits inside K 0[[u, 1
u ]] as

a K 0-subspace, and we have that f(u) ∈ K 0[[u, 1
u ]] is an element of Γ(O∆I

) if
and only if f(x) converges for any x ∈ CK 0 with |x| ∈ I. so an element of Γ(O∆I

)
can be characterized by the absolute values of the coefficients of its (infinite-tailed)
Laurent expansion in u. We leave the precise formulation to interested readers.

Lastly, it is well-known that Γ(O∆I
) is a Bézout domain for any subinterval I.

It also follows that the Robba ring R (Definition 2.1.2) is a Bézout domain. We
make a further remark on this later at §6.2.7.

Remark 6.1.4. As remarked earlier, Γ(O∆<r ) contains S[ 1
π0

] as a dense sub-
ring, so it can be constructed as the Fréchet completion of S[ 1

π0
] for the sup-norms

‖ · ‖r′ for 0 < r′ < r. Similarly, Γ(O∆I
) for 0 /∈ I can be constructed as the Fréchet

completion of S[ 1
π0
, 1
u ] for the sup-norms ‖ · ‖J on ∆J for J ∈ J . This “purely

analytic” point of view also works when constructing such analytic rings as Ralg (if
o0 = Zp) for which it is hard to give a precise geometric meaning. (If o0 = Fq[[π0]],
then see §2.1.5 for a “geometric” interpretation of Ralg. )

6.1.5. Coherent sheaves and vector bundles. For the definition of coherent
sheaves on ∆I (or rather, coherent sheaves on any rigid-analytic space), we refer to
[BGR84, §9.4]. We say a coherent sheafM on ∆I (or rather, on any rigid-analytic
space) ifM becomes a finite free module over some admissible covering.

For a coherent sheaf M on ∆I , we can express the global sections of a co-
herent sheafM on ∆I as the following projective limit Γ(∆I ,M) = lim←−J∈JMJ .
Furthermore, each transition map has a dense image since MJ′ = TJ′ ⊗TJ MJ

for ∆J ⊇ ∆J′ with TJ dense in TJ′ . (Thus the projective system M satisfies
the “Mittag-Leffler” condition for Banach modules.) So the global sections functor
M 7→ Γ(M) is an exact and fully faithful functor from the category of coher-
ent sheaves on ∆I to the category of Γ(O∆I

)-modules and induces an equivalence
between vector bundles of rank n over ∆I and (locally) free Γ(∆I ,O∆)-modules
of rank n.5 A quasi-inverse from the essential image to the category of coherent
sheaves is given as follows: if M ∼= Γ(∆I ,M) for some coherent sheaf M then
associate the projective system {M ⊗Γ(O∆I

) T[r,r′]}[r,r′]⊂I recovers M . See [Gru68,
§V] which gives a proof over an open polydisks (in particular, an open disk), but
the argument can be adapted to ∆I . The upshot is that we can recover a coher-
ent sheave M from its global sections Γ(M). From now on, we do not strictly
distinguish a coherent sheafM from Γ(M).

6.1.6. Remark on Frobenius morphism. We define (the standard) Frobenius
map σ : T[r,r′] → T[r1/q,r′1/q ] over σK 0 : K 0 → K 0 by σ(u) = uq. (Recall that

3Concretely, this means that any sequence {fn} in Γ(∆I ,O∆I
) converges if and only if {fn}

is Cauchy with respect to the norm ‖ · ‖r for each r ∈ I ∩ qQ<0 .
4This can be seen from the containment S[ 1

π0
] ⊂ Γ(O∆<r ), and S[ 1

π0
, 1
u

] ⊂ Γ(O∆I
) if

0 /∈ I.
5The global section Γ(M) for a coherent sheafM may not be finitely generated modules. It

takes an extra work to show that ifM is a vector bundle on ∆I then Γ(M) is finite locally free
over Γ(O∆I

). See [Gru68, §V, Théorème 1].
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q = p if o0 = Zp.) By passing to the inverse limit, we also get σ : O∆I
↪→ O∆

I1/q
.

where I1/q ⊂ [0, 1) is the subinterval whose endpoints are qth root of the endpoints
of I. This construction actually gives endomorphisms σ : O∆ → O∆ and σ : O∆̇ →
O∆̇.

Since σ : T[r,r′] → T[r1/q,r′1/q ] is not K 0-linear but σK 0 -semilinear, we need
to take its linearization σ∗T[r,r′] → T[r1/q,r′1/q ] to get a map on affinoid spaces
σ : ∆[r1/q,r′1/q ] → σ∗∆[r,r′] over K 0. Similarly, one gets the Frobenius map σ :
∆I1/q → σ∗∆I by gluing these.

For a coherent sheaf M on ∆I∪I1/q (or for its global sections), the Frobenius
structure, or the ϕ-structure is a O∆

I1/q
-linear map ϕ : σ∗ (M|∆I

) → M|∆
I1/q

,
where σ∗ (M|∆I

) := O∆
I1/q
⊗σ,O∆I

(M|∆I
).

6.1.7. We define the following subalgebras of bounded (respectively, “integral”)
functions in O∆[r,1) :

Obd∆[r,1)
:= {f(u) ∈ O∆[r,1) : |f(x)| 6 C, for all x ∈∆[r,1) and for some C}

Oint
∆[r,1)

:= {f(u) ∈ O∆[r,1) : |f(x)| 6 1, for all x ∈∆[r,1)}.

Clearly we have Obd∆[r,1)
= Oint

∆[r,1)
[ 1
π0

]. It is useful that Oint
∆[r,1)

is a complete normed
W -algebra with respect to the norm ‖ · ‖r (or equivalently, with respect to the
valuation wγ where γ = − logq r). Furthermore, the above rings are principal ideal
domains by [Ked05b, §2.6]. We make further comments on this later in §6.2.7.

If o0 = Fq[[π0]], we have an interesting alternative description of Oint
∆[r,1)

:
namely, we have an equality Oint

∆[r,1)
= O∆K,6r′ of k-subspaces of k[[u, π0,

1
u ,

1
π0

]],
where ∆K,6r′ is a rigid-analytic closed disk of radius r′ = q−1/γ over K with co-
ordinate π0. One can check that the sup-norm on O∆K,6r′ is exactly ‖ · ‖1/γr on
Oint

∆[r,1)
. The “additive” version of this claim is that the valuation corresponding to

the sup norm on O∆K,6r′ is exactly
1
γwγ(·), which we will verify. Take an element

f =
∑
i∈Z aiu

i =
∑
i∈Z,j∈Z≥0

ciju
iπj0, where ai =

∑
j cijπ

j
0 ∈ W and cij ∈ k. Then

we can check by hand that

min
j

{
ordu

(∑
i

ciju
i

)
+ (1/γ)·j

}
= min
cij 6=0

{i+ (1/γ)·j } = min
i
{i+ (1/γ)·ordπ0(ai) } ,

where the term on the left end is the definition of the valuation on O∆K,[0,r′] and
the the term on the right end is visibly 1

γ ·wγ(f). (In fact, the normalization of
this partial valuation used in [Ked05b, §2] is 1

γ ·wγ(f), not wγ(f).) Also, for such
f ∈ O∆,[r,1) the condition |f(x)| ≤ 1 for all r 6 |x| < 1 says |ai| ρi 6 1 for all
r 6 ρ < 1 and i ∈ Z, which forces |ai| ≤ 1 for all i (i.e., ai ∈W ).

6.1.8. More analytic rings. Roughly speaking, we repeat all the above con-
structions of analytic rings with K replaced by CK . To provide intuition, we start
with the case when o0 = Fq[[π0]]. As pointed out in §2.1.5, we could carry out all
the previous constructions using the rigid-analytic open unit disk ∆K over K with
coordinate π0. Then we repeat the constructions of the analytic rings (such as R)
with ∆K replaced by ∆CK . In the case when o0 = Zp, we should give a purely
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analytic construction due to the lack of the “open unit disk over CK with coordi-
nate p,” working with the valuation ordu(·) on CK induced from the normalized
valuation on K = k((u)).

If o0 = Zp, then set Salg := W (oCK ) and oalg
E := W (CK), where W (·) is the

ring of Witt vectors6. Let σ be the Witt vector Frobenius map on Salg and oalg
E .

Similarly if o0 = Fq[[π0]], then set Salg := oCK [[π0]] and oalg
E := CK [[π0]]. Let σ be

the continuous “partial q-Frobenius endomorphism,” i.e., σ(π0) = π0 and σ(α) = αq

for any α ∈ CK . Note that in both cases Salg/(πn0 )→ oalg
E /(πn0 ) is injective for all

n ≥ 1. (In fact, it suffices to check the case n = 1, which is obvious.)
We have a natural σ-compatible embedding oE ↪→ oalg

E which restricts to
S ↪→ Salg. If o0 = Fq[[π0]] then it is clear. If o0 = Zp then the completed di-
rect limit of {oE

σ−→ oE
σ−→ · · · } induces the system of p-power maps on k((u))

modulo p, or equivalently the tower of fields {k((u))p−n}, so this completion is nat-
urally isomorphic to W (Kperf). We define the K 0-linear map oE → oalg

E using the
functoriality of the Witt vector ring construction. Furthermore, since σ(u) = up

the image of u in W (Kperf) is “p-divisible” (in the multiplicative sense) it is the
Teichmüller lift of the image of its reduction in Kperf . Hence u ∈ oE maps to the
Teichmüller lift [u] ∈ oalg

E of u ∈ CK . This shows that S lands in Salg. Using these
natural embeddings, we view S, Salg and oE as subrings of oalg

E .
For any α ∈ CK , we denote by [α] ∈ oalg

E the Teichmüller lift if o0 = Zp, and
the image of α under the natural inclusion CK ↪→ oalg

E if o0 = Fq[[π0]]. (In both
cases [α] ∈ (oalg

E )× if α 6= 0.) Any element f ∈ oalg
E [ 1

π0
] can be uniquely expressed as

f =
∑
j�−∞[αj ]πj0, where αj ∈ CK , and one can directly check that f ∈ Salg[ 1

π0
]

if and only if all αj are in oCK (i.e., ordu(αj) ≥ 0 for all j.); and f ∈ Salg[ 1
π0
, 1

[u] ]
if and only if the ordu(αi)’s are bounded below.

Now let us extend the valuations wγ(·) from S[ 1
π0

] to Salg[ 1
π0
, 1

[u] ] for γ ∈ Q>0
as follows:
(6.1.8.1) wγ(f) := min

j
{j + γ · ordu(αj)},

where f =
∑
j�−∞[αj ]πj0 ∈ Salg[ 1

π0
, 1

[u] ]. This a priori sub-multiplicative valuation
wγ is in fact multiplicative, by [Ked05b, Lemma 2.1.7]. Note also that wγ(σ(f)) =
wqγ(f).

Remark 6.1.9. To prove properties on wγ such as the strict triangule inequality
and multiplicativity, the following “coordinate-free” description of wγ can be useful,
especially when o0 = Zp. For f ∈ oalg

E [ 1
π0

] and n ∈ Z, we define

w(f ;n) := min{i ∈ Z|u−if ∈ Salg[1/π0] + πn+1
0 oalg

E }.

More concretely, if f =
∑
j�−∞[αj ]πj0, then w(f ;n) = minj≤n{ordu(αj)} (which

could be infinite even if f 6= 0). Now, we can see that whenever wγ(f) is defined,
we have wγ(f) = minn{n+γ ·w(f ;n)}. In fact, if wγ(f) = n+γ·ordu(αn) for some
n, then we have w(f ;n) = ordu(αn).

6Identifying K with the field of norms for K ∞/K as discussed in §1.3.1.2, we have an
isomorphism R ∼= oCK , where R := lim←−

xp←x
oK̄ /(p). The readers who are familiar with the p-adic

Hodge theory may recognize the ring Salg ∼= W (R). See, for example, [Win83, §4.3] and [Fon94a].
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As a corollary of this alternative definition of wγ , we can check that wγ re-
stricted to S[ 1

π0
, 1
u ] coincides with the previous definition of wγ for S[ 1

π0
, 1
u ], which

is defined in (6.1.1.2).

6.1.10. More Robba rings. For a subinterval I ⊂ [0, 1) with 0 ∈ I, we define
Oalg

∆I
to be the Fréchet completion of Salg[ 1

π0
] for wγ with q−γ ∈ I. Similarly for a

subinterval I ⊂ (0, 1), we define Oalg
∆I

to be the Fréchet completion of Salg[ 1
π0
, 1

[u] ]
for wγ with q−γ ∈ I. For any two subintervals I ′ ⊂ I, we have a natural continuous
injective map Oalg

∆I
→ Oalg

∆I′
, which has a dense image if the subintervals either both

contain 0 or are both away from 0. If I = [0, r], then Oalg
∆6r

is complete for the
valuation wγ where γ := − logq r. Similarly if I = [r1, r2], then Oalg

∆I
is complete for

the submultiplicative valuation wI(·) := min{wγ1(·), wγ2(·)}, where γi := − logq ri.
So if I is closed, then Oalg

∆I
is a Banach K 0-algebra. We leave the verification to

readers.
One can directly check that the Frobenius endomorphism σ : Salg[ 1

π0
, 1

[u] ] →
Salg[ 1

π0
, 1

[u] ], introduced in §6.1.8, continuously extends to a map σ : Oalg
∆I
→

Oalg
∆
I1/q

, where I1/q ⊂ [0, 1) is the subinterval whose endpoints are qth root of
the endpoints of I.

For 0 < r < 1 and γ := − logq r, we put

Oalg,bd
∆[r,1)

:=

 ∑
j�−∞

[αj ]πj0 ∈ oalg
E [ 1

π0
], such that j + γ · ordu(αj)→∞ as j →∞


Oalg,int

∆[r,1)
:=

∑
j≥0

[αj ]πj0 ∈ oalg
E , such that j + γ · ordu(αj)→∞ as j →∞

 .

For r = 0, we put Oalg,bd
∆[0,1)

:= Salg[ 1
π0

] and Oalg,int
∆[0,1)

= Salg. (Note that Salg[ 1
π0

] =
Oalg

∆ ∩ Oalg,bd
∆[r,1)

and this convention is consistent with S[ 1
π0

] = Obd∆ .) For any 0 ≤
r < 1, we have Oalg,bd

∆[r,1)
= Oalg,int

∆[r,1)
[ 1
π0

], and Oalg,int
∆[r,1)

is complete for the valuation
wγ where γ = − logq r. Also, σ : Oalg

∆I
→ Oalg

∆
I1/q

restricts to the subalgebras of
bounded functions (respectively, integral functions).

Now, we are ready to define the Robba rings:

Ralg := lim−→
r

Oalg
∆[r,1)

Ralg,bd := lim−→
r

Oalg,bd
∆[r,1)

oRalg,bd := lim−→
r

Oalg,int
∆[r,1)

Just as Rbd, Ralg,bd has the discrete π0-adic valuation ordπ0 for which oRalg,bd is
the valuation ring. In other words, for f =

∑
j�−∞[αj ]πj0, we define ordπ0(f) as

the minimal j such that αj 6= 0. We leave to readers the verification that this is a
valuation. And precisely the same argument that shows that øRbd is a discretely
valuation ring with a uniformizer p shows the same claim for oRalg,bd . (See [dJ98,
§4.3] for more details.)
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Since the inclusion S[ 1
π0
, 1
u ] ↪→ Salg[ 1

π0
, 1

[u] ] respects all wγ (Remark 6.1.9),
we obtain a continuous embedding O∆I

↪→ Oalg
∆I

and R ↪→ Ralg, and similarly for
their bounded counterparts. It turns out that all of them are faithfully flat ring
extensions, by Proposition 6.2.8.

The Frobenius maps σ : Oalg
∆[r,1)

→ Oalg
∆[r1/q,1)

induce a Frobenius endomorphism
σ on each of Ralg, Ralg,bd, and oRalg,bd . With this choice of σ, these “Robba rings”
are σ-rings over (S, σ).

The following table is for those who would like to compare this exposition with
[Ked05b, §2].

Notations in [Ked05b, §2] Γ Γ1/γ Γcon Γan,1/γ Γan,con
Notations from this paper oE Oint

∆[r,1)
øRbd O∆[r,1) R

The superscript (·)alg has the same meaning in both sets of notations. Kedlaya
[Ked05b, §2] normalizes the additive valuation differently; he works with (1/γ)wγ
instead of wγ .

6.2. Newton polygon

The Newton polygon for a rigid-analytic function is often useful in the study
of rigid-analytic functions. For example, the theory of Newton polygons play an
important role in Lazard’s work [Laz62], and in the proof of Proposition 4.3.2 which
will be seen in the next subsection. From now on, we will primarily work with wγ
instead of ‖ · ‖r; the graphs of piecewise linear functions are easier to handle than
those of piecewise exponential function.

Even though we introduce the theory only for subrings of Oalg
∆I

, the original
paper [Ked05b, §2] handles more general analytic rings.

6.2.1. Newton polygon for a polynomial. In order to provide intuition for our
discussion, let us first discuss the following simple case, which will be generalized
later. Let f(u) =

∑
i≤h aiu

i ∈ K 0[u] be a nonzero polynomial of degree d.

Definition 6.2.1.1. The Newton polygon for f(u) is the lower convex hull of
the set of points (i, v(ai)), where v(·) = ordπ0(·) is the normalized valuation on
K 0. The slopes of f(u) are the negatives of the slopes of the (line segments of)
Newton polygon for f(u). For a slope γ of f(u), we define the multiplicity of the
slope γ as the difference of the x-coordinates of the end points of the line segment
with slope −γ in the Newton polygon. If γ does not occur as a slope, then we define
the multiplicity for γ to be zero.

This notion of slopes has nothing to do with the slope of a ϕ-module introduced
in 4.1.4. Also, the Newton polygon here is not directly related to the Newton
polygon7 for a ϕ-module over R (which we do not define), or anything of this sort.

Remark 6.2.1.2. Let {αi} be the set of zeroes of f(u) in a splitting field for
f(u) over K 0 (or in CK 0). Then one can show that the set of slopes for f(u)
coincides with the set {ordπ0(αi)}. The multiplicity for the slope s is exactly the
number of zeroes αi (counted with multiplicities) such that ordπ0(αi) = s.

Example 6.2.1.3.

7Hartl [Har10, Definition 1.5.5] calls it the Harder-Narasimhan polygon.
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(1) Let f(u) = (u− π0)2 ·(u− π2
0) = u3 + (−2π0 − π2

0)u2 + (π2
0 + 2π3

0)u− π4
0 .

Then the Newton polygon for f(u) is {(3, 0), (1, 2), (0, 4)}. The slope 1
appears with multiplicity 2 and the slope 2 with multiplicity 1. (We get
the same result even in characteristic 2.)

(2) Let f(u) = up−πp−1
0 u+π0. The Newton polygon for f(u) is {(p, 0), (0, 1)},

so the unique slope 1/p appears with multiplicity p in the Newton poly-
gon. It is also possible to see directly that all the zeroes of f(u) have
π0-order 1/p. For example, if α ∈ CK 0 is a zero of f(u), then α+ i·π0 for
i ∈ Fp are also zeroes of f(u). In order for their product to have π0-order
1, α should satisfy ordπ0(α) = 1/p.

Remark 6.2.1.4. Let f(u), g(u) ∈ K 0[u] be nonzero polynomials. Let NWf

(respectively, NWg) be the set of all the vertices in the Newton polygon for f(u)
(respectively, for g(u)). Then the following statements are immediate:

(1) The Newton polygon for f(u) + g(u) “lies over” the lower convex hull of
NWf ∪NWg.

(2) It is possible to describe NWfg in terms of NWf and NWg. (We will
carry this out in more general setup later.) The set of slopes for f(u)·g(u)
is the union of the set of slopes for f(u) and the set of slopes for g(u), and
the multiplicities add up.

For γ ∈ Q>0, we call f(u) ∈ K 0[u] pure of slope γ if the Newton polygon for
f consists of one line segment with slope γ. It follows that if f(u) is pure of slope
γ, then the multiplicity for the slope γ is necessarily equal to the degree of f(u).
Lazard [Laz62, §4, Théorème 1] showed that if the base field is discretely valued
then any f ∈ O∆I

can be expressed as a convergent product f = g·ua·(
∏
γ Pγ), where

g ∈ O×∆I
and Pγ is a polynomial pure of slope γ with Pγ(0) = 1. (c.f. Weierstrass

factorization theorem for entire functions.) See §6.2.7 for further discussions.

6.2.2. Newton polygon for a rigid-analytic function. Fix a subinterval I ⊂
[0, 1), and let f =

∑
j∈Z[αj ]πj0 ∈ O

alg
∆I

, where αj ∈ CK . Assume always that f
is nonzero. Set Io := {γ ∈ R : q−γ ∈ I} ⊂ R>0.

Definition. The Newton polygon NWf for a nonzero f ∈ Oalg
∆I

is the sub-
polygon of the lower convex hull of the set of points (ordu(αj), j), which consists
of all line segments whose slopes lie in −Io. Equivalently, NWf is the sub-polygon
of the lower convex hull of the points (w(f ;n), n) with the same condition on the
slopes of line segments. The slopes of f are the negatives of the slopes of the line
segments of Newton polygon for f . (The slopes belong to Io by the definition of
the Newton polygon.) For a slope γ of f , we define the multiplicity of the slope
γ as the difference of the x-coordinates of the end points of the line segment with
slope γ of the Newton polygon. If γ does not occur as a slope (for example, when
γ /∈ Io), then we say that the multiplicity for γ is zero.

For a nonzero rigid-analytic function f(u) ∈ O∆I
, we can give the following

equivalent definition of the Newton polygon: write f(u) =
∑
i∈Z aiu

i where ai ∈
K 0, thenNWf coincides with the sub-polygon of the lower convex hull of the points
(i, v(ai)) which consists of the line segments whose slopes lie in −Io. This polygon
is the same as the sub-polygon of the lower convex hull of the points (w(f ;n), n)
with the same slope condition.
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Remark 6.2.3.
(1) We can make a correspondence between π0-orders of the zeroes of f(u) ∈
O∆I

in ∆I and the slopes of the Newton polygon for f(u), and can
interpret the multiplicity of a slope in terms of zeroes as in Remark 6.2.1.2.
We will make a precise statement in §6.2.7.

(2) Let f(u) ∈ K 0[u] be a nonzero polynomial. Then the Newton polygon for
f(u) viewed as a section ofO∆I

(or an element ofOalg
∆I

) can be obtained by
truncating the line segments of slope outside Io from the previous Newton
polygon for a polynomial f(u). The factors of f(u) which contribute to
the slopes outside Io have no zeroes in ∆I , and in fact are units in O∆I

as
we will see later, so it makes sense to ignore the contribution from these
factors.

(3) If I ⊂ [0, 1) is closed on the left (respectively, on the right), then the
Newton polygon for any f ∈ Oalg

∆I
is bounded on the left (respectively,

on the right). In particular if I is closed, then any Newton polygons are
finite (i.e., any Newton polygons consist of finitely many vertices and line
segments). This follows from the explicit description of Oalg

∆I
in terms

of valuation of coefficients of the “Laurent expansion”. (We leave the
verification to readers.)

As a consequence, the zero locus of f ∈ O∆I
is “discrete” (so finite

if I is a closed subinterval). In fact, for any closed subinterval J ⊂ I
the Newton polygon for f viewed as an element in O∆J

is finite, and we
use the correspondence between the zeroes of f in ∆J and the Newton
polygon for f ∈ O∆J

(as explained above in (1)) to conclude that the zero
locus of f in ∆J is finite.

On the other hand, the Newton polygon does not have to be finite if
I is not a closed interval. For example, the rigid-analytic function λ ∈ O∆,
defined in §2.1.3, has the following Newton polygon: {(0, 0), (qe,−1), (qe+
q2e,−2), · · · }, where e is the degree of the point x0 ∈∆ cut out by P(u).
The set of slopes is { 1

qne}n∈Z≥0 and the slope 1
qne appears with multiplicity

qne. Furthermore, if ∆I is a punctured open disk or an open annulus, then
one can also find an example such that the Newton polygon is unbounded
on both sides.

(4) The nonzero elements of the subrings Obd∆[r,1)
⊂ O∆[r,1) and Oalg,bd

∆[r,1)
⊂

Oalg
∆[r,1)

are exactly those with finite Newton polygon. This can be seen
as follows. Let f =

∑
j∈Z[αj ]πj0 ∈ O

alg
∆[r,1)

, where αj ∈ CK . By (3), the
Newton polygon for f is always bounded on the left, and it is bounded
on the right if and only if the y-coordinates of the Newton polygon are
bounded below by some integer N , which means that αj = 0 for all
j < N (i.e., f ∈ oalg

E [ 1
π0

]) so . Furthermore, if f is bounded, then the
y-coordinates of the lower right endpoint of the Newton polygon for f is
precisely the minimum among j such that αj 6= 0.

6.2.4. Newton polygons and the valuation wγ . For f =
∑
j∈Z[αj ]πj0 ∈ O

alg
∆I

and for γ ∈ Io (i.e., q−γ ∈ I), we have defined the following valuation earlier in
(6.1.1.2)

wγ(f) = min
j
{j + γ ·ordu(αj)}.
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We can also show that for f ∈ Oalg
∆I

as above, we have j + γ ·ordu(αj) → ∞ as
j → ±∞. For a nonzero f , we define,

Nγ(f) := max{ ordu(αj) such that wγ(f) = j + γ ·ordu(αj) }
nγ(f) := min{ ordu(αj) such that wγ(f) = j + γ ·ordu(αj) }.

The following proposition is immediate.

Proposition 6.2.5.
(1) Assume that Nγ(f) 6= nγ(f). Then, Nγ(f) (respectively, nγ(f)) is the

x-coordinate of the right end point (respectively, the left end point) of the
line segment with slope γ in the Newton polygon for f . In particular, γ is
a slope for f with multiplicity Nγ(f)− nγ(f) > 0.

(2) Assume that Nγ(f) = nγ(f). Then the Newton polygon for f does not
contain any line segment of slope −γ (i.e., γ is not a slope for f), and
Nγ(f) = nγ(f) is the x-coordinate of the vertex of the Newton polygon
whose adjacent line segments have one slope larger than −γ and the other
slope smaller than −γ.

In either case, the multiplicity for γ is Nγ(f)− nγ(f)

We sketch the idea of proof. For fixed γ consider a family of lines lw : y+γ·x = w
where the parameter w is chosen so that lw passes through some vertex of the
Newton polygon (ordu(αj), j). Then the smallest value among those w occurs
exactly when the vertex (ordu(αj), j) that lw passes through lies in the line segment
of slope −γ of the Newton polygon if γ is a slope for f , or when (ordu(αj), j) is the
vertex as described in (2) of the proposition if γ is not a slope. Proposition 6.2.5
follows from this consideration.

Proposition 6.2.6. Let f, f ′ ∈ Oalg
∆I

be non-zero elements and let us fix γ ∈ Io
(i.e., q−γ ∈ I). Let N := Nγ(f), N ′ := Nγ(f ′) and n := nγ(f), n′ := nγ(f ′), and
let NWf (respectively, NWf ′) be the set of vertices of the Newton polygon for f
(respectively, for f ′).

(1) The Newton polygon for f + f ′, if nonzero, “lies over” the lower convex
hull of NWf ∪NWf ′ .

(2) We have Nγ(f · f ′) = N + N ′ and nγ(f · f ′) = n + n′. Furthermore,
if (n, jn), (N, jN ) are the vertices of NWf and (n′, jn′), (N ′, jN ′) are the
vertices of NWf ′ as in Proposition 6.2.5, then (n + n′, jn + jn′), (N +
N ′, jN + jN ′) are the vertices of NWf·f ′ as in Proposition 6.2.5.

In particular, the (a priori submultiplicative) valuation wγ is multiplicative.

The proof is quite elementary. See [Ked05b, Lemma 2.1.7] for the proof in the
case o0 = Zp, which also works in the case o0 = Fq[[π0]].

As a corollary, we have the following interesting criterion for f ∈ Oalg
∆I

to be a
unit in terms of its Newton polygon.

Corollary 6.2.6.1. The Newton polygon for f ∈ Oalg
∆I

consists of a single

vertex if and only if f = [u]c ·g for some c ∈ Q and g ∈
(
Oalg

∆I

)×
. (If f ∈ O∆I

,

then c is an integer.) Furthermore, if 0 /∈ I (so [u] ∈
(
Oalg

∆I

)×
), then elements in(

Oalg
∆I

)×
are exactly those whose Newton polygons consist of a single vertex.
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Proof. Let f = [u]c·g for some g ∈
(
Oalg

∆I

)×
. By applying Proposition 6.2.6(2)

to g ·g−1 = 1, we know that the Newton polygon for g consists of a single vertex
(since the constant function 1 has this property.) And because the Newton polygon
for [u]c consists of a single vertex, we conclude that the product [u]c ·g has the
Newton polygon which consists of a single vertex, by Proposition 6.2.6(2).

For the “if” direction, assume that the Newton polygon for f =
∑
j∈Z[αj ]πj0

consists of a single point (c, n). In particular, we have ordu(αn) = c, so αn 6= 0.
First, we reduce to the case when (c, n) = (0, 0), and α0 = 1. If 0 /∈ I, we can do
this by multiplying f by ([αn]πn0 )−1. If 0 ∈ I, then we show that [u]c divides f . If
there exists αj 6= 0 such that c0 := ordu(αj0) < c, then the point (c0, j0) appears in
the Newton polygon for f . But this contradicts to the assumption that the Newton
polygon for f is a single point (c, n). Therefore, we may replace f by ([αn]πn0 )−1·f
in call cases.

Now, it is enough to show that if the Newton polygon for f is {(0, 0)} and
a0 = 1, then f is a unit. By assumptions and the proposition in (6.2.5), we have
wγ(f − 1) > 0, so wγ((f − 1)i)→∞ as i→∞, for any γ ∈ Io ∩Q>0. On the other
hand, Oalg

∆I
is a Fréchet space for the valuations wγ for γ ∈ Io ∩ Q>0. Therefore,

the infinite sum
∑
i∈Z>0

(f − 1)i converges in Oalg
∆I

, and we have
(
1 + (f − 1)

)
·(∑

i∈Z>0
(f − 1)i

)
= 1. �

The following is a corollary to both the statement and the proof of Corollary
6.2.6.1, and will be used in the proof of Proposition 4.3.2.

Corollary 6.2.6.2. Let I ⊂ (0, 1) be a subinterval (so we have u ∈ O×∆I
).

Then, for any f(u) ∈ O×∆I
, there exists a unit g ∈ (Obd∆I

)× such that the Newton
polygon for g·f consists of a single vertex {(0, 0)} and wγ(g·f−1) > 0 for all γ ∈ Io.

Proof. By Corollary 6.2.6.1, we know that the Newton polygon for f(u) =∑
i∈Z aiu

i consists of a single point, say {(j, j′)}. Now take g(u) := (ajuj)−1. Then
clearly the Newton polygon for g·f is {(0, 0)}. And since the constant term for g·f
is 1, we have seen in the proof of Corollary 6.2.6.1 that wγ(g ·f − 1) > 0 for all
γ ∈ Io. �

In fact, we will prove the GLn version of this corollary by induction on n.
Hence, this corollary serves as the base case to initiate the induction.

We digress to record nice corollaries to Corollary 6.2.6.1.

Corollary 6.2.6.3. All the units of O∆[r,1) and Oalg
∆[r,1)

are bounded for any

0 ≤ r < 1; i.e., we have O×∆[r,1)
=
(
Obd∆[r,1)

)×
and

(
Oalg

∆[r,1)

)×
=
(
Oalg,bd

∆[r,1)

)×
. In

particular, we have O×∆ =
(
S[ 1

π0
]
)×

,
(
Oalg

∆

)×
=
(
Salg[ 1

π0
]
)×

, R× =
(
Rbd

)× and(
Ralg)× =

(
Ralg,bd)×.

Proof. Since Obd∆ = S[ 1
π0

] and Oalg,bd
∆ = Salg[ 1

π0
], it is enough to prove the

first two equalities. One inclusion is obvious, so we prove O×∆[r,1)
⊂ (Obd∆[r,1)

)×. For
f ∈ O×∆[r,1)

, the Newton polygon for f(u) is a single point by Corollary 6.2.6.1,
in particular finite. But as remarked earlier (Remark 6.2.3(4)), it follows that
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f ∈ Obd∆[r,1)
. Since f−1 also has the Newton polygon consisting of a single point as

well, we have f−1 ∈ Obd∆[r,1)
. The case of Oalg

∆[r,1)
is similar. �

6.2.7. Remarks on Bézout property. We record the following proposition which
gives an interpretation of slopes and multiplicities analogous to Remark 6.2.1.2 and
Remark 6.2.3(1). The statement can be regarded as a version of “Weierstrass
preparation”, and the proof as an analogue of “Weierstrass division algorithm” and
“approximate Euclid’s algorithm.” See [Laz62, §2,3] for a proof. We will not use
this proposition later.

Proposition 6.2.7.1. [Laz62, §3, Proposition 2] Let f(u) ∈ O∆I
, and assume

that f(u) has a slope γ with multiplicity d. Then there exists a polynomial Pγ(u) ∈
K 0[u] of degree d and pure of slope γ which divides f(u). Furthermore, f(u)/Pγ(u)
does not have γ as its slope, and Pγ(u) is unique up to scalar multiple (so it is unique
if we require P (0) = 1).

If we write f(u) = Pγ(u)·g(u), then γ is not a slope for g(u), by Proposition
6.2.6(2). Therefore, we can immediately deduce the following statement by induc-
tion on the number of slopes: if I ⊂ [0, 1) is a closed subinterval (so the Newton
polygon is finite), then any f(u) ∈ O∆I

can be written as a product of a polynomial
and a unit in O×∆I

. In particular, O∆I
is a principal ideal domain if I is closed.

With more work, we can prove the following for any subinterval I ⊂ [0, 1): any
f ∈ O∆I

can be expressed as a convergent product f = g ·ua ·(
∏
γ Pγ), where the

(possibly infinite) product is over all slopes γ of f(u), Pγ is a polynomial pure of
slope γ with Pγ(0) = 1, and g ∈ O×∆I

. Moreover, O∆I
is a Bézout domain. (See

[Laz62, §4] for a proof. The key step is to prove the convergence of certain infinite
products, which can be handled if the base field is discretely valued.)

Recall that the ring Oint
∆[r,1)

is a complete with respect to ‖ · ‖r. A similar
argument which proves that O∆I

is a principal ideal domain when I is closed
shows that Oint

∆[r,1)
is a principal ideal domain. See [Ked05b, §2.6] for more details.

If o0 = Fq[[π0]], this is easier to prove due to the identity Oint
∆[r,1)

= O∆K,6r′ as a
subspace of k[[π0, u,

1
π0
, 1
u ]] with the same ring structure, where ∆K,6r′ is the closed

disk over K = k((u)) with coordinate π0 of radius r′ = q−1/(logq r). To summarize,
we have the following proposition:

Proposition 6.2.7.2.
(1) For a closed interval I ⊂ [0, 1), the ring O∆I

is a principal ideal do-
main.
(2) For any interval I ⊂ [0, 1), the ring O∆I

is a Bézout domain.
(3) The ring of bounded functions Oint

∆[r,1)
is a principal ideal domain.

We end this subsection by the following faithful flatness result.

Proposition 6.2.8. The natural inclusions S[ 1
π0

] ↪→ O∆ and Salg[ 1
π0

] ↪→ Oalg
∆

are faithfully flat. The natural continuous maps O∆I
↪→ Oalg

∆I
and R ↪→ Ralg are

faithfully flat.

Proof. First of all, note that the source of any map in the statement is a
Bézout domain by Proposition 6.2.7.2. The flatness is clear since for modules over
a Bézout domain, flatness is equivalent to having no nonzero torsion. To see the
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faithful flatness, we first observe any non-unit element in the source cannot become a
unit in the target, which is clear from Corollaries 6.2.6.3 and 6.2.6.1. The following
claim asserts that this suffices to show the full faithfulness of ring extensions of
Bézout domains.

Claim. Let A be a Bézout domain and B a flat A-algebra. Then B is faithfully
flat over A if and only if any non-unit element a ∈ A does not become to a unit in
B.

The “only if” direction is trivial. Now, assume that any non-unit element in
A does not become a unit in B, and show that any map of A-module M ′ → M
is injective if and only if B ⊗A M ′ → B ⊗A M is injective. For this, it is enough
to show that the composite 〈m′〉 ↪→ M ′ → M is injective for any m′ ∈ M ′, since
by flatness B ⊗A 〈m′〉 → B ⊗AM ′ is injective. By replacing M ′ with 〈m′〉 and M
with the image of 〈m′〉, it is enough to handle the case when both M ′ and M are
generated by one element and the map M ′ →M is surjective.

Now we can write M ′ ∼= A/J and M ∼= A/I for (not necessarily finitely gener-
ated) ideals J ⊆ I of A. Since B ⊗AM ′

∼−→ B ⊗AM , we have JB = IB. We are
reduced to showing that J = I. Assume that J ( I and choose an element x ∈ I\J .
Then x =

∑n
i=1 biyi for bi ∈ B and yi ∈ J . Let J ′ ⊂ A be the ideal generated by

{y1, · · · , yn} and I ′ ⊂ A the ideal generated by {y1, · · · , yn, x}. Since A is a Bézout
domain, J ′ and I ′ are principally generated. Let y′ ∈ J ′ and x′ ∈ I ′ be principal
generators, respectively, and we have x′|y′. Since J ′ ( I ′ by construction, y′/x′ is
a non-unit element in A. On the other hand, we have J ′B = I ′B by construction,
which implies that y′/x′ is a unit in B. This contradicts to our assumption that
any non-unit element in A does not become a unit in B. �

6.3. Proof of Proposition 4.3.2

Now we are ready to prove Proposition 4.3.2. For a subinterval I ⊂ [0, 1) and
r ∈ I \ {0}, we extend the norm ‖ · ‖r to n × n matrices A = (Aij) ∈ Matn(O∆I

)
by ‖A‖r := maxi,j{‖Aij‖r}. Similarly, define the additive valuation wγ(A) :=
mini,j{wγ(Aij)}. This satisfies the strict triangular inequality and the submulti-
plicativity:

• wγ(A + B) ≥ min{wγ(A), wγ(B)} and the equality holds if wγ(A) 6=
wγ(B).

• wγ(AB) ≥ wγ(A) + wγ(B).
• If wγ(A) > 0 then wγ(det(A)) > 0. Similarly if wγ(A − Idn) > 0, then
wγ(det(A)− 1) > 0. (Indeed, write A = Idn +X for some X = (xij) with
wγ(xij) > 0, and detA−1 can be written as a sum of terms only involving
xij .)

Now let us restate Proposition 4.3.2 as follows:

Proposition 6.3.1 (Proposition 4.3.2 restated).
(1) For any A ∈ GLn(R), there exists U ∈ GLn(O∆) and V ∈ GLn(Rbd)

such that A = UV .
(2) If A ∈ GLn(O∆[r,1)) with 0 < r < 1 and if wγ(A − Idn) > 0 for γ =
− logq r, then there exist matrices U ∈ GLn(O∆) and V ∈ GLn(Obd∆[r,1)

)
such that A = UV . This pair U and V is can be chosen to satisfy the
following additional conditions:
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• U − Idn involves only positive powers of u and V involves no positive
powers of u.
• We have wγ(U − Idn) > 0 and wγ(V − Idn) > 0.
• V ∈ GLn(Oint

∆[r,1)
).

Such U and V are unique and also satisfy inequalities wγ(U − Idn) ≥
wγ(A− Idn) and wγ(V − Idn) ≥ wγ(A− Idn).

For the proof, we closely follow [Ked04, Prop 6.5]. The proof is roughly divided
into two steps:
Step 1: Reduce (1) to (2)
Step 2: Produce the unique matrices U and V in (2) by approximation.

The following lemma takes care of Step 1 :

Lemma 6.3.2. Fix γ ∈ Q>0 and let r = q−γ . Then for any A ∈ GLn(O∆[r,1)),
there exists an invertible matrix B ∈ GLn(Obd∆[r,1)

) such that wγ(AB − Idn) > 0.
Furthermore, if wγ(det(A)− 1) > 0, then we may choose B such that det(B) = 1.

To handle Step 1, first apply this lemma to A ∈ GLn(O∆[r,1)), to obtain AB ∈
GLn(O∆[r,1)) with B ∈ GLn(Obd∆[r,1)

) and wγ(AB − Idn) > 0. Granting both the
lemma and Proposition 6.3.1 (2), one can apply Proposition 6.3.1 (2) to AB to
get a factorization AB = UV . This gives a factorization A = U ·(V B−1) where
U ∈ GLn(O∆) and (V B−1) ∈ GLn(Obd∆[r,1)

). Now, for any A ∈ GLn(R) there exists
some r ∈ (0, 1) such that A converges on ∆[r,1). Take this r and let γ := − logq r.
Then the above factorization A = U ·(V B−1) proves Proposition 6.3.1 (1), so the
lemma completes Step 1.

Remark. With little extra work, one can prove this lemma with γ replaced
by any closed sub interval Io ⊂ R>0. Compare with [Ked05b, Lemma 2.7.1] and
[Ked04, Lemma 6.2]. We do not need this generalization.

Proof of Lemma 6.3.2. The case n = 1 is handled by Corollary 6.2.6.2. Also
from n = 1 case, we can find a unit g ∈ (Obd∆[r,1)

)× so that wγ(g ·det(A) − 1) > 0.
Therefore by replacing A by A ·diag(g, 1, · · · , 1), for example, we may and will
assume that wγ(det(A) − 1) > 0. We will carry out the induction on n with this
extra hypothesis on the determinant. We assume by induction (with n > 1) that
for any A ∈ GLn−1(O∆[r,1)) such that wγ(det(A) − 1) > 0, there exists a matrix
B ∈ SLn−1(Obd∆[r,1)

) such that wγ(AB − Idn) > 0.
Let us outline the strategy of the proof:
(1) For any A ∈ GLn(O∆[r,1)), find B0 ∈ SLn(Obd∆[r,1)

) such that the up-
per left (n − 1) × (n − 1)-minor of AB0 satisfies the induction hypoth-
esis. The induction hypothesis produces B1 ∈ SLn(Obd∆[r,1)

) such that
‖(AB0B1)ij − δij‖ > 0 for 1 ≤ i, j ≤ n − 1, where δij is the Kronecker
delta.

(2) Find a series of elementary column operations so that n-th column and
n-th row satisfy the same inequality.

(1) Finding B0 and applying the induction hypothesis.
Let ci denote the ni-cofactor of A, so we have det(A) =

∑n
i=1 ci ·Ani, and ci =

(A−1)in det(A). If we put αi := det(A)−1Ani, then we have
∑n
i=1 αici = 1. In order

to get an idea for how to find B0, let us assume that we have B0 ∈ SLn(Obd∆[r,1)
)
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such that the nn-cofactor c′n of AB0 satisfy wγ(c′n − 1) > 0 (so c′n is necessarily a
unit by our criterion via Newton polygon: Corollary 6.2.6.1).

The cofactor c′n satisfies:

c′n = (B−1
0 A−1)nn det(A)

=
n∑
i=1

(B−1
0 )ni(A−1)in det(A)

=
n∑
i=1

(B−1
0 )ni ·ci

= 1 +
n∑
i=1

(
(B−1

0 )ni − αi
)
·ci

Let βi := (B−1
0 )ni ∈ Obd∆[r,1)

. Then {βi} generates a unit ideal in Obd∆[r,1)
since B−1

0
is invertible. Conversely, if we can find {βi} which generates the unit ideal and
satisfies wγ(βi − αi) > −wγ(ci) for all i, then we can find B0 that works; indeed,
since n > 1 and Obd∆[r,1)

is a principal ideal domain (Proposition 6.2.7.2), one can
find an invertible matrix B−1

0 ∈ SLn(Obd∆[r,1)
) whose n-th row is (βi), and the above

calculation shows that this B0 works.
To find such {βi}, we first take β′i ∈ Obd∆[r,1)

such that wγ(β′i − αi) > −wγ(ci)
for all i. This is possible because Obd∆[r,1)

⊂ O∆[r,1) is a dense subalgebra. But
{β′i} may not generate the unit ideal, so we modify β′n as follows. Observe that
the elements {β′n + πj0}j are pairwise coprime (i.e., any two elements generate the
unit ideal) in Obd∆[r,1)

. If j � 0 (namely, if j > −wγ(ci)), then we still have
wγ(β′n + πj0 − αn) > −wγ(ci). Since Obd∆[r,1)

is a principal ideal domain, the ideal
generated by {β′1, · · · , β′n−1} is principal, say generated by β. Since β cannot have
infinitely many prime factors (being an element in a principal ideal domain), we
conclude that there exists an integer j � 0 such that {β′1, · · · , β′n−1, β

′
n + πj0}

generates the unit ideal and the inequality wγ(β′n + πj0 −αn) > −wγ(ci) holds. We
set βn := β′n + πj0 for the above choice of j, and βi := β′i for i 6= n.

To summarize, if we choose a matrix B−1
0 ∈ SLn(Obd∆[r,1)

) whose n-th row is
(βi), then the upper left (n − 1) × (n − 1)-minor of AB0 satisfies the induction
hypothesis. Then the induction hypothesis gives a B′1 ∈ SLn−1(Obd∆[r,1)

) which
“works” for the upper left (n− 1)× (n− 1)-minor of AB0. Now, extend this matrix
to B1 ∈ SLn(Obd∆[r,1)

) by setting (B1)nn = 1, (B1)in = (B1)ni = 0 for i 6= n and
the upper left (n− 1)× (n− 1)-minor of B1 to be equal to B′1. Then AB0B1 still
satisfies the following:

• our running hypothesis wγ(det(AB0B1) − 1) = wγ(det(A) − 1) > 0, (be-
cause the determinant of B0 and B1 are both 1)

• wγ ((AB0B1)ij − δij) > 0 for 1 ≤ i, j ≤ n− 1.
Since it is enough to prove the statement for AB0B1, we rename AB0B1 to be A.

Now that we have the inequalities wγ (Aij − δij) > 0 for 1 ≤ i, j ≤ n − 1 (so
wγ(Aij) ≥ 0 for 1 ≤ i, j ≤ n − 1), our next goal is to perform elementary column
operations on A (which correspond to multiplying A by elementary matrices on the
right) so that in the resulting matrix, the same inequalities hold for all i and j.
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This process will look like Gaussian elimination, except that instead of eliminating
the off-diagonal terms in n-th row and column we make them close to 0. For this
reason we may call this process “approximate Gaussian elimination”.

(2) “Clearing” the nth column
We first “clear” off-diagonal entries from the nth column. Let A(0) := A and put
A(h+1) := A(h) ·B(h)

2 , where

(B(h)
2 )mj :=

{
δmj j < n or j = m = n

−A(h)
mn j = n and m < n

.

Concretely, we subtract A(h)
mn times the mth column from the nth column for each

m = 1, · · · , n − 1. (Note also that detA(h+1) = detA(h) = detA for any h ≥ 0.)
Therefore we have:

A
(h+1)
ij :=

{
A

(h)
ij j < n

A
(h)
in −

∑n−1
m=1A

(h)
im ·A

(h)
mn j = n

.

At each step, the minimum valuation min1≤i≤n−1{wγ(A(h)
in )} increases by at least

min1≤i,j≤n−1{wγ(Aij − δij)} which is positive and independent of h. To see this,
we just rewrite A(h+1)

in for i < n:

A
(h+1)
in = A

(h)
in −

n−1∑
m=1

Aim ·A(h)
mn

= A
(h)
in ·(1−Aii)−

∑
m 6=i,n

Aim ·A(h)
mn

= A
(h)
in ·(δii −Aii)−

∑
m 6=i,n

(Aim − δim)·A(h)
mn,

and the claim is immediate from the last expression.
Since min1≤i≤n−1{wγ(A(h)

in )} increases at each step by at least some fixed pos-
itive number, we may choose h� 0 so that the following inequality holds:

wγ(A(h)
in ) > max

{
0, max

1≤j≤n−1

{
−wγ(A(h)

nj )
}}

(i = 1, · · · , n− 1)

(Recall that A(h)
nj = Anj , so the right side is independent of h.) Therefore we have

wγ(A(h)
ij ) > 0 for all i < n and all j; and wγ(A(h)

in ·A
(h)
nj ) > 0 for any 1 ≤ i, j ≤ n−1.

Because det(A) = det(A(h)), we still have the inequality wγ(det(A(h))− 1) > 0.
Furthermore, we also have wγ(A(h)

nn − 1) > 0. To see this, it follows from the
inequality wγ(A(h)

in ·A
(h)
nj ) > 0 for i, j < n and oγ(A(h)

ij ) = wγ(Aij) for all i, j < n

that wγ
(∑

j 6=n c
(h)
j A

(h)
nj

)
> 0 where c(h)

j is the nj-cofactor of A(h). But since

det(A(h)) =
∑n
j=1 c

(h)
j A

(h)
nj and wγ(det(A(h))−1) > 0, we get wγ

(
c
(h)
n ·A(h)

nn − 1
)
>

0. But A(h)
ij = Aij for i, j < n, so by our initial arrangements for A we have

wγ(c(h)
n − 1) > 0 (so wγ(c(h)

n ) = 0). Since c(h)
n ·A(h)

nn − 1 = c
(h)
n ·(A(h)

nn − 1) + (c(h)
n − 1),

we deduce wγ(A(h)
ij − 1) as claimed.

Let us list all (relevant) properties we have arranged for A(h) to satisfy:
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• wγ(det(A(h))− 1) > 0.
• wγ(A(h)

ij − δij) > 0 if 1 ≤ i, j ≤ n− 1 or if j = n.
• wγ(A(h)

in ·A
(h)
nj ) > 0 for any 1 ≤ i, j ≤ n− 1.

(3) “Clearing” the off-diagonal entries in the nth row
Now that A(h)

nn satisfies the desired inequality wγ(A(h)
nn − 1) > 0, we can “clear” the

remaining entries in the nth row. Starting from A(h), define A(l+1) := A(l)·B(l)
2 for

l ≥ h, where

(B(l)
2 )ij :=

{
δij i < n or i = j = n

−A(l)
nj i = n and j < n

.

Concretely, we subtract A(l)
nj times the nth column from the jth column for each

j = 1, · · · , n− 1:

A
(l+1)
ij :=

{
A

(l)
ij −A

(l)
in ·A

(l)
nj j < n

A
(l)
in j = n

.

First, observe that for j < n, the valuation wγ(A(l)
nj) increases by at least wγ(A(h)

nn −
1) which is a positive number independent of h. (Note that A(h)

nn = A
(l)
nn, so the

above statement is clear from the recursive formula.) Thus for l � h, we have the
inequalities

wγ(A(l)
nj) > 0 (j = 1, · · · , n− 1)

Now, we need to check that these column operations preserve the inequality wγ(A(l)
ij −

δij) > 0 for 1 ≤ i, j ≤ n− 1, so it suffices that wγ(A(l)
in ·A

(l)
nj) > 0 for 1 ≤ i, j ≤ n− 1

and all l ≥ h. In fact, we have wγ(A(h)
in ·A

(h)
nj ) > 0 for 1 ≤ i, j ≤ n−1, and A(h)

in = A
(l)
in

while wγ(A(l)
nj) > wγ(A(h)

nj ) for l > h (since wγ(1−A(l)
nn) = wγ(1−A(h)

nn ) > 0 for all
l ≥ h), hence the claim is clear.

To sum up, we have the inequality wγ(A(l)
ij − δij) > 0 for all i and j, in other

words wγ(A(l) − Idn) > 0. This finally concludes the proof of the lemma. �

We have reduced the Proposition 6.3.1 to proving the second part of its state-
ment.This follows from the lemma below, which roughly says that one can uniquely
factor a matrix A over ∆[r,1) into a “holomorphic part” U and a “polar part” V ,
with some “boundedness” condition if A is close enough to Idn:

Lemma 6.3.3. Assume that A ∈ Matn(O∆[r,1)) satisfies wγ(A − Idn) ≥ c for
some γ := − logq r ∈ Q>0, and c > 0. Then there exists a unique pair of matrices
U = Idn +

∑
i∈Z>0

Uiu
i ∈ Matn(O∆) and V =

∑
i∈Z≥0

Viu
−i ∈ Matn(Oint

∆[r,1)
),

where Ui, Vi ∈ Matn(K 0), such that A = UV , wγ(U− Idn) > 0 and wγ(V − Idn) >
0. Moreover, these matrices U and V satisfy wγ(U−Idn) ≥ c and wγ(V −Idn) ≥ c.

Since Oint
∆[r,1)

is a complete normed algebra for the valuation wγ , it follows from
wγ(det(V )− 1) > 0 that det(V ) is invertible, so V ∈ GLn(Oint

∆[r,1)
).

Reduction of Proposition 6.3.1 (2) to Lemma 6.3.3. Assuming that A
is invertible in addition to all the hypotheses in the lemma, it is enough to show
that U and V given from the lemma are invertible. This statement only involves
the determinants of U and V , hence we are reduced to n = 1 case.
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Assume that A ∈ O×∆[r,1)
satisfies wγ(A − 1) > 0. Then by lemma, we obtain

U ∈ O∆ with constant term 1 and V ∈
(
Oint

∆[r,1)

)×
in 1 + u−1K 0[[u−1]] such that

A = UV . (This is not the end of the proof because we need U to be invertible
in O∆, not just in O∆[r,1) .) Since A−1 also satisfies wγ(A−1 − 1) > 0 (because
wγ(A(A−1 − 1)) > 0 and wγ(A) = 0), we also have A−1 = U ′V ′. Since V and V ′
are invertible, we obtain U·U ′ = (V ·V ′)−1, which is an element of O∆∩Oint

∆[r,1)
= S.

But U·U ′ has the constant term 1, therefore is a unit in S. This shows U ∈ O×∆. �

Proof of Lemma 6.3.3. We first make the following observations:
(1) If f(u) ∈ O∆[r,1) has no nontrivial “principal part” (i.e., no nonzero terms

with negative powers of u) in its Laurent expansion, then f(u) can be
extended to a section of O∆.

(2) If the Laurent expansion of g(u) ∈ O∆[r,1) has no terms with positive
powers of u, then g(u) is automatically bounded; in fact, g( 1

u ) is bounded
on ∆(1, 1r ] because g( 1

u ) has no negative powers of u so it extends to the
closed disk ∆6 1

r
. Furthermore, if wγ(g) > 0 where γ = − logq r, then

g(u) ∈ Oint
∆[r,1)

.

Now, let A be as in the statement of the lemma. It can be seen from the obser-
vations above that once we find the factorization A = UV for U, V ∈ Matn(O∆[r,1))
where U = Idn +

∑
i∈Z>0

Uiu
i and V =

∑
i∈Z≥0

Viu
−i with wγ(U − Idn) > 0 and

wγ(V − idn) > 0, then automatically U and V belong to where they should: i.e.,
U ∈ Matn(O∆) and V ∈ Matn(Oint

∆[r,1)
).

We first show the uniqueness. Assume that there exist two desired factoriza-
tions A = UV = U ′V ′. Since we required all these matrices to be “close” to Idn
with respect to the valuation wγ (i.e., wγ(A − Idn) > 0, wγ(U − Idn) > 0, etc.)
they become invertible over O∆[r,r] . (The inequalities forces wγ(det(A) − 1) > 0,
etc., and that O∆[r,r] is the completion of O∆[r,1) with respect to wγ .) So we have
(U ′)−1U = V ′V −1 in GLn(O∆[r,r]). But (U ′)−1U − Idn has only terms with posi-
tive powers of u while V ′V −1 − Idn has no terms with positive powers of u. This
can happen only when (U ′)−1U = Idn and V ′V −1 = Idn from the beginning.

Now we show the existence of such a factorization. We define a sequence of
invertible matrices {V (h)}h∈Z≥0 over Oint

∆[r,1)
by the following recursion formula.

Let V (0) := Idn. Given V (h), we set A(V (h))−1 = P (h) +H(h), where H(h) consists
of terms with positive powers of u and P (h) consists of terms with non-positive
powers of u. By the second observation made at the beginning of the proof, P (h) ∈
Matn(Oint

∆[r,1)
) for all h ≥ 0. Define V (h+1) := P (h)V (h), and we need to show that

P (h) lies in GLn(Oint
∆[r,1)

), hence in turn V (h+1) is. Since Oint
∆[r,1)

is complete with
respect to wγ , it suffices to show wγ(P (h) − Idn) > 0.

Observe first that wγ
(
A(V (h))−1 − Idn

)
= min

{
wγ(P (h) − Idn), wγ(H(h))

}
because we defined P (h) and H(h) by “chopping” the Laurent series for A(V (h))−1.
So it is enough to show wγ

(
A(V (h))−1 − Idn

)
≥ c. If h = 0 then we have

wγ(A−Idn) ≥ c by assumption, so it follows that wγ(P (0)−Idn) ≥ c and wγ(H(0)) ≥
c. Now assume that we have wγ

(
A(V (h))−1 − Idn

)
≥ c, hence wγ(P (h) − Idn) ≥ c

and wγ(H(h)) ≥ c. In particular P (h) is invertible and wγ((P (h))−1 − Idn) ≥
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wγ(Idn−P (h)) + wγ((P (h))−1) ≥ c. Now the claim for h+ 1 follows since

A(V (h+1))−1−Idn = A(V (h))−1(P (h))−1−Idn = (A(V (h))−1−Idn)(P (h))−1+((P (h))−1−Idn).
We now digress to prove the following stronger estimates:

Claim 6.3.3.1.
(1) wγ(H(h+1) −H(h)) ≥ (h+ 2)c
(2) wγ(P (h) − Idn) ≥ (h+ 1)c

We begin with the following observation:
(P (h+1) − Idn) +H(h+1) = A(V (h+1))−1 − Idn

= A(V (h))−1(P (h))−1 − Idn
= H(h)(P (h))−1

= H(h) +H(h)((P (h))−1 − Idn).
Now observe that (P (h+1) − Idn) + (H(h+1) −H(h)) = H(h)((P (h))−1 − Idn), and
that P (h+1) − Idn involves only negative powers of u and H(h+1) − H(h) involves
only positive powers of u. Therefore, we have

min
{
wγ(P (h+1) − Idn), wγ(H(h+1) −H(h))

}
= wγ

(
H(h)

(
(P (h))−1 − Idn

))
.

Claim 6.3.3.1(2) for the case h = 0 is clear since by construction of P (0) and
H(0), we have min{wγ(P (0) − idn), wγ(H(0))} = wγ(A − idn) ≥ c. To prove
6.3.3.1(2), we proceed by induction on h. Assuming wγ(P (h) − Idn) ≥ (h+ 1)c, we
have
min

{
wγ(P (h+1) − Idn), wγ(H(h+1) −H(h))

}
= wγ

(
H(h)

)
+wγ

(
(P (h))−1 − Idn

)
≥ c+(h+1)c

As a byproduct, we also get wγ(H(h+1) − H(h)) ≥ (h + 2)c. This proves Claim
6.3.3.1.

Now we can conclude the proof of the lemma. It follows from Claim 6.3.3.1
that wγ(V (h)− Idn) ≥ c for h ≥ 1. (The case h = 1 is clear since V (1) = P (0). Now
use induction on h and V (h+1) − Idn = (P (h) − Idn)V (h) + (V (h) − Idn).) We have
also seen that Oint

∆[r,1)
is complete with respect to the valuation wγ , so the estimate

wγ(P (h) − Idn) ≥ (h + 1)c implies that P (h) → Idn in Matn(Oint
∆[r,1)

) as h → ∞.
The convergence of {V (h)} in Matn(Oint

∆[r,1)
) follows from the estimate:

wγ(V (h+1) − V (h)) ≥ wγ(V (h)) + wγ(P (h) − Idn) > (h+ 1)c
Let V denote the limit. Then, V involves no positive powers of u and satisfies
wγ(V − idn) ≥ c because all V (h) have these properties.

Furthermore H(h) = A(V (h))−1 −P (h) converges to AV −1 − Idn as h→∞ for
the topology generated by the valuation wγ . So AV −1 − Idn only involves positive
powers of u and satisfies wγ(AV −1 − Idn) ≥ c; we can check these properties
by viewing the matrices as elements of Matn(O∆[r,r]) which is the completion of
Matn(O∆[r,1)) for the valuation wγ , and all H(h) have these properties. So U :=
AV −1 and V satisfy all the desired properties. �





CHAPTER 7

Appendix II: Effective local shtukas and π0-divisible
groups

Throughout this appendix, we put o0 := Fq[[π0]]. Recall our setup in this
case: oK = k[[u]] where k contains Fq and has a finite p-basis, and we fix a local
injection o0 → oK which sends π0 to u0 6= 0 (and we put P := π0⊗̂1 − 1⊗̂u0 ∈
o0⊗̂FqoK

∼= S). One of the main purposes of this appendix is to show that in the
case of o0 := Fq[[π0]], (ϕ,S)-modules of finite P-height naturally come up as the
semi-linear algebra structure that classifies a certain type of π0-divisible groups over
oK , namely π0-divisible groups of finite P-height (Definition 7.3). In fact, this clas-
sification works not just over oK but over any base (formal) scheme over Spf o0, in
which case the relevant semi-linear algebra structures called “effective local shtukas”
were introduced and studied by Genestier-Lafforgue [GL] and Hartl [Har10, Har09].
See Theorem 7.3.2 for a more precise statement, and for now we content ourselves
with mentioning that the statement resembles contravariant Dieudonné theory for
Barsotti-Tate groups. This justifies viewing GK-representations of finite P-height
as equi-characteristic analogues of crystalline representations. This result was an-
nounced by Hartl [Har05], but since the proof was not available to the author, we
work out the proof here.

Convention. Let S be a scheme, and M a sheaf on S. By f ∈ M, we mean
f ∈ Γ(U,M) for some open U ⊂ S.

7.1. Local shtukas

Throughout the section, S is either a scheme over Spec o0 or a formal scheme
over Spf o0

1 and σS : S → S is the absolute q-Frobenius endomorphism (i.e., σS
induces identity on the underlying topological space and qth power map on the
structure sheaf). We let u0 ∈ Γ(S,OS) denote the image of π0 under the structure
morphism o0 → Γ(S,OS). The examples to keep in mind are S = Spf oK , Spec oK ,
and SpecK.

On OS [[π0]] ∼= OS⊗̂Fqo0, we use the partial Frobenius endomorphism σ :=
σS⊗̂o0 : OS⊗̂Fqo0 → OS⊗̂Fqo0. Concretely, for a section f :=

∑
i aiπ

i
0 where

ai ∈ Γ(U,OS) for some open U ⊂ S, we define σ(f) :=
∑
i a
q
iπ
i
0. If S = Spec oK or

S = SpecK, this recovers the natural σ on S and oE , respectively.

1In Hartl’s original definition, the base S is assumed to be a formal scheme over Spf o0, in
which case our definition of local shtukas (Definition 7.1.1) will coincide with Hartl’s, thanks to
Proposition 7.1.9. But since it is convenient to include the case S = SpecK, we allow S to be any
scheme over Spec o0.

91
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Definition 7.1.1. A local shtuka of rank n over S is a pair (M, ϕ) where M is a
sheaf of (topological) OS⊗̂Fqo0 ∼= OS [[π0]]-modules together with a OS [[π0]][ 1

π0−u0
]-

linear map ϕ : σ∗M[ 1
π0−u0

] ∼−→M[ 1
π0−u0

] such that the following condition holds.
• There exists a Zariski covering {U} of S such that M|U is a free OU [[π0]]-
module of rank n for each U . Equivalently, by Corollary 7.4.3, M is a
locally free OS [[π0]]-module.

• There exists an integer N such that ϕ(σ∗SM) ⊂ (π0 − u0)−NM.
We call rkOS [[π0]] M the rank of the shtuka M.

A local shtuka M is called effective if one can take N = 0. In other words, an
effective local shtuka is nothing but a ϕ-module of finite P-height which is locally
free over OS [[π0]]. An effective local shtuka M is called étale (respectively, strict,
or of P-height 6 h) if ϕ is an isomorphism (respectively, if (π0 − u0)·cokerϕ = 0,
or if (π0 − u0)h ·cokerϕ = 0).

We let Sho0
(S) denote the category of local shtukas over S with the obvious

notion of morphisms. Let Sh>0
o0

(S), Shéto0
(S), Sh61

o0
, and Sh6h

o0
denote the full sub-

categories of effective local shtukas, étale local shtukas, strict local shtukas, and
local shtukas of P-height 6 h, respectively.

Example 7.1.2. If u0 ∈ Γ(S,OS) is invertible, then any local shtuka over S is
étale. In particular, if K ∼= k((u)) is a field extension of Fq((π0)) via π0 7→ u0, then
local shtukas over SpecK is precisely étale ϕ-modules free over oE ∼= K[[π0]].

We can also see that effective local shtukas over oK are precisely (ϕ,S)-modules
of finite P-height. (Recall that S ∼= oK [[π0]].) More generally, local shtukas over
oK are precisely generalized (ϕ,S)-modules as in §2.2.11. Then Theorem 5.2.3
asserts that the base change for local shtukas by oK ↪→ K is fully faithful. This can
be generalized, by the argument given in [Tat67, §4.2], to the following statement:
for a connected normal noetherian Fq[[u0]]-scheme S such that u0 ∈ Γ(OS) is not
zero, associating the generic fiber defines a fully faithful functor from the category
of local shtukas over S to the category local shtukas over the function field of S.

Example 7.1.3. Let C be a (geometrically integral) curve over some finite field
F of characteristic p. Pick a closed point P ∈ C and let OĈ,P be the completed
local ring at the place P . By choosing a uniformizer π0 ∈ OC,P at P , we identify
OĈ,P ∼= F(P )[[π0]], where F(P ) is the residue field at P . Let S be a formal scheme
over Spf(O Ĉ,P ), and let u0 ∈ Γ(S,OS) be the image of π0. (So u0 is locally
topologically nilpotent.) Under this setting, local shtukas over S can arise from the
following sources:

“Localization” of a (global) “shtuka” over S: Let E , E ′ be vector bundles
over C ×F S, equipped with the following structure:

either (i)

E
j // E ′

, or (ii)

E

σ∗E

t

==zzzzzzzz
E ′

t

==zzzzzzzz

j
// σ∗E

,

where σ = idC ×σS is the partial q-Frobenius and the following conditions
are satisfied.
• t and j are injective.
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• The support of coker t is exactly the graph Γo ⊂ C ×F S of the
morphism o : S → Spf(O Ĉ,P ) → C, where the first map is the
structure morphism and the second is the natural map. (Compare
with Remark 1.3.4.)
• The support of coker j is the graph of some morphism ∞ : S → C
and is disjoint from the graph of o.
• The sheaves coker t and coker j are invertible2 over their respective
supports.

This gives an example of a right shtuka over S in the case of (i) (respec-
tively, a left shtuka over S in the case of (ii)). Now let M := Ê be the com-
pletion of E at Γo, and view it as an OS [[π0]]-module via the isomorphism
OS [[π0]] ∼−→ OĈ×S,Γo ∼= OS [[π0 − u0]], defined by π0 7→ u0 + (π0 − u0).
(This makes sense since S is a formal scheme over Spf(O Ĉ,P ) so u0 is
locally topologically nilpotent.) Now set ϕ := j−1 ◦ t : σ∗M → M if E
is a right shtuka; and set ϕ : t ◦ j−1 if E is a left shtuka, respectively.
Observe that j becomes an isomorphism after completion because coker j
is supported disjointly from Γo, and that cokerϕ = coker t is an invertible
sheaf on Γo, which is cut out by π0 − u0. So (M, ϕ) is an effective local
shtuka over S.

π0-divisible group associated to a Drinfeld module: Let ∞ ∈ C be a closed
point distinct from P , and let A be the coordinate ring for the affine
curve C \ {∞}. We let P also denote the maximal ideal of A which
corresponds to the closed point P ∈ C. For a Drinfeld A-module L over
S, one can associates “a π0-divisible group” G := lim−→

n

L[Pn]S . Since the

Verschiebung for L[Pn]S vanishes for each n, one has the “Dieudonné-
type” anti-equivalence

G H omS(G,Ga) ∼= lim←−
n

H om(L[Pn]S ,Ga) =: M.

(See Theorems 7.2.6 and 7.3.2 for the precise statement.) Under the Frobe-
nius structure ϕM induced from the relative Frobenius on G, M becomes
a strict local shtuka. This example is worked out later in §7.3 with more
generality.

7.1.4. Formal properties. Let (M, ϕ) and (M′, ϕ′) be local shtukas over S.

(1) (Base Change) Let S′ f−→ S be a morphism of (formal) schemes over o0.
We set f∗M := OS′ [[π0]] ⊗f−1(OS [[π0]]) f

−1M together with the induced
Frobenius structure f∗ϕ := OS′ [[π0]]⊗f−1ϕ, which makes sense as below:

σ∗S′(f∗M) ∼= f∗(σ∗S′M) f∗ϕ−−→M.

Then the “pullback” (f∗M, f∗ϕ) is again a local shtuka over S′. Moreover,
if M is effective, of P-height 6 h, strict, or étale, respectively, then so is
its pullback f∗M.

2The example still works fine if we just assume coker t and coker j are locally free of finite
rank over their respective support, but the definition of Drinfeld’s shtuka [Dri87, §I] requires them
to be invertible.
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(2) The tensor product (M⊗OS [[π0]] M
′, ϕ⊗ϕ′) is again a local shtuka; ϕ⊗ϕ′

makes sense as a Frobenius as shown below: σ∗S (M⊗M′) ∼← (σ∗SM) ⊗
(σ∗SM′) ϕ⊗ϕ′−−−→M⊗M′.

Let LS be a local shtuka whose underlying module is OS [[π0]]·e with
the “natural” choice of the Frobenius structure ϕ, i.e., ϕ(σ∗e) = e. Then
LS is the “left and right identity” for ⊗-product.

(3) Internal hom is defined in local shtukas. We put N := H omOS [[π0]](M,M′),
and define a Frobenius structure ϕN : (σ∗SN)[ 1

π0−u0
] ∼−→ N[ 1

π0−u0
], as fol-

lows: ϕN(f) := ϕ′ ◦ f ◦ ϕ−1 ∈ N for f ∈ (σ∗SN)[ 1
π0−u0

] viewed as a map
f : (σ∗SM)[ 1

π0−u0
]→ (σ∗SM′)[ 1

π0−u0
]. One can directly check that (N, ϕN)

is a local shtuka over S.
(4) One can define duality by M∗ := H omOS [[π0]](M,LS) on Sho0

(S).
Now we define Tate objects and Tate twists.

Definition 7.1.5. For any integer n, the Tate object LS(n) is a local shtuka
whose underlying sheaf is OS [[π0]] ·e, and the Frobenius structure is defined by
σ∗Se 7→ (π0 − u0)n ·e. For a local shtuka (M, ϕ), the Tate twist M(n) by n is the
local shtuka M(n) := M⊗OS [[π0]] LS(n) ∼= (M, (π0 − u0)n ·ϕ).

We record some immediate properties:
(1) For any positive integer n, we have LS(n) ∼= LS(1)⊗n. For any integer n,

we have LS(−n) ∼= LS(n)∗, so we also have (M(n))∗ ∼= M∗(−n).
(2) For a local shtuka M over S, let N be an integer such that ϕ(σ∗M) ⊂

(π0 − u0)−NM. Then the Tate twist M(N) is an effective local shtuka.
(3) Any rank-1 local shtuka (M, ϕ) over S is, Zariski-locally on S, a Tate

twist of a rank-1 étale shtuka. Indeed, by restricting to some Zariski-open
of S, we may assume that M is a free OS [[π0]]-module of rank 1. Let us
take a basis e ∈ Γ(S,M). Then by definition, ϕ(σ∗e) = α·(π0 − u0)n for
some α ∈ Γ(S,OS [[π0]]×) and n ∈ Z.

7.1.6. Isogenies of local shtukas. A morphism of local shtukas f : M →M′ is
called an isogeny if f is injective and coker f is killed by some power of π0, say by
πN0 . Then, there exists g : M′ →M such that f ◦ g = πN0 and g ◦ f = πN0 ; consider
the following commutative diagram

M
f //

πN0

��

M′ // //

πN0
��

g
~~}

}
}

}
coker f

0
��

M
f

// M′ // // coker f.

Therefore, we can define isogeny categories Sho0
(S)[ 1

π0
], Sh>0

o0
(S)[ 1

π0
], and Sh6h

o0
(S)[ 1

π0
]

by formally inverting π0 in the morphisms.

7.1.7. Our definition of local shtukas (Definition 7.1.1) slightly differs from
Hartl’s original definition in [Har10, §2.1]: Hartl additionally required that the
quotient (π0 − u0)−NM/ϕ(σ∗SM) is locally free over S for any N � 0. We show
that this additional assumption is automatic if either u0 ∈ Γ(S,OS) is locally topo-
logically nilpotent (i.e., S is a formal scheme over Spf o0) or S is locally noetherian.
For this we first need the following lemma.
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Lemma 7.1.8. Let S be a (formal) scheme over o0 which satisfies one of the
following assumptions: (1) S is locally noetherian; (2) u0 ∈ Γ(S,OS) is locally
topologically nilpotent (i.e., S is a formal scheme over Spf o0)); or (3) the natural
map OS → OS [ 1

u0
] injective (i.e., when u0 is nowhere a zero divisor on S; for

example when S is integral). Then for any effective local shtuka M over S, the
Frobenius map ϕM : σ∗S(M)→M is injective.

Proof. The claim is local in S – more precisely, the claim is local in the relative
formal spectrum SpfS OS [[π0]] which shares the underlying topological space with
S. So we may assume S = SpecR for some o0-algebra R, or S = Spf R for some
admissible o0-algebra R [EGA, 0I, 7.1.2].

Let us consider the case (3) first. We may formulate the problem purely al-
gebraically using R-modules (i.e., working over SpecR, not Spf R). If the natural
map R → R[ 1

u0
] is injective, then the natural map M → R[ 1

u0
][[π0]] ⊗R[[π0]] M is

injective. So by Lemma 2.2.3.1, we are reduced to the case when u0 is a unit in R.
Let us assume this. Then π0 − u0 is a unit in R[[π0]], so it follows that any local
shtuka over R is an étale ϕ-module over R[[π0]]; i.e., ϕ is an isomorphism.

Let us consider the other two cases. First, it is enough to handle the case when
S is a scheme; i.e., S = SpecR where R is either noetherian or such that u0 ∈ R is
nilpotent. In fact, if S = Spf R where R is an admissible o0-algebra and {Iα} is a
fundamental system of open ideals in R, then it is enough to verify the lemma for
R/Iα for each α (by the left exactness of inverse limit). So we rename R/Iα as R.

Second, we can even assume that R is local; indeed, once the lemma is known
when R is local, then since the natural map R[[π0]]→

∏
(RP[[π0]]) is injective (as

P varies over SpecR) we may apply Lemma 2.2.3.1.
To summarize, it is enough to consider the case when S = SpecR where R is

local and such that either (1) R is noetherian; or (2) u0 ∈ R is nilpotent.
Now, we show that the natural map R[[π0]]→ R[[π0]][ 1

π0−u0
] is injective; once

this is shown, it follows from the R[[π0]]-flatness of M that the natural map M→
M[ 1

π0−u0
] is injective, so we can use Lemma 2.2.3.1 to conclude the proof.

If u0 ∈ R is invertible then π0−u0 ∈ R[[π0]] is invertible, so we may assume that
u0 ∈ mR where mR is the maximal ideal of R. We want to show that if f ∈ R[[π0]]
satisfies (π0 − u0)·f = 0 then f = 0. Since R[[π0]] injects into R[[π0]][ 1

π0
], we may

regard f as an element of R[[π0]][ 1
π0

] in order to show f = 0 in R[[π0]].
If u0 ∈ R is nilpotent then π0 − u0 is a unit in R[π0][ 1

π0
] (hence in R[[π0]][ 1

π0
]),

since the infinite series 1
π0

(1 + u0
π0

+ (u0
π0

)2 + · · · ) is a finite sum and gives the inverse
of π0 − u0.

Now, consider the remaining case where R is a noetherian local ring. The
assumption (π0 − u0)·f = 0 implies that f = u0

π0
·f in R[[π0]][ 1

π0
], so we have f =(

u0
π0

)n
·f for any positive integer n. Therefore, f ∈

⋂
n≥0

(
u0
π0

)n
·R[[π0]][ 1

π0
] = {0},

by Krull’s intersection theorem. �

Proposition 7.1.9. Let S be a formal scheme over o0, and assume that either
(1) S is locally noetherian; or (2) u0 ∈ OS is locally topologically nilpotent (i.e.,
S is a formal scheme over Spf o0). Let M be a local shtuka over S. Then for any
N � 0, the quotient (π0 − u0)−NM/ϕ(σ∗SM) is locally free over S. In particular,
if M is an effective local shtuka, then coker(ϕ) := M/ϕ(σ∗M) is locally free over
S.
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Proof. Let N be a positive integer such that the N -fold Tate twist M(N)
of M (Definition 7.1.5) is effective. Observe that (π0 − u0)−NM/ϕ(σ∗SM) ∼=
coker(ϕM(N)), so the first claim follows from the second claim. In order to show
the second claim, consider the following short exact sequence

0→ σ∗(M) ϕM−−→M→ coker(ϕ)→ 0,

which remains exact after the base change to arbitrary closed (formal) subscheme
of S, thanks to Lemma 7.1.8. Since the first two terms are flat over S, we can
deduce that the last term is flat over S, from [Bou89, Ch.I §2.5 Prop 4] or from an
argument using Tor1. The following exact sequence for h� 0 shows that coker(ϕ)
is finitely presented over S (and hence is locally free):

0→ ϕ(σ∗M)/(π0 − u0)hM→M/(π0 − u0)hM→ coker(ϕ)→ 0.

�

Example 7.1.10. The following example due to Urs Hartl shows that Lemma
7.1.8 is false without assumptions on the base S. LetR := k[[u0]][t0, t1, · · · ]/(u0t0, ti−
u0ti+1|i = 0, 1, · · · ). Let M := R[[π0]] ·e equipped with ϕM(σ∗e) = (π0 − u0) ·e.
Then M is an effective local shtuka, but ϕM is not injective since (

∑∞
i=0 tiπ

i
0)·(σ∗e)

is in the kernel. The proof of Lemma 7.1.8 fails because π0 − u0 is not a regular
element in R[[π0]].

7.2. Classification of finite locally free group schemes with trivial Verschiebung

We digress to discuss the “Dieudonné-type” classification of finite locally free
commutative group schemes with trivial Verschiebung. This is the main technical
tool for the rest of this appendix. Most of the results in this subsection are also
proved in [SGA, 3, Exp VIIA, §7], where statements differ from ours by Cartier
duality. The discussion of this subsection is also inspired by Abrashkin’s study of
Faltings’s strict modules [Abr06, §2], although we take a slightly different approach.

7.2.1. Preliminaries on group schemes. Let S be a scheme of characteristic p
and let σ : S → S be the (absolute) p-Frobenius. Let G be a finite locally free group
scheme over S. Let AG denote the push-forward of OG by the structure sheaf, and
IG ⊂ AG the augmentation ideal. Put σ∗G := G×S,σ S and let FG/S : G→ σ∗G
be the relative Frobenius map, which is a group homomorphism thanks to the
functorial properties of the Frobenius map.

In addition to this, there is a canonical S-group map VG/S : σ∗G → G (called
Verschiebung) which is functorial in G, commutes with base changes, and makes
the following diagram commute:

G
[p] //

FG/S !!DDDDDDDD G
FG/S

##GGGGGGGGG

σ∗G

V

OO

[p]
// σ∗G

The Verschiebung map is defined in [SGA, 3, Exp VIIA, 4.3], and in [SGA, 3, Exp
VIIA, 4.3.3] it is shown that VG/S = (F∨G∨/S (where (·)∨ denotes Cartier dual).
We will later concentrate on finite locally free commutative group schemes with
vanishing Verschiebung.
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Now, we associate to a finite locally free3 group scheme G a finitely presented
over OS , which will be endowed with a Frobenius structure ϕ, as follows:

M∗(G) := H omgp/S(G,Ga) ∼= {f ∈ AG| µ∗G(f) = f ⊗ 1 + 1⊗ f}
where µG : G×S G→ G is the group multiplication map. The absolute Frobenius
endomorphism FGa : Ga → Ga induces a σS-semilinear endomorphism on M∗(G).
(The same map can be obtained from the absolute Frobenius FG : G → G.) We
denote its linearization by ϕ : σ∗M∗(G)→M∗(G).

7.2.2. p-Lie algebras. Our next goal is to show that the ϕ-module M∗(G) is
isomorphic to the “p-Lie algebra” of the Cartier dualG∨ ofG (where the p-operation
defines the ϕ-structure). We digress to recall the definition of p-Lie algebras, and
later in in Lemma 7.2.3 we show that it are isomorphic to M∗(G) as a ϕ-module.

We write ωG∨ := e∗ΩG∨ ∼= IG∨/I 2
G∨ for the “co-Lie algebra” of G∨. We let

L ieS(G∨) denote the “Lie algebra” ofG∨; i.e., L ieS(G∨) := DerS(AG∨ ,AG∨/IG∨) ∼=
H omOS (ωG∨ ,OS) where the isomorphism is given by the universal property of
Kähler differential.

The Lie algebra L ieS(G∨) is naturally equipped with an σS-semilinear endo-
morphism l 7→ l(p) for any l ∈ L ieS(G∨), called the p-operation. We recall the
definition. For any l ∈ L ieS(G∨), consider the following OS-linear map:

(7.2.2.1) l(p) := AG∨
µ∗
G∨−−−→ (AG∨)⊗p l⊗p−−→ OS ,

where µ∗G∨ : AG∨ → (AG∨)⊗p is the p-fold comultiplication map. That l(p) is an
OS-derivation is proved in [SGA, 3, Exp VIIA, 6.2]. (This can also be deduced
from the proof of Lemma 7.2.3.) For any a ∈ OS and l ∈ L ieS(G∨), we have
(al)(p) = (ap)l(p), so the p-operation defines a σS-semilinear endomorphism on
L ieS(G∨). We let ϕ : σ∗S(L ieS(G∨))→ L ieS(G∨) denote the linearlzation of the
p-operation. (Note also that L ieS(G∨) together with this p-operation defines a
commutative p-Lie algebra in the sense of [SGA, 3, Exp VIIA, 5.2].)

Lemma 7.2.3. We have a natural ϕ-compatible isomorphism M∗(G) ∼= L ieS(G∨).

Proof. Since AG is finite locally free OS-module, we view a section l ∈
Γ(U,AG) ∼= HomU (A∗G|U ,OU ) over an open U ⊂ S as a OU -linear map l : A∗G|U →
OU , where A∗G ∼= H omS(AG,OS) is the OS-linear dual of AG. Note that A∗G, to-
gether with the well-known Hopf algebra structure, is precisely AG∨ . The condition
for l to be in Γ(U,M∗(G)) is exactly the Leibnitz rule: for any α, β ∈ Γ(U,AG∗),
the definition of M∗(G) can be re-written as
l(α·β) = l ((α⊗ β) ◦ µG) = (µ∗Gl) (α⊗β) = (l⊗ 1 + 1⊗ l)(α⊗β) = l(α)·β+α·l(β),
where the first equality follows from the definition of multiplication α·β = (α⊗β)◦
µ∗G.

Now, we show the claim on ϕ on M∗(G). Viewing M∗(G) as a submodule of
AG, we have ϕ(σ∗l) = lp for any l ∈ M∗(G), where the p-th power takes place
in AG. This is exactly the linearization of the p-operation of the p-Lie algebra
L ieS(G∨), because for any α ∈ Γ(U,AG∗), we have

lp(α) = (l⊗p)(µ(p)∗
G∨ α) = l(p)(α),

3We always assume that the rank of a finite locally free module is constant, not just locally
constant.
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where l(p) := (l⊗p) ◦ µ(p)∗
G∨ is the p-operation as defined in (7.2.2.1). �

It follows from this alternative definition of M∗(G) that the formation of M∗(G)
commutes with any base change: i.e., for any T f−→ S we have a natural isomorphism
M∗(GT ) ∼← f∗ (M∗(G)). In particular, the Frobenius structure ϕ : σ∗M∗(G) →
M∗(G), which was described earlier using FGa/S : Ga → Ga, can also be obtained
from the relative Frobenius map FG/S : G→ σ∗G by functoriality.

7.2.4. Now we will “reverse” the construction of M∗(G) from G. Let M be a
finite locally free OS-module (of constant rank) endowed with an OS-linear map
ϕ : σ∗M→M. From this, we define a finite locally free group scheme G∗(M, ϕ) =
SpecS AM as follows:

(7.2.4.1) AM := Sym M

〈ϕ(σ∗m)−mp| m ∈M〉
,

with the comultiplication map µ∗(m) := m⊗1+1⊗m for anym ∈M. From the con-
struction we have a natural ϕ-compatible isomorphism (M, ϕ) ∼−→M∗ (G∗(M, ϕ)),
which is induced from the natural map M → AM. Also, the construction of
G∗(M, ϕ) naturally commutes with any base change on S. By using a local OS-
basis of M we see that if M has OS-rank n then G∗(M, ϕ) is finite locally free
with order pn, and M→ AM is a subbundle (i.e., an injection with image locally a
direct factor) with AM/I 2

M
∼= OS⊕ cokerϕM where IM is the augmentation ideal

of AM.
Moreover, the injective map M→ AM has a natural splitting (not just a local

splitting) which identifies M as a direct factor ofAM. We define this splitting locally
and show that the local splittings glue to a global splitting. Let us choose a local
basis e1, · · · , en of M over some open U ⊂ S. Then {ei11 · · · einn } for 0 ≤ ii, · · · , in ≤
p− 1 form a OU -basis of AG|U . Let NU denote the submodule of AG generated by
ei11 · · · einn with i1 + · · ·+ in > 1. Clearly AM|U ∼= OU ⊕M|U ⊕NU , and this direct
sum decomposition is independent of the choice of local basis and commutes with
localization in S. So we obtain AM

∼= OS ⊕M⊕N by gluing these local splittings.
In particular, we obtain a natural injective map M∗ ↪→ (AM)∗ ∼= AG∗(M,ϕ)∨ where
(·)∗ denotes the OS-linear dual.

Now, let us show that the Verschiebung for G∗(M, ϕ) vanishes. We can view
Spec(Sym M) as a group scheme via the comultiplication map µ∗(m) := m⊗1+1⊗m
for any m ∈M = Sym1 M. Then G∗(M, ϕ) ⊂ Spec(Sym M) becomes a closed sub-
group scheme. But Spec(Sym M) is, locally on S, isomorphic to the product of
rankS M copies of Ga, so the claim follows. In particular, G∗(M, ϕ)∨ has vanishing
relative Frobenius map.

In fact, much more is true: any finite locally free group scheme G over S with
vanishing Verschiebung is isomorphic to G∗(M, ϕ) for some locally free OS-module
M and ϕ. To prove this, we need (the second part of) the following lemma.

Lemma 7.2.5 ([SGA, 3, Exp VIIA, Thm7.2]). Let M be a finite locally free OS-
module, endowed with a Frobenius structure ϕ : σ∗M→M. Put GM := G∗(M, ϕ).
Then GM satisfies the following properties:

(1) For any T → S, we have a natural group isomorphism GM(T ) ∼= HomT,ϕ(MT ,OT ),
where the ϕ-structure on OT is induced (by p-th power map σT : OT →
OT ).
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(2) For any finite locally free commutative group scheme G over S, we have
a natural group isomorphism Homgp/S(G,GM) ∼= HomS,ϕ(M,M∗(G)).

Proof. We first give a proof of (2). Let us consider the following isomor-
phisms:
Homgp/S(G,GM) ∼= HomHopf/OS(AM,AG)

∼= { l ∈ HomS(M,AG)| µ∗G(l(m)) = l(m)⊗ 1 + 1⊗ l(m), l(m)p = l(ϕ(σ∗m)),∀m ∈M }
But the last term is precisely HomS,ϕ(M,M∗(G)); the first condition for l means
that l(m) ∈ M∗(G) for any m ∈ M, and the second means that l : M → M∗(G)
commutes with the ϕ’s since by the proof of Lemma 7.2.3 ϕM∗(G)(σ∗m′) = (m′)p
for any m′ ∈M∗(G) (where the pth power is taken inside AG).

The proof of (1) is quite similar but simpler, so we leave the it to readers. �

Theorem 7.2.6.
(1) [SGA, 3, Exp VIIA, 7.4] The functors M∗(·) and G∗(·) induce quasi-

inverse anti-equivalences of categories between the category of locally free
OS-modules M of rank n together with an OS-linear map ϕ : σ∗M →M
and the category of finite locally free commutative group schemes of order
pn with vanishing Verschiebung (respectively, of order pn).

(2) M∗(·) and G∗(·) are “exact” in the sense that they send a short exact
sequence in the source category to a short exact sequence in the target
category.

Proof. Let G be a finite locally free group scheme over S with vanishing
Verschiebung. To prove (1) we need to prove that M∗(G) is locally free over OS ,
and that we have functorial isomorphisms G ∼= G∗(M∗(G)) and M ∼= M∗ (G∗(M)).
By definition, the OS-rank of M is n if and only if and the order of G is pn.
So it remains to show that M∗(·) and G∗(·) are quasi-inverse anti-equivalences of
categories.

For a ϕ-module (M, ϕ) which is locally free of rank n over OS , we put GM :=
G∗(M) = SpecAM where AM is the OS-bialgebra defined in (7.2.4.1). Let M∗ :=
H omOS (M,OS) be the OS-linear dual of M. We start with the following claim.

Claim 7.2.6.1. There exists a natural isomorphism A(GM)∨
∼← Sym(M∗)/〈αp| α ∈

M∗〉 as augmented OS-algebras.
Observe that the natural projection I(GM)∨ � I(GM)∨/I

2
(GM)∨

∼= M∗ natu-
rally splits, which follows from dualizing the natural splitting of the natural injection
M→ IM. The image of M∗ in A(GM)∨ by this natural splitting generates A(GM)∨

as an OS-algebra, by Nakayama’s lemma. Furthermore, any α ∈ I(GM)∨ satisfies
αp = 0 since the relative Frobenius map for GM is trivial. So we get a surjection
of OS-algebras from the right side onto the left side. Since both terms are locally
free of the same finite rank we have the claim.

From Claim 7.2.6.1, it follows that ω(GM)∨ ∼= M∗ as OS-modules so ω(GM)∨ is
locally free of rank n over OS (since M∗ is so). Furthermore, M = M∗ (G∗(M)) as
OS-submodules of AM, where M∗ (G∗(M)) ⊂ AM is the submodule of elements m
such that µ∗G∗(M)(m) = 1 ⊗m + m ⊗ 1 (c.f. the proof of Lemma 7.2.3). In fact,
applying Claim 7.2.6.1, we obtain a natural isomorphism ω(GM)∨ ∼= M∗ respecting
the surjections from I(GM)∨ , and apply the natural isomorphism M∗ ((GM)∨) ∼=
(ω(GM)∨)∗ = L ieS((GM)∨) (Lemma 7.2.3).
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Now, let us compare the ϕ-structures on M and M∗ (G∗(M)). By construction
of AM, we have ϕM(σ∗m) = mp for any m ∈M where the pth power is taken inside
AM. This coincides with the ϕ-structure on M∗ (G∗(M)) := H omgp/S(G∗(M),Ga)
where the ϕ-structure is induced from the (relative) Frobenius on Ga. Therefore
we obtain a natural ϕ-compatible isomorphism M ∼= M∗ (G∗(M)).

In order to prove the first part of the theorem, we proceed in two steps.
Step 1.: Let G be a finite locally free commutative group scheme with van-

ishing Verschiebung, such that ωG∨ is locally free over OS . We put
M := M∗(G) ∼= (ωG∨)∗. Then, there is a natural isomorphism G

∼−→ GM.
Step 2.: If G be a finite locally free commutative group scheme with vanish-

ing Verschiebung, then ωG∨ is locally free over OS .
We carry out Step 1. Since M ∼= (ωG∨)∗ by Lemma 7.2.3, we have a OS-

linear isomorphism ωG∨ ∼= M∗ by double duality. By Lemma 7.2.5(2), we have
Homgp/S(G,GM) ∼= HomS,ϕ(M,M). Therefore, we have a group homomorphism
f : G → GM which corresponds to idM. To show that this is an isomorphism, it
suffices to show that the Cartier dual f∨ : (GM)∨ → G∨ is an isomorphism.

The map IG∨/I 2
G∨ → I(GM)∨/I

2
(GM)∨ induced by f∨ is exactly idM∗ : M∗ →

M∗ with the identification of the source and the target with M∗ as discussed above.
Therefore by Nakayama’s lemma, AG∨ → A(GM)∨ induced by f∨ is surjective. On
the other hand, since the relative Frobenius for G∨ is trivial by assumption, we have
a surjective map A(GM)∨ ∼= Sym(M∗)/〈αp = 0| α ∈M∗〉 � AG∨ , which forces f∨
to be an isomorphism on structure sheaves over OS and hence an isomorphism.
Clearly, this construction is functorial, so we complete Step 1.

Now, we carry out Step 2.4 We may assume that S = SpecR where R is a
local ring with residue field k. Applying what we have just proved, we obtain an
isomorphism Gk ∼= G∗ (M∗(Gk)). On the other hand, we have the following natural
isomorphism M∗(Gk) ∼= M∗(G)⊗R k since M∗(·) commutes with any base change.

Now consider a ϕ-module (M′, ϕ′) which is finite free over R, such that there is a
surjective ϕ-compatible map M′ �M∗(G) which reduces to an isomorphism M′⊗R
k
∼−→M∗(G)⊗Rk. By Lemma 7.2.5(2), the map M′ �M∗(G) corresponds to an S-

group map G→ G∗(M′, ϕ′), which induces an isomorphism Gk
∼−→ G∗(M′, ϕ′)k at

the closed fiber. Hence by Nakayama’s lemma, we conclude that G ∼−→ G∗(M′, ϕ′).
This completes Step 2 by the consequence of Claim 7.2.6.1 recorded above, hence
the proof of the first part of the theorem.

For the second part of the theorem, we need to prove that any short exact
sequence (∗) : 1 → G1 → G2 → G3 → 1 induces a short exact sequence M∗(∗) :
0 → M∗(G3) → M∗(G2) → M∗(G1) → 0 and conversely. The exactness of (∗)
(respectively, M∗(∗)) is equivalent to the exactness of fibers at each s ∈ S by the
fiberwise flatness criterion [EGA, IV3, (11.3.11)] Thus, we are immediately reduced
to the case when S = Spec k where k is a field.

Let ni be the k-rank of M∗(Gi). Assuming (∗) is exact, it is clear from the con-
struction that we have the left exactness of M∗(∗), since M∗(Gi) ∼= H omk(ωG∨

i
, k) =

L ieS(G∨i ). But since OS = k is a field, the equality n2 = n1 +n3 forces the exact-
ness of M∗(∗). The same numerology proves the converse. �

We record the following useful corollary:

4The idea for this argument is sketched in the footnote to the théorème in [SGA, 3 Exp VIIA
7.4].
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Corollary 7.2.7. Let G be a finite locally free commutative group scheme with
trivial Verschiebung. Then naturally ωG ∼= coker(ϕM∗(G)) as OS-modules.

Proof. By the above theorem, we know that G ∼= G∗ (M∗(G)), and we have
an explicit description of the coordinate ring of the right side, namely (7.2.4.1). �

7.3. Effective local shtukas and π0-divisible groups

Let S be either a scheme over Spec o0 or a formal scheme over Spf o0, and let
u0 ∈ Γ(S,OS) be the image of π0 under the structure morphism o0 → Γ(S,OS).
(An example to keep in mind is S = Spec oK .) In this subsection, we define a
special kind of ind-representable fppf -sheaves of o0-modules (namely, π0-divisible
groups of “finite P-height”), which play the same5 role in the equi-characteristic
setting as Barsotti-Tate groups do in the p-adic setting.

Definition 7.3.1. Let G be an fppf -sheaf of o0-modules over S. We say that
G is a π0-divisible group of finite P-height if the following conditions are satisfied.

(1) G is π∞0 -torsion; i.e., G ∼= lim−→n
G[πn0 ].

(2) G is π0-divisible; i.e., π0 : G → G is an epimorphism. Granting (1) and
(2), the π0-divisibility is equivalent to the exactness of

(7.3.1.1) (†)m,n : 1→ G[πm0 ]→ G[πn+m
0 ] [πm0 ]−−−→ G[πn0 ]→ 1, ∀n,m ≥ 1,

where the first map is the natural inclusion. (For a proof, one can adapt
the argument presented in [Mes72, I, §2].)

(3) G1 := G[π0] is representable by a finite locally free group scheme. (Assum-
ing (2), this is equivalent to requiring that Gn := G[πn0 ] are representable
for all n ≥ 1.)

(4) The Verschiebung map for G vanishes (or rather, the Verschiebung map
for Gn vanishes for all n ≥ 1).

(5) The action of Fq on ωG := lim←−n ωGn via functoriality of the OS-module
structure on G is given by the “scalar multiplication” via the structure
morphism Fq → Γ(S,OS).

(6) There exists a constant h ∈ Z≥0, such that (π0 − u0)h acts trivially on
ωG := lim←−n ωGn .

We say that G is of P-height 6 h if (π0 − u0)h ·ωG = 0. A π0-divisible group
of P-height 0 or ≤ 1 is called étale or strict, respectively. One can check that a
π0-divisible group G is étale if and only if all G[πn0 ] are étale, and is strict if and
only if π0 acts via scalar multiplication by u0 on ωG.

The following theorem is the motivation for the above definition. This theorem
can be viewed as an analogue of contravariant Dieudonné theory for π0-divisible
groups of finite P-height.

Theorem 7.3.2. There exist quasi-inverse anti-equivalences of categories M∗o0

and G∗o0
between the category of π0-divisible groups of P-height 6 h over S and the

category of effective local shtukas of P-height 6 h over S. The functors M∗o0
and

G∗o0
enjoy the following additional properties.

5While Barsotti-Tate groups over a p-adic integer ring only give rise to crystalline represen-
tations with Hodge-Tate weights in {0, 1}, π0-divisible groups of finite P-height over oK give rise
to “crystalline representations” of any non-negative “Hodge-Pink” weights.
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(1) The formation of M∗o0
and G∗o0

commute with any base change. More
precisely, for any π0-divisible groups G/S of P-height 6 h and any S′ → S,
we have a natural isomorphism M∗o0

(GS′) ∼= M∗o0
(G)S′ ; and similarly for

G∗o0
.

(2) Let (∗) : 0 → G′ → G → G′′ → 0 be a sequence of morphisms of π0-
divisible groups of P-height 6 h. Then (∗) is exact if and only if M∗o0

(∗)
is exact. A similar statement is true for G∗o0

.
(3) The rank of M∗o0

(G) is n if and only if the order of G[π0] is of qn (or
equivalently, the order of G[πi0] is of qin for all i).

We prove the theorem later in §7.3.5–§7.3.6. After we prove the theorem,
we will usually suppress the subscript (·)o0 since o0 will be fixed throughout the
discussion. (In the proof we need to vary the coefficient ring o0, hence we specify
this in the notation.)

Assume that u0 is a unit in Γ(S,OS). The main example is S = SpecK. Then
it follows that π0 − u0 is a unit in Γ(S,OS [[π0]]), so all local shtukas over S are
étale. Combining this with Theorem 7.3.2, we obtain the following corollary.

Corollary 7.3.3. If u0 is a unit in Γ(S,OS), then any π0-divisible group of
finite P-height over S is étale.

Now, set S = Spec oK . Recall that effective local shtukas over oK are exactly
(ϕ,S)-modules of finite height, where S = oK [[[π0]]. For any effective local shtuka
M over oK , we shall show that the o0-linear GK-representation T ∗S(M) is isomor-
phic to the π0-adic “Tate module” of the associated π0-divisible group G∗o0

(M).
We first define the π0-adic Tate module Tπ0(G) where G is a π0-divisible group of
finite P-height over oK , in a similar fashion as one defines the Tate module for a
Barsotti-Tate group:
(7.3.3.1) Tπ0(G) := lim←−

n

Gn(Ksep),

where the transition maps are [π0] : Gn+1 → Gn. The following proposition essen-
tially follows from Lemma 7.2.5(1).

Proposition 7.3.4. For each effective local shtuka M over oK , there exists a
natural o0-linear GK-equivariant isomorphism

Tπ0

(
G∗o0

(M)
) ∼= T ∗S(M) = HomS,ϕ(M, oÊur ),

where o Êur ∼= Ksep[[π0]] is the π0-adic completion of the strict henselization of
oE ∼= K[[π0]]. In particular, any o0-lattice GK-representation of P-height 6 h
comes from the π0-adic Tate module of some π0-divisible group of P-height 6 h.

Proof. We have the following o0-linear GK-equivariant maps, which commute
with the natural inclusions which define the direct system {Gn}n:

Gn(Ksep) ∼= HomoK ,ϕ(M∗(Gn),Ksep) tr←− HomoK [[π0]],ϕ(M∗(Gn), Eur/oEur)
∼← HomoK [[π0]],ϕ(M∗(Gn), oEur/(πn0 )),

where o0 acts on HomoK ,ϕ(M∗(Gn),Ksep) through M∗(Gn). The first isomorphism
is from Lemma 7.2.5(1) and the second map tr is induced by the “trace map” tr :∑n
i=1 aiπ

−i
0 7→

∑n
i=1 ai. One can construct the inverse of tr as follows: for a given

f ∈ HomoK ,ϕ(M∗(Gn),Ksep), define recursively ai(f ;m) := f(πi−1
0 m) − f(πi0m)
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for i = n, · · · , 1, and check that (tr−1f)(m) :=
∑n
i=1 ai(f ;m)π−i0 works. Now by

taking the projective limit, the proposition follows. �

7.3.5. Proof of Theorem 7.3.2: the case q = p. We first assume q = p, and
we will use this case to handle general q. If q = p, then the o0-action on G[πn0 ] is
determined by the action of π0, and we do not have to worry about the action of
Fq = Fp.

Let G be an ind-group scheme which satisfies (1), (3) and (4) of Definition
7.3.1. We put Gn := G[πn0 ]. Let us extend the construction of M∗(G) to such
ind-group schemes G as follows:
(7.3.5.1) M∗(G) := lim←−

n

M∗ (Gn) ,

where the transition maps are induced from the natural inclusions Gn ↪→ Gn+1.
By the universal property of direct limit, we have a natural ϕ-compatible iso-
morphism M∗(G) ∼= H omFp(G,Ga), where the right side means the sheaf of
Fp-linear homomorphisms of fppf -sheaves. By functoriality, o0 = Fp[[π0]] acts
on M∗(G), which makes it into a module over OS⊗̂Fpo0 ∼= OS [[π0]]. We define
ϕ : σ∗M∗(G) → M∗(G) by taking the limit of ϕn : σ∗M∗(Gn) → M∗(Gn), where
σ = σS⊗̂o0 : OS⊗̂Fpo0 → OS⊗̂Fpo0. Alternatively, one can directly construct ϕ out
of the absolute Frobenius endomorphism FGa : Ga → Ga just as we did in §7.2.1.

Applying M∗(·) to the exact sequence (†)m,n for the π0-divisibility (i.e., the
sequence (7.3.1.1) in (2) of Definition 7.3.1) is equivalent to the following exact
sequence of OS [[π0]]-modules with Frobenius structure ϕ:

(7.3.5.2) M∗(†)m,n : 0→M∗(Gn) [πm0 ]−−−→M∗(Gn+m)→M∗(Gm)→ 0
for each m,n ≥ 1, identifying M∗(Gm) with M∗(Gn+m)/(πm0 ). It is a standard
fact that having the exact sequences M∗(†)m,n is equivalent to the local freeness of
M∗(G) over OS [[π0]], and the OS [[π0]]-rank of M∗(G) is precisely the OS-rank of
M∗(G1). (See Proposition 7.4.2, for example.) To summarize, the π0-divisibility of
G is equivalent to the local freeness of M∗(G) over OS [[π0]].

For ind-group schemes G over S satisfying (1)–(4) of Definition 7.3.1, M∗(·)
satisfies the following properties. First, M∗(·) takes an exact sequence of such ind-
group schemes into an exact sequence of (ϕ,OS [[π0]])-modules, since the projective
system {M∗(Gn)} satisfies the Mittag-Leffler condition over open affines in S. Sec-
ond, the formation of M∗(·) commutes with the base change in the following sense.
For any map f : T → S, we have a natural isomorphism
M∗(GT ) = lim←−

n

M∗
(
(Gn)T

) ∼= lim←−
n

f∗
(
M∗(Gn)

) ∼= OT [[π0]]⊗f−1OS [[π0]] f
−1M∗(G),

where the last isomorphism uses that M is locally free of finite rank over OS [[π0]].
Recall that for local shtuka M over S and a map f : T → S, we defined in §7.1.4(1)
the pullback as f∗M := OT [[π0]]⊗f−1OS [[π0]] f

−1M.
Now, Corollary 7.2.7 asserts that ωG ∼= lim←−n coker(ϕM∗(Gn)) ∼= coker(ϕM∗(G)).

So condition (6) of Definition 7.3.1 is equivalent to requiring that (π0 − u0)h an-
nihilates coker(ϕM∗(G)); i.e., M∗(G) is an effective local shtuka. Observe that the
condition (5) of Definition 7.3.1 is automatic if q = p. We put M∗Fp[[π0]] := M∗.

For any effective local shtuka M, we define G∗Fp[[π0]](M) as follows.

(7.3.5.3) G∗Fp[[π0]](M) := lim−→
n>1

G∗(M/πn0 M),
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where the limit is taken as a fppf -sheaf of Fp[[π0]]-modules with respect to transition
maps induced by the natural projections M/πn+1

0 M � M/πn0 M. Observe that
G∗(M/πn0 M) → G∗Fq [[π0]](M) is an isomorphism onto the πn0 -torsion of the target.
By construction, G∗Fp[[π0]](M) satisfies the conditions (1), (3), and (4) of Definition
7.3.1. The π0-divisibility (i.e., the condition (2) of Definition 7.3.1) is satisfied
because we have the short exact sequence (7.3.5.2) by the OS [[π0]]-local freeness
(of finite rank) for M, which is in turn equivalent to the short exact sequence
(7.3.1.1). The condition (6) of Definition 7.3.1 is satisfied thanks to Corollary
7.2.7. This shows that G∗Fp[[π0]](M) is a π0-divisible group of finite P-height. That
M∗o0

and G∗Fp[[π0]] are quasi-inverse and satisfy all the desired properties follows
from Theorem 7.2.6. This completes the proof of Theorem 7.3.2 for the case q = p.

7.3.6. Proof of Theorem 7.3.2: the case q = pr. Put q = pr. Let σ : S → S
be the absolute Frobenius and σq := σr the absolute q-Frobenius. Let G be a π0-
divisible group of P-height 6 h with the action of o0 = Fq[[π0]]. We can restrict the
action of o0 to Fp[[π0]] to view G as a π0-divisible group of P-height 6 h with the
action of Fp[[π0]], so by the discussion of §7.3.5 we obtain an effective local shtuka
M := M∗Fp[[π0]](G) with Fp[[π0]]-coefficients equipped with an action of Fq which
commutes with ϕ and π0-action. So we have the isotypic decomposition

M ∼=
⊕
i∈Z/rZ

Mχi ,

where χi := χp
i

0 , and χ0 : F×q → Γ(S,OS)× is obtained by restricting the structure
morphism Fq → Γ(S,OS). (The isotypic components for other characters χ : F×q →
Γ(S,OS)× vanish since the F×p -action on M is given by χ0|F×p .)

The natural p-Frobenius structure ϕM on M restricts to ϕM,i : σ∗(Mχi) →
Mχi+1 for each i. So the q-Frobenius map (ϕM)r :=

(
(σr−1)∗ϕM ◦ · · · ◦ σ∗ϕM ◦ ϕM

)
:

σ∗qM → M restricts to ϕq : σ∗q (Mχ0) → Mχ0 , which gives a q-Frobenius structure
on Mχ0 . We put M∗o0

(G) := (Mχ0 , ϕq).
Recall that ωG ∼= coker(ϕM), where ωG := e∗GΩ1

G/S is the co-Lie algebra for G.
So the condition (5) of Definition 7.3.1 implies that ϕM,i : σ∗(Mχi)→Mχi+1 is sur-
jective unless i+1 ≡ 0 mod r, and that coker(ϕM) ∼= coker

[
ϕq : σ∗q (Mχ0)→Mχ0

]
.

This shows that M∗o0
(G) is an effective local shtuka with o0-coefficients. The ex-

actness and base change assertions of the theorem (i.e., the claims (1) and (2) of
Theorem 7.3.2) follow because the isotypic decomposition behaves well under base
change and exact sequences.

In order to show that M∗o0
is an anti-equivalence of categories, we need the

following claim.

Claim A. The map ϕM,i : σ∗(Mχi) → Mχi+1 is bijective unless i + 1 ≡
0 mod r.

This claim implies the rank assertion of the theorem (i.e., claim (3) of Theorem
7.3.2). In order to prove Claim A, we can assume S is local. Since we already
showed that ϕM,i is a surjective map between finite locally free OS [[π0]]-modules
unless i+1 ≡ 0 mod r, it is enough to show the source and the target have the same
rank. But this immediately follows because π0−u0 is not nilpotent in OS [[π0]] and
ϕM[ 1

π0−u0
] : (σ∗M) [ 1

π0−u0
] → M[ 1

π0−u0
] is an isomorphism, so ϕM,i[ 1

π0−u0
] is an

isomorphism.



7.3. EFFECTIVE LOCAL SHTUKAS AND π0-DIVISIBLE GROUPS 105

Claim B. One can recover M := M∗Fp[[π0]](G) with its Fq-action from M∗o0
(G) =

(Mχ0 , ϕq) functorially and uniquely up to unique isomorphism.

Combining this claim with the theorem for the case q = p, it follows that M∗o0
is an anti-equivalence of categories.

To prove Claim B, first observe that by Claim A, (ϕM)i : (σi)∗M→M induces
an F×q -equivariant isomorphism

(σi)∗Mχ0
∼−→Mχi

for each 0 ≤ i < r. Let us put M′i := σi
∗ (

M∗o0
(G)
)
and M′ :=

⊕r−1
i=0 M′i. We define

a p-Frobenius structure ϕM′ : σ∗M′ →M′ by idM′
i+1

: σ∗M′i = M′i+1 →M′i+1 for
i+ 1 6= r and ϕq : σ∗M′r−1 = σ∗qM

′
0 →M′0, where ϕq is the q-Frobenius structure

on M′0 := M∗o0
(G). One can directly see that M and M′ are naturally isomorphic

as ϕ-modules. This proves Claim B.
For any effective local shtuka Mq (i.e., a finite locally free OS [[π0]]-module

equipped with a q-Frobenius structure ϕq : σ∗qMq → Mq) let us define G∗o0
(Mq)

as follows. Following the recipe in Claim B, one obtains an effective local shtuka
M with Fp[[π0]]-coefficients equipped with an Fq-action which is compatible with
the p-Frobenius structure ϕM : σ∗pM →M. Therefore, by functoriality Fq acts on
the π0-divisible group G∗Fp[[π0]](M) (which a priori comes equipped with Fp[[π0]]-
action). Clearly, the Fq-action and π0-action commute, so o0 = Fq[[π0]] acts on
G∗Fp[[π0]](M), and this action satisfies the condition (5) of Definition 7.3.1. In other
words, G∗Fp[[π0]](M) is a π0-divisible group of finite height with o0-coefficients. We
let G∗o0

(M) denote this π0-divisible group. Claims A and B, together with the case
q = p proved in §7.3.5, show that M∗o0

and G∗o0
are quasi-inverses and satisfy all

the desired properties. This completes the proof of Theorem 7.3.2. 2

7.3.7. Examples of π0-divisible groups of finite P-height. At first glance, the
definition of π0-divisible groups of finite P-height involves many technical conditions
such as having trivial Verschiebung. But the examples below show that strict π0-
divisible groups (i.e., π0-divisible groups of P-height6 1) occur quite naturally. One
may regard the non-strict ones as a generalization to higher Hodge-Pink weights.

π0-divisible group associated to a Drinfeld module:: let SpecA = C \ {∞},
where C is a smooth projective geometrically connected curve over some
finite field of characteristic p. Fix a closed point P ∈ SpecA (also view P
as a maximal ideal of A) and choose a local parameter π0 at P . Let S be
a scheme over ÂP , and L/S a Drinfeld A-module6. Then the “π0-divisible
group” G := lim−→n

L[Pn] associated to L is a strict π0-divisible group.
Strict formal Fq[[π0]]-module:: Let S be a o0-scheme on which u0 (i.e., the

image of π0 in Γ(S,OS)) is locally nilpotent (or more generally, a formal
scheme over Spf o0). Let G/S be a formal Lie group7, equipped with an
action of o0. It follows from the Cartier theory that a formal Lie group
which is killed by p always has trivial Verschiebung [Gen96, Ch.I, Prop
2.1.1]. If we further assume that π0 − u0 acts trivially on ωG, then G

6For the definition, see Drinfeld’s original article [Dri74] or Deligne-Husemöller [DH87].
7i.e., a formally smooth, ind-infinitesimal group with tangent space finitely generated over

OS . See [Mes72, II, (1.1)].
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is automatically π∞0 -torsion by the argument similar to [Mes72, Ch.II,
Lemma 4.2] or [Tat67, (2.4) Lemma 0]. So if G is a formal Lie group
with o0-action, then G is a strict π0-divisible group if and only if G is
π0-divisible and o0 acts on ωG via “scalar multiplication” through the
structure morphism o0 → Γ(S,OS).

Lubin-Tate formal group:: Now, we define the “Lubin-Tate formal group”
LT S which corresponds to the local shtuka LS(1) via the anti-equivalence
in Theorem 7.3.2. (See Definition 7.1.5 for the definition of LS(1).) This
computation is also done in Hartl’s dictionary [Har09, §3.4].

Let LT S be Ĝa ∼= SpfS OS [[X]] as a formal Lie group, equipped
with π0-action given by [π0]∗X = u0X + Xq. Clearly, LT S is a strict
π0-divisible group. Now we compute M∗q(LT ) ∼= H omFq (LT ,Ga). The
right side is a rank-1 free module over E ndFq (Ĝa) ∼= OS{{τ}}, where
τ ∈ EndFq (Ĝa) is defined by τ∗(X) = Xq and τ ·a = aq ·τ for a ∈ OS .
Also, π0 acts on M∗q(LT ) via the natural action of (u0 + τ) ∈ E ndFq (Ĝa),
and ϕ : σ∗q

(
M∗q(LT )

)
→M∗q(LT ) is given by ϕ(σ∗qm) = τ·m = (π0−u0)·m

for any m ∈M∗q(LT ). This shows that M∗q(LT ) ∼= LS(1).
Now we work over S = Spec oK and let o0(1) := Tπ0(LT ) be the rank-

1 lattice representation of GK given by the “Lubin-Tate character”. Then
we have T ∗S (LoK (1)) ∼= Tπ0(LT ) =: o0(1) by Proposition 7.3.4, hence the
notation LoK (1).

Motivated by the example, we make the following definition:

Definition 7.3.8. We define LT ⊗hS for a non-negative integer h to be the π0-
divisible group which corresponds to the Tate object LS(h) via the anti-equivalence
in Theorem 7.3.2

For S = Spec oK , we have Tπ0(LT ⊗h) ∼= T ∗S(LoK (h)) ∼= T ∗S(LoK (1))⊗h ∼=
Tπ0(LT )⊗h ∼= o0(h) by Proposition 7.3.4, hence the notation.

7.3.9. Duality. We now define a duality operation for local shtukas of P-height
6 h for any h ≥ 0, or equivalently for π0-divisible groups of P-height 6 h.

Definition 7.3.9.1. For an effective local shtuka M of P-height 6 h, the
Faltings dual of P-height h is the effective local shtuka M∨ := M∗(h) of P-height
6 h.

For a π0-divisible group G of P-height 6 h, the Faltings dual of P-height 6 h
is the π0-divisible group G∨ which corresponds to M∗(G)∨ via the anti-equivalence
in Theorem 7.3.2.

One can check that Faltings dual is an exact anti-equivalence of categories
which commutes with any base change and satisfies all the usual axioms for a good
duality theory. The Faltings duality depends on the choice of the P-height bound
h, though we do not specify this in the notation.

7.3.10. Lubin-Tate type π0-divisible group of P-height 6 h. Note that the
constant étale π0-divisible group F0/o0 and LT ⊗h are each other’s Faltings dual
(of P-height 6 h). Thus, by working on geometric fibers we get:

Lemma 7.3.10.1. Let G be a π0-divisible group of P-height 6 h. Then the
following are equivalent.
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(1) The geometric fiber Gs̄ at each geometric point s̄ of S is isomorphic to
(LT ⊗h)⊕n for some n.

(2) The Faltings dual of P-height 6 h for G is étale.
We call a π0-divisible group G is of Lubin-Tate type of P-height h if G satisfies

the equivalent conditions of the lemma. Lubin-Tate type π0-divisible groups of P-
height h play the same role, in the equal characteristic arithmetic, as Barsotti-Tate
groups of multiplicative type do in the mixed characteristic arithmetic.

7.4. Appendix: Some commutative algebra over an adic ring

In this subsection, we state some standard facts about commutative algebra
over an adic ring, which are used in this appendix (and elsewhere). Readers may
skip this subsection and use this as the “reference sheet” for the standard facts
when they are used.

Let A be an “a-adic ring”, in other words, A ∼= lim←−nA/a
n for some finitely

generated ideal a ⊂ A. The example to keep in mind is A = R[[t]] for any ring R
and a = tA.

Proposition 7.4.1. [GD71, Prop 7.2.10]8 The functors M 7→ {M/an}n and
{Mn}n 7→ lim←−n Mn are quasi-inverse equivalences of categories between the category
of finitely generated A-modules and the category of projective systems {Mn}n≥1
where each Mn is an A/an-module, M1 is a finitely generated A/a-module and
each transition map induces Mn+1 ⊗ A/an

∼−→Mn. Moreover, M is locally free of
finite A-rank if and only if each M/an is locally free of finite A/an-rank.

Now, we specialize to the case when A = R[[t]] endowed with the t-adic topol-
ogy. In this case, we have a simpler criterion for the local freeness over R[[t]].

Proposition 7.4.2. Let M be a finitely generated R[[t]]-module (or more gen-
erally, t-adically separated and complete topological R[[t]]-module). Then M is finite
locally free over R[[t]] if and only if M has no nontrivial t-torsion and M/tM is
finite locally free over R ∼= R[[t]]/(t).

Sketch of the Proof. The “only if” direction is obvious, so we sketch the
“if” direction. The t-adic separatedness and completeness assumption implies by
successive approximation9 that M/tnM is finitely generated over R[[t]]/(tn) for
each n, so in turn it implies that M is finitely generated over R[[t]].

Since there is no nontrivial t-torsion, we have the short exact sequences

0→M/tnM
tm−−→M/tm+nM→M/tmM→ 0,

for each m,n > 1. Then it follows from the local flatness criterion10 that M/tnM is
a flat R[[t]]/(tn)-module for each n. This implies our claim by Proposition 7.4.1. �

We record the following interesting consequence, which roughly says that any
finite locally free R[[t]]-module can be trivialized by “localizing” R.

8This proposition is also stated in [EGA, I, Prop 7.2.9], except the local freeness assertion.
But local freeness can be read off from [EGA, I, Cor 7.2.10], because locally free modules of finite
rank are exactly finitely generated projective modules.

9or by “Nakayama’s lemma” for nilpotent ideals
10See, for example, [Mat86, Thm 22.3], especially the equivalence of (1) and (4′). Since the

ideal (t) ⊂ R[[t]]/(tn) is nilpotent, we can apply the local flatness criterion without requiring R
be noetherian.
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Corollary 7.4.3. Let M be finite locally free over R[[t]]. Then there exists a
(finite) Zariski-open covering {R[1/f ]} of R such that M⊗ (R[1/f ])[[t]] is free over
(R[1/f ])[[t]] for each f .

Proof. Take an open covering {R[1/f ]} which trivializes M/tM. This cov-
ering works, by successive approximation and the proof of the previous proposi-
tion. �

The following statement and the proof are taken from [Gen96, Lemma 2.2.8].

Lemma 7.4.4. Let M be a locally free R[[t]]-module of rank r. Let M′ ⊂M be
an R[[t]]-submodule which satisfies the following properties:

(1) There exists an integer N such that tNM ⊂M′ ⊂M.
(2) The quotient M/M′ is locally free over R.

Then M′ is finite locally free as an R[[t]]-module.

Proof. Note that M′/tNM = ker[M/tNM → M/M′] where M/tNM →
M/M′ is a surjection between finite locally free R-modules, so M′/tNM is finite lo-
cally free as an R-module. Hence M′ is R[[t]]-finite since M is. Thus by Proposition
7.4.2, to show that M′ is finite locally free over R[[t]] it is necessary and sufficient
to show that M′ has no nontrivial t-torsion and that M′/tM′ is locally free as an
R-module. But being a submodule of M, M′ is torsionfree, so it remains to show
the local freeness of M′/tM′.

For any integer n > N , we have the following short exact sequence.
(∗) 0→M′/tnM→M/tnM→M/M′ → 0

Since M/M′ is locally free (so projective) over R, this exact sequence is split and
R′ ⊗R (∗) remains exact for any R-algebra R′. In particular, M′/tnM is finite
locally free over R for any n > N .

Now, we have the following short exact sequence.

(∗∗) 0→M′/tNM
t−→M′/tN+1M→M′/tM′ → 0

The exactness follows from the injectivity of M/tNM
t−→ M/tN+1M and the ex-

actness of (∗). Similarly, R′ ⊗R (∗∗) remains exact for any R-algebra R′, using
the exactness of R′ ⊗R (∗) . This implies, by standard facts about flatness11, that
M′/tM′ is flat over R. It is clear from the exact sequence (∗∗) that M′/tM′ is
finitely presented over R. �

The following lemma is a “partial converse” to the previous lemma.

Lemma 7.4.5. Let M and M′ be locally free R[[t]]-modules of the same finite
constant rank. Assume that we have R[[t]]-linear map f : M′ → M such that the
image of f contains tNM for some integer N . Then coker(f) is locally free over R.

Proof. Note first that f is necessarily injective, since f [ 1
t ] is surjective and

hence an isomorphism. Similarly, for any ideal I ⊂ R, the reduction (f mod I) :
M′/IM′ →M/IM is injective.

Now, consider the following short exact sequence.

(†) 0→M′
f−→M→ coker(f)→ 0

11See, for example, [Bou89, Ch.I §2.5 Prop 4].
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The R-flatness of coker(f) follows because (†) mod tN is short exact and for any
ideal I ⊂ R containing tN , the right exact sequence (†) mod I is left exact. (Recall
that any R′-moduleM ′ is flat provided TorR

′

1 (I,M ′) = 0 for all ideals I of R.) Fur-
thermore, coker(f) is finitely presented over R, thanks to the right exact sequence
(†) mod (tN ). �





Part 2

Torsion Galois Representations



In Part II, we introduce certain Frobenius modules which give rise to torsion
GK-representations, and we prove various properties that will be needed later in
the study of deformations.



CHAPTER 8

Torsion GK-representations of P-height 6 h

In this section, we introduce “torsion (ϕ,S)-modules” of P-height 6 h, which
play a central role for the rest of this work. For the purpose of studying defor-
mation theory in §11, it is useful to consider torsion (ϕ,S)-modules with various
“coefficients,” which will be made precise and studied in §8.2.

8.1. Torsion ϕ-modules and torsion GK-representation of P-height 6 h

We begin with defining a torsion (ϕ,S)-module of finite P-height. One can
immediately verify that a (ϕ,S)-module obtained as a cokernel of an isogeny in
ModS(ϕ) satisfies the following definition. (In fact, we will also prove its converse
in Proposition 8.1.4.)

Definition 8.1.1. A (ϕ,S)-module M is called a torsion (ϕ,S)-module of
finite P-height if the following conditions are satisfied.

(1) There exists an integer N such that πN0 M = 0.
(2) As a S-module, M is of projective dimension 6 1.
(3) There exists an integer h ≥ 0 such that P(u)h ·coker(ϕM) = 0.

We say that such M is of P-height 6 h if P(u)h ·coker(ϕM) = 0. We let (Mod /S)
denote the category of torsion ϕ-modules over S of finite P-height, and (Mod /S)6h

the full subcategory of (Mod /S) whose objects are of P-height 6 h. We let
(ModFI /S) denote the full subcategory of (Mod /S) whose objects are isomor-
phic to

⊕
i(S/π

ni
0 S) as S-modules1, and (ModFI /S)6h the full subcategory of

(ModFI /S) whose objects are of P-height 6 h.

In the case o0 = Zp, basic properties of torsion (ϕ,S)-module of P-height 6 1
are studied in [Kis09b, §1.1], and this is easily adapted to the equi-characteristic
case, as we now show.

In Definition 8.1.1, the condition on the projective dimension can be “simpli-
fied” as follows.

Proposition 8.1.2. Let M be a finitely generated S-module such that πN0 M =
0 for some N . Then the following are equivalent.

(1) As a S-module, M is of projective dimension 6 1. (So we allow M =
0.)
(2) There exists one element α ∈ mS \ π0 ·S such that M has no nonzero
α-torsion.
(3) For any element α ∈ mS \ π0 ·S, M has no nonzero α-torsion. In
particular, M has no nonzero u-torsion and P(u)-torsion.

1The notation (ModFI /S) stands for “Modules à Facteurs Invariants.”

113
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For the case o0 = Fq[[π0]] (so S = oK [[π0]]), M is of projective dimension 6 1 as
a S-module if and only if M is finite free over oK .

Proof. The last claim for the case o0 = Fq[[π0]] follows from the equivalence
between (1) and (3) (using α = u). The implication (3)⇒(2) is trivial, and the
equivalence (2)⇔(1) is just the theorem of Auslander-Buchsbaum [Mat86, Thm
19.1]. In order to show (1)⇒(3), assume that M has nonzero α-torsion for some
α ∈ mS \ π0 ·S. Then there exists an element x ∈M whose annihilator is exactly
mS, since (π0, α)S is an mS-primary ideal. Then we have a short exact sequence

0 // S/mS
1 7→x // M // M/(x) // 0.

Since the projective dimension of S/mS is exactly 2 and the projective dimension of
M/(x) is at most 2 (by the homological criterion of regularity and the fact that S is
a regular local ring of dimension 2), we conclude that M is of projective dimension
2. �

Next, we show that any M ∈ (Mod /S)6h can be written as a cokernel of some
isogeny f : M1 →M0 in ModS(ϕ)6h. We first need the following lemma.

Lemma 8.1.3. For M ∈ (Mod /S), the Frobenius structure ϕ : σ∗M → M is
injective.

Proof. By Proposition 8.1.2, the natural map M → M[ 1
u ] ∼= oE ⊗S M is

injective. Now apply Lemma 2.2.3.1 for R = S and R′ = oE , keeping in mind that
oE ⊗S M is an étale ϕ-module. �

Proposition 8.1.4. For M ∈ (Mod /S)6h, there exist M0,M1 ∈ ModS(ϕ)6h

and an isogeny f : M1 →M0, such that M ∼= coker(f) as a ϕ-module.

Sketch of Proof. In the case o0 = Zp, this proposition is exactly [Kis06,
Proposition 2.3.4] which can be adapted to the case o0 = Fq[[π0]]. We sketch the
proof.

It is enough to find M0 ∈ ModS(ϕ) and a surjective map M0 � M of ϕ-
modules. In fact, the kernel M1 of this map is automatically free over S since the
projective dimension of M is 6 1, and we have P(u)h ·coker(ϕM1) = 0 thanks to
the injectivity of ϕM and the snake lemma. The construction of M0 is identical to
the one given in the proof of [Kis06, Prop 2.3.4]. �

8.1.5. From now on, we write (ModFI /oE)ét to denote torsion étale ϕ-modules
over oE , which used to be denoted as Modét,tor

oE
(ϕ). From §5.1, we have quasi-inverse

anti-equivalences of categories D∗E and T ∗E between (ModFI /oE)ét and Reptor
o0

(GK).
Since the scalar extension oE⊗S(·) induces a functor (Mod /S)→ (ModFI /oE)ét,

we can define a functor T ∗S : (Mod /S) → Reptor
o0

(GK) by T ∗S(M) := T ∗E(oE ⊗S

M) ∼= HomS,ϕ(M, Eur/oEur) for M ∈ (Mod /S). Note also that M → oE ⊗S M =
M[ 1

u ] is injective by Proposition 8.1.4(3). The functor T ∗S(·) may not be fully
faithful on torsion objects.

To define T ∗S for M ∈ (Mod /S)6h, we can use a “smaller” ring than Eur/oEur

with “integral” structure. We first introduce more rings:
Sur the integral closure of S inside oÊur .
Ŝur the closure of Sur ⊂ oÊur under the π0-adic topology.
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The endomorphism σ : oÊur → oÊur restricts to flat endomorphisms of Sur and
Ŝur. The Galois group GK acts by isometries (with respect to the π0-adic norm)
and commute with σ.

Lemma 8.1.6. For M ∈ (Mod /S), the natural map

HomS,ϕ(M,Sur[1/π0]/Sur) ↪→ HomS,ϕ(M, Eur/oEur) =: T ∗S(M),

which is induced by the natural inclusion of the second argument, is an GK-isomorphism.
For M ∈ ModS(ϕ), the natural map

HomS,ϕ(M, Ŝur) ↪→ HomS,ϕ(M, oÊur ) =: T ∗S(M),

which is induced by the natural inclusion of the second argument, is a GK-isomorphism.

Proof. The statement for M ∈ ModS(ϕ) follows from the statement for
M/π0M, thanks to Lemma 5.1.9. Therefore it is enough to prove the lemma for
M ∈ (Mod /S). If o0 := Zp, then this follows from [Fon90, §B. Propositions 1.8.3].
We give a proof when o0 = Fq[[π0]], so oÊur ∼= Ksep[[π0]] and Ŝur ∼= oKsep [[π0]].

For any f ∈ HomS,ϕ(M, Eur/oEur), the image f(M) is finitely generated over
S and is stable under σ : Eur/oEur → Eur/oEur . Now, consider an element α :=∑n
i=1 aiπ

−i
0 ∈ Eur/oEur where ai ∈ Ksep. If not all of ai are in oKsep , then the

S-span of {σj(α)}j≥0 cannot be finitely generated over S. Therefore, in order to
have α ∈ f(M), all ai must lie in oKsep . This shows that α ∈ Sur[ 1

π0
]/Sur. �

Now we can make the following definition:

Definition 8.1.7. Let M ∈ (ModFI /oE)ét. By a S-lattice of P-height 6 h
in M we mean a ϕ-stable S-submodule M ⊂ M such that M ∈ (Mod /S)6h and
oE ⊗S M

∼−→M .
We say that T ∈ Reptor

o0
(GK) is of P-height 6 h if there exists M ∈ (Mod /S)6h

of P-height 6 h such that T ∼= T ∗S(M), or equivalently, if D∗E(T ) admits a S-
lattice of P-height 6 h. We say that T ∈ Reptor

o0
(GK) is of finite P-height if for

some r, h ∈ Z, the Tate twist T (r) is of P-height 6 h. We let Reptor,P
o0

(GK) and
Reptor,6h

o0
(GK) denote the categories of torsion representations of finite P-height

and of P-height 6 h, respectively.

By Proposition 8.1.4, a torsion GK-representation T is of finite P-height if and
only if T is isomorphic to the cokernel of some isogeny T1 ↪→ T0 of o0-lattice GK-
representations of finite P-height, and T is of P-height 6 h if and only if one can
find such T0 and T1 which are of P-height 6 h.

Unlike the case of free étale ϕ-modules (c.f. Theorem 5.2.3), S-lattices of P-
height 6 h in M ∈ (ModFI /oE)ét do not have to be unique. See §9.3 for more
discussion. We will see later that if for T ∈ Repfree

o0
(GK), T/πn0 T is of P-height 6 h

for all n ≥ 1, then D∗(T ) has a (necessarily unique) S-lattice of P-height 6 h, so T
is of P-height 6 h in the sense of Definition 5.2.8. (The converse is trivial.) This is
not entirely trivial since the S-lattice in Definition 8.1.7 (applied to D∗(T/πn0 T ))
is not unique, and this is proved in Proposition 9.2.6.

Consider M ∈ (ModFI /oE)ét. In order for a ϕ-stable S-submodule M ⊂ M
to be a S-lattice of P-height 6 h, M has to be of projective dimension 6 1 as
a S-module, in addition to the condition P(u)h coker(ϕ|M) = 0. But in fact, the
projective dimension condition is satisfied thanks to Proposition 8.1.2; because M
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is a submodule of M which has no nontrivial u-torsion (so the same is true for M).
So we obtain the following lemma.

Lemma 8.1.8. Let M be a finitely generated torsion oE -module and M ⊂ M
be a finitely generated S-submodule. Then M is of projective dimension 6 1 as a
S-module.

Remark 8.1.9. A striking result is that once we formulate a deformation prob-
lem for GK-representations of P-height 6 h, the tangent space of the deformation
functor is finite-dimensional if k is finite. This allows us to prove the existence of
the universal deformation ring for GK-representations of P-height 6 h (Theorem
11.1.2), similar to the classical theorem by Mazur for absolute Galois groups for a
finite extension of Q or Qp [Maz89, Maz97]. Note that without the P-height 6 h
condition, the deformation functor has an infinite-dimensional tangent space even
when k is finite, so there is no (complete noetherian) universal deformation ring.
See §11.7.1.

Let o0 = Fq[[π0]]. We saw in §7.3 that there exists a “Dieudonné-type” anti-
equivalence of categories between ModS(ϕ) and certain kinds of π0-divisible groups
over oK . Under this anti-equivalence, the functor T ∗S was interpreted as associating
the “Tate module”. (See Theorem 7.3.2 and Proposition 7.3.4.) For this reason, the
representations of finite P-height can be viewed as an equi-characteristic analogue
of crystalline representation.

We digress to study the case of P-heights 6 0.
Proposition 8.1.10. Any T ∈ Reptor

o0
(GK) is unramified if and only if there

exists a π∞0 -torsion étale (ϕ,S)-module M of projective dimension 6 1 such that
T ∼= T ∗S(M) as GK-representations. In particular, any unramified o0-torsion GK-
representation is of P-height 6 h for any h > 0.

Proof. We first show that for any π∞0 -torsion étale (ϕ,S)-module M, T ∗S(M)
is unramified. Choose a “minimal” finite free S-module M0 equipped with an S-
linear surjection M0 �M (i.e., the surjection induces a k-isomorphism M0/mSM0

∼−→
M/mSM). Since M is of projective dimension 6 1, M1 := ker[M0 � M] is also
finite free over S. Choose any lift ϕ0 : σ∗M0 → M0 of ϕ : σ∗M → M, and by
Nakayama’s lemma ϕ0 is an isomorphism. This makes M1 into an étale (ϕ,S)-
module. By Lemma 5.1.9 we have T ∗S(M) ∼= T ∗S(M1)/T ∗S(M0), and the right side
is unramified by Proposition 5.2.10.

Now, assume that T ∈ Reptor
o0

(GK) is unramified and we seek an étale S-
lattice in the étale ϕ-module D∗E(T ) := Homo0[GK ](T, Eur/oEur). The idea of the
proof is similar to the case when T is an unramified o0-lattice GK-representation
(Proposition 5.2.10). Since IK acts trivially on T , any o0[GK ]-map l : T → Eur/oEur

factors through (Eur/oEur)IK ∼= oE ⊗W (FracW sh/W sh), where W sh denotes the
strict henselization of W . (Recall that W = W (k) if o0 = Zp, and W = k[[π0]] if
o0 = Fq[[π0]].) So we have a natural isomorphism of ϕ-modules:
(8.1.10.1) D∗E(T ) ∼= oE ⊗W U∗(T ),
where U∗(T ) := Homo0[GK ](T,FracW sh/W sh) equipped with the ϕ-structure in-
duced from the natural Frobenius endomorphism σ : FracW sh/W sh → FracW sh/W sh.2

2The Frobenius endomorphism σ : FracW sh/W sh → FracW sh/W sh can be obtained by
restricting σ : E/oEur → E/oEur . Equivalently, one can obtain σ from the universal property of
strict henselization.
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Since oE is faithfully flat over W , we can deduce from (8.1.10.1) that U∗(T ) is
(finitely generated over W and) a π∞0 -torsion étale (ϕ,W )-module. So M :=
S ⊗W U∗(T ) is a π∞0 -torsion étale (ϕ,S)-module, and we have T ∼= T ∗S(M) by
construction. �

We record the following corollary of the proof, which will be used later in
the proof of Proposition 11.4.2. Let us define an o0[GK/IK ]-module TW (U) :=
(W sh ⊗W U)ϕ=1 and T ∗W (U) := Homo0,ϕ(U,FracW sh/W sh) for any finite torsion
étale (ϕ,W )-module U ; and (ϕ,W )-modules U(T ) := (W sh⊗W T )GK and U∗(T ) :=
Homo0[GK/IK ](T,FracW sh/W sh) for any unramified π∞0 -torsion GK-representation
T .

Corollary 8.1.11. The assignments TW and U define quasi-inverse length-
preserving exact equivalences of categories between Reptor

o0
(GK/IK) and the category

of finite torsion étale (ϕ,W )-modules which respects ⊗-products, internal homs,
and duality. Furthermore, we have a natural isomorphism DE(T ) ∼= oE ⊗W U(T )
of étale (ϕ, oE)-modules for any T ∈ Reptor

o0
(GK/IK) and a natural GK-equivariant

isomorphism TW (U∗) ∼= T ∗S(S ⊗W U) for any finite torsion étale (ϕ,W )-module
U , where U∗ := HomW (U,K 0/W ) is the dual torsion étale (ϕ,W )-module.

8.1.12. We now show that the notion of P-height 6 h for o0-torsion GK-
representations is insensitive to unramified extension of K (i.e., it only depends
on the action of IK). We first set up some notations. Let K̂ur ∼= ksep((u)) denote
the completed maximal unramified extention of K. For any complete “unramified”
extension K ′ := k′((u)) of K (with k′ perfect if o0 = Zp), we let SK′ and oEK′
denote rings defined in a similar way to S and oE with K and k replaced with K ′
and k′. We also define endomorphisms σ : SK′ → SK′ and σ : oEK′ → oEK′ in a
similar way we defined σ on S and oE . So (SK′ , σ) and (oEK′ , σ) become σ-rings
over (S, σ).

In the case o0 = Fq[[π0]], we do not necessarily assume that K ′ has a finite p-
basis, since we want to allow K ′ = K̂ur and this does not have a finite p-basis unless
k is perfect. Note that the theory of étale ϕ-modules (as discussed in §5.1 does not
use the assumption of having a finite p-basis, and the definitions of (Mod /SK′)6h

and T ∗SK′
make sense as defined without assuming that K ′ has a finite p-basis. We

say a o0-torsion representation T of IK ∼= GK̂ur is of P-height 6 h if there exists
M
K̂ur ∈ (Mod /S

K̂ur)6h such that T ∼= T ∗
SK̂ur(MK̂ur) as G

K̂ur-representations.

Proposition 8.1.13. An o0-torsion GK-representation T is of P-height 6 h
in the sense of Definition 8.1.7 if and only if its restriction to IK is of P-height
6 h in the above sense.

Proof. The “only if” direction is trivial; if T ∼= T ∗S(M) as GK-representations
for some M ∈ (Mod /S)6h, then we have a natural isomorphism T ∼= T ∗S

K̂ur
(S

K̂ur⊗S

M) as IK-representations and clearly S
K̂ur ⊗S M ∈ (Mod /S

K̂ur)6h.
To show the “if” direction, we assume that T ∈ Reptor

o0
(GK) is isomorphic

to T ∗S
K̂ur

(M
K̂ur) as an IK-representation for some M

K̂ur ∈ (Mod /S
K̂ur)6h. Let

M := D∗E(T ) denote the étale (ϕ, oE)-module corresponding to T , and we have
a natural isomorphism (M

K̂ur)[ 1
u ] ∼= oE

K̂ur
⊗oE M of étale ϕ-modules. Let M :=
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M ∩M
K̂ur , where the intersection is taken inside oE

K̂ur
⊗oE M . Since M is a S-

submodule of M = M[ 1
u ] and has no non-zero infinitely u-divisible element, M is

finitely generated over S. Clearly, we have M[ 1
u ] = M and M ∈ (Mod /S)6h. �

The following theorem serves as a motivation for introducing torsion ϕ-modules
and GK-representations of finite P-height.

Theorem 8.1.14 (Kisin [Kis06]). Let o0 = Zp, and follows the notations as
introduced in §1.3.1.2.

(1) Let T be a torsion GK -representation which can be obtained as a cokernel
of an isogeny of Galois-stable lattices in semi-stable representations with
Hodge-Tate weights in [0, h]. Then T as a representation of GK ∞

∼= GK
is of P-height 6 h.

(2) (Breuil-Kisin classification of finite flat group schemes) If p > 2, then
there exists an anti-equivalence of categories G∗ from (Mod /S)61 to the
category of finite flat group schemes of p-power order over oK . Further-
more, for M ∈ (Mod /S)61 we have a GK ∞-equivariant isomorphism
G∗(M)(K ) ∼= T ∗S(M).

(3) [Bre02, Theorem 3.4.3] If p > 2, then “restricting the GK -action to GK ∞”
defines an equivalence of categories from the category of finite flat GK -
representations (i.e., torsion GK -representations which are obtained from
the generic fibers of finite flat group schemes over oK ) to the category of
torsion GK ∞-representations of P-height 6 1.

Proof. The claim (1) follows from Proposition 8.1.4 and the fact that any Ga-
lois stable lattice in a semi-stable representation with Hodge-Tate weights in [0, h]
is automatically of P-height 6 h as a representation of GK ∞

∼= GK (Proposition
2.4.9 and Theorem 2.4.10).

The claim (2) follows from Proposition 8.1.4, Kisin’s classification of Barsotti-
Tate group (Theorem 2.4.11(1)), and Raynaud’s theorem [BBM82, Theorem 3.1.1]
which asserts that any finite flat group scheme over oK can be written as the kernel
of an isogeny of Barsotti-Tate groups over oK .

The essential surjectivity of the claim (3) follows from the second statement
of the theorem. We sketch the proof of the full faithfulness, which can be found
in [Bre02, Theorem 3.4.3]. Let T1, T2 be finite flat GK -representations and let
f : T1 → T2 be a GK ∞ -equivariant map. Taking the anti-equivalence of categories
D∗E , we obtain a map γ : M2 → M1 of torsion étale ϕ-modules, and we can find
some S-lattices of P-height 6 1, say Mi ⊂ Mi, such that γ takes M2 into M1.
(Compare with §9.2.3.) By the claim (2) of the theorem, γ corresponds to a map
of finite flat group scheme models for T1 and T2, so f is GK -equivariant. �

Theorem 8.1.14(2) was originally conjectured by Breuil in [Bre98] for all primes
p including p = 2, and he proved the special case when p > 2 and the finite flat
group schemes killed by p. The case p > 2 (i.e., Theorem 8.1.14(2)) was proved by
Kisin [Kis06, (2.3)]. For p = 2, Kisin [Kis09a] proved the classification of connected
finite flat group schemes using his classification of connected Barsotti-Tate groups.
(Under the contravariant correspondences, the connectedness of finite flat group
schemes corresponds to the condition that ϕM is “topologically nilpotent.”)

Remark 8.1.15. For the case o0 = Zp, one can think of (Mod /S)6h as a
“higher-weight analogue” of finite flat group schemes. Torsion étale ϕ-modules can
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be thought of as an “analogue” of the generic fibers, and S-lattices of P-height
6 h plays a role analogous to finite flat group scheme models or prolongations of
a generic fiber. This point of view is supported by the Breuil-Kisin classification
of finite flat group schemes for the case h = 1. On the other hand, torsion (ϕ,S)-
modules of finite P-height only give rise to GK ∞-representations, and for h > 1
it seems to be hard to handle the gap between torsion semi-stable (or crystalline)
GK -representations and their restrictions to GK ∞ .

8.1.16. ϕ-nilpotent objects. A torsion ϕ-module M ∈ (Mod /S)6h is called ϕ-
nilpotent if ϕr(σ∗M) ⊂ mS ·M for all sufficiently large r, or equivalently, if for any
x ∈M the sequence ϕr(σ∗rx) converges to 0 for the mS-adic topology as r → ∞.
Note that this is the same as the u-adic topology on M.

The notion of ϕ-nilpotentness for such M is “well-behaved” under subobjects,
quotients, extensions, direct sums and tensor products. More precisely, for a short
exact sequence 0→M′ →M→M′′ → 0 of torsion ϕ-modules, if two of them are
ϕ-nilpotent then so is the third. If torsion ϕ-modules M and M′ are ϕ-nilpotent,
then so are their tensor product M⊗S M′ and direct sum M⊕M′.

8.1.17. Analogue of connected-étale sequence. For M ∈ (Mod /S)6h we define
the maximal étale submodule Mét ⊂M as follows:

(8.1.17.1) Mét :=
∞⋂
r=1

ϕr(σ∗rM).

By the theorem of Auslander-Buchsbaum, Mét is of projective dimension 6 1 as a
S-module; we have seen that M has no non-trivial u-torsion, so the same is true
for Mét (using Lemma 8.1.3). Therefore, Mét ∈ (Mod /S)6h. Clearly, Mét is an
étale ϕ-module which contains all étale submodules of M, and any ϕ-compatible
map f : M→ N in (Mod /S)6h takes Mét into Nét.

We now show that the quotient M/Mét also lies in (Mod /S)6h. Then we can
say that M/Mét is a maximal ϕ-nilpotent quotient of M. The issue is to show
that M/Mét is of projective dimension 6 1 as a S-module. By the theorem of
Auslander-Buchsbaum, it is enough to show that M/Mét has no nonzero u-torsion.

Since ϕ : σ∗Mét → Mét is an isomorphism, we obtain a surjective map ϕ̄ :
σ∗(Mét/uMét) → Mét/uMét between modules of the same finite length, hence ϕ̄
is an isomorphism. In particular, x ∈ u·Mét if and only if ϕr(σ∗rx) ∈ u·Mét.

Now, let y ∈ M be such that uy ∈ Mét. Since the sequence ϕr(σ∗r(uy))
converges to 0 in M as r →∞, the same is true in Mét by the Artin-Rees lemma.
So there exists an r such that ϕr(σ∗r(uy)) is a u-multiple of some element in Mét,
hence y ∈Mét. This shows that M/Mét ∈ (Mod /S)6h.

Let us summarize what we have proved:

Proposition 8.1.18. For any M ∈ (Mod /S)6h, we have a short exact se-
quence in (Mod /S)6h

(8.1.18.1) 0→Mét →M→M/Mét → 0,
where Met is maximal among étale submodules of M, and M/Mét is maximal
among ϕ-nilpotent quotients of M. The sequence (8.1.18.1) is functorial in M in
the sense that any map f : M → N in (Mod /S)6h takes Mét into Nét (hence
induces M/Mét → N/Nét). We call this exact sequence connected-étale sequence
for M.
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We record the following facts.
(1) Clearly, M ∈ (Mod /S)6h is étale if and only if Mét = M, and M is

ϕ-nilpotent if and only if Mét = 0.
(2) If o0 = Fq[[π0]], then the connected-étale sequence for M exactly corre-

sponds to the connected-étale sequence for G∗(M).
(3) If o0 = Zp and h = 1, then we have the anti-equivalence of categories G∗

from (Mod /S)61 to the category of finite flat group schemes of p-power
order over oK , by the Breuil-Kisin classification (Theorem 8.1.14(2)). Un-
der this correspondence, M ∈ (Mod /S)61 is étale if and only if G∗(M)
is étale, and M is ϕ-nilpotent if and only if G∗(M) is connected. Further-
more, for any M ∈ (Mod /S)61, one obtains the connected-étale sequence
for G∗(M) by applying G∗ to the connected-étale sequence for M (which
justifies the name).

8.2. ϕ-modules with coefficients

For an o0-algebra A, we introduce a class of ϕ-modules “with A-coefficients,”
which will play an important role in deformation theory in §11. Whenever possible
we avoid restricting our choice of A to complete local noetherian o0-algebras, since
they actually occur in the arguments.

8.2.1. Let A be a continuous a-adic o0-algebra (i.e., a ⊂ A contains some power
of π0 and A ∼= lim←−nA/a

n). Two main examples which arise later are discrete o0-
algebras where π0 is nilpotent and complete noetherian local o0-algebras (in which
case a = mA). We often do not specify a if there is no risk of confusion.

Let (A, a) be as above. For any o0-algebra R, we set RA := lim←−n(A/an ⊗o0 R).
If A is a discrete o0-algebra where π0 is nilpotent, then RA = A ⊗o0 R. If A is
a complete noetherian local o0-algebra, then RA = lim←−n(A/mn

A ⊗o0 R). For any
σ-ring (R, σR) over (o0, id), we A-linearly extend σR to RA. In particular, if σR
is finite flat, then so is σRA . This is the case when R = S and R = oE . (In the
case o0 = Fq[[π0]] we use the assumption that the residue field k of oK has a finite
p-basis.)

We let (ModFI /S)6h
A denote the category of ϕ-modules of P-height 6 h which

are finite locally free3 over SA. Similarly, we let (ModFI /oE)étA denote the cat-
egory of étale ϕ-modules which are finite locally free over oE,A. If A = o0 then
(ModFI /S)6h

o0 is just ModS(ϕ)6h and (ModFI /oE)éto0
is just Modét,free

oE
(ϕ), because

So0
∼= S and oE,o0

∼= oE . If #(A) < ∞ (i.e., if A is a finite artinian o0-algebra),
then an object of (ModFI /S)6h

A can be regarded, by forgetting A-action, as an
object of (ModFI /S)6h. But coefficient rings A that are not artinian do appear in
the later arguments (see §11.1.5).

Let (A, a) and (B, b) be continuous adic o0-algebras. Consider a continuous
o0-map A→ B. Then, for MA ∈ (ModFI /S)6h

A , the “completed” scalar extension
B⊗̂AMA := lim←−n (B/bn ⊗A MA) ∼= SB ⊗SA

MA, together with the Frobenius
structure defined by B-linearly extending ϕMA

, is an object of (ModFI /S)6h
B . This

defines the “change-of-coefficients” functors (ModFI /S)6h
A → (ModFI /S)6h

B , and
similarly one can define (ModFI /oE)étA → (ModFI /oE)étB .

3A locally free module is always assumed to be of constant rank.
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The following result can be obtained from Proposition 7.4.2: for a continuous a-
adic o0-algebra A, the functors MA 7→ {A/an⊗AMA}n and {Mn}n 7→ lim←−n Mn are
quasi-inverse equivalences of categories between (ModFI /S)6h

A and the category of
projective systems {Mn}n such that Mn ∈ (ModFI /S)6h

A/an and A/an ⊗A/an+1

Mn+1
∼−→ Mn for each n. We often apply this result when (A, a) = (A,mA) is a

complete noetherian local o0-algebra.
The scalar extension oE⊗S(·) ∼= oE,A⊗SA

(·) induces the functor (ModFI /S)6h
A →

(ModFI /oE)étA . We can immediately see that for any MA ∈ (ModFI /S)6h
A , the

Frobenius map ϕMA
is injective, since we have a ϕ-compatible injective map MA ↪→

oE ⊗S MA.

Definition 8.2.2. Let A be a continuous a-adic o0-algebra, and consider M ∈
(ModFI /oE)étA . By a SA-lattice of P-height 6 h in M , we mean a ϕ-stable SA-
submodule M ⊂M such that M ∈ (ModFI /S)6h

A and oE ⊗S M = M .

Beware that for A = Fq[ε]/(ε2) there is an example of MA ∈ (ModFI /oE)étA
which does not admit any SA-lattice of P-height 6 h, whereas there exists a S-
lattice of P-height 6 h in MA viewed as a torsion étale ϕ-module in the sense of
Definition 8.1.7. See Remark 11.1.7 for the example.

Proposition 8.2.3. Let A be a continuous a-adic o0-algebra. For any MA ∈
(ModFI /S)6h

A , the cokernel of ϕMA
is a flat A-module. If the residue field k =

oK/(u) is finite then coker(ϕMA
) = MA/ϕ(σ∗MA) and ϕ(σ∗MA)/P(u)hMA are

finite projective A-modules.

Proof. We showed that ϕMA
is injective for any coefficient ring A. Therefore,

the exact sequence

0→ σ∗MA

ϕMA−−−→MA → coker(ϕMA
)→ 0

stays short exact after applying A/I ⊗A (·) for any ideal I ⊂ A. Hence, the first
claim follows from standard facts about flatness (e.g. by [Bou89, Ch.I §2.5 Prop
4], or by an argument using TorA1 .) If k = oK/(u) is finite then SA/P(u)h is finite
free over A, so coker(ϕMA

) is finite and projective over A, and hence the following
short exact sequence of A-modules splits.

0→ ϕ(σ∗MA)/P(u)hMA →MA/P(u)hMA → coker(ϕMA
)→ 0.

�

8.2.4. Étale ϕ-modules withA-coefficients andA[GK ]-modules. Assume #(A) <
∞. For TA ∈ Repfree

A (GK) (which can be viewed as a torsion GK-representation
by forgetting the A-action), we let DE,A(TA) denote DE(TA) viewed as an étale
(ϕ, oE,A)-module. Similarly, forMA ∈ (ModFI /oE)étA (which can be viewed as a tor-
sion étale (ϕ, oE)-module by forgetting the A-action), we write T E,A(MA) to denote
T E(MA) viewed as an A[GK ]-module. From the definition it is clear that DE,A and
T E,A are exact and commute with ⊗-products, internal homs, and duality. (Note
that forMA ∈ (ModFI /oE)étA , we have a natural isomorphism HomoE,A(MA, oE,A) ∼=
HomoE (MA, E/oE) of étale (ϕ, oE,A)-modules, where the oE,A-module of the right
side is induced from MA. A similar statement holds for TA ∈ Repfree

A (GK).) Fur-
thermore, one can directly check that DE,A and T E,A commutes with “change of
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coefficients” for any finite A-algebra B; i.e., for TA ∈ Repfree
A (GK), we have a natural

isomorphism DE,A(TA)⊗A B
∼−→ DE,B(TA ⊗A B), and similarly for T E,A.

We now show that DE,A and T E,A are quasi-inverse equivalence of categories
between Repfree

A (GK) and (ModFI /oE)étA . The only non-trivial part is to show that
DE,A(TA) is free over oE,A for TA ∈ Repfree

A (GK), and T E,A(MA) is free over A
for MA ∈ (ModFI /oE)étA . We will only prove oE,A-freeness for DE,A(TA), and A-
freeness of T E,A(MA) can be proved by essentially the same argument. It is enough
to handle the case when A is local (with #(A) <∞). By applying the local flatness
criterion to the free A-module TA, one obtains an GK-equivariant isomorphism
gr•A ⊗A/mA (TA/mATA) ∼−→ gr• TA, where we give mA-adic filtrations on A and
TA. By applying DE to this isomorphism, we obtain the similar isomorphism for
DE(TA) with mAoE,A-adic filtration. Since oE,A/mA is a product of fields, the local
flatness criterion gives the oE.A-flatness of DE,A(TA).

We define the contravariant version of functors by composing with suitable dual-
ity; more precisely,D∗E,A(−) := Homo0[GK ](−, oEur

A
) and T ∗E,A(−) = HomoE,A,ϕ(−, oEur

A
).

Clearly, DE,A and T E,A are exact quasi-inverse anti-equivalence of categories be-
tween Repfree

A (GK) and (ModFI /oE)étA , which commutes with ⊗-products, internal
homs, duality, and “change of coefficients” for any finite A-algebra B. (Note that
duality commutes with “change of coefficients.”)

Let A be a complete local noetherian o0-algebra with finite residue field (so
that #(A/mn

A) <∞ for each n). Using that DE,A/mn
A
and T E,A/mn

A
commute with

“change of coefficients” for finite morphism, we defineDE,A(TA) := lim←−nDE,A/mnA(TA⊗A
A/mn

A) and T E,A(MA) := lim←−n T E,A/mnA(MA ⊗A A/mn
A) for TA ∈ Repfree

A (GK) and
MA ∈ (ModFI /oE)étA , where the transition maps are induced from the natural pro-
jection A/mn+1

A � A/mn
A; and we similarly define D∗E,A and T ∗E,A.4 We similarly

define DE,A(TA) and T E,A(MA).
By essentially the same “limit argument” as in the proofs of Lemma 5.1.4

and Proposition 5.1.7, we can show that D∗E,A and T ∗E,A induce exact quasi-inverse
equivalences of categories between Repfree

A (GK) and (ModFI /oE)étA which commutes
with ⊗-products, internal homs, duality, and “change of coefficients” for any A-
algebra B with #(B/mB) <∞; and a similar statement holds for D∗E,A and T ∗E,A.
We leave the details to readers.

One can repeat the above discussion for U and TW instead of DE and T E (us-
ing Corollary 8.1.11 instead of Proposition 5.1.7) and obtain quasi-inverse equiva-
lences of categories between Repfree

A (GK/IK) and the category of finite free étale
(ϕ,W ⊗̂o0A)-modules (where A is a complete local noetherian o0-algebra with fi-
nite residue field) which commutes with ⊗-products, internal homs, duality, and
“change of coefficients” for any A-algebra B with #(B/mB) < ∞. We leave the
details to readers.

8.2.5. ϕ-nilpotent objects. We generalized the notion of ϕ-nilpotent torsion ϕ-
modules to (ModFI /S)6h

A where A is as in §8.2.1. Namely, MA ∈ (ModFI /S)6h
A

is ϕ-nilpotent if for any sufficiently large integer N , the image ϕN (σN ∗MA) is
contained in mS ·MA (i.e., ϕ is topologically nilpotent for mS-adic topology on

4Alternatively, one may imitate the construction in §5.1, using oÊur,A := lim←−n(A/mnA ⊗o0

oÊur ).
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MA). If #(A) <∞, then MA ∈ (ModFI /S)6h
A is ϕ-nilpotent if and only if MA is

ϕ-nilpotent viewed as an object of (Mod /S)6h in the sense of §8.1.16.
Here we record some immediate formal properties.

(1) For a short exact sequence 0→M′A →MA →M′′A → 0 in (ModFI /S)6h
A ,

if two of them are ϕ-nilpotent, then so is the third.
(2) If MA,M

′
A ∈ (ModFI /S)6h

A are both ϕ-nilpotent, so are MA ⊗SA
M′A

and MA ⊕M′A.
(3) (change of coefficients) Let (A, a)→ (B, b) be a continuous map of adic o0-

algebras (where a or b can be trivial), and consider MA ∈ (ModFI /S)6h
A .

If MA is ϕ-nilpotent, then the “change of coefficients”B⊗̂AMA := lim←−n(B/bn⊗A
MA) is also ϕ-nilpotent. In particular, if A is complete local noether-
ian o0-algebra, then MA ∈ (ModFI /S)6h

A is ϕ-nilpotent if and only if
A/mn

A ⊗A MA is ϕ-nilpotent for each n.

8.2.6. Analogue of connected-étale sequence. For M ∈ (Mod /S)6h we have
discussed the maximal étale submodule Mét and the maximal ϕ-nilpotent quo-
tient Mnilp := M/Mét of M, which are in (Mod /S)6h. Now consider MA ∈
(ModFI /S)6h

A for #(A) < ∞. Viewing MA as an object in (Mod /S)6h, we ob-
tain a short exact sequence

(8.2.6.1) 0→Mét
A →MA →Mnilp

A → 0

where Mét
A and Mnilp

A are objects in (Mod /S)6h. By functoriality of connected-
étale sequences (Proposition 8.1.18), the ϕ-compatible A-action on MA induces
ϕ-compatible A-actions on Mét

A and Mnilp
A . We will show later in Proposition

8.2.7 that MA and Mnilp
A are finite locally free SA-modules, so they are objects

in (ModFI /S)6h
A . (This is not a priori clear.)

Consider a finite A-algebra B (in particular, #(B) <∞). Let MB := SB ⊗SA

MA for MA ∈ (ModFI /S)6h
A . Let us grant that Mét

A and Mnilp
A are finite locally free

over SA, so objects in (ModFI /S)6h
A . By functoriality of connected-étale sequences

in (Mod /S)6h (Proposition 8.1.18), we obtain the following commutative diagram
with exact rows:

(8.2.6.2) 0 // SB ⊗SA
Mét
A

//

��

MB
//

id
��

SB ⊗SA
Mnilp
A

//

��

0

0 // Mét
B

// MB
// Mnilp

B
// 0.

Note that SB⊗SA
Mét
A and SB⊗SA

Mnilp
A are clearly étale and ϕ-nilpotent objects

in (Mod /S)6h, respectively, since they have no non-zero u-torsion. By diagram
chasing, the vertical arrow in the right end is surjective, but Mnilp

B is the “biggest”
quotient among ϕ-nilpotent quotients of MB . Therefore, the natural map SB⊗SA

Mnilp
A → Mnilp

B is an isomorphism, so the natural map SB ⊗SA
Mét
A → Mét

B is an
isomorphism. This shows that the formation of connected-étale sequence (8.2.6.1)
commutes with finite scalar extension.
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Now, let A be a complete local noetherian o0-algebra with finite residue field.
Using the connected-étale sequence for Mn := MA ⊗A A/mn

A and the scalar exten-
sion A/mn+1

A � A/mn
A for n ≥ 1, we obtain an exact sequence of (ϕ,SA)-modules:

(8.2.6.3) 0→Mét
A →MA →Mnilp

A → 0,

where Mét
A = lim←−n(Mn)ét and Mnilp

A = lim←−n(Mn)nilp. If #(A) <∞ then the exact
sequence (8.2.6.3) recovers the connected-étale sequence for MA viewed as an object
in (Mod /S)6h as in (8.2.6.1).

The next proposition shows that Mét
A and Mnilp

A are finite locally free SA-
modules (so they are objects in (ModFI /S)6h

A ) and satisfy various natural prop-
erties.

Proposition 8.2.7. Let A be a complete local noetherian o0-algebra with fi-
nite residue field. For MA ∈ (ModFI /S)6h

A , Mét
A and MA/M

ét
A are finite lo-

cally free SA-modules. Furthermore, the exact sequence (8.2.6.3) is functorial in
MA and respects any scalar extension under any local (therefore continuous) map
A → B of complete local noetherian o0-algebras with finite residue fields (i.e., we
have B⊗̂AMét

A = (B⊗̂AMA)ét as a submodule of B⊗̂AMA, where B⊗̂A(−) :=
lim←−nB/m

n
B ⊗A (−) denotes the “completed” scalar extension).

This proposition will later be generalized for some o0-algebras A that are not
complete local noetherian. See Proposition 11.4.2 for the precise statement.

Proof. By §8.2.6, the proposition follows if we show that Mnilp
A is finite free

over SA (in which case Mét
A is forced to be finite free over SA). On the other

hand, since SA
∼= (W ⊗o0 A)[[u]], Proposition 7.4.2 asserts that Mnilp

A is finite free
over SA if and only if Mnilp

A has no nonzero u-torsion and Mnilp
A /uMnilp

A is finite
free over SA/(u). But Mnilp

A ∈ (Mod /S)6h implies that Mnilp
A has no nonzero

u-torsion by Proposition 8.1.2, so it suffices to show that Mnilp
A /uMnilp

A is finite free
over SA/(u).

Consider MA := MA/uMA viewed as a ϕ-module via ϕ := ϕMA
mod u, and

put M
ét
A :=

⋂∞
r=1 ϕ

r(σ∗rMA) and M
nilp
A := MA/M

ét
A . Clearly M

ét
A is an étale

submodule of MA which contains all étale subobjects of MA. We say a (ϕ,SA/(u))-
module (NA, ϕ) is ϕ-nilpotent if ϕr is the zero map for any r � 1. Clearly M

nilp
A

is ϕ-nilpotent and any ϕ-nilpotent quotient of MA factors through M
nilp
A .

In the proof of Proposition 8.1.18, we showed that Mét
A/uM

ét
A ⊂ M

ét
A , so we

have a natural surjective map Mnilp
A /uMnilp

A ⊂M
nilp
A . But since Mnilp

A /uMnilp
A is ϕ-

nilpotent and M
nilp
A is “maximal” among ϕ-nilpotent quotients of MA, Mnilp

A /uMnilp
A

and M
nilp
A are the same quotients of MA.

It is left to show that M
nilp
A is finite free over SA/(u). Let F := A/mA and

consider the (ϕ,SF/(u))-module M
nilp
A ⊗A F. Since SF/(u) ∼= k ⊗Fq F is a product

of fields and σ : SF → SF permutes the orthogonal idempotents, M
nilp
A ⊗A F is

finite free over SF/(u). Now consider the natural map M
ét
A ⊗A F→ (MA ⊗A F)ét.

(Note that ϕ : σ∗MA →MA is A-linear.) So we have a natural map M
nilp
A ⊗A F→

(MA ⊗A F)nilp which is surjective by a diagram chasing similar to (8.2.6.2). Since
M

nilp
A ⊗AF is ϕ-nilpotent and (MA⊗AF)nilp is maximal among ϕ-nilpotent quotient



8.3. DUALITY 125

of MA ⊗A F, the natural maps M
nilp
A ⊗A F → (MA ⊗A F)nilp and M

ét
A ⊗A F →

(MA ⊗A F)ét are isomorphisms. It follows from Nakayama’s lemma and length
consideration that M

nilp
A is finite free over SA/(u). �

8.3. Duality

For any h ≥ 0, we define a duality theory for ModS(ϕ)6h, (Mod /S)6h, and
(ModFI /S)6h

A for a continuous adic o0-algebra A as in §8.2.1. For o0 = Zp, this du-
ality for (Mod /S)61 is induced from the Cartier duality of finite flat group schemes
by the Breuil-Kisin classification, and similarly the duality for ModS(ϕ)61 is in-
duced from the duality of Barsotti-Tate groups by the Breuil-Kisin classification.
For o0 = Fq[[π0]], our duality coincides with the Faltings duality of P-height h from
§7.3.9.

8.3.1. π0-Verschiebung of P-height h. We consider M in in one of the following
categories: ModS(ϕ)6h, (Mod /S)6h, and (ModFI /S)6h

A for a continuous adic o0-
algebra A as in §8.2.1. Recall that M has no nonzero P(u)h-torsion5, and the image
of ϕM contains P(u)h·M by assumption. Now one will show below that there exists
a unique map Vh : M→ σ∗M which makes the following diagram commute.

(8.3.1.1) σ∗(M) � � P(u)h //
q�

ϕ
##FFFFFFFF

σ∗(M) σ∗(M)
q�

ϕ

##FFFFFFFF

M
- 


Vh
;;xxxxxxxx
M

, �
Vh

99tttttttttt
��

P(u)h
// M

We first give a formula for Vh : M→ σ∗S(M), as follows:

Vh(m) = ϕ−1 (P(u)hm
)
for m ∈M.

This formula is well-defined since ϕ is injective by Corollary 2.2.3.2 and Lemma
8.1.3. Clearly, Vh is the unique map which satisfies the commutative diagram on
the right. To see that Vh satisfies the other commutative diagram, it is enough to
check ϕ ◦ Vh ◦ϕ = ϕ ◦ P(u)h idσ∗M since ϕ is injective. But both sides are equal to
P(u)h ·(idM ◦ϕ).

The (unique) S-linear map Vh : M→ σ∗S(M) which satisfies the commutative
diagrams (8.3.1.1) is called π0-Verschiebung of P-height h. When o0 = Zp and
h = 1, see [Kis09a, §1] for the relation between V1 and the Verschiebung map of
Dieudonné crystals.

Definition 8.3.2. Let M be an object in one of the following categories:
ModS(ϕ)6h, (Mod /S)6h, and (ModFI /S)6h

A for a continuous adic o0-algebra A
as in §8.2.1. We define another ϕ-module M∨, as follows.

• The underlying module for M∨ is M∗, where

M∗ :=


HomS(M,S[ 1

π0
]/S), if M ∈ (Mod /S)6h

HomSA
(M,SA), if M ∈ (ModFI /S)6h

A

HomS(M,S), if M ∈ ModS(ϕ)6h.

5This is clear for M ∈ ModS(ϕ)6h, and for M ∈ (Mod /S)6h this follows from Proposition
8.1.2. For M ∈ (ModFI /S)6h

A , we are reduced to showing that P(u) is SA-regular, but the
natural map SA → oE,A is injective and P(u) is a unit in oE,A.
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• We set ϕM∨ = (Vh)∗ : σ∗(M∗) ∼= (σ∗M)∗ → M∗, where Vh is the π0-
Verschiebung of P-height h which is defined above in §8.3.1. Alterna-
tively, we can construct ϕM∨ as follows. Consider ϕM : (σ∗M)[ 1

P(u) ] ∼−→
M[ 1
P(u) ], and we view l ∈ σ∗(M∗) as a functional on σ∗M. Now we define

ϕM∨(l) := l ◦ (P(u)h ·ϕ−1
M ) ∈ (M∗)[1/P(u)],

which actually defines an element in M∗ since M is of P-height 6 h.
This ϕ-module M∨ is called the dual of P-height h for M. This duality M∨ depends
on h, even though we do not specify this in the notation.

It is straightforward that the duality of P-height 6 h for (ModFI /S)6h
A com-

mutes with the change of coefficients. If A is a finite artinian o0-algebra, then this
duality for (ModFI /S)6h

A and (Mod /S)6h are compatible.
The following lemma, whose proof is immediate, may provide a motivation for

the definition.

Lemma 8.3.3. Let M be an object in one of the following categories: ModS(ϕ)6h,
(Mod /S)6h, and (ModFI /S)6h

A for a continuous adic o0-algebra A as in §8.2.1.
Then we have a natural ϕ-compatible isomorphism oE ⊗S M∨ ∼= (oE ⊗S M)∗(h),
where the right side is the Tate twist of the natural duality for (free or torsion) étale
ϕ-modules.

For a torsion or free étale ϕ-module over oE , we put M∨ := M∗(h) where M∗
is the natural duality, and call M∨ the dual of P-height h.

Although the duality of P-height h is defined separately for ModS(ϕ) and
(Mod /S)6h, they are compatible in the following sense.

Lemma 8.3.4. For M ∈ ModS(ϕ)6h, there exists a natural isomorphism M∨ ∼=
lim←−n(M/πn0 M)∨, where (M/πn0 M)∨ is the dual as (Mod /S)6h. Furthermore,

for any isogeny M′
f−→ M in ModS(ϕ)6h, there exists a natural isomorphism

coker(f∨) ∼= (coker f)∨, where f∨ : M∨ → (M′)∨ is the dual isogeny and (coker f)∨
is the dual for (Mod /S)6h.

Proof. The first claim is clear from the definition. The second claim can
be seen by viewing both M∗ and (M′)∗ as submodules of HomS(M′,S[ 1

π0
]) ∼=

HomS(M,S[ 1
π0

]). (c.f. Lemma 5.1.9) �

8.3.5. Lubin-Tate type ϕ-modules and maximal Lubin-Tate quotients. Let M
be an object in one of the following categories: ModS(ϕ)6h, (Mod /S)6h, and
(ModFI /S)6h

A for a continuous adic o0-algebra A as in §8.2.1. Then M is called
of Lubin-Tate type of P-height h if the following (obviously) equivalent conditions
are satisfied.

• The π0-Verschiebung of P-height h for M is an isomorphism.
• The dual M∨ is étale (where (·)∨ denotes the duality of P-height h).

The notion of Lubin-Tate type ϕ-modules of P-height h clearly depends on the
choice of h.

Assume that M is an object of one of the following categories: ModS(ϕ)6h,
(Mod /S)6h, and (ModFI /S)6h

A where A is a complete local noetherian o0-algebra
with finite residue field. From Propositions 8.1.18 and 8.2.7, there exists an maximal
étale subobject (M∨)ét ⊂M∨. By passing to the duality of P-height h, we see that
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MLT := (M∨,ét)∨ is a quotient of M which is maximal among quotients which are
of Lubin-Tate type of P-height h. We call MLT the maximal Lubin-Tate quotient
(of P-height h). Since the formation of both the maximal étale submodule and the
duality of P-height h commute with the change of coefficients, the formation of
maximal Lubin-Tate quotient also commutes with the change of coefficients.

Later in Proposition 11.4.2, we show the existence of the maximal étale sub-
object for more general ϕ-modules M ∈ (ModFI /S)6h

A than the case when A is
complete local noetherian. Our discussion of maximal Lubin-Tate quotient carries
over word-by-word in that case as well.

8.3.6. Unipotent ϕ-modules of P-height 6 h. Let M be an object in one of
ModS(ϕ)6h, (Mod /S)6h, and (ModFI /S)6h

A for a continuous adic o0-algebra A
as in §8.2.1. We say M ∈ (ModFI /S)6h

A is unipotent of P-height 6 h if the
following (obviously) equivalent conditions are satisfied.

(1) The π0-Verschiebung of P-height h for M is topologically nilpotent. In
other words, for any sufficiently largeN , the composite V Nh = σN−1∗(Vh)◦
· · · ◦ σ∗(Vh) ◦ Vh : M→ σN

∗
M has the image in mS ·(σN

∗
M).

(2) M∨ is ϕ-nilpotent, where (·)∨ denotes the duality of P-height h.
(3) (Under the extra assumption that A is a complete local noetherian o0-

algebra with finite residue field if M ∈ (ModFI /S)6h
A ) The maximal

Lubin-Tate quotient MLT for M is trivial.
The conditions (1) and (2) are equivalent to the condition (3) whenever maximal
Lubin-Tate quotients are well-defined. (See Proposition 11.4.2 for more general case
when maximal Lubin-Tate quotients are well-defined.) The notion of unipotent ϕ-
module (of P-height 6 h) clearly depends on the choice of h.

We emphasize that for a unipotent ϕ-module M ∈ (Mod /S)6h or M ∈
ModS(ϕ)6h, it is not true that the associated GK-representation T ∗S(M) is unipo-
tent (i.e., an extension of trivial representations).

Remark 8.3.7 (Formal Properties). Here we record some immediate formal
properties.

(1) Consider a short exact sequence 0→M′ →M→M′′ → 0 in ModS(ϕ)6h,
(Mod /S)6h, or (ModFI /S)6h

A . If two of them are of Lubin-Tate type
of P-height 6 h (respectively, unipotent of P-height 6 h), then so is the
third.

(2) Let M and M′ are objects in ModS(ϕ)6h, (Mod /S)6h, or (ModFI /S)6h
A .

If both M and M′ are of Lubin-Tate type of P-height 6 h (respectively,
unipotent of P-height 6 h), then so are their tensor product M⊗M′ and
direct sum M⊕M′.

(3) (change of coefficients) Let (A, a) → (B, b) be a continuous map of adic
o0-algebras (where a and/or b is allowed to be trivial), and let MA ∈
(ModFI /S)6h

A . If MA is of Lubin-Tate type of P-height 6 h (respec-
tively, unipotent of P-height 6 h), then so is the “change of coefficients”
B⊗̂AMA := lim←−n(B/bn⊗AMA). Furthermore, if A is complete local noe-
therian o0-algebra with finite residue field, then MA ∈ (ModFI /S)6h

A is
of Lubin-Tate type of P-height 6 h (respectively, unipotent of P-height
6 h) if and only if A/mn

A ⊗A MA is so for each n.
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Remark 8.3.8. We explain where the names “Lubin-Tate type” and “unipo-
tent” come from. In the case o0 = Fq[[π0]], M ∈ ModS(ϕ) is of Lubin-Tate type of
P-height h if and only if the corresponding π0-divisible group G∗(M) is of Lubin-
Tate type of P-height h (i.e., G∗(M)⊗oK ôKur is isomorphic to a product of copies
of LT ⊗h).

For the case o0 = Zp with p > 2, a ϕ-module M ∈ ModS(ϕ)61 is of Lubin-Tate
type of P-height 6 1 (respectively, unipotent of P-height 6 1) if and only if the cor-
responding Barsotti-Tate group G∗(M) is multiplicative (respectively, unipotent).
Similarly, M ∈ (Mod /S)61 is of Lubin-Tate type of P-height 6 1 (respectively,
unipotent of P-height 6 1) if and only if the corresponding finite flat group scheme
G∗(M) is multiplicative (respectively, unipotent). A finite locally free group scheme
G is called multiplicative if the Cartier dual of G is étale; and G is called unipotent
if the Cartier dual of G is connected.

Remark 8.3.9. Kisin [Kis09a] works with the covariant correspondence be-
tween (Mod /S)61 and the category of finite flat group schemes of p-power order,
by post-composing the Cartier duality to the contravariant correspondence G∗, and
similarly for Barsotti-Tate groups. Under the covariant correspondence, unipotent
torsion ϕ-modules correspond to connected finite flat group schemes, and simi-
larly for formal (i.e., connected) Barsotti-Tate groups. So in [Kis09a], unipotent
ϕ-modules are called “formal” or “connected.”



CHAPTER 9

“Raynaud’s theory” for torsion ϕ-modules

In this section, we develop the analogue of Raynaud’s theory [Ray74] for torsion
ϕ-modules. If o0 = Zp, p > 2, and the P-height is 6 1, then the discussions of this
section exactly recovers Raynaud’s theory for finite flat group schemes over oK by
the Breuil-Kisin classification [Kis06, Theorem 2.3.5].

9.1. Classification of rank-1 objects in (ModFI /S)6h
F

Fix a finite extension F/Fq and put qd := #(F). (Recall that q = p if o0 =
Zp.) We view F as an o0-algebra such that π0F = 0. In this subsection, we give
a classification of rank-1 objects in (ModFI /S)6h

F if k contains F. Just as in
Raynaud’s theory for group schemes of type (p, · · · , p), this classification is used to
analyze the semisimplification of the inertia action on torsion GK-representation of
P-height 6 h, later in §9.4. Compare with [Ray74, §1].

9.1.1. We fix an embedding F ↪→ k. Let χ0 : F× ∼−→ µqd−1(oK) ⊂ k× ⊂ o×K
be the character which is obtained by restricting the fixed inclusion F ↪→ k. Put
χi := χq

i

0 , for i ∈ Z/dZ, which plays the same role as the fundamental characters
in Raynaud’s theory [Ray74, §1.1]. In fact, χi are all the characters which can
extend to a field embedding F ↪→ k, and different choices of the fixed embedding
F ↪→ k result in a cyclic permutation of the labeling of χi. (This can be seen from
χi|Fq = χ0|Fq and χq

d

i = χi for i ∈ Z/dZ.)
Choose M ∈ (Mod /S)6h, equipped with a ϕ-compatible F-action. (In par-

ticular π0 ·M = 0, so automatically M ∈ (ModFI /S)6h.) Consider the following
isotypic decomposition of M for the F-action:

M ∼=
⊕

i∈Z/dZ

Mi,

where F acts on Mi via the character χi. Clearly, ϕ restricts to σ∗Mi → Mi+1.
It follows that to give an M ∈ (ModFI /S)6h

F is equivalent to give {Mi, δi}i∈Z/dZ,
where each Mi is finite free over S/(π0) ∼= oK , and the image of each δi : σ∗Mi →
Mi+1 contains ueh ·Mi+1. (Observe that P(u) ≡ ue mod (π0), if o0 = Zp; and
P(u) ≡ −u0 mod π0 where ordu(u0) = e, if o0 = Fq[[π0]].) From this, we obtain
the following lemma.

Lemma 9.1.2. For M ∈ (Mod /S)6h equipped with a ϕ-compatible F-action we
have M ∈ (ModFI /S)6h

F . In other words, M is finite free over SF ∼= oK ⊗Fq F.

Proof. It is enough to prove that Mi for each i ∈ Z/dZ is of the same oK-
rank. But since M is of P-height 6 h we have ueh ·Mi+1 ⊂ δi(Mi) ⊂Mi+1, and δi
is injective for any i because ϕ is. �

129
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Let us further assume that M is of SF-rank 1, so each Mi is free of oK-rank-1.
By choosing a basis ei ∈Mi for each i, we may view the maps δi as elements in oK
such that ordu(δi) ≤ he. Given {δi| ordu(δi) ≤ he}i∈Z/dZ, we can reconstruct M,
as follows. Put M :=

⊕
i∈Z/dZ oK ·ei, and ϕM(σ∗ei) := δiei+1. For a ∈ F×, we put

[a]ei := χi(a)·ei.
If we choose a different set of bases, say αiei ∈ Mi where αi ∈ o×K , then δi is

replaced by α−1
i+1δiα

q
i . In particular, ordu(δi) is independent of the choice of bases.

Note also that for given {δi} and {δ′i} such that ordu(δi) = ordu(δ′i) for each i, the
solutions αi of the equations δ′i = α−1

i+1δiα
q
i lie in some unramified extension of oK .

To summarize, we have proved the following:

Proposition 9.1.3. Assume that F can embed into k. Then the assignment
M 7→ {δi}i∈Z/dZ defines a bijection between the isomorphism classes of rank-1 ob-
jects in (ModFI /S)6h

F and equivalence classes of {δi| ordu(δi) ≤ he}i∈Z/dZ under
the equivalence relation {δi} ∼ {α−1

i+1δiα
q
i } for αi ∈ o×K . If, furthermore, oK is

strictly henselian, then the assignment M 7→ {ni = ordu(δi)}i∈Z/dZ defines a bijec-
tion onto the families of r integers 0 ≤ ni ≤ he.

We may improve our choice of δi as follows. By modifying the basis, we can
arrange to have δi = uni for all i 6= d − 1. Now write δd−1 := ᾱβund−1 , where
ᾱ ∈ k×, and β ≡ 1 mod u. If we replace e0 with βe0 and modify the rest of the
basis so that δi = uni for all i 6= d− 1 (i.e., replace ei with βq

iei for all i ∈ Z/dZ),
then δd−1 is replaced with ᾱβqd−1und−1 . By repeating this process, we may assume
that β = 1. For the similar reason, ᾱ is unique up to (k×)qd−1-multiples.

For each (ᾱ, n), where ᾱ ∈ k×/(k×)qd−1 and n = {n0, · · · , nd−1} with ni ∈
[0, he], we define M(ᾱ,n), as follows.

M(ᾱ,n) :=
⊕

i∈Z/dZ

oK ·ei

ϕ(σ∗ei) := uniei+1, if i 6= d− 1
ϕ(σ∗ed−1) := ᾱund−1e0

[a]ei := χ0(a)p
i

·ei, ∀a ∈ F.

We have proved the following

Corollary 9.1.4. Assume that F can embed into k with χ0 : F ↪→ k such an
embedding. Then for any M ∈ (ModFI /S)6h

F of SF-rank 1, there exists ᾱ ∈ k×

unique up to (k×)qd−1-multiple and uniquen = {n0, · · · , nd−1} with ni ∈ [0, he],
such that M ∼= M(ᾱ,n).

9.1.5. Duality, étale and Lubin-Tate type objects. Let M ∈ (ModFI /S)6h
F

be of SF-rank 1, which corresponds to {δi}i∈Z/dZ under the bijection given in
Proposition 9.1.3. In other words, M ∼=

⊕
i∈Z/dZ oK ·ei with ϕ(σ∗ei) = δiei+1. It

is straightforward to verify the following claims:
Duality: The dual M∨ of P-height6 h corresponds to {(P(u)h mod π0)/δi}i∈Z/dZ.
Étale/Lubin-Tate type: M is étale if and only if ordu(δi) = 0 for all i; M is

of Lubin-Tate type of P-height h if and only if ordu(δi) = he for all i.
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9.2. S-lattices of P-height 6 h

In this subsection, we study S-lattices of P-height6 h in a fixedM ∈ (ModFI /oE)ét.
We also introduce an operation which plays a role similar to schematic closure of
the generic fiber of a finite flat group scheme over oK . As an application, we
show that T ∈ Repfree

o0
(GK) is isomorphic to T ∗S(M) for some M ∈ ModS(ϕ) if

and only if for each n > 0 there exists Mn ∈ (Mod /S)6h killed by πn0 such that
T/πn0 T

∼= T ∗S(Mn) in Reptor
o0

(GK). Based on the analogy discussed in Remark
8.1.15, this can be thought of as an analogue of [Ray74, §2].

9.2.1. Analogue of schematic closure. ChooseM,M ′ ∈ (ModFI /oE)ét = Modét,tor
oE

(ϕ)
and a ϕ-compatible oE -linear surjective map f : M → M ′. Let M ∈ (Mod /S)6h

be such that M ∼= oE ⊗S M. We obtain a ϕ-compatible S-linear surjective map
f |M : M� f(M) which recovers f by extending scalars to oE (i.e., after inverting u,
as M and f(M) are killed by some power of π0). Furthermore, f(M) ∈ (Mod /S)6h

by Lemma 8.1.8, so f(M) ⊂ M ′ is a S-lattice of P-height 6 h (Definition 8.1.7).
Also, we have that ker(f) ∈ (ModFI /oE)ét and ker(f |M) ⊂ ker(f) is a S-lattice of
P-height 6 h. Using the analogy with finite flat group schemes discussed in Remark
8.1.15, the ϕ-compatible surjection f |M : M � f(M) plays the role of schematic
closure of a closed subgroup scheme of the generic fiber.

We record an immediate consequence for GK-representations of P-height 6 h.
Recall that Reptor,6h

o0
(GK) denotes the category of torsion o0-representations of GK

with P-height 6 h.

Proposition 9.2.2. The category Reptor,6h
o0

(GK) is closed under finite direct
products, subobjects, and quotients.

Proof. The direct product aspect is obvious. Let T = T ∗S(M) for some
M ∈ (Mod /S)6h, and set M := oE ⊗S M ∼= D∗E(T ). Any GK-stable submodule
T ′ ⊂ T corresponds to a ϕ-compatible surjection f : M �M ′ whereM ′ := D∗E(T ′).
Then f(M) ⊂ M ′ is a S-lattice of P-height 6 h by the discussions at §9.2.1, so
T ′ is of P-height 6 h. Similarly, D∗E(T/T ′) ∼= ker(f), and ker(f |M) ⊂ ker(f) is a
S-lattice of P-module 6 h. Thus, T/T ′ is of P-height 6 h. �

9.2.3. Partial ordering on S-lattices of P-height 6 h. We fix an étale ϕ module
M ∈ (ModFI /oE)ét. For any two S-lattices M1,M2 ⊂ M of P-height 6 h, there
exists a S-lattice M ⊂ M of P-height 6 h that contains both – for example,
M := M1 + M2 does the job. Similarly, there exists a S-lattice M′ ⊂ M of P-
height 6 h that is contained in both – for example, M′ := M1 ∩M2 does the job.
Therefore, one can define a partial ordering by inclusion on the set of S-lattices of
P-height 6 h in M .

Lemma 9.2.4. Suppose that M ∈ (ModFI /oE)ét has a S-lattice of P-height
6 h. Then there exist a (maximal) S-lattice M+ of P-height 6 h which contains
any S-lattice of P-height 6 h, and a (minimal) S-lattice M− of P-height 6 h
which is contained in any S-lattice of P-height 6 h. In particular, there are only
finitely many S-lattices of P-height 6 h in a fixed M ∈ (ModFI /oE)ét.

Proof. The last claim follows from the existence of M+ and M−, because
the set of S-lattice of P-height 6 h for M injects into the set of S-submodules
of M+/M−, which is of finite length since M+[ 1

u ] ∼= M ∼= M−[ 1
u ]. In order to
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prove the lemma, it is enough to show the existence of the maximal element, by
the duality of P-height h.

Let M ⊂ M be a S-lattice of P-height 6 h. We first assume that either
o0 = Fq[[π0]] or that p·M = 0 if o0 = Zp. In those cases, we can view M as a finite
free oK-module. Consider the following algebras
(9.2.4.1)

AM := SymKM

〈mq − ϕ(σ∗m) : m ∈M〉 , and AM :=
SymoK M

〈mq − ϕ(σ∗m) : m ∈M〉
.

Clearly, AM is an étale K-algebra, and AM is finite flat over oK with AM ⊗oK

K ∼= AM . (Note that M is u-torsionfree, so is finite free over oK .) If M′ ⊃ M
is another S-lattice of P-height 6 h, then AM′ is finite over AM and we have
AM′ ⊗oK K = AM . But the integral closure of AM in AM is finite over AM since
AM is étale1, so the set of S-lattices of P-height 6 h is bounded above. This proves
the lemma when o0 = Fq[[π0]], as well as when p0 = Zp and p·M = 0.

Now, assume that o0 = Zp. It is enough to show that for any two S-lattices
M ⊂M′ ⊂M of P-height 6 h, the length of M′/M has an upper bound that only
depends on M . We reduce to the settled case when p·M = 0, as follows. Consider
the following commutative diagram with exact rows.

(9.2.4.2) 0 // M[p] //
� _

��

M //
� _

��

M/M[p] //
� _

��

0

0 // M′[p] // M′ // M′/M′[p] // 0,

where M[p] denotes the submodule of M that is killed by p. By the snake lemma,
we get a short exact sequence

(9.2.4.3) 0→ M′[p]
M[p] →

M′

M
→ M′/M′[p]

M/M[p] → 0.

By repeating this process for the S-lattices M/M[p] ⊂M′/M′[p] inside of M/M [p]
(see §9.2.1) and using the additivity of length on short exact sequences, we reduce
the lemma to the case when p·M = 0. But this case is already handled. �

Remark 9.2.5. Consider M ∈ (ModFI /oE)ét and a S-lattice M ⊂ M of P-
height 6 h. Assume that either o0 = Fq[[π0]] or p·M = 0, and let AM and AM be as
in (9.2.4.1). We can define comultiplications on AM and AM by m 7→ m⊗1+1⊗m
for anym ∈M andm ∈M , respectively. Let GM := SpecAM and GM := SpecAM
denote the corresponding finite flat group schemes over oK and K, respectively. (If
q = p then we have GM

∼= G∗(M) and GM ∼= G∗(M), where G∗(·) is as defined in
§7.2.4.)

Note that GM is a prolongation of GM , and the assignment M GM preserves
the natural partial orderings; i.e., if M and M′ are two S-lattices of P-height 6 h in
M , then M′ ⊂M if and only if there exists a map GM′ → GM which prolongs the
identity map on the generic fiber GM . (See [Ray74, Definition 2.2.1].) Therefore,
Lemma 9.2.4 for the case when either o0 = Fq[[π0]] or p·M = 0 can be deduced from

1Since AM is étale, the “generic trace pairing” AM ⊗K AM → K is perfect. The integral
closure of AM is therefore contained in the oK -linear dual of AM embedded in AM via the “generic
trace pairing”, and this is a finite AM-module.
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the existence of maximal and minimal prolongations of a finite flat group scheme
[Ray74, Corollaire 2.2.3].

We digress to record the following interesting fact. For any α ∈ o0 consider
[α]∗ : AM → AM and [α]∗ : AM → AM induced from m 7→ α ·m for any m ∈ M
and m ∈ M , respectively. This defines o0-actions on GM and GM , respectively.
(This is also true when o0 = Zp and p ·M = 0. In particular, it follows that the
group schemes GM and GM are killed by p.) Therefore GM (Ksep) ∼= GM(Ksep) is
naturally an o0-torsion GK-representation. By an argument similar to the proof of
Proposition 7.3.4, we can show that there exists a natural o0-linear GK-equivariant
isomorphism GM (Ksep) ∼= T ∗E(M), and so GM(Ksep) ∼= T ∗S(M).

Proposition 9.2.6. Let M be an étale ϕ-module which is free over oE , and
suppose that Mn := M/πn0M has a S-lattice M(n) ⊂ Mn of P-height 6 h, for
each n. Then M has a S-lattice M of P-height 6 h. Furthermore, the S-lattice of
P-height 6 h is unique.

This proposition shows that a o0-lattice GK-representation T is of P-height
6 h (Definition 5.2.8) if and only if T/πn0 T is of P-height 6 h (Definition 8.1.7) for
all n ≥ 1.

Proof. The proof will be quite similar to [Ray74, Proposition 2.3.1], working
with S-lattices of P-height 6 h and the analogue of schematic closures (from §9.2.1)
in place of finite flat group scheme models and schematic closures. The uniqueness
of M follows from Theorem 5.2.3, so we only need to show the existence. We
proceed in several steps.
9.2.6.1. For each n, we may modify M(n) so that the natural projection prn : Mn �
Mn−1 restricts to M(n)→M(n− 1). (We do not require this to be surjective.)

We recursively modify M(n) with n increasing. Suppose that the claim is true
for each j < n and we look for a S-lattice M̃(n) ⊂ Mn of P-height 6 h such that
prn restricts to M̃(n)→M(n− 1).

By the duality of P-height 6 h, we obtain pr∨n : M∨n−1 → M∨n . Consider the
“graph morphism” pr∨n ⊗ id : M∨n−1 ⊗M∨n � M∨n , and we let N be the image of
M(n − 1)∨ ⊗M(n)∨ by this morphism. Then N ⊂ M∨n is a S-lattice of P-height
6 h (containing M(n)∨) and pr∨n induces M(n− 1)∨ → N. Now take M̃(n) := N∨.
9.2.6.2. For i 6 n, let M(n)i ⊂ Mi be the image of M(n) under the natural
projection Mn � Mi. Clearly, pri : Mi � Mi−1 restricts to M(n)i → M(n)i−1

for all i 6 n. We put M
(n)
i := ker[M(n)i → M(n)i−1] for 1 6 i 6 n, which is

viewed as a submodule of M1 via M
(n)
i ⊂ ker[pri : Mi � Mi−1] ∼= M1 (where the

isomorphism uses multiplication by πi−1
0 ). Then M

(n)
i is a S-lattice of P-height

6 h for M1.
Now, M(n+1)→M(n) from the previous step produces a map M

(n+1)
i →M

(n)
i

for all n > i, and this becomes the identity map on M1 after tensoring with oE .
So for each fixed i, we obtained a decreasing sequence {M(n)

i }n>i of S-lattices of
P-height for M1. By Lemma 9.2.4, there is a minimal element Mi := M

(n0)
i in the

sequence, so we have an equality M
(n)
i = Mi for all n > n0 for some n0 = n0(i) ≥ i.
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9.2.6.3. We claim that the sequence {Mi}i of S-lattices of P-height 6 h in M1 is
increasing, so there exists an integer i0 such that the equality Mi0 = Mi holds for
any i > i0.

By the previous step and Lemma 9.2.4, it is enough to show that with n fixed
(and arbitrarily large), the sequence {M(n)

i }i6n is increasing in i. In fact, the π0-
multiplication map induces an injective mapMi−1 ↪→Mi, hence M(n)i−1 ↪→M(n)i
for each i 6 n. This induces a map M

(n)
i−1 →M

(n)
i on S-submodules which becomes

the identity map on M1 after tensoring with oE . The claim follows.
9.2.6.4. We are ready to conclude the proof. We may assume i0 = 1 by replacing
M(n) with ker

[
M(n + i0) � M(n + i0)i0

]
. (Recall that M(n + i0)i0 is the image

of M(n + i0) under the natural projection Mn+i0 � Mi0 .) So the previous step
implies that the map induced by π0-multiplication M

(n)
i−1 →M

(n)
i is an isomorphism

for all i and for n � 0. (More precisely, n > n0 = n0(i) will be enough, where
n0, depending on i, is as in §9.2.6.2.) We deduce that for fixed i and for n � 0
depending on i, we have the following diagram with the horizontal sequence short
exact:

(††) M(n)i+1

����

[πi0]

&&LLLLLLLLLL

0 // M(n)1 // M(n)i+1 // M(n)i // 0.

Indeed, the content is that the inclusion M(n)1 = M
(n)
1 ⊆M

(n)
i+1 = ker[M(n)i+1 →

M(n)i] is an equality for n � 0 (depending on i), and this is a consequence of
having Mj ⊂M1 the same for all j.

Now, for each n, let Mn be the minimal element of the decreasing sequence
M(n) ⊃M(n+ 1)n ⊃ · · · ⊃M(n+ r)n ⊃ · · · .

Since M1 is torsion-free over S/(π0) = Fq[[u]], it is free, and then by induction
we infer that each Mn is free over S/(πn0 ) with Mn+1/π

n
0 Mn+1

∼−→Mn. And from
the diagram (††), we obtain the following diagram with the horizontal sequence
short exact:

Mi+j

����

[πi0]

##GGGGGGGGG

0 // Mj
// Mi+j // Mi

// 0.
Hence M = lim←−n Mn is a S-lattice of P-height 6 h in M . �

We record the following interesting application of Proposition 9.2.6, which is
analogous to the fact that a p-adic GK -representation is crystalline (respectively,
semi-stable) if and only if its IK -restriction is so. We use the same notations as in
§8.1.12. We say that an o0-lattice representation T of IK ∼= GK̂ur is of P-height 6 h
if there exists a finite free (ϕ,S

K̂ur)-module M
K̂ur such that T ∼= T ∗S

K̂ur
(M

K̂ur) as
IK-representations and coker(ϕM

K̂ur
) is annihilated by P(u)h.

Proposition 9.2.7. An o0-lattice GK-representation T is of P-height 6 h in
the sense of Definition 5.2.8 if and only if its restriction to IK is of P-height 6 h
in the above sense.
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Proof. As in the proof of Proposition 8.1.13, the “only if” direction is trivial.
Now, assume that the restriction to IK of T ∈ Repfree

o0
(GK) is of P-height 6 h.

Clearly, the restriction to IK of T/πn0 T is of P-height 6 h for each n ≥ 1 in the
sense of §8.1.12. By Proposition 9.2.6, it is enough to show that T/πn0 T is of
P-height 6 h as an o0-torsion GK-representation, which follows from Proposition
8.1.13. �

9.3. The case of small h and small ramification

In this subsection, we show that if he < q− 1 then the scalar extension functor
(Mod /S)6h → (ModFI /oE)ét is fully faithful. The proof uses the classification of
rank-1 objects in (ModFI /S)6h

F , proved in Proposition 9.1.3. For finite flat group
schemes, the corresponding theory is discussed in [Ray74, §3.3].

9.3.1. Let T ∈ Reptor
o0

(GK) be a semi-simple torsion GK-representation, where
GK acts by ρ : GK → Auto0(T ). This forces π0 ·T = 0. Under this assumption, we
claim that T is tame; i.e., the wild inertia group IwK acts trivially on T . In fact,
one may assume T is simple. Since the cardinality of any IwK-orbit is some power
of p and the zero element is fixed by IwK , the GK-submodule T IwK is non-trivial so
it equals T by simplicity.

Now, we temporarily assume that oK is strictly henselian so that GK = IK
where IK is the inertia group forK. Assume that T is simple. Then, the commutant
EndFq [It](T ) is a finite-dimensional division algebra over Fq, so it is a finite field
extension of Fq. We put F := EndFq [It](T ), and view T as an F-vector space via
the natural action of its commutant. Since It is commutative, the image ρ(It) is
contained in the commutant. Therefore, by simplicity T is a 1-dimensional F-vector
space and the IK-action on T is given by a (tame) character ρ : IK � It → F×.

To summarize, we have proved the following well-known proposition.

Proposition 9.3.1.1. If T be a semi-simple torsion GK-representation, then
T is tame. If the residue field k of K is separably closed and T is simple, then there
exists a finite extension F/Fq, which makes T a 1-dimensional F-representation of
GK = IK .

We stop assuming that k is separably closed. Let T be an F-representation
of P-height 6 h, and M := D∗E,F(T ). Though it is not true in general that the
ϕ-compatible F-action on M preserves any S-lattice M ⊂ M of P-height 6 h,
it is possible to find some S-lattices of P-height 6 h with this property, namely
M+ and M− from Lemma 9.2.4. Indeed, any automorphism of M restricts to an
automorphism of its maximal S-lattice M+ of P-height 6 h, and the same is true
for M− by duality of P-height h. Furthermore, by Lemma 9.1.2, any torsion ϕ-
module with a ϕ-compatible F-action is in (ModFI /S)6h

F . We have proved the
following proposition.

Proposition 9.3.1.2. Consider M ∈ (ModFI /oE)étF which has a S-lattice of
P-height 6 h. Then there exists a SF-lattice of P-height 6 h(e.g., the maximal and
minimal S-lattice M+ and M− of P-height 6 h).

The upshot of this discussion is that when oK is strictly henselian (i.e., k is sepa-
rably closed), for any torsion representation T of P-height 6 h, each Jordan-Hölder
constituent of T comes from some rank-1 object in (ModFI /S)6h

F for some finite
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F/Fq (depending on the Jordan-Hölder constituent). This is one of the motivations
for our classification of rank-1 objects in (ModFI /S)6h

F .

9.3.2. SF-lattices of P-height 6 h. Assume that there exists an Fq-embedding
F ↪→ k and fix it. Consider an étale ϕ-module M ∈ (ModFI /oE)étF of oE,F-rank
1 that admits a S-lattice of P-height 6 h. We study its maximal and minimal
S-lattices of P-height 6 h, using their ϕ-compatible F-action (Proposition 9.3.1.2)
and our classification result (Proposition 9.1.3).

Let M,M′ ⊂ M be SF-lattices of P-height 6 h. We choose an oK-basis {ei}
for M and {e′i} for M′, coming from the isotypic decomposition for F-action. Then
we have ϕM(σ∗ei) = δiei+1 and ϕM′(σ∗e′i) = δ′ie′i+1 for some δi, δ′i ∈ oK of u-order
6 he. (See Proposition 9.1.3.)

By assumption, we have M′⊗oK K = M⊗oK K = M , and by the choice of the
bases we have e′i = αiei for some αi ∈ K×. Since ϕM = ϕM[ 1

u ] = ϕM′ [ 1
u ], we get

the following compatibility condition.

(9.3.2.1) δ′i = α−1
i+1 ·δi ·α

q
i

If M′ ⊂M (e.g., M = M+ or M′ = M−) then αi ∈ oK for all i. Assume that we
are in this case.

We give a criterion for M to be maximal, in terms of {ordu(δi)}. We proceed
in the following steps.
9.3.2.2. Step (1). If M′ is not maximal, then ordu(δ′i) ≥ q − 1 for some i. In
particular, if he < q − 1 then there exists at most one S-lattice of P-height 6 h in
M .

The second claim follows from the first since ordu(δ′i) ≤ he. To show the first
claim, we may assume that M % M′ (taking M = M+), so we have αi /∈ o×K for
some i. Choose i0 ∈ Z/dZ so that ordu(αi0) ≥ 1 is maximal among ordu(αi). So
by (9.3.2.1), we know that ordu(δ′i0) ≥ q − 1.
9.3.2.3. Step (2). Assume that for some i, we have ordu(αi) > ordu(αi+1) (so
necessarily, d > 1). For such i, we have ordu(δ′i) ≥ q by (9.3.2.1). In particular,
this case can occur only when he ≥ q. Conversely, starting with M′ such that there
exists an i0 with ordu(δ′i0) ≥ q, one may take αi0 = u and αi = 1 for i 6= i0. Then
δi0 = u−qδ′i0 , δi0−1 = uδ′i0−1 and δi = δ′i for i 6= i0, i0 − 1 give the solution to
the equations (9.3.2.1), hence another SF-lattice M ⊂ M of P-height 6 h which
contains M′.
9.3.2.4. Step (3). For any SF-lattice M′ ⊂ M of P-height 6 h, there exists a SF-
lattice M ⊂ M of P-height which contains M′ and satisfies that ordu(δi) ≤ q − 1
for all i.

If d = 1 then we may take α1 := uc where c := b ordu(δ′1)
q−1 c so that δ1 = u−c(q−1)δ′1

has the u-order (strictly) less than q − 1. So we may assume that d > 1 and
ordu(δ′i0) ≥ q for some i0. As in Step (2), we may take αi0 = u and αi = 1 for
i 6= i0. Furthermore, one can check that

∑
i∈Z/dZ δi <

∑
i∈Z/dZ δ

′
i. If ordu(δi) ≥ q

for some i then we apply this process to M (instead of M′). This terminates after
finitely many times because at each time the positive integer

∑
i∈Z/dZ δi decreases,

and the resulting SF-lattice M of P-height 6 h in M satisfies that ordu(δi) ≤ q−1
for all i.
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9.3.2.5. Step (4). Take M := M+. By the previous step, we may assume ordu(δ′i) ≤
q − 1, for all i, in which case all αi have the same valuation. Now, assume that
the valuation of αi is positive. Then by (9.3.2.1), this can only happen when
ordu(αi) = 1, ordu(δ′i) = q − 1, and ordu(δi) = 0, for all i. In other words, M is
étale as a ϕ-module.

In the special case when he = q − 1, the equalities ordu(δ′i) = q − 1 mean
that M′ is of Lubin-Tate type of P-height h. In fact, ordu(δ′i) = q − 1 = he =
ordu(P(u)h mod π0); see §9.1.5.

We now state the following proposition. Compare with [Ray74, Proposition
3.3.2].

Proposition 9.3.3. Consider M ∈ (ModFI /oE)étF of oE,F-rank 1. Assume that
M admits a S-lattice of P-height 6 h. Let M be a SF-lattice of P-height 6 h in
M .

(1) Consider a decomposition M :=
⊕

Z/dZ oK · ei with ϕ(σ∗ei) = δiei+1.
Then M is maximal among SF-lattices of P-height 6 h in M if and only
if ordu(δi) ≤ q − 1 for all i and this inequality is strict for some i.

(2) If he < q−1 then M admits at most one S-lattice of P-height 6 h, which
is always an SF-lattice.

(3) Assume that he = q−1. Then either M has a unique S-lattice of P-height
6 h, or M has exactly two S-lattices of P-height 6 h where one of them
is étale and the other is of Lubin-Tate type of P-height h. In either case,
any S-lattice of P-height 6 h in M is also a SF-lattice.

Proof. It remains to establish (3). Under the assumptions of (3), it follows
from Steps (1) – (4) above that if M does not have a unique S-lattice of P-height
6 h then M+ is étale and M− is of Lubin-Tate type, where M+ and M− are the
maximal and the minimal S-lattices of P-height 6 h. So it remains to show that
if M+ is étale and M is a S-lattice of P-height 6 h for M with M ( M+ (but
M ∈ (Mod /S)6h may not a priori be a SF-lattice in M), then it is of Lubin-Tate
type. (Then the inclusion M ⊃ M− has to be an equality.) Note that this claim
does not follow from Steps (2) and (4) because we do not know whether M is a
SF-lattice of P-height 6 h in M .

It follows from the assumption that M is ϕ-nilpotent (i.e., Mét = 0) since M
is not étale and is simple in (Mod /S)6h. (See Proposition 8.1.18.) It suffices to
show M is of Lubin-Tate type after the scalar extension by oK → ôshK , where ôshK is
the completion of the maximal unramified extension of oK , since duality commutes
with such scalar extension (and the étale and ϕ-nilpotent properties are insensitive
to such scalar extension). Thus, the proposition is reduced to showing the following
claim:

Claim. Assume that he = q− 1 and k is separably closed. Assume that M+ is
étale and M is ϕ-nilpotent. Then M is of Lubin-Tate type of P-height h.

First observe that GK = IK acts trivially on T E(M) = TS(M+). Consider the
following finite flat group scheme G+ := SpecAM+ over oK , as follows:

(9.3.3.1) AM+ :=
SymoK M+

〈mq − ϕM+(σ∗m) : m ∈M+〉
,

where co-multiplication and co-action of o0 are induced from m 7→ m⊗ 1 + 1⊗m
and m 7→ α ·m for any m ∈ M+ and α ∈ o0. Since M+ is étale (i.e., ϕϕM+ is an
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isomorphism), we can easily check that G+ is finite étale over oK (with an action
of F). Furthermore since oK is strictly henselian, G+ is isomorphic to a constant
étale group scheme F over oK .

From this, one can find a S/(π0)-basis {ei} for the étale ϕ-module M+ such
that ϕ(σ∗ei) = ei for all i. We can see this as follows. Since G+ is a constant
group scheme, GK = IK acts trivially on G+(Ksep) which is isomorphic to T ∗E(M)
as noted in Remark 9.2.5. By choosing an Fq-isomorphism T ∗E(M) ∼= Fdq (which is
GK-equivariant by giving the trivial GK-action on the right), we obtain an oE/(π0)-
basis {ei} for M such that ϕ(σ∗ei) = ei for all i. Clearly S/(π0)-span of {ei} is a
ϕ-stable étale S-lattice of M , so it has to equal M+.

Now, consider a ϕ-compatible projection fi : M � K ·ei for each i. Since
M ⊂

∏
i fi(M), it is enough to show that fi(M) is of Lubin-Tate type of P-height

h for each i; if we show this then
∏
i fi(M) is the minimal S-lattice M− of P-height

6 h in M as S-lattices in M (being of Lubin-Tate type of P-height 6 h), so the
inclusion M ⊂

∏
i fi(M) = M− should be an equality. By replacing M with fi(M),

we may assume F = Fq (i.e., M is of oK-rank 1). Then we clearly see that M, being
ϕ-nilpotent, has to be of Lubin-Tate type of P-height h. �

Corollary 9.3.4. Assume that he < q − 1. Then for any torsion étale ϕ-
module M ∈ (ModFI /oE)ét, there exists at most one S-lattice of P-height 6 h.

Proof. We need to show that for any two S-lattices M,M′ ⊂M of P-height
6 h, an inclusion M ⊂M′ implies equality. This can be checked after a faithfully
flat scalar extension, so we may assume that the residue field is separably closed. By
considering Jordan-Hölder series and using §9.2.1, one can reduce the claim to the
case when M is simple. Then by Proposition 9.3.1.1 and the previous proposition,
we are done. �

Corollary 9.3.5. Assume that he < q−1. For M,M′ ∈ (Mod /S)6h, we put
M := oE ⊗S M and M ′ := oE ⊗S M′. We view M and M′ as submodules of M
and M ′.

(1) Any ϕ-compatible morphism fK : M → M ′ restricts to f : M → M′. In
other words, the scalar extension functor M M is fully faithful.

(2) For any ϕ-compatible morphism f : M→M′ in (Mod /S)6h, ker(f) and
coker(f) are also objects of (Mod /S)6h. In other words, (Mod /S)6h is
an abelian category.

(3) Let Ext6h(M,M′) be the group of extensions in (Mod /S)6h, and let
Extét(M,M ′) be the group of extensions in (ModFI /oE)ét. The natural
homomorphism Ext6h

oK (M,M′)→ ExtétK(M,M ′) is injective.

Proof. Put C := coker(fK) and I := im(fK). Let C ⊂ C be the image of M′

under the natural projection M ′ � M ′/f(M) = C, and let I ⊂ I be the image of
M under M � fK(M) = I. Then by §9.2.1 both I and ker[M′ � C] are S-lattices
of P-height 6 h in I ∼−→ ker[M ′ � C], where the isomorphism is induced by fK .
So by Corollary 9.3.4, we have the isomorphism I

∼−→ ker[M′ � C] which extends
the isomorphism I

∼−→ ker[M ′ � C]. Now define f : M→M′ as follows:

f : M� I
∼−→ ker[M′ � C] ↪→M′.



9.4. TORSION GALOIS REPRESENTATIONS 139

Clearly, this morphism f extends fK , and ker(f) = ker[M � I] and coker(f) = C
are objects in (Mod /S)6h. This proves (1) and (2). Finally, (3) is a formal
consequence of (1). �

9.4. Torsion Galois representations

In this subsection, we describe the GK-action associated to a rank-1 objects
in (ModFI /S)6h

F . We can use this result to analyze the semisimplification of the
inertia action on torsion GK-representation of P-height 6 h. For finite flat group
schemes, the corresponding theory is discussed in [Ray74, §3.4].

9.4.1. Kummer theory. We assume that the residue field k contains F := Fqd .
This assumption is satisfied for all d if K is strictly henselian.

Pick an element δ ∈ K× and let K(δ)
d /K be the Galois extension generated by

the roots of Xqd−1 − δ. Pick a root δd ∈ K(δ)
d to this polynomial. Then we get a

continuous homomorphism

(9.4.1.1) ξ
(δ)
d : GK � µqd−1(K); ξ

(δ)
d (γ) := γ ·δd

δd
, ∀γ ∈ GK ,

which is independent of the choice of δd.
Following §9.1.1, we let χ0 : F×

qd
∼−→ µqd−1(k) ∼= µqd−1(K) be a character

which extends to an Fq-morphism of fields Fqd → k, and we put χi = χq
i

0 . Using
the inverse isomorphism χ−1

0 (not the inverse character), we obtain a character
ω

(δ)
d := χ−1

0 ◦ ξ
(δ)
d : GK → F×

qd
. If we have used χ−1

i , instead of χ−1
0 , then we obtain

(ω(δ)
d )1/qi .
The formation of ω(δ)

d is compatible with finite extension of K, as ξ(δ)
d is. For

any δ, δ′ ∈ K×, one can directly check that ω(δδ′)
d = ω

(δ)
d ω

(δ′)
d . By construction,

ω
(δ)
d factors through the quotient Gal(K(δ)

d /K), so ω(δ)
d is unramified if and only if

δ ∈ o×K .
We put ωd := ω

(u)
d , and ξd := ξ

(u)
d . A priori, the character ωd depend on the

choice of uniformizer u ∈ oK , but ωd|IK does not; more generally, one can check
that ω(δ)

d |IK = (ωd)ordu(δ)|IK . We call ωd|IK a fundamental character of level d.
The formation of fundamental characters does not necessarily commute with

finite extension of K (especially, ramified ones) because the construction involves a
uniformizer u, but we have ωd/K |IK′ = (ωd/K′)e(K

′/K)|IK′ for any finite extension
K ′/K.

9.4.2. 1-dimensional F-representations of P-height6 h. Choose ᾱ ∈ k×/(k×)qd−1

and n = {n0, · · · , nd−1} with ni ∈ [0, he], and let M := M(ᾱ,n) (Corollary 9.1.4).
We put δi := uni if i 6= d−1 and δd−1 := ᾱund−1 so that we have ϕM(σ∗ei) = δiei+1.

We would like to compute T ∗S(M) = HomoK ,ϕ(M,Ksep). Giving an element
l ∈ T ∗S(M) is equivalent to giving l(ei) = xi ∈ Ksep for each i ∈ Z/dZ, such that
xqi = δixi+1. In turn, it is equivalent to giving an element x0 ∈ Ksep such that
xq

d

0 = δx0, where δ :=
∏d−1
i=0 (δi)q

d−1−i = ᾱun with n :=
∑d−1
i=0 niq

d−1−i. So by
identifying l ∈ T ∗S(M) with x0 = l(e0) ∈ Ksep, we will view T ∗S(M) as an Fq-
submodule of Ksep. Under this identification, the natural F-action translates to
[a] : x0 7→ χ0(a) ·x0 for a ∈ F×, and the GK-action is via the natural action on
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Ksep. That is, for γ ∈ GK , we have γ·x0 = ξ
(δ)
d (γ)·x0. This proves the first part of

the following proposition.

Proposition 9.4.3.
(1) The GK-action on the 1-dimensional F-vector space T ∗S(M(ᾱ,n)) is given

by the character ω(δ)
d , where δ := ᾱun and n :=

∑d−1
i=0 niq

d−1−i. In par-
ticular, IK acts on T ∗S(M) by the character (ωd)n.

(2) In the case o0 = Zp, the F-valued IK ∞-character (ω1)e|IK∞
is the mod-p

cyclotomic character restricted to IK ∞ . In the case o0 = Fq[[π0]], the
F-valued IK-character (ω1)e|IK is the mod-π0 Lubin-Tate character re-
stricted to IK .

Proof. It remains to prove the second part of the proposition. The computa-
tion in §9.4.2 shows that GK acts on T ∗S(SFp(1)) via ω(P(u))

1 . In the case o0 = Zp,
it follows from §5.2.13 that ω(P(u))

1 is the GK ∞-restriction to the mod p cyclotomic
character. In the case o0 = Fq[[π0]], it follows from §7.3.7 that ω(P(u))

1 is the mod
π0 Lubin-Tate character. On the other hand, since ordu(P(u) mod π0) = e we have
ωe1|IK = ω

(P(u))
1 |IK . �

The following theorem gives a classification of F×-valued GK-characters of P-
height 6 h.

Theorem 9.4.4. Assume that F embeds into k, and let ψ be a F×-valued charac-
ter on GK . Then ψ is of P-height 6 h (Definition 8.1.7) if and only if ψ|IK = (ωd)n,
where n =

∑d−1
i=0 niq

d−1−i for some 0 ≤ ni ≤ he for each i ∈ Z/dZ. Equivalently,
ψ is of P-height 6 h if and only if ψ = ω

(δ)
d , where δ = ᾱun for some ᾱ ∈ k× and

n as above.

Proof. The “only if” direction is just Proposition 9.4.3(1). For the “if” di-
rection, we first observe that (ωd)n makes sense as a character of GK . So if
ψ|IK = (ωd)n, then we can write ψ = ψur · (ωd)n, where ψur is an unramified
character. Since any unramified o0-torsion GK-representation is of P-height 6 0
(Proposition 8.1.10) it follows from Corollary 9.1.4 and Proposition 9.4.3(1) that
there exists ᾱ ∈ k×, well-defined up to (k×)qd−1-multiple, such that ψur = ω

(ᾱ)
d .

Therefore by Proposition 9.4.3(1), we have ψ = ω
(ᾱun)
d

∼= T ∗S(M(α,n)), where
n = {n0, · · · , nd−1}. �

Remark 9.4.5. Using Proposition 9.3.3, one can improve the numerical condi-
tion in the statement as follows. an F×-valued character ψ is of P-height 6 h if and
only if ψ|IK = (ωd)n, where n =

∑d−1
i=0 niq

d−1−i for some 0 ≤ ni ≤ min{he, q − 1}
for each i ∈ Z/dZ, and not all ni are q − 1.

If k is finite, then we can remove the condition that F embeds in k by using
local class field theory, and obtain the following result. Let F0 be the maximal
subfield of F that embeds in k, and put qd0 := #(F0). Then a character ψ on GK is
of P-height 6 h if and only if ψ|IK = (ωd0)n where n =

∑d0−1
i=0 niq

d0−1−i for some
ni ∈ [0, he] for each i ∈ Z/d0Z. The “only if” direction is by Proposition 9.4.3(1)
and local class field theory, and the “if” direction follows from Proposition 8.1.13.
(Alternatively, note that ψ is of P-height 6 h if and only if ψ|GK′ is so for some
finite unramified extension K ′/K by Proposition 8.1.10).
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9.4.6. Relation with torsion crystalline representations. For this paragraph, we
assume that o0 = Zp, (so q = p). We have a norm-field isomorphism GK ∞

∼= GK
as explained in §1.3.1.2, and we assume that F embeds in k and fix an embedding
χ0 : F ↪→ k. We start with the following observation.

Lemma 9.4.7. The restriction of the GK -action to GK ∞ defines an equivalence
of categories from the category of mod p semi-simple representations of GK to the
category of mod p semi-simple representations of GK ∞ . Moreover, any irreducible
mod p representation ρ̄∞ of GK ∞ uniquely extends to a GK -representation ρ̄ which
is necessarily irreducible.

Proof. By Proposition 9.3.1.1 any semi-simple mod p representation ρ̄∞ of
GK ∞ is tame, and similarly, any semi-simple mod p representation ρ̄ of GK is
tame. On the other hand, K ∞/K is linearly disjoint from any tame extension, so
we have IwK ·GK ∞ = GK . In particular, we have ρ̄(GK ∞) = ρ̄(GK ). The lemma
follows. �

It follows from the lemma above that the character ψ = ω
(δ)
d from Theorem

9.4.4 can be extended to an F×-valued character of GK . In fact, we can easily find
a candidate for it. Recall that δ = ᾱun where ᾱ ∈ k× and n =

∑d−1
i=0 nip

d−1−i

for some 0 ≤ ni ≤ he for each i ∈ Z/dZ. Now, we put δ̃ := [ᾱ]πn ∈ K , where
[ᾱ] denotes the Teichmüller lift and π is the fixed uniformizer for K such that
P(π) = 0. We define an F×-valued character ω(δ̃)

d on GK in the similar way that
we defined ω(δ)

d , but we use the (pd−1)th root of δ̃ ∈ K , instead of that of δ. More
precisely:

(9.4.7.1) ω
(δ̃)
d : γ 7→ γ ·δ̃1/(pd−1)

δ̃1/(pd−1)
7→ χ−1

0

(
γ ·δ̃1/(pd−1)

δ̃1/(pd−1)

)
∈ F×, ∀γ ∈ GK .

Let us first show that ω(δ̃)
d |GK∞

∼= ω
(δ)
d under the norm-field isomorphism GK ∞

∼=
GK . Recall from §1.3.2 that we have a natural embedding of oK ∼= k[[u]] with
its image in R := lim←−

xp←x
oK /(p) under the natural embedding which sends u to

π := {π(n) mod p}n>0 and ᾱ ∈ k to {[ᾱp−n ] mod p}n>0. Identifying oK with its
image in R, we have δ = {[αp−n ]π(n) mod p}n>0 ∈ R. Now, choose a root δd of
Xqd−1− δ in R; or equivalently, choose a root δ(n)

d ∈ oK of Xqd−1− [ᾱp−n ]π(n) for
each n > 0 so that (δ̃(n+1))p = δ̃(n). We can directly see that for any γ ∈ GK ∞ we
have

(9.4.7.2) ω
(δ)
d (γ)·δd = γ ·δd =

{
(ω(δ̃)
d (γ))p

−n
·δ(n)
d mod p

}
n>0

= ω
(δ̃)
d (γ)·δd,

where the first equality is by definition of ω(δ)
d as in (9.4.1.1), the second equality is

obtained from computing GK ∞ -action on δ(n)
d , and the last equality follows since

we embed F in R via ᾱ 7→ {[ᾱp−n ] mod p}. (Here, we identify F× ∼= µpd−1(oK ) ∼=
µpd−1(R), where the isomorphisms are induced from the fixed embedding χ0 : F ↪→
k.)

Furthermore, we can see that ω(δ̃)
d can be obtained as the cokernel of some

isogeny of lattice crystalline representations with Hodge-Tate weights in [0, h]. In-
deed, ω(δ̃)

d is the product of h characters which come from the generic fibers of some
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finite flat group schemes over oK , by partitioning each ni into the sum of h integers
between 0 and e and applying Raynaud’s theorem [Ray74, §3.4]. We have proved
the following proposition.

Proposition 9.4.8. If F embeds into k, then any F×-valued character that is
obtained as a GK -stable quotient of a lattice crystalline representation with Hodge-
Tate weights in [0, h] can be written as ω(δ̃)

d for some δ̃ = [ᾱ]πn, where ᾱ ∈ k× and
n =

∑d−1
i=0 nip

d−1−i for some 0 ≤ ni ≤ he for each i ∈ Z/dZ. This character ω(δ̃)
d

is the unique GK -character whose GK ∞-restriction is ω(δ)
d = T ∗S(M(ᾱ,n)).

Remark 9.4.9. By taking δ = u and δ̃ = π, the computation (9.4.7.2) also
shows that ωd|IK∞

: IK ∞ → F×
pd

is the IK ∞ -restriction of a fundamental character
of level d for IK .

Remark 9.4.10. For p > 2, it is not difficult to compute the Breuil module
corresponding to M(ᾱ,n) ∈ (ModFI /S)61

F , so we can recovers the above results in
[Sav08, §2]. Furthermore, one can extend the results using torsion ϕ-modules with
“tame descent datum” and obtain the higher-weight generalization of [Sav08, §3].



Part 3

Galois deformation theory for GK



A striking result that will be proved in Part III is the existence of universal
deformation rings and universal framed deformation rings for GK-representations of
P-height 6 h (Theorem 11.1.2) when the residue field k of oK is finite. This result
is surprising since the usual ‘unrestricted’ GK-deformation functor has infinite-
dimensional tangent space (see §11.7.1) due to bad p-cohomological properties of
K ∼= k((u)), so there is no ‘unrestricted’ universal GK-deformation ring in the
category of complete local noetherian rings. In the p-adic setting these GK ∞ -
deformation rings of P-height 6 h admit natural maps to crystalline and semi-
stable deformation rings with Hodge-Tate weights in [0, h], defined by “restricting
GK -action to GK ∞ .” Using this, we provide a proof of Kisin’s connected compo-
nent analysis of certain flat deformation rings which does not use the Breuil-Kisin
classification of finite flat group schemes. (This is done in §11.6 and §12.)

Since we work with “deformation groupoids” instead of deformation functors,
we include the following section to give basic definitions and prove various properties
we need.



CHAPTER 10

Appendix III: Categories co-fibered in groupoids

The purpose of this section is to present the basic definitions and set up the
notations. We mostly follow [Kis09b, §A]. More detailed discussion can be found
in [Vis05, §3], [SGA, 1, Exp VI] and the open source algebraic stack project [Sta,
§4].

10.1. Basic definitions

Let E and F be categories and let Π = ΠF/E : F → E be a functor. For
an object A ∈ Ob(E ), we define the fiber of F over A as the subcategory F (A)
of F such that Ob

(
F (A)

)
= {ξ ∈ Ob(F ) : Π(ξ) = A} (here, we do mean the

equality Π(ξ) = A, not Π(ξ) ∼= A), and arrows ξ → η in F (A) are the arrows in F
which are mapped to idA via Π. We say an object ξ ∈ Ob(F ) is over A ∈ Ob(E )
if Π(ξ) = A; i.e., if ξ ∈ Ob(F (A)). For objects ξ ∈ Ob(F (A)) and η ∈ Ob(F (B))
and a morphism f : A → B, we say a morphism α : ξ → η covers f : A → B if
Π(α) = f

The following definition is from §10 and (5.1) of [SGA, 1, Exp VI], which is
weaker than [Vis05, Def 3.1].

Definition 10.1.1. Consider ξ ∈ Ob(F (A)) and η ∈ Ob(F (B)), for A,B ∈
Ob(E ). Let f : A→ B be a morphism of E . Then a morphism α, which covers f ,
is called co-cartesian for Π if for any η′ ∈ Ob(F (B)) and any morphism α′ : ξ → η′

with Π(α′) = f , there exists a unique morphism β : η → η′ such that α′ = β ◦α. If
Π is understood, we say that f is co-cartesian.

η′_

��
ξ

α //

α′ //

_

��

η ∃!β

88q
q

q
_

��
B

A
f

//

f //

B
idB

77oooooo

Definition 10.1.2. We say that F is a category co-fibered in groupoids over E
(or a groupoid over E , or E -groupoid) if the following conditions are satisfied.

(G1) Every morphism in F is co-cartesian
(G2) (Existence of enough co-cartesian lifts) For any ξ ∈ Ob(F (A)) and
a morphism f : A → B be a morphism of E , there exists a co-cartesian

145
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morphism α : ξ → η which covers f .

ξ
∃α //___

_

��

η_

���
�
�

A
f

// B

Let F be an E -groupoid and let F ′ be a subcategory of F . We say that F ′ is an
E -subgroupoid if F ′ has enough co-cartesian lifts.

As a trivial example, the identity functor idE : E → E is an E -groupoid.
Under the condition (G2), the condition (G1) holds if and only if all the fibers

F (A) are groupoids [Vis05, Prop 3.22] – hence the terminology. In applications,
the base category E is a certain category of rings (with extra structures) and the
condition (G2) says that for any ξ over A and f : A → B, we can always “extend
scalars” to obtain η.

A functor Π : F → E is a category co-fibered in groupoids if and only if
Πo : F o → E o is a category “fibered in groupoids,” in the sense of [Vis05, (3.1.1)].
The results for categories fibered in groupoids also apply to categories co-fibered in
groupoids by changing the direction of arrows.

Remark 10.1.3. Let F be an E -groupoid. Then any morphism α : ξ → η in
F satisfies the following strong co-cartesian property:

Let f := Π(α) : A→ B and g : B → C be morphisms in E . For
any ζ ∈ Ob(F (C)) and a morphism γ : ξ → ζ over g ◦ f , there
exists a unique morphism β : η → ζ over g such that γ = β ◦ α.

ζ_

��
ξ

α //

γ //

_

��

η ∃!β

88qqqq
_

��
C

A
f

//

g◦f //

B
g

77oooooo

In fact, by the existence of enough co-cartesian lifts (Definition 10.1.2(G2)), there
exists a co-cartesian morphism β′ : η → ζ ′ over g. Since any morphism in F are
co-cartesian, γ : ξ → ζ and β′ ◦ α : ξ → ζ ′ are co-cartesian over g ◦ f . So by the
definition of co-cartesian morphism, we have a unique isomorphism δ : ζ ∼−→ ζ ′ over
idC such that δ ◦ γ = β′ ◦ α. Now take β := δ−1 ◦ β′, and the uniqueness is clear
from the construction

As a consequence, we can prove that if Π : F → E is an E -groupoid and
Π′ : F ′ → F be an F -groupoid, then Π′ ◦ Π : F ′ → E is an E -groupoid. The
existence of enough co-cartesian lifts is automatic, but to show that all morphisms
in F ′ are co-cartesian for Π′ ◦ Π we need the strong co-cartesian property, which
will be left to readers.

Remark 10.1.4. The notion of E -groupoid can be viewed as a generalization
of covariant functor E → (Sets) in the following sense: a covariant functor F :
E → (Sets) associates to each A ∈ Ob(E ) a set F (A), but an E -groupoid F
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“associates1” to each A ∈ Ob(E ) a groupoid F (A). For an E -groupoid F , we may
associate a covariant functor |F | : E → (Sets) which assigns to A ∈ Ob(E ) the set
|F (A)| of isomorphism classes in F (A). To rephrase, an E -groupoid F retains the
isomorphisms between objects over A while the associated functor |F | does not.

We can view a covariant functor E → (Sets) as a E -groupoid with some special
property, which is discussed in §10.2.1.

Now, we define “maps” between E -groupoids. The fact that fibers F (A) are
groupoids, not just sets, introduces many technical complications.

Definition 10.1.5. For two groupoids Π : F → E and Π′ : F → E , a functor
Φ : F → F ′ is called an 1-morphism over E if Φ “preserves the base”2. In other
words, we have an equality of functors Π = Π′ ◦Ψ, not just an isomorphism.

For two 1-morphisms Φ,Ψ : F ⇒ F ′, we say that a natural transformation
ψ : Φ → Ψ is a 2-morphism over E if ψ is base preserving. In other words, for
any ξ ∈ Ob(F (A)), the arrow ψξ : Φ(ξ) → Ψ(ξ) is a morphism in F ′(A); i.e.,
Π′(ψξ) = idA. Any 2-morphism is automatically an isomorphism and the inverse
ψ−1 : Ψ → Φ is forced to be a 2-morphism. To emphasize this, we often call it a
2-isomorphism. We define a groupoid H omE (F ,F ′) with 1-morphisms F → F ′

over E as objects and 2-isomorphisms as morphisms.
We say that a 1-morphism Φ : F → F ′ is an 1-isomorphism if there exists

another 1-morphism Ψ : F ′ → F such that we have 2-isomorphisms Ψ ◦ Φ ∼= idF

and Φ ◦Ψ ∼= idF ′ . We say that Ψ is quasi-inverse of Φ.
Any 1-morphism Φ : F → F ′ over E induces a functor Φ(A) : F (A)→ F ′(A)

on fibers for each A ∈ Ob(E ). The following proposition gives a useful fiber-criterion
for a 1-morphism to be fully faithful or 1-isomorphism. The proof can be found in
Prop 3.36 and Lemma 3.37 of [Vis05].

Proposition 10.1.6. A 1-morphism Φ : F → F ′ over E is a 1-isomorphism
(respectively, fully faithful as a functor) if and only if Φ(A) is an equivalence of
categories (respectively, fully faithful) for each A ∈ Ob(E ).

The equality of 1-morphisms is often too restrictive; it is more natural to allow
2-isomorphisms in place of equality. For example, we often need to consider 2-
commutative diagrams (instead of commutative diagrams) of 1-morphisms, which
means a diagram of 1-morphisms with a fixed 2-isomorphism3 for each two paths
with the same source and target (in a “compatible” manner if there are more than
two different paths with the same source and target4). This often makes the precise
statements more complicated than the actual contents are.

We define 2-fiber product following [Sta, Def 2.2.7], which is different from the
fiber product (or 1-fiber product) of categories as defined in [SGA, 1, Exp VI, §3]
which requires the diagram below (10.1.7.3) to commute for a unique Φ.

1More precisely, this means the following. By choosing a preferred “co-cartesian lift” for
each ξ ∈ Ob(F (A)) under A→ B, (which is called a cleavage [Vis05, Definition 3.9]), one gets a
so-called “pseudo-functor” A 7→ F (A) from E to the “category” of groupoids. We will not work
with pseudo-functors. For more discussion on pseudo-functors, see [Vis05, 3.1.2].

2In general, a “1-morphism” of co-fibered categories is also required to be co-cartesian, which
means that it sends a co-cartesian morphism to a co-cartesian morphism. Any 1-morphism between
categories co-fibered in groupoids is automatically cartesian.

3We always fix a 2-isomorphism between each pair of paths in a 2-commutative diagram,
even though the 2-isomorphisms will be omitted from the notations.

4We will not be precise on this, but the diagram (10.1.7.3) is an example of this.
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Definition 10.1.7. Let F , F1 and F2 be E -groupoids, and let Φi : Fi → F
for i = 1, 2 be 1-morphisms over E . Then by 2-fiber product, we mean an E -
groupoid F1 ×F F2, equipped with 1-morphisms pri : F1 ×F F2 → Fi, and a
2-isomorphism ω : Φ1 ◦ pr1

∼−→ Φ2 ◦ pr2, which satisfies the following “2-universal
property.”

(F1) For any E -groupoid G , 1-morphisms Ψi : G → Fi for i = 1, 2, and 2-
isomorphism ψ : Φ1 ◦ Ψ1

∼−→ Φ2 ◦ Ψ2, there exist a 1-morphism Ψ : G →
F1×F F2 and 2-isomorphisms φi : Ψi

∼−→ pri ◦Ψ for i = 1, 2, which makes
the following diagram commute.

(10.1.7.1) Φ1 ◦Ψ1
ψ //

“Φ1◦φ1”
��

Φ2 ◦Ψ2

“Φ2◦φ2”
��

Φ1 ◦ pr1 ◦Ψ “ω◦Ψ”
// Φ2 ◦ pr2 ◦Ψ

Here, “Φi ◦ φi”: Φi ◦Ψi → Φi ◦ pri ◦Ψ is the 2-isomorphism induced from
the 2-isomorphism φi, etc.

(F2) For any (Ψ, φ1, φ2) and (Ψ′, φ′1, φ′2) which satisfies (F1), there exists a
unique 2-isomorphism θ : Ψ ∼−→ Ψ′, which makes the following diagrams
commute for i = 1, 2.

(10.1.7.2) Ψi
φi //

φ′i ""FFFFFFFFF pri ◦Ψ

“ pri ◦θ”
��

pri ◦Ψ′

The fiber product F1×F F2 is unique up to 1-isomorphism, which is unique up to
unique 2-isomorphism that makes the diagram (10.1.7.2) commute.

Roughly speaking, (F1) says that for each (G ,Ψ1,Ψ2, ψ) as in (F1), we have
a 1-morphism Ψ which makes the diagram below 2-commute in every possible way
and in every possible sense, and (F2) says that such a Ψ is unique up to unique 2-
isomorphism which respects all the 2-isomorphisms between any two compositions
of 1-morphisms with the same source and target.
(10.1.7.3) G

Ψ1

''

Ψ2

!!

Ψ
JJJ

%%JJJ

F1 ×F F2 pr1
//

pr2

��

F1

Φ1

��
F2 Φ2

// F

10.1.8. The 2-fiber product F1 ×F F2 always exists and provided by the fol-
lowing explicit construction:

(1) An object over A ∈ Ob(E ) is a triple (ξ1, ξ2, α) where ξi ∈ Ob(Fi(A)) for
i = 1, 2 and α : Φ1(ξ1) ∼−→ Φ2(ξ2) is a morphism in F (A).

(2) A morphism (ξ1, ξ2, α)→ (η1, η2, β) is a pair (γi : ξi → ηi)i=1,2 such that
β ◦ Φ1(γ1) = Φ2(γ2) ◦ α.
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(3) The functors pri is (ξ1, ξ2, α) 7→ ξi and (γ1, γ2) 7→ γi. We define the
2-isomorphism ω : Φ1 ◦ pr1

∼−→ Φ2 ◦ pr2 by ω(ξ1,ξ2,α) = α.

Remark 10.1.9. We record an immediate property of 2-fiber product. If Φ1 :
F1 → F is a 1-morphism which makes F1 an F -groupoid (for example, if F = E ),
then pr2 : F1 ×F F2 → F2 is an F2-groupoid. The proof uses the strong co-
cartesian property (Remark 10.1.3). Combining this with the last paragraph of
Remark 10.1.3, the functor F1 ×F F2

pr2−−→ F2
Π2−−→ E is a groupoid over E .

It is also useful to note that if Φ2 is fully faithful (respectively, 1-isomorphism)
then so is pr1. Indeed, for two objects (ξ1, ξ2, α), (η1, η2, β) of F1 ×F F2 and a
morphism γ1 : ξ1 → η1 in F1, we can always find a unique morphism γ = (γ1, γ2) :
(ξ1, ξ2, α) → (η1, η2, β), so that pr1(γ) = γ1, as follows: considering the following
diagram

Φ1(ξ1)

Φ1(γ1)
��

∼
α

// Φ2(ξ2)

β◦Φ1(γ1)◦α−1

���
�
�

Φ1(η1) ∼
β

// Φ2(η2)

and using the full faithfulness of Φ2, we let γ2 : ξ2 → η2 be the unique morphism
in F2 such that Φ2(γ2) = β ◦ Φ1(γ1) ◦ α−1. If, furthermore, Φ2 is essentially
surjective, then so is pr1: for any ξ1 ∈ Ob(F1(A)), we may find ξ2 ∈ Ob(F2(A))
and α : Φ1(ξ1) ∼−→ Φ2(ξ2) in F (A), so we have pr1(ξ1, ξ2, α) = ξ1.

Remark 10.1.10. Consider two functors |F1 ×F F2| and |F1|×|F | |F2| on E .
We have a natural transformation

(10.1.10.1) |F1 ×F F2| → |F1| ×|F | |F2| ; [(ξ1, ξ2, α)] 7→ ([ξ1], [ξ2]),

which is seen to be surjective. But this natural transformation does not have to be
an isomorphism, that is to say, the formation of 2-fiber product does not commute
with the passage to the associated functor. This is why we work with “deformation
groupoids,” rather than deformation functors. This is observed by [Kis09b, (A.6)].

Here is an example when the natural transformation (10.1.10.1) is not an iso-
morphism. We start with a non-trivial group G, and we will construct a “uni-
versal G-torsor” over a fixed category E as follows. Define a category E /G by
Ob(E /G) = Ob(E ) and HomE/G(A,B) = HomE (A,B) × G, and define a func-
tor ΠE/G : E /G → E by the identity map on objects and the natural projection
HomE (A,B) × G � HomE (A,B) on morphisms. Clearly E /G is an E -groupoid.
Viewing E as an E -groupoid via the identity functor, we have a 1-morphism
Φ : E → E /G defined by the identity map on objects and Φ(f : A→ B) = (f, eG)
on morphisms. Then both functors |E | and |E /G| maps any object A ∈ E to an
one-element set {A}, and |Φ| is the “identity natural transform” between these
functors. So |E | ×|E/G| |E | map any object A ∈ E to an one-element set {A}.

Now, let us work out the 2-fiber product E ×E/G E . Using §10.1.8, objects
of a fiber (E ×E/G E )(A) are of the form (A,A, α), where α is any element of G
and all the morphisms in (E ×E/G E )(A) are identity morphisms. In other words,
the groupoid (E ×E/G E )(A) is a set, and is in bijection with G. In particular
the natural transformation

∣∣E ×E/G E
∣∣ = E ×E/G E → |E | ×|E/G| |E | cannot be

an isomorphism because (E ×E/G E )(A) ∼= G and |E | (A) ×|E/G|(A) |E | (A) is an
one-element set.
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Lastly, we remark that if either Φ1 or Φ2 is fully faithful as a functor, then the
natural transformation |F1 ×F F2| → |F1| ×|F | |F2| is in fact isomorphism. This
can be read off from the discussion in Remark 10.1.9.

We define one more operation which will be needed soon.

Definition 10.1.11. Let E ′ → E be any functor, which may not define a
category co-fibered over E . For an E -groupoid Π : F → E , we define a category
FE ′ as follows: objects are pairs (ξ, A′) where ξ ∈ Ob(F ) and A′ ∈ Ob(E ′) map to
the same object in E (not just isomorphic ones), and morphisms (ξ, A′) → (η,B′)
are pairs (ξ → η,A′ → B′) which map to the same morphism in E . In [SGA, 1,
Exp VI, §3], this category is called the fiber product and denoted by F ×E E ′, but
this is not the 2-fiber product even if E ′ happens to be co-fibered over E .

There are natural “projection functors” FE ′ → F and FE ′ → E ′, and it is
straightforward to check that the second projection makes FE ′ an E ′-groupoid.
(This is stated, without proof, in [SGA, 1, Exp VI, Prop 6.6].) We call this E ′-
groupoid the base change of F over E ′.

In the special case when E ′ is a subcategory (respectively, a full subcategory),
one can show that FE ′ can be viewed as a subcategory of F (respectively, a full
subcategory of F ) by the first projection. In this case, we often write F |E ′ instead
of FE ′ , and call it the restriction of F over E ′.

Remark 10.1.12. We end this subsection with a remark on “aesthetics.” By
choosing a cleavage [Vis05, Def 3.9], in other words a preferred cartesian lift for
each arrow in E , we can associate to an E -groupoid Π : F → E a “pseudo-functor”
A 7→ F (A) from E to a “category” of groupoids. This is called a pseudo-functor
because the equalities in the axioms of functor are replaced by isomorphisms. The
notions of pseudo-functor on E and groupoids over E with (a fixed) cleavage are
equivalent.5 See Prop 3.11 and §3.1.3 in [Vis05].

This pseudo-functor description of E -groupoids may appeal as more satisfactory
one. For example to define a pseudo-functor, one just have to define a fiber F (A)
for each A ∈ Ob(E ) and specify how they “pull back.” On the other hand, unless
an E -groupoid F is co-fibered in sets §10.2.1 or split [Vis05, Def 3.12], there is no
canonical or preferred choice of cleavage on F . So we do not choose a cleavage,
unless it does not sacrifice concreteness.

10.2. The 2-Yoneda lemma and representibility

The goal of this subsection is to define representability for an E -groupoid. We
first explain how to view a functor E → (Sets) as an E -groupoid, and identify the
class of E -groupoids which come from functors. Then we may define the repre-
sentability of an E -groupoid using the representability of a functor.

For the purpose of completeness, we state without proof the 2-Yoneda lemma,
which plays the same role for E -groupoids as Yoneda lemma does for functors.
Roughly speaking, the 2-Yoneda lemma says that an object A ∈ Ob(E ) can be
viewed as an E -groupoid. Even though it is not technically necessary to discuss
2-Yoneda lemma6, it offers conceptual clarification.

5By the axiom of choice, any E -groupoid has a cleavage.
6It is possible to define the representablilty of a functor without stating the Yoneda lemma.
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10.2.1. Functors and categories co-fibered in sets. We view a set as a groupoid7
where all morphisms are identities. We say a groupoid Π : F → E is co-fibered in
sets if the fiber F (A) for each A ∈ Ob(E ) is a set. This is equivalent to requiring
that for each ξ ∈ Ob(F (A)) and f : A → B, there exists only one (co-cartesian)
arrow ξ → η over f . See [Vis05, Prop 3.25] for the proof.

It is not hard to check that if Π : F → E is co-fibered in sets, then the
assignment A 7→ F (A) defines a functor F : E → (Sets). In fact, the converse is
also true. Namely, for a given functor F : E → (Sets), we can construct a category
Π : F → E co-fibered in sets with F (A) = F (A) for each A ∈ Ob(E ). We give the
construction without proof. Define a category F , so that an object is a pair (ξ, A)
where ξ ∈ F (A) and a morphism (ξ, A)→ (η,B) is an arrow f : A→ B in E such
that F (f) : F (A)→ F (B) takes ξ into η. By forgetting ξ, we obtain F → E which
is co-fibered in sets.

From now, we often use the same letter F to denote the category co-fibered
in sets which corresponds to a functor F : E → (Sets). Note the groupoid
H omE(F, F ′) of 1-morphisms of categories co-fibered in sets is a set. For any
1-morphism ψ : F → F ′ of categories co-fibered in sets over E , one obtains a
natural transformations of functors F → F ′ by putting ψA : F (A) → F ′(A) for
each A ∈ Ob(E ). Conversely, for given functors F, F ′ : E → (Sets) and a natural
transformation ψ : F → F ′, one obtains a 1-morphism F → F ′ over E by putting
(ξ, A) 7→ (ψA(ξ), A) and

[
(ξ, A) f−→ (η,B)

]
7→
[
(ψA(ξ), A) f−→ (ψB(η), B)

]
, where

f : (ξ, A)→ (η,B) means the morphism defined by f : A→ B. Therefore, we con-
clude that the notions of category co-fibered in sets and functor are interchangeable,
and the set H omE (F, F ′) of 1-morphisms is naturally in bijection with the set of
natural transformations F → F ′ of functors.

For each E -groupoid F , we have associated a functor |F | (Remark 10.1.4). We
denote by the same notation |F | the category co-fibered in sets which corresponds
to the functor |F |. Then we obtain a 1-morphism F → |F | by associating to each
object ξ the “isomorphism class” of ξ over Π(ξ).

10.2.2. Categories co-fibered in equivalence relations. The notion of category
co-fibered in sets is not stable under 1-isomorphisms. In this section, we identify
the class of E -groupoids which are 1-isomorphic to categories co-fibered in sets.

We say a groupoid C is an equivalence relation8 if there exists at most one
morphism between any two objects of C . A groupoid C is an equivalence relation
if and only if the natural functor C → |C |, which associates to ξ ∈ Ob(C ) the iso-
morphism class of ξ, is an equivalence of categories. In other words, an equivalence
relation is a groupoid which is equivalent to a set (viewed as a groupoid).

We say an E -groupoid F is co-fibered in equivalence of categories if for each A ∈
Ob(E ), the fiber F (A) is an equivalence relation. To rephrase, for any objects ξ, η ∈
Ob(F ) and a morphism f : Π(ξ) → Π(η) in E , there exists a unique morphism
ξ → η over f . It follows from Proposition 10.1.6 that an E -groupoid F is co-
fibered in equivalence relations if and only if the natural 1-morphism F → |F |

7We always assume that the objects of a groupoid form a set.
8For an equivalence relation C , we obtain an “equivalence relation” on Ob(C ) in the usual

sense: ξ ∼ η for ξ, η ∈ Ob(C ) if and only if HomC (ξ, η) is non-empty. Conversely, for an
“equivalence relation” R ⊂ X×X, we can construct an equivalence relation C with Ob(sC) = X,
and for ξ, η ∈ X, set HomC (ξ, η) = {∗} if and only if ξ ∼ η.
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is a 1-isomorphism. In other words, an E -groupoid F is co-fibered in equivalence
relations if and only if it is 1-isomorphic to a category co-fibered in sets over E .

Now to each A ∈ Ob(E ), we associate a category (E /A) co-fibered in sets over
E .

Definition 10.2.3. Let A ∈ Ob(E ). We denote by (E /A) the category co-
fibered in sets which correspond to the functor HomE (A,−) : E → (Sets). Explic-
itly, (E /A) can be described as follows.

(1) An object is an arrow f : A→ B in E .
(2) A morphism α : (A f1−→ B1) → (A f2−→ B2) is an arrow α : B1 → B2 such

that α ◦ f1 = f2.
(3) The functor ΠA : (E /A)→ E is defined by forgetting the morphism from

A. In other words, ΠA(A→ B) = B and ΠA

[
(A→ B1) α−→ (A→ B2)

]
=

[B1
α−→ B2].

For any f : A′ → A, we have a natural transformation HomE (A,−) −◦f−−−→ HomE (A′,−)
by pre-composing f . We let (E /f) : (E /A) → (E /A′) denote the correspond-
ing 1-morphism. Explicitly, (E /f) : (A → B) 7→ (A′ f−→ A → B) on objects
(A→ B) ∈ Ob(E /A).

The Yoneda lemma and the discussion in §10.2.1 implies that the morphisms
A → B in E and the 1-morphisms (E /B) → (E /A) are in bijection. In fact, we
have the following stronger version of the “Yoneda lemma” for E -groupoids.

Let F be an E -groupoid. Define a functor evA : H omE ((E /A),F ) → F (A)
by “evaluating” at the universal object idA ∈ Ob(E /A). More precisely,

(1) For any 1-morphism Φ : (E /A) → F , we define evA(Φ) := Φ(idA) ∈
Ob(F (A)) by evaluating at the “universal object” (A idA−−→ A) ∈ Ob(E /A).

(2) For two 1-morphisms Φ,Φ′ : (E /A) → F and a 2-isomorphism ψ : Φ →
Φ′, we put evA(ψ) = ψidA , which is a morphism in F (A).

Proposition 10.2.4 (2-Yoneda lemma). The functor evA : H omE ((E /A),F )→
F (A) is an equivalence of categories.

If F is co-fibered in sets then 2-Yoneda lemma recovers the usual Yoneda lemma
for functors.

Sketch of the proof. We indicate the idea how to construct a quasi-inverse
of evA. For any object ξ ∈ Ob(F (A)), we can define a 1-morphism Φξ : (E /A)→ F

so that Φξ(idA) = ξ, as follows. For any (A f−→ B) ∈ Ob(E /A), take a co-cartesian
lift ξ → η over f and put Φξ(A

f−→ B) = η. If (A f−→ B) g−→ (A f ′−→ B′) is a morphism
in (E /A), then the strong co-cartesian property (Remark 10.1.3) gives a morphism
Φξ(A

f−→ B) → Φξ(A
f ′−→ B′) over g, which we take as Ψξ(g). One can check that

Φξ is well-defined and that ξ 7→ Φξ gives a quasi-inverse to evA. �

Before we define the notion of representability for E -groupoids, we record the
following useful fact. Let Π : F → E be a groupoid, and let ξ ∈ Ob(F (A)) for
A ∈ Ob(E ). We may define a groupoid (F/ξ) over F , and by Remark 10.1.3,
(F/ξ)→ F

Π−→ E is a groupoid over E . On the other hand, the functor Π induces
a 1-morphism Π|A : (F/ξ) → (E /A) over E in an obvious manner. The functors
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(F/ξ) Π|A−−→ (E /A) → E and (F/ξ) → F
Π−→ E are identical, hence give the

identical E -groupoid structure on (F/ξ).
The following lemma is just a re-phrasing of the strong co-cartesian property

(Remark 10.1.3).

Lemma 10.2.5. The 1-morphism Π|A : (F/ξ) → (E /A) over E is always a
1-isomorphism.

Definition/Proposition 10.2.6. An E -groupoid F is called representable if
the following equivalent properties hold.

(R1) For some A ∈ Ob(E ), there exists an 1-isomorphism Φ : (E /A) ∼−→ F .
In this case, we say that A represents F , and the object ξ := Φ(idA) ∈
Ob(F (A)) is called the universal object.
(R2) For some ξ ∈ Ob(F ), there exists an 1-isomorphism Φ̃ : (F/ξ) ∼−→ F
over E . In this case, we say that A := ΠF/E (ξ) ∈ Ob(E ) represents F ,
and the object ξ is called the the universal object.

Furthermore, the objects A and ξ which satisfy one of (R1) and (R2), if exist,
satisfy the other. The representing object A ∈ Ob(E ) is unique up to canonical
isomorphism in E , and the universal object ξ is unique up to canonical isomorphism
in F .

Proof. The uniqueness aspect of the statement follows from 2-Yoneda lemma,
like in the case of functors, and the rest of the claims follow from Lemma 10.2.5. �

Recall that the E -groupoid (E /A) co-fibered in sets corresponds to the repre-
sentable functor HomE (A,−), therefore this notion, especially (R1), recovers the
usual representability for functors if F is co-fibered in sets. Also (R2) (or Lemma
10.2.5) says that for some object ξ ∈ Ob(F ), the E -groupoid (F/ξ) is repre-
sentable.

Even if F is representable, it does not have to be co-fibered in sets over E but
is necessarily co-fibered in equivalence categories. Conversely, the E -groupoid F is
representable if and only if the functor |F | is representable and F is co-fibered in
equivalence relations.

Definition 10.2.7.
(1) A 1-morphism Φ : F ′ → F over E is called relatively representable9 if for

each ξ ∈ Ob(F ), the 2-fiber product F ′ξ := (F/ξ)×F ,Φ F ′, which is an
E -groupoid by Remarks 10.1.9, is representable over E .

(2) Assume that E is a subcategory of the category of rings. Then Φ is called
formally smooth if the associated natural transformation |Φ| : |F ′| → |F |
is formally smooth.

For a property P of objects of E , we say a representable E -groupoid F has
the property P if the representing object A ∈ Ob(E ) does. Similarly for a property
P of morphisms in E , we say a relatively representable 1-morphism Φ : F ′ → F
has the property P if the morphism in E that represents Φξ := pr1 : F ′ξ → (F/ξ)
has the property P. (By assumption, both F ′ξ and (F/ξ) are representable over

9If F and F ′ are co-fibered in sets and Φ is fully faithful as a functor (i.e., if Φ is a monomor-
phism of functors |F ′| → |F |), then this definition of relative representability coincides with
seemingly more popular one, e.g. [Maz97, §19], by Schlessinger’s criterion.
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E .) On the other hand, we define formal smoothness for any 1-morphism Φ, not
necessarily relatively representable.

One can check, from §10.1.8 and the definitions, that relative representability
and formal smoothness stable under “2-categorical base change.” More precisely,
we have

Proposition 10.2.8. Assume that we have the following “2-cocartesian dia-
gram”

G ′
Φ′ //

��

G

��
F ′

Φ // F ,

in other words, the natural 1-morphism G ′ → F ′ ×F G , induced from the above
diagram by 2-categorical universal property, is a 1-isomorphism. Then the following
hold.

(1) If Φ is formally smooth, then so is Φ′.
(2) If Φ is relatively representable, then so is Φ′. Furthermore, if x ∈ Ob(G (A))

maps to ξ ∈ Ob(F (A)) by the 1-morphism G → F , then the 1-morphism
G ′x → F ′ξ of (E /A)-groupoids induced by the 2-categorical universal prop-
erty is a 1-isomorphism, so the representing objects of both (E /A)-groupoids
are isomorphic.

10.3. Deformation and framed deformation groupoids

We now define groupoids whose objects correspond to “deformations” or “framed
deformations” of a residual GK-representation. They are groupoids over the fol-
lowing “base categories” E = ARo, ÂRo,Augo, Âugo, which will now be defined.

10.3.1. Base categories. Let o be a local domain that is a finite extension of o0
with residue field F, and put F := Frac(o). Let ARo be the category of artin local
o-algebras A whose residue field is F (via the natural map). Similarly, let ÂRo be
the category of complete local noetherian o-algebras with residue field F.

We often need to consider “deformations” over a ring which is not a complete
local noetherian ring, so we introduce the category Augo of pairs (A, I) where A is
an o-algebra such that π0 is nilpotent in A, and I ⊂ A is an ideal containing moA
such that IN = 0 for some N . Morphisms (A, I) → (B, J) in Augo are o-algebra
maps A → B which send I into J . Using the fully faithful functor ARo → Augo,
A 7→ (A,mA), we regard ARo as a full subcategory of Augo. Any o/mo-algebra
A can be viewed as an object in Augo by setting I = {0}. Also, A := (o/mN

o )[t]
together with I := mo·A defines an object in Augo that is not artinian with non-zero
I. In many cases, the nilpotent ideal I does not play an important role and can be
replaced by bigger nilpotent ideal, for example the nilradical of A if A is noetherian.

We may also define a category Âugo of pairs (A, I) where A is an topological
o-algebra which is an admissible ring (so necessarily π0 is topologically nilpotent),
and I is an ideal which contains moA and such that I/mn

oA ⊂ A/mn
oA is nilpotent

for each n. Morphisms (A, I)→ (B, J) are continuous o-maps which send I into J .
We have a fully faithful functor ÂRo → Âugo, A 7→ (A,mA) , so we regard ÂRo as
a full subcategory of Âugo. We will not use this category very often.
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10.3.2. Deformation groupoid. Let TF be a finite-dimensional F-vector space
and let ρF : GK → GL(TF) be a continuous homomorphism. We define the category
DρF of deformations of ρF, and the functor Π : DρF → ARo which makes DρF a
groupoid over ARo, as follows. An object over A ∈ ARo is (ρA, TA, ιA), where TA is
a finite free A-module with a continuous A-linear action of GK by ρA, and ιA : TF

∼−→
TA ⊗A (A/mA) is a GK-equivariant isomorphism over the natural isomorphism
F ∼−→ A/mA. Given a morphism f : A → B in ARo, we define a morphism
α : (ρA, TA, ιA)→ (ρ′B , T ′B , ι′B) over f to be an equivalence class of GK-equivariant
morphism TA → T ′B over f which respects ιA and ι′B ; i.e., α makes the following
diagram commute:

(10.3.2.1) TA ⊗A (A/mA) α // T ′B ⊗B (B/mB)

TF

'
ιA

ffLLLLLLLL
'
ι′B

88rrrrrrrrr ,

where α is induced by α, and two morphisms α and α′ are equivalent if one is
a (1 + mB)-multiple of the other. Since any morphism over idA is necessarily an
isomorphism by Nakayama’s lemma, the the category DρF(A) of objects over A and
morphisms over idA is a groupoid for any A ∈ ARo. Furthermore, if EndGK (ρF) ∼=
F, then for any deformation ρA we have EndGK (ρA) ∼= A by Nakayama’s lemma
applied to A ↪→ EndGK (ρA). So the groupoid DρF(A) is an equivalence relation for
any A ∈ ARo when EndGK (ρF) ∼= F.

One can check that the assignments (ρA, TA, ιA) 7→ A and α 7→ f define a
functor Π : DρF → ARo, and the fiber over A ∈ ARo is exactly DρF(A). By the
universal property of tensor products, giving a morphism α in DρF is equivalent to
giving a morphism TA ⊗A,f A′

∼−→ T ′A′ in DρF(A′). This shows that any morphism
in DρF is co-cartesian, hence DρF is a groupoid over ARo.

We may repeat this construction by ARo replaced with ÂRo and requiring ρA
to be continuous for the profinite topology on GK and the mA-adic topology on
AutA(TA), obtaining a groupoid Π̂ : D̂ρF → ÂRo such that we have an “equality”
DρF = D̂ρF |ARo of ARo-groupoids. Later in §10.4.1, we give a general recipe to
extend a groupoid over ARo to a groupoid over ÂRo via “projective limit”, which
recovers D̂ρF when applied to DρF .

Now, we define another groupoid Π̃ : D̃ρF → Augo which “extends” Π : DρF →
ARo, as follows. An object over (A, I) ∈ Augo is (ρA, TA, ι(A,I)), where TA is a
free A-module with a continuous action of GK by ρA (for the discrete topology on
A), and ι(A,I) : TF → TA ⊗A (A/I) is a GK-equivariant morphism over F → A/I

which induces an isomorphism TF ⊗F (A/I) ∼−→ TA ⊗A (A/I). A morphisms α :
(ρA, TA, ι(A,I)) → (ρ′B , T ′B , ι′(B,J)) over f : (A, I) → (B, J) is an equivalence class
of GK-equivariant morphisms α : TA → TB over f which respect ι(A,I) and ι′(B,J);
i.e., α makes the following diagram commute:

(10.3.2.2) TA ⊗A (A/I) α // T ′B ⊗B (B/J)

TF

ι(A,I)

eeJJJJJJJJ ι′(B,J)

99ssssssss
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where α is induced from α. We say such α1 and α2 are equivalent if they are
(1 + J)-multiples of each other.

For A ∈ ARo, we have an “equality” of categories DρF(A) = D̃ρF(A,mA),
therefore “equality” of ARo-groupoids DρF = D̃ρF |ARo . Later in §10.4.4, we give a
general recipe to extend a groupoid over ARo to a groupoid over Augo via a “direct
limit,” recovering D̃ρF when applied to DρF .

10.3.3. Framed deformation groupoid. Let TF and ρF be as above, and we
fix a framing βF : Fn ∼−→ TF. We define the category D2

ρF
(= D2

ρF,βF
) of framed

deformations of ρF, and the functor Π2 : D2
ρF
→ ARo which makes D2

ρF
a groupoid

over ARo. (The groupoid D2
ρF

will depend on the choice of framing βF, but we do
not specify this in the notation unless necessary.) Objects over A ∈ ARo are tuples
(ρA, TA, ι, βA) where (ρA, TA, ι) is an object in DρF(A), and βA : A⊕n ∼−→ TA is a
framing which lifts βF via ιA; i.e., βA makes the following diagram commute.

(10.3.3.1) (A/mA)⊕n
βA⊗(A/mA)

∼=
// TA ⊗A (A/mA)

F⊕n

∼=

OO

βF

∼= // TF

ιA∼=

OO

Given a morphism f : A→ A′ in ARo, we define a morphism α : (ρA, TA, ιA, βA)→
(ρ′A′ , T ′A′ , ι′A′ , β′A′) over f to be a GK-equivariant A-morphism TA → T ′A′ , which
respects all the structures in the sense that we have the following commutative
diagram in addition to (10.3.2.1).

(10.3.3.2) (A′)⊕n
β′
A′

∼=
// T ′A′

A⊕n

f⊕n

OO

βA

∼= // TA

α

OO

Now, we can repeat the previous discussion to obtain groupoids Π2 : D2
ρF
→

ARo, Π̂2 : D̂2
ρF
→ ÂRo and Π̃2 : D̃2

ρF
→ Augo. For (A, I) ∈ Augo, an object

(ρA, TA, ιA, βA) ∈ D2
ρF

(A, I) additionally satisfies the following commutative dia-
gram.

(10.3.3.3) (A/I)⊕n
βA⊗(A/I)
∼=

// TA ⊗A (A/I)

F⊕n

OO

βF

∼= // TF

ιA

OO

The 1-morphism D2
ρF
→ DρF defined by “forgetting the framing” is formally

smooth in the sense of Definition 10.2.7(2). Furthermore, it makes D2
ρF

into a
P̂GL(n)-torsor over DρF , where P̂GL(n) is a functor P̂GL(n) : A 7→ P̂GL(n,A) :=
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{g ∈ PGL(n,A)| g mod mA = Idn} on ARo (or the corresponding category co-
fibered in sets)10. More precisely, we have an 1-isomorphism

Ξ : P̂GL(n)×Augo
D2
ρF

∼−→ D2
ρF
×DρF

D2
ρF
,

defined by Ξ(gA, (ρA, TA, ιA, βA)) = ((ρA, TA, ιA, βA), (ρA, TA, ιA, βA◦(g̃A)−1), idTA)
for each gA ∈ P̂GL(n,A), where g̃A ∈ ĜL(n,A) is a lift of gA. This 1-morphism
does not depend on the choice of lift g̃A up to 2-isomorphism, since for any a ∈
1+mA we have an isomorphism ((ρA, TA, ιA, βA), (ρA, TA, ιA, βA◦(a·̃gA)−1), idTA) ∼=
((ρA, TA, ιA, βA), (ρA, TA, ιA, βA ◦ (g̃A)−1), a·idTA ∼ idTA). One can directly check
that this 1-morphism is actually an 1-isomorphism.

As a consequence, the 1-morphism D2
ρF
→ DρF is relatively representable,

namely for any ξ ∈ DρF(A), the groupoid D2
ρF,ξ

is representable by P̂GL(n)A. The
same properties hold for the deformation groupoids over ÂRo and Augo. We define
P̂GL(n) : (A, I) 7→ {g ∈ PGL(n,A)| g mod I = Idn} on Augo

10.4. 2-categorical limits

In this subsection, we give a general recipe to extend a groupoid over ARo

to a groupoid over ÂRo via a 2-projective limit (respectively, to a groupoid over
Augo via a 2-direct limit). For the ARo-groupoids DρF and D2

ρF
, we have already

constructed D̂ρF , D̃ρF and D̂2
ρF
, D̃2

ρF
, respectively, which are 1-isomorphic to the

groupoids we obtain by the general recipe below. But the general recipe is needed
when we work with subgroupoids of DρF and D2

ρF
which can be naturally described

only over ARo, for example the full subcategory of deformations of P-height 6 h,
which is introduced in Definition 11.1.1.

For concreteness, we work with the restrictive choice of base categories which
will come up in the application, but our definitions of 2-projective and direct lim-
its can generalize to arbitrary base categories. We do not attempt to “explain”
our definition, and refer to [SGA, 4, Exp VI, §6] for more general and complete
discussions. Since [SGA, 4, Exp VI] works with fibered categories, not co-fibered
categories, we often have to change the directions of arrows to translate the results
for co-fibered categories.

10.4.1. 2-projective limits. Recall that any functor on ARo can be uniquely
extended to a functor on ÂRo by taking a projective limit. For a groupoid over
ARo, the same idea works, except that the definition of projective limit is more
technical. Roughly speaking, to a ARo-groupoid F , we associate the ÂRo-groupoid
F̂ so that the fiber F̂ (A) over A ∈ ÂRo is the category of projective systems of
objects in F (A/mn

A). We refer to [SGA, 4, Exp VI, (6.10)] for interested readers.
For A ∈ ÂRo, let ARA

o be the category where the objects are the o-algebras
A/mn

A for n > 0 and the morphisms A/mn
A → A/mn′

A are the natural projections.
Let G be a groupoid over ARA

o . For example, given a groupoid F over ARo let
G := F |ARA

o
be the sub-category of F whose objects and morphisms are over those

10In other words, P̂GL(n) is a formal completion of the linear algebraic group PGL(n)o along
the identity section.
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of ARA
o . Then we define a 2-projective limit of G as follows:

(10.4.1.1) lim←−
n

G (A/mn
A) := H omARo(ARA

o ,G ),

where H omARo(·, ·) is the category of base-preserving11 functors. “Evaluating
at A/mn

A” gives a functor lim←−n G (A/mn
A) → G (A/mn

A) for each n, and we have a
canonical 1-morphism ARA

o × lim←−n G (A/mn
A)→ G of groupoids over ARA

o . In fact,
this 1-morphism is universal among 1-morphisms ARA

o × C → G for any category
C.

The groupoid lim←−n G (A/mn
A) has the following explicit description. The objects

are projective systems {ξn| ξn ∈ G (A/mn
A)}n and morphisms {ξn} → {ηn} are

collections {ξn → ηn}n of morphisms in G which are compatible with the transition
maps, i.e., make the following diagram commute:

ξn+1 //

��

ηn+1

��
ξn // ηn

If A is artin local with (mA)n0 = 0, then the functor {ξn} 7→ ξn0 defines an equiv-
alence of categories lim←−n G (A/mn

A)→ G (A). We can check that

(10.4.1.2)

∣∣∣∣∣lim←−
n

G (A/mn
A)

∣∣∣∣∣ ∼= lim←−
n

|G | (A/mn
A).

In particular, for a category G co-fibered in sets (i.e. a functor), the 2-projective
limit lim←−nG(A/mn

A) is equivalent to the set-theoretic projective limit of theG(A/mn
A).

Now, let F be a groupoid over ARo. We now define a groupoid F̂ over ÂRo,
as follows. For any A ∈ ÂRo, we set F̂ (A) := lim←−n F (A/mn

A). To a morphism
f : A → B in ÂRo, we can naturally associate a functor f : ARA

o → ARB
o . For

two objects ξ ∈ Ob(F̂ (A)) and η ∈ Ob(F̂ (B)), a morphism α : ξ → η over f
is a natural transformation ξ → η ◦ f . (We view ξ and η as functors into F via
ξ : ARA

o → F |ARA
o
↪→ F and η : ARB

o → F |ARB
o
↪→ F .) More concretely,

a morphism {ξn} → {ηn} over f is a collection {ξn → ηn} of morphisms over
fn : A/mn

A → B/mn
B , which are compatible with the transition maps.

This ÂRo-groupoid F̂ extends F ; i.e., we have a 1-isomorphism F̂ |ARo

∼−→ F .
(This amounts to the fact that the natural “projection functor” lim←−n F (A/mn

A)→
F (A) is an equivalence of categories for each A ∈ ARo.) Conversely, let F ′ be a
ÂRo-groupoid. We choose a cleavage (Remark 10.1.12) so that for any A� A/mn

A,
we obtain a functor F ′(A)→ F ′(A/mn

A). Then we obtain a 1-morphism Ξ : F ′ →
F̂ ′|ARo of ÂRo-groupoids with cleavage, as follows: for each A ∈ ÂRo, we define
a functor ΞA : F ′(A) → lim←−n F ′(A/mn

A) by sending ξ to ξA/mn
A
, according to the

choice of cleavage.

11We view ARA
o as a category over ARo via the natural inclusion functor. Base-preserving

functors are defined in Definition 10.1.5, and morphisms of base-preserving functors are also
required to be base-preserving in the sense of Definition 10.1.5. If G were a general co-fibered
category, then we need to require that any functor in H omARo (ARA

o ,G ) sends any arrow in ARA
o

to a cartesian arrow, but this is automatic since F is a groupoid over ARo.



10.4. 2-CATEGORICAL LIMITS 159

Definition 10.4.2. Let F ′ be an ÂRo-groupoid. We say that the formation
of F ′ commutes with 2-projective limits if for some choice of cleavage (equivalently,
for any choice of cleavage) on F ′, the 1-morphism Ξ : F ′ → F̂ ′|ARo is a 1-
isomorphism.

Here is an example. Let F = DρF and F2 = D2
ρF
, and we already defined ÂRo-

groupoids D̂ρF and D̂2
ρF

in §10.3. We show that their formation commute with 2-
projective limit. We first choose a cleavage so that D̂ρF(A)→ D̂ρF(A/mn

A) is given by
T 7→ T/mn

AT , and similarly for D̂2
ρF
. Let F̂ and F̂2 be the ÂRo-groupoids obtained

by the 2-projective limits construction discussed above. Then, that Ξ : D̂ρF
∼−→ F̂

and Ξ2 : D̂2
ρF

∼−→ F̂2 are 1-isomorphisms follows from Proposition 7.4.1.

Definition 10.4.3. We say that an ARo-groupoid F is pro-representable if F̂
is representable.

10.4.4. 2-direct limits. In this section, we explain how to extend F = DρF or
F = D2

ρF
over the bigger category Augo by using a 2-direct limit.

For (A, I) ∈ Augo, we form a category AR(A,I)
o of pairs (A′, jA′ : A′ ↪→ A),

where A′ ∈ ARo and jA′ : A′ ↪→ A maps mA′ into I. We require that morphisms
respect the injective map jA′ . We will often view A′ as a o-subalgebra of A via jA′ ,
and will not mention jA′ explicitly. For two objects A′ and A′′ in AR(A,I)

o , we can
find another object =[A′ ⊗o A

′′] which contains A′ and A′′ as a o-subalgebra of A.
In other words, the category AR(A,I)

o is filtered.12
To motivate the construction, consider a ARo-groupoid F which is repre-

sentable by R ∈ ÂRo. Then for a noetherian o-algebra A where π0 is nilpotent,
consider the set of continuous o-maps Homo(R,A). Since by continuity any R→ A

factors through some A′ ∈ AR(A,I)
o where I ⊂ A is the nilradical, we have a natural

bijection

Homo(R,A) ∼= lim−→
A′∈AR

(A,I)
o

Homo(R,A′) ∼= lim−→
A′

F (A′)

For an arbitrary ARo-groupoid F , it will be natural to define F̃ (A, I) as the direct
limit of F (A′) over A′ ∈ AR(A,I)

o . But since F (A′) does not have to be equivalent
to a set, we need to clarify what we mean by the “direct limit.” Roughly speaking,
to a ARo-groupoid F , we will associate the Augo-groupoid F̃ so that the fiber
F̃ (A, I) over (A, I) ∈ Augo is the category of direct systems of objects in F (A′)
for A′ ∈ AR(A,I)

o .
Let G be a groupoid over AR(A,I)

o . For example, we may take G := F |
AR

(A,I)
o

for some groupoid F over ARo as before. Define the 2-direct limit lim−→A′∈AR
(A,I)
o

G (A′)
as the category obtained from G by “formally inverting” all the co-cartesian mor-
phisms, hence all morphisms, in G . Since AR(A,I)

o is filtered, the category lim−→A′∈AR
(A,I)
o

G (A′)
is a “localization” of G in the following sense. The set of objects is exactly Ob(G ),

12If the base category is not filtered then the 2-direct limit can be counter-intuitive. For a
more precise statement, see [SGA, 4, Exp VI, Exercice 6.8(1)].
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and the morphisms are equivalence classes of the following diagrams:

(10.4.4.1) ξA′

α
##FFFFFFFF
ηB′

β

��
ηB′′ ,

where α and β are morphisms in G . We write the above morphism as β−1 ◦ α,
and the equivalence relation is generated by β−1 ◦ α ∼ (γ ◦ β)−1 ◦ (γ ◦ α) for any
morphism γ : ηB′′ → ηB′′′ in G . To rephrase, the set of morphisms can be written
as follows:

(10.4.4.2) Homlim−→G (ξA′ , ηB′) = lim−→
ηB′′∈Ob(G/ηB′ )

HomG (ξA′ , ηB′′).

This gives a well-defined category (in particular, the composition of morphisms
is well-defined) since AR(A,I)

o is filtered and there are enough co-cartesian lifts in
G (Definition 10.1.2(2)). See [SGA, 4, Exp VI, Prop 6.5] for more details, up to
reversing the directions of arrows.

The natural inclusion define a functor G → lim−→A′∈AR
(A,I)
o

G (A′). We denote the
image of ξ ∈ Ob(G ) under this functor by {ξ}. For A ∈ ARo and a groupoid G over
AR(A,mA)

o , the natural inclusion G (A)→ lim−→A′∈AR
(A,mA)
o

G (A′) is an equivalence of
categories since A ∈ AR(A,mA)

o is the final object. In general, the 2-direct limit is
equivalent to the “category of direct systems” by associating to each ξA′ ∈ Ob(G )
a direct system which has ξA′ in the A′-slot.13 From this, we can check that

(10.4.4.3)

∣∣∣∣∣∣ lim−→
A′∈AR

(A,I)
o

G (A′)

∣∣∣∣∣∣ ∼= lim−→
A′∈AR

(A,I)
o

|G | (A′).

In particular, for a category G co-fibered in sets (i.e. a functor), the 2-direct limit
lim−→A′∈AR

(A,I)
o

G(A′) is equivalent to the set-theoretic direct limit of G(A′) over
A′ ∈ AR(A,I)

o . For more discussion of 2-direct limit, see [SGA, 4, Exp VI, §6],
especially Proposition 6.2 and the discussion which follows.

Now, we can extend any ARo-groupoid F to a groupoid F̃ over Augo by
declaring F̃ (A, I) := lim−→A′∈AR

(A,I)
o

F (A′) for (A, I) ∈ Augo. A morphism {ξA′} →
{ηB′} over f : (A, I) → (B, J) is defined in a similar fashion to (10.4.4.1). More
precisely, we consider B′′ ∈ AR(B,J)

o so that f(A′) ⊂ B′′ and B′ ⊂ B′′ as o-
subalgebras of B. Then, a morphism {ξA′} → {ηB′} over f means an equivalence
class of diagrams of the following form:

(10.4.4.4) ξA′

α
##FFFFFFFF
ηB′

β

��
ηB′′ ,

where α is over f |A′ : A′ → B′′, and β is over the inclusion B′ ↪→ B′′ of o-
subalgebras of B. We write this morphism as β−1 ◦ α and the equivalence relation
is generated by β−1 ◦ α ∼ (γ ◦ β)−1 ◦ (γ ◦ α) for any γ : ηB′′ → ηB′′′ over the

13The essential surjectivity is clear and the full faithfulness follows from (10.4.4.2).



10.4. 2-CATEGORICAL LIMITS 161

inclusion B′′ ↪→ B′′′ of o-subalgebras of B. To rephrase, the set Homf ({ξA′}, {ηB′})
of morphisms over f : (A, I)→ (B, J) can be written as follows:

Homf ({ξA′}, {ηB′}) := lim−→
B′⊂B′′

Homf |A′ (ξA′ , ηB′′).

It can be checked that F̃ is an Augo-groupoid.14

This Augo-groupoid F̃ extends F ; i.e., we have a 1-isomorphism F
∼−→ F̃ |ARo .

(This amounts to the fact that the natural “inclusion functor” F (A)→ lim−→A′∈AR
(A,mA)
o

F (A′)
is an equivalence of categories for each A ∈ ARo.) Conversely, let F ′ be a Augo-
groupoid. We choose a cleavage so that for any A′ ∈ AR(A,I)

o , we obtain a functor
F ′(A′) → F ′(A, I). Then we obtain a 1-morphism Ξ : F̃ ′|ARo → F ′ of Augo-
groupoids with cleavage, as follows: for each (A, I) ∈ Augo, we define a functor
Ξ(A, I) : lim−→A′

F ′(A′)→ F ′(A, I) by sending {ξ} to ξ(A,I), according to the choice
of cleavage.

Definition 10.4.5. Let F ′ be an Augo-groupoid. We say that the formation of
F ′ commutes with 2-direct limits if for some choice of cleavage (equivalently, for any
choice of cleavage) on F ′, the 1-morphism Ξ : F̃ ′|ARo → F ′ is a 1-isomorphism.

10.4.6. For F = DρF and F2 = D2
ρF

we already defined Augo-groupoids D̃ρF

and D̃2
ρF

in §10.3. Let F̃ and F̃2 be the Augo-groupoids obtained by the 2-direct
limit construction discussed above. In this section, we show that the formation of
D̃ρF and D̃2

ρF
commutes with 2-direct limits, which provides 1-isomorphism F̃

∼−→
D̃ρF and F̃2 ∼−→ D̃2

ρF
.

The choice of cleavage is induced from the “choice15” of tensor product TA′⊗A′A
among its isomorphism class. We make such a choice, and define 1-morphisms
Ξ : F̃ → D̃ρF and Ξ2 : F̃2 → D̃2

ρF
, according to the choice of cleavage.

Showing that Ξ and Ξ2 are 1-isomorphisms is equivalent to showing that
Ξ(A, I) and Ξ2(A, I) are equivalences of categories for each (A, I) ∈ Augo. We
carry out the proof as follows:
10.4.6.1. Ξ(A, I) and Ξ2(A, I) are faithful. This is clear since TA′ ↪→ TA.

10.4.6.2. Ξ(A, I) and Ξ2(A, I) are essentially surjective. Let A+ be the preimage
of F under the natural projection A� A/I, so A+ is local with nilpotent maximal
ideal I∩A+. We first remark that each of ρA, TA, ιA and βA “descends” to A+, since
each of them descends over F modulo I by definition. Now, by the compactness of
GK and general properties of finitely presented modules and morphisms between
them, we can find a finitely generated (hence finite artin local) o-subalgebra A′ of
A+ over which each of ρA, TA, ιA and βA descends. But any such A′ is an object
of AR(A,I)

o .

14If we view the 2-direct limit as a category of direct systems instead of a localization, and
define F̃ accordingly, then the set of morphisms {ξA′} → {ηB′} of direct systems over f is
lim←−A′⊂A′′ lim−→B′⊂B′′ Homf |A′′ (ξA′′ , ηB′′ ), but all the transition maps of the projective system are
bijections, hence the notion of morphisms coincides.

15Technically, tensor product is defined only up to unique isomorphism, not as a single object.
“Choosing” a tensor product corresponds to choosing a cleavage for the category of modules co-
fibered over the category of rings.
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10.4.6.3. Ξ(A, I) and Ξ2(A, I) are full. Let TA = TA′ ⊗A′ A and TB = TB′ ⊗B′
B where TA′ and TB′ are free modules over A′ ∈ AR(A,I)

o and B′ ∈ AR(B,J)
o ,

respectively. We assume that TA′ ⊗A′ (A′/mA′) ∼= TB′ ⊗B′ (B′/mB′) ∼= TF, TA ⊗A
(A/I) ∼= TF ⊗F (A/I) and TB ⊗B (B/J) ∼= TF ⊗F (B/J).

As before let A+ and B+ be the preimages of F under the natural projection
A � A/I and B � B/J , respectively. By the assumption, any morphism α :
TA → TB descends to a morphism α+ : TA+ → TB+ . Hence, by general properties
of morphisms between finitely generated modules, there exists A′′ ∈ AR(A,I)

o and
B′′ ∈ AR(B,J)

o such that the morphism α+ descends to some α′′ : TA′′ → TB′′ .
Now, assume that α has come from a morphism in D̃ρF or in D̃2

ρF
. This essen-

tially means that TA and TB carry some extra structures such as ρA, ρB , ιA, ιB ,
(or additionally βA and βB), and α satisfies some diagrams such as (10.3.2.2) (or
additionally (10.3.3.2)). Then, by enlarging A′′ and B′′ by adding finitely many
generators, we may ensure that α′′ is a morphism in DρF or D2

ρF
, which concludes

the proof.

10.4.7. Properties of F̂ and F̃ . The following claims follow from our discussion
of 2-categorical limits and Proposition 10.1.6. We skip the details and leave them
to readers.

The construction of F̂ (respectively, F̃ ) is “2-functorial” in the following sense.
Any 1-morphism Φ : F ′ → F ′ of ARo-groupoids naturally extends to a 1-morphism
Φ̂ : F̂ ′ → F̂ of ÂRo-groupoids (respectively, to a 1-morphism Φ̃ : F̃ ′ → F̃
of Augo-groupoids), and any 2-isomorphism ψ : Φ ↪→ Φ′ between 1-morphisms
Φ,Φ′ : F → F ′ naturally extends to a 2-isomorphism ψ̂ : Φ̂ ∼−→ Φ̂′ (respectively,
to a 2-isomorphism ψ̃ : Φ̃ ∼−→ Φ̃′). Note if Φ is a natural inclusion of an ARo-
subgroupoid (respectively, fully faithful, 1-isomorphism, formally smooth), then
the same property holds for Φ̂ and Φ̃.

The formation of F̂ and F̃ commute with 2-fiber products in the following
sense: for ARo-groupoids F1, F2 and F , the natural 1-morphisms ̂F1 ×F F2 →
F̂1×F̂

F̂2 and ˜F1 ×F F2 → F̃1×F̃
F̃2 are 1-isomorphisms, where the 1-morphisms

are obtained by applying the “2-universal property of 2-fiber products” to (p̂r1, p̂r2, ω̂)
and (p̃r1, p̃r2, ω̃). That these 1-morphisms are 1-isomorphisms can be checked fiber-
wise, which can be done using the explicit description of 2-fiber products stated in
§10.1.8. See Definition 10.1.7 for the “2-universal property” and the notations used
here.

Motivated by this discussion, we make the following definition.16

Definition 10.4.8. Let F ′ and G ′ be ÂRo-groupoids, whose formation com-
mutes with 2-projective limits. Set F := F ′|ARo and G := G ′|ARo , and fix 1-
isomorphisms ΞF : F ′

∼−→ F̂ and ΞG : G ′
∼−→ Ĝ . We say that a 1-morphism

Ψ′ : F ′ → G ′ over ÂRo commutes with 2-projective limits if there exists a 1-
morphism Ψ : F → G such that ΞG ◦Ψ′ ∼= Ψ̂ ◦ ΞF .

Let F ′ and G ′ be Augo-groupoids, whose formation commute with 2-direct
limits. Set F := F ′|ARo and G := G ′|ARo , and fix 1-isomorphisms ΞF : F̃

∼−→ F ′

and ΞG : G̃
∼−→ G ′. We say that a 1-morphism Ψ′ : F ′ → G ′ over Augo commutes

16The author is not sure whether the following terminologies are standard.
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with 2-direct limits if there exists a 1-morphism Ψ : F → G such that Ψ′ ◦ ΞF ∼=
ΞG ◦ Ψ̃.

For example, the “forgetting the framing” functor D̂2
ρF
→ D̂ρF or D̃2

ρF
→ D̃ρF

commutes with 2-projective or direct limits, respectively.
The following statement is a paraphrase of the discussion on 2-fiber products

above: if both Ψi : F̂i → F̂ commute with 2-projective limits, then the 2-fiber
product F̂1 ×F̂

F̂2 can be recovered from its restriction to ARo-groupoid, and
similarly if both Ψi : F̃i → F̃ commute with 2-direct limits, then the 2-fiber
product F̃1 ×F̃

F̃2 can be recovered from its restriction to ARo-groupoid. Also
it follows as a consequence that the natural projections F̂1 ×F̂

F̂2 → F̂i and and
F̃1 ×F̃

F̃2 → F̃i commute with 2-projective and direct limits, respectively.
The upshot is that the study of the groupoid G and 1-morphisms Ψ over ÂRo or

Augo as above essentially reduces to that of the ARo-groupoid F and 1-morphism
Φ. Finally, we remark that the formation of any groupoids over ÂRo that we con-
sider commute with 2-projective limits, and all the 1-morphisms over ÂRo commute
with 2-projective limits. On the other hand, a Augo-groupoid whose formation does
not commute with 2-direct limits naturally arises in the study of deformations; see
§11.1.5 for such an example.





CHAPTER 11

Deformations for GK-representations of P-height 6 h

Throughout the section, we assume that the residue field k of oK is finite. This
assumption is needed for the existence of universal deformation rings and universal
framed deformation rings for GK-representations of P-height 6 h (Theorem 11.1.2,
which is proved in §11.7). This theorem is not obvious at all, since the usual
‘unrestricted’ GK-deformation functor has infinite-dimensional tangent space (see
§11.7.1), so there is no ‘unrestricted’ universal GK-deformation ring in the category
of complete local noetherian rings. We study the local structure of the generic fibers
of these deformation rings via suitable analogues of Kisin’s techniques for analyzing
potentially semi-stable deformation rings [Kis08, §3]. This is done in §11.3.

From the definition of GK-representations of P-height6 h, Kisin’s idea [Kis09b,
§2] of “resolving flat deformation rings” works for GK-deformation rings of P-height
6 h (§11.1), and we can even perform Kisin’s connected component analysis when
h = 1 under a suitable separability assumption (§11.5). As an application, we give
another proof of Kisin’s connected component analysis of the generic fiber of certain
flat deformation rings (Theorem 11.6.1) using GK ∞ -deformation rings instead of
the Breuil-Kisin classification of finite flat group schemes. We also point out that
the 2-adic case of the theorem is handled in a more uniform manner this way.

We keep the notations from §10.3, with the following exception. For a groupoid
F over ARo, we use the same letter F to denote the extension of F to a groupoid
over ÂRo or Augo. This is denoted by F̂ or F̃ in §10.

11.1. Deformations and SA-lattice of P-height 6 h

In this subsection, we define groupoids of deformations (respectively, framed
deformations) of P-height 6 h, and construct “moduli of S-lattices of P-height
6 h” over deformation groupoids, which can be thought of as “resolutions.” This
was inspired by Kisin’s resolution of flat deformation rings [Kis09b, §2.1].

Let ρF be a GK-representation over F, which is of P-height 6 h (Definition
8.1.7). That is to say, there exists MF ∈ (ModFI /S)6h

F such that T ∗S,F(MF) ∼= ρF
as a F[GK ]-module. (See Lemma 9.1.2.) We often use §9.2.1 without comment.

Definition 11.1.1. For A ∈ ARo, we say that a deformation (ρA, TA, ι) ∈
DρF(A) is of P-height 6 h if (ρA, TA) is of P-height6 h as a torsion GK-representation
(Definition 8.1.7). We let D6h

ρF
⊂ DρF denote the full subcategory whose objects

are of P-height 6 h. We say a framed deformation (ρA, TA, ι, βA) ∈ D2
ρF

is of P-
height 6 h, if (ρA, TA) is of P-height 6 h as a torsion GK-representation. We let
D2,6h
ρF

⊂ D2
ρF

denote the full subcategory whose objects are of P-height 6 h.

We can apply the discussion in §10.4.1 and §10.4.4 to extend D6h
ρF

and D2,6h
ρF

to
ÂRo-groupoids and Augo-groupoids, respectively, and use §10.4.7 to extend all the
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relevant 1-morphisms over ÂRo and Augo, respectively. In particular, by §10.4.7
we can view D6h

ρF
and D2,6h

ρF
as subgroupoids of DρF and D2

ρF
over ÂRo and Augo,

respectively. Also, D2,6h
ρF

can be written as the 2-fiber product D6h
ρF
×DρF

D2
ρF
,

whether we view them as groupoids over ARo, ÂRo, or Augo.
For A ∈ ÂRo, a deformation (ρA, TA, ι) ∈ DρF(A) is called of P-height 6 h if

(ρA, TA, ι) lies in (the essential image of) D2,6h
ρF

(A). Concretely, this means that
TA ⊗ A/mn

A is of P-height 6 h as a torsion GK-representation (Definition 8.1.7)
for all n ≥ 1. For (A, I) ∈ Augo, a deformation (ρA, TA, ι) ∈ DρF(A, I) is called of
P-height 6 h if (ρA, TA, ι) lies in (the essential image of) D2,6h

ρF
(A, I). Concretely,

this means that there exists A′ ∈ Aug(A,I)
o and a A′-deformation (ρA′ , TA′ , ι) of

P-height 6 h such that TA ∼= TA′ ⊗A′ A as (A, I)-deformations of ρF. We similarly
define framed deformations of P-height 6 h with coefficients in ÂRo and Augo.

Having defined the ARo-groupoids D6h
ρF

and D2,6h
ρF

, it is natural to ask if these
groupoids or the associated functors are pro-representable. As remarked in §11.7.1
below, the tangent spaces |DρF | (F[ε]) and

∣∣D2
ρF

∣∣ (F[ε]) are not finite-dimensional
over F, hence we cannot expect to have ‘unrestricted’ universal deformation rings
and universal framed deformation rings. Later in (11.7), we will prove the following
theorem, which asserts that we have finiteness of the tangent space via imposing
the deformation condition of being of P-height 6 h.

Theorem 11.1.2. Assume that the residue field k is finite. Then the functor∣∣D6h
ρF

∣∣ always has a hull. If EndGK (ρF) ∼= F then the ÂRo-groupoid D6h
ρF

is repre-
sentable. The functor

∣∣D2,6h
ρF

∣∣ is representable with no assumption on ρF. Further-
more, the natural inclusions D6h

ρF
↪→ DρF and D2,6h

ρF
↪→ D2

ρF
of ÂRo-groupoids are

relatively representable by surjective maps in ÂRo.

11.1.3. Topological convention. Let R and A be o0-algebras. We set the fol-
lowing convention for the meaning of RA:

(1) If π0 is nilpotent in a discrete o0-algebra A, for example if A ∈ ARo or
(A, I) ∈ Augo for some I ⊂ A, then we set RA := A⊗o0 R. For example,
SA := A⊗o0 S and oE,A := A⊗o0 oE .

(2) IfA is a complete local noetherian o0-algebra, then we setRA := lim←−n(A/mn
A)⊗o0

R. For example, SA := lim←−n(A/mn
A)⊗o0 S and oE,A := lim←−n(A/mn

A)⊗o0

oE .
(3) If A is a finite F0-algebra, then choose a finite flat o0-subalgebra Ao ∈ A

with A = Ao[ 1
π0

] and set RA := RAo [ 1
π0

]. For example, SA := SAo [ 1
π0

]
and oE,A := oE,Ao [ 1

π0
]. Note that RA is independent of the choice of

Ao; for any finite flat o0-subalgebra Ao′ ⊂ A containing Ao, we have
RAo′ ∼= RAo ⊗Ao Ao′ (using Ao-finiteness of Ao′). Furthermore, for any
finite A-algebra B, we have RB ∼= RA ⊗A B.

11.1.4. For TA ∈ Repfree
A (GK) withA ∈ ÂRo, we defineD6h

E (TA) ∼= DE,A (TA(−h)).
By the discussion in §8.2.4D6h

E is an exact equivalence of categories Repfree
A (GK)→

(ModFI /oE)étA which commutes with⊗-products, internal homs, duality, and change
of coefficients for A→ B in ÂRo.
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Let A be an o0-module with πN0 ·A = 0 for some N (e.g. (A, I) ∈ Augo for some
I ⊂ A). For TA ∈ Repfree

A (GK), we define

(11.1.4.1) D6h
E (TA) :=

(
TA(−h)⊗A (oÊur )A

)GK
.

Note that there exists a finite o0-subalgebra A′ ⊂ A and TA′ ∈ Repfree
A′ (GK) with

TA ∼= TA′⊗A′A (because GK has a finite image in AutA(TA)). In this case, it easily
follows that D6h

E,A(TA) ∼= D6h
E (TA′) ⊗oE,A′ oE,A. This shows that D6h

E,A(TA) is an
étale ϕ-module which is finite free with oE,A-rank equal to rankA(TA). Furthermore,
D6h
E,A is exact and commutes with change of coefficients for any o0-map A → B,

which essentially reduces to the case when #(A) <∞ handled in §8.2.4.
The following is the reason for taking the Tate twist in the definition of D6h

E .
Choose M ∈ ModS(ϕ)6h, and let T := T ∗S(M). Then DE(T ) does not have
any S-lattice of P-height 6 h unless T is unramified. On the other hand, we have
D6h
E (T ) ∼= oE⊗S (M∨), where M∨ is the dual of P-height h. From now on, we work

with D6h
E instead of the contravariant functor D∗E , to associate an étale ϕ-module

to a GK-representation.
Now, let (ρF, TF) be an F-representation of P-height 6 h, and let MF :=

D6h
E (TF). Applying the functor D6h

E to a deformation (ρA, TA, ιA) of ρF over
A ∈ ÂRo, we obtain MA := D6h

E (TA), together with a ϕ-compatible isomorphism
MF

∼−→MA ⊗A A/mA obtained from ιA. This motivates the following definition of
the ÂRo-groupoid DMF .

• An object in DMF(A) for A ∈ ÂRo is a pair (MA, ιA) where MA ∈
(ModFI /oE)étA , and ιA : MF

∼−→ MA ⊗A (A/mA) is a ϕ-compatible iso-
morphism.

• A morphism (MA, ιA)→ (MB , ιB) over f : A→ B is an equivalence class
of ϕ-compatible maps α : MA →MB over f , such that ιB = α ◦ ιA where
α : MA ⊗A (A/mA) → MB ⊗B (B/mB) is induced by α. Two such maps
are equivalent if one is a (1 + mB)-multiple of the other. By Nakayama’s
lemma, α induces an isomorphism MA ⊗oE,A oE,B

∼−→MB .

Observe that the formation of DMF commutes with 2-projective limits (Definition
10.4.2). By construction, we have a 1-isomorphism D6h

E : DρF
∼−→ DMF of groupoids

over ÂRo, which commutes with the 2-projective limits (Definition 10.4.8).
The following Augo-groupoid extends the ARo-groupoid DMF via 2-direct lim-

its, hence we denote this Augo-groupoid by the same notation DMF .

• An object over (A, I) ∈ Augo is a pair (MA, ιA), whereMA ∈ (ModFI /oE)étA ;
i.e., an étale ϕ-module which is free over oE,A, and ιA : MF →MA⊗A(A/I)
is a ϕ-compatible map which induces an isomorphism MF ⊗F (A/I) ∼−→
MA ⊗A (A/I).

• A morphism (MA, ι(A,I)) → (MB , ι(B,J)) over f : (A, I) → (B, J) is an
equivalence class of ϕ-compatible maps α : MA → MB over f such that
ι(B,J) = α◦ι(A,I) where α : MA⊗A(A/I)→MB⊗B (B/J) is induced by α.
Two such maps are equivalent if one is a (1 + mB)-multiple of the other.
By Nakayama’s lemma for nilpotent ideals, α induces an isomorphism
MA ⊗oE,A oE,B

∼−→MB .
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• The assignment Ξ : {(MA′ , ι)} 7→ (MA′ ⊗A′ A, ι) defines a 1-isomorphism,
˜(DMF |ARo) → DMF where the left side is constructed in §10.4.4 and the

right side is defined above.
We still need to prove that Ξ is a 1-isomorphism. Since essentially the same argu-
ment given in §10.4.6 works, we only sketch the proof. Having ι(A,I), any object
or a morphism of the above Augo-groupoid always descends over oE,A+ , where A+

is the preimage of F under A � A/I. So it descends over some finitely generated
oE -subalgebra of oE,A+ , which is necessarily of the form oE,A′ for some A′ ∈ AR(A,I)

o .
The formula (11.1.4.1) defines a 1-morphism D6h

E : DρF → DMF over Augo since
D6h
E commutes with change of coefficients for any map (A, I) → (B, J) in Augo.

In fact, this 1-morphism commutes with 2-direct limits (Definition 10.4.8), which
follows from the natural morphism D6h

E (TA′) ⊗A′ A → D6h
E (TA′ ⊗A′ A) being an

isomorphism for any A′ ∈ AR(A,I)
o . Since the 1-morphism D6h

E is a 1-isomorphism
over ARo, its extension D6h

E over Augo is also a 1-isomorphism, by the discussion
in §10.4.7.

11.1.5. SA-lattices of P-height 6 h. Let A be either in ÂRo or in Augo. Con-
siderMA ∈ (ModFI /oE)étA and let MA ⊂MA be a SA-lattice of P-height 6 h (Def-
inition 8.2.2). For any A→ B, the scalar extension SB ⊗SA

MA ⊂ oE,B ⊗oE,A MA

is a SB-lattice of P-height 6 h. Therefore, we can define a groupoid, whose fiber
over A is the category of SA-lattices of P-height 6 h.

More precisely, we define a Augo-groupoid D6h
S,MF

, as follows. Objects in
D6h

S,MF
(A, I) are pairs (MA, ι(A,I)) where MA ∈ (ModFI /S)6h

A and ι(A,I) : MF →
(MA ⊗SA

oE,A) ⊗A (A/I) is a ϕ-compatible map which induces an isomorphism
MF ⊗F (A/I) ∼−→ (MA ⊗SA

oE,A)⊗A (A/I). A morphism is an equivalence class of
ϕ-compatible maps which respect ι(A,I), where two maps are equivalent if one is a
(1 + I)-multiple of the other. We warn that the formation of the Augo-groupoid
D6h

S,MF
does not commute with 2-direct limits, since MA ⊗A (A/I) is not required

to be “constant.”
We extend D6h

S,MF
(rather, its restriction to ARo) to a ÂRo-groupoid by 2-

projective limits. More concretely, objects in D6h
S,MF

(A) can be viewed as pairs
(MA, ιA) where MA ∈ (ModFI /S)6h

A and ιA : MF
∼−→ (MA ⊗SA

oE,A)⊗A (A/mA)
is a ϕ-compatible oE,F-linear isomorphism. A morphism is an equivalence class
(under multiplication by (1 + mA) of ϕ-compatible maps which respect ιA.

We define a 1-morphism Υ : D6h
S,MF

→ DMF over ÂRo and Augo by (MA, ι) 7→
(MA, ι), where MA := MA ⊗SA

oE,A. We also have a 1-morphism T6h
S : D6h

S,MF
→

D6h
ρF

over ÂRo defined by (MA, ι) 7→ (T ∗S,A(M∨A), D6h
E,A(ι)). If A ∈ ÂRo, then we

have MA⊗SA
oE,A ∼= D6h

E (T ∗S(M∨A)); i.e., we have a 2-isomorphism D6h
E ◦T

6h
S
∼= Υ

over ÂRo. All the 1-morphisms which appear in this paper will commute with 2-
projective limits.

The following proposition shows that we can extend T6h
S to a 1-morphism over

Augo. The discussion in §10.4.7 does not apply because the formation of the Augo-
groupoid D6h

S,MF
does not commute with 2-direct limits. Compare with [Kis09b,

Proposition (2.1.3)].
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Proposition 11.1.6. There exists a 1-morphism T6h
S : D6h

S,MF
→ D6h

ρF
over

Augo which recovers the 1-morphism T6h
S over ARo and makes the following dia-

gram 2-commute:

D6h
ρF

D
6h
E // DMF

D6h
S,MF

T
6h
S

eeKKKKKKKKKK
Υ

OO

Observe that this 2-commutative diagram determines T6h
S uniquely up to 2-

isomorphism since the horizontal 1-morphism D6h
E is fully faithful.

Proof. Let (MA, ι) ∈ D6h
S,MF

(A, I) and set MA := MA ⊗SA
oE,A(= MA[ 1

u ]).
By the definition of D6h

S,MF
we have an isomorphism ι(A,I) : MF → (MA ⊗SA

oE,A)⊗A (A/I), soMA descends to a finite free étale (ϕ, oE,A+)-moduleMA+ where
A+ is the preimage of F under the natural projection A � A/I. By the standard
limit argument, there exists a A′ ∈ Aug(A,I)

o such that MA := MA ⊗SA
oE,A(=

MA[ 1
u ]) descends to a finite free étale (ϕ, oE,A+)-module MA′ . For A′′ ∈ Aug(A,I)

o

containing A′, we may repeat this process to obtain a finite étale (ϕ, oE,A′′)-module
MA′′ and we have a natural ϕ-compatible isomorphism MA′′

∼= MA′ ⊗oE,A′ oE,A′′

because both sides map onto same oE,A′′-submodule of MA+ under the natural
maps. Now we set T6h

S (MA, ι) := (T E(MA′(−h))⊗A′ A, ι), which is clearly an
(A, I)-deformation of ρF and independent of the choice of A′ ∈ Aug(A,I)

o . It remains
to show that T6h

S (MA, ι) is of P-height 6 h as an (A, I)-deformation of ρF.
We set MA′ := MA′ ∩MA ⊂ MA′ . Since MA′ is a S-submodule of finitely

generated oE -module MA′ with no nonzero infinitely u-divisible element, MA′ is
finitely generated over S. Clearly MA′ is ϕ-stable submodule of MA′ such that
MA ⊗SA

oE,A = MA′ [ 1
u ] = MA′ ∩MA[ 1

u ] = MA′ . By construction, u is MA′ -
regular, hence MA′ is of projective dimension 1 as a S-module. To see that the
cokernel of ϕ on MA′ is annihilated by P(u)h, we use the following ϕ-compatible
right exact sequence

0→MA′ →MA′ ⊕MA
(a,b) 7→b−a−→ MA ,

together with the injectivity of ϕ and the snake lemma. This shows that MA′ ∈
(Mod /S)6h, Therefore, T E(MA′(−h)) is of P-height 6 h as an o0-torsion GK-
representation, so T6h

S (MA, ι) := T E(MA′(−h))⊗A′ A is of P-height 6 h, by defi-
nition. (We cannot conclude that MA′ ∈ (ModFI /S)6h

A′ , because we cannot show
MA′ is a projective SA′ -module.) �

Remark 11.1.7. It follows from Corollary 9.3.5 that if he < q − 1 then T6h
S :

D6h
S,MF

→ D6h
ρF

is a 1-isomorphism. But the assumption that he < q−1 is essential1

1It sounds plausible to, but has not been verified by, the author that in the case of he = q−1,
if we restrict D6h

S,MF
and D6h

ρF to the full subcategories, whose non-zero subobjects or quotients
are either never étale or never Lubin-Tate type, then T6h

S induces a 1-isomorphism between these
full subcategories.
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because otherwise T6h
S may not even be fully faithful. In fact, if he ≥ q − 1, then

we have T6h
S (MA) ∼= T6h

S (MA(h)) for any MA ∈ (ModFI /S)6h
A .

If he > q − 1 then T6h
S may not be essentially surjective.2 When he > q

we now give an example (with A ∈ ARo) of a deformation TA of P-height 6 h
which cannot have any SA-lattice of P-height 6 h. Assume that he > q and let
(ρF, TF) be the trivial 1-dimensional representation, so MF := D6h

E (TF) ∼= oE,F(h).
Take a deformation which corresponds, under D6h

E , to MF[ε] ∼= (oE,F[ε]) ·e with
ϕ(σ∗e) = (P(u)h + 1

uε)e. Then, MF[ε] ∼= SF ·e ⊕ SF ·( 1
uεe) is a SF-lattice of P-

height 6 h, so the deformation is of P-height 6 h, but there is no SF[ε]-lattice of
P-height 6 h inMF[ε]. (One way to see this is by directly computing the “ϕ-matrix”
for any oE,F[ε]-basis e′ of MF[ε], and show that it cannot divide P(u)h.)

11.1.8. For (R, J) ∈ Augo, we write Aug(R,J) := (Augo/(R, J)) which is defined
in Definition 10.2.3. Concretely, the objects of Aug(R,J) are pairs (A, I), where A
is an R-algebra and I ⊂ A is a nilpotent ideal such that J ·A ⊂ I.

For (R, J) ∈ Augo, any R-scheme X can be viewed as a functor X : Aug(R,J) →
(Sets) defined by (A, I) 7→ HomR(SpecA,X), hence as an Aug(R,J)-groupoid which
is co-fibered in sets. We use the same letter X to denote this Aug(R,J)-groupoid.
We say an Aug(R,J)-groupoid F is representable by an R-scheme X, if we have
a 1-isomorphism X

∼−→ F .3 We say that a 1-morphism F ′ → F over Augo is
relatively representable by morphisms of scheme if for any ξ ∈ F (A, I), the 2-fiber
product F ′ξ is representable by a scheme Xξ over A. We say that F ′ → F is is
relatively representable by projective morphisms if Xξ is projective over A for any
ξ ∈ Ob(F (A, I)) and (A, I) ∈ Augo.

We now show that the 1-morphism T6h
S : D6h

S,MF
→ D6h

ρF
is relatively repre-

sentable by projective morphisms in the above sense. In other words, we will show
that the Aug(R,J)-groupoid

(11.1.8.1) D6h
S,MF,ξ

:= (D6h
ρF
/ξ)×

D6h
ρF

D6h
S,MF

for an object ξ ∈ D6h
ρF

(R, J) can be represented by a projective R-scheme. We first
observe that it is enough to handle the case when R ∈ ARo. Indeed, since any ξ over
(R, J) ∈ Augo “descends” to ξR′ over some R′ ∈ AR(R,J)

o , the AR(R,J)
o -groupoid

D6h
S,MF,ξ

can be represented by XξR′ ⊗R′ R if D6h
S,MF,ξR′

can be represented by an
R′-scheme XξR′ . From now on, we will assume that ξ is an object over R ∈ ARo.

Using the explicit description of 2-fiber products §10.1.8, objects in D6h
S,MF,ξ

(A, I)
for (A, I) ∈ AugR are of form

(
MA, ι, α : ξ ⊗R A

∼−→ T6h
S (MA)

)
. Observe that

the AugR-groupoid D6h
S,MF,ξ

is co-fibered in equivalence relations; this is because
(D6h

ρF
/ξ) is co-fibered in equivalence relations over AugR and the natural map

MA → oE ⊗S MA is injective, so for any for any objects (MA, ι, α), (M′A, ι′, α′) ∈
D6h

S,MF,ξ
(A, I) there can be at most one morphism f : MA → M′A which respects

2The author does not know if this bound he < q − 1 is sharp for the essential surjectivity of
T6h

S .
3If we can extend the groupoids over the category of o-schemes S equipped with a nilpotent

quasi-coherent sheaf of ideal I ⊂ OS which contains mo ·OS , then this notion recovers usual
relative representability.
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the isomorphisms α and α′. Now we may replace the AugR-groupoid by the associ-
ated functor

∣∣∣D6h
S,MF,ξ

∣∣∣, and replace each fiber category with its set of isomorphism
classes.

Let Mξ := D6h
E (ξ) be the étale ϕ-module corresponding to ξ. (See §11.1.4 for

the definition ofD6h
E .) Viewing MA as a SA-lattice of P-height 6 h inMξ⊗RA, the

set
∣∣∣D6h

S,MF,ξ
(A, I)

∣∣∣ for (A, I) ∈ AugR can be identified with the set of SA-lattices
of P-height 6 h for Mξ ⊗R A, where Mξ = D6h

E (ξ).
For any o0-scheme X, we set SX := S ⊗o0 OX and oE,X := oE ⊗o0 OX . We

say a ϕ-stable SX -lattice MX in a finite free étale (ϕ, oE,X)-module MX is of P-
height 6 h if cokerϕMX

is annihilated by P(u)h. The following proposition asserts
that the 1-morphism T6h

S : D6h
S,MF

→ D6h
ρF

is relatively representable by projective
morphisms.

Proposition 11.1.9. Assume that the residue field k of K is finite, and choose
ξ ∈ D6h

ρF
(R) for some R ∈ ARo. Then there exists a projective R-scheme G R6h

ξ

and a S
G R6h

ξ

-lattice M6h
ξ ⊂ Mξ ⊗R OG R6h

ξ

of P-height 6 h with the following

property: M6h
ξ defines a 1-isomorphism G R6h

ξ
∼−→ D6h

S,MF,ξ
, such that for any

(A, I) ∈ AugR, an A-point η ∈ G R6h
ξ (A) is mapped to η∗(M6h

ξ ) ∈ D6h
S,MF,ξ

(A, I).
Any two pairs (G R6h

ξ ,M6h
ξ ) are related by a unique isomorphism. Moreover,

the projective scheme G R6h
ξ enjoys the following further properties:

(1) Let ξ → ξ′ be a morphism in D6h
ρF

over a morphism R → R′ in ARo.
Then there exists a unique isomorphism G R6h

ξ ⊗R R′
∼−→ G R6h

ξ′ , which
pulls back M6h

ξ′ to M6h
ξ ⊗R R′ inside of (Mξ ⊗R OG R6h

ξ

)⊗R R′.

(2) G R6h
ξ is equipped with a canonical very ample line bundle, whose forma-

tion commutes with the base change described in (1).

We call the S
G R6h

ξ

-lattice M6h
ξ ⊂ O

G R6h
ξ

⊗o0 Mξ the universal S-lattice of
P-height 6 h for ξ.

Idea of Proof. Since the proof is almost the same as that of [Kis09b, Propo-
sition 2.1.7], we only indicate the idea. Let us first observe that for any (A, I) ∈
AugR the natural injective map

∣∣∣D6h
S,MF,ξ

(A,mR ·A)
∣∣∣ ↪→ ∣∣∣D6h

S,MF,ξ
(A, I)

∣∣∣ is bijective.
Indeed, any MA ∈

∣∣∣D6h
S,MF,ξ

(A, I)
∣∣∣ satisfies

MF ⊗F (A/mR ·A) ∼= (Mξ ⊗R R/mR)⊗F (A/mR ·A) ∼= MA[1/u]⊗A (A/mR ·A),

and this means that MA ∈
∣∣∣D6h

S,MF,ξ
(A,mR ·A)

∣∣∣.
Now, let ŜA

∼= (W ⊗o0 A)[[u]] be the u-adic completion of SA, where W :=
W (k) is the usual Witt vector ring if o0 = Zp, andW := k[[π0]] if o0 = Fq[[π0]]. We
write M̂A := MA ⊗SA

ŜA where MA := Mξ ⊗R A. By the main result of [BL95],
the association MA  MA ⊗SA

ŜA induces a natural bijection between the set of
finite projective SA-lattices MA in MA and the set of finite projective ŜA-lattices
M̂A in M̂A. Note that the latter is precisely the set of A-points of an ind-projective
scheme over R: namely, the affine grassmanian for

(
ResW/o0 GLd

)
⊗o0 R, where d
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is the oE,R-rank of Mξ. (See [Fal03, p42] for the definition of affine grassmanians.)
It also follows that ϕMA

restricts to MA and the cokernel MA/ϕMA
(σ∗MA) is

annihilated by P(u)h if and only if the corresponding conditions hold for M̂A ⊂ M̂A,
so the functor

∣∣∣D6h
S,MF,ξ

∣∣∣ can be represented by a closed ind-subscheme of the affine
grassmanian for

(
ResW/o0 GLd

)
⊗o0R. The argument in [Kis09b, Proposition 2.1.7]

(with e replaced by he and p by q) shows that it is a projective R-scheme. We call
this R-scheme G R6h

ξ . (From the discussion in the paragraph right above, it follows
that the “universal nilpotent coherent ideal” is mR ·OG R6h

ξ

.)

To construct the universal lattice M6h
ξ of P-height 6 h, we first cover G R6h

ξ by
affine open subschemes {SpecAi}. By the construction of G R6h

ξ , each open affine
subscheme SpecAi carries the SAi-lattice Mi of P-height 6 h which corresponds
to the natural inclusion SpecAi ↪→ G R6h

ξ , and one can show that the Mi glue to
give M6h

ξ which satisfies the properties claimed in the statement. Had we defined
all the groupoids over the category of schemes X equipped with a nilpotent ideal
sheaf I containing mo·OX , then M6h

ξ would be the universal object. (This follows
from the construction of G Rξ and Mi over SpecAi ↪→ G R6h

ξ , as explained in the
proof of [Kis09b, Proposition 2.1.7].)

To show that the formation commutes with base change, we observe that
D6h

S,MF,ξ′
∼= (D6h

ρF
/ξ′)×(D6h

ρF /ξ)
D6h

S,MF,ξ
, so the same holds for the associated func-

tors (because all the groupoids involved are fibered in equivalence relations). For
the existence and construction of the canonical very ample line bundle, see [Fal03,
pp.42-43]. �

11.1.10. We extend the proposition to allow R ∈ ÂRo, because ultimately we
would like to set R to be R2,6h

ρF
or R6h

ρF
if such a deformation ring exists.

For R ∈ ÂRo, let AugR be the category whose objects are (A, I) where A is an
R-algebra and I ⊂ A is a nilpotent ideal such that mR ·A ⊂ I. Note that a formal
scheme X over Spf R gives rise to a category co-fibered in sets over AugR, so we may
extend the notion of representability and relative representability allowing formal
schemes, in the similar manner to §11.1.8.

For a fixed ξ ∈ D6h
ρF

(R), we can define an AugR-groupoid D6h
S,MF,ξ

so that
the fiber D6h

S,MF,ξ
(A, I) is the set of SA-lattices of P-height 6 h in Mξ ⊗R A,

where Mξ := D6h
E (ξ). One way to define D6h

S,MF,ξ
is by declaring D6h

S,MF,ξ
(A, I) :=

lim←−n
(
D6h

S,MF,ξn
(A, I)

)
∼= D6h

S,MF,ξn0
(A, I), where ξn := ξ⊗RR/mn

R with n an integer
such that In = 0.

By Proposition 11.1.9, we obtain a projective R/mn
R-scheme G R6h

ξn
and a uni-

versal S-lattice M6h
ξn
⊂Mξn⊗R/mnROG R6h

ξn

for each n, which is compatible with the
base change under R/mn

R � R/mn−1
R . On the other hand, we have a natural iso-

morphism
∣∣∣D6h

S,MF,ξ

∣∣∣ ∼= lim←−n
∣∣∣D6h

S,MF,ξn

∣∣∣, by (10.4.1.2). Therefore it follows that the

functor
∣∣∣D6h

S,MF,ξ

∣∣∣ (hence the groupoid D6h
S,MF,ξ

) can be represented by the projective

formal R-scheme Ĝ R
6h

ξ := lim−→n
G R6h

ξn
, and the S

Ĝ R
6h

ξ

-lattice M̂6h
ξ := lim←−n M6h

ξn
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satisfies the universal property similar to the one stated in Proposition 11.1.9. Fur-
thermore, since each G R6h

ξn
is equipped with a (very) ample line bundle which is

compatible with the direct system, it follows from Grothendieck’s formal existence
theorem that the formal scheme Ĝ R

6h

ξ comes from a projective scheme G R6h
ξ over

SpecR (which is unique up to unique isomorphism). Also, using the formal exis-
tence theorem for coherent sheaves on the projective formal scheme Ĝ R

6h

ξ ⊗̂o0S

over SR := S⊗̂o0R, the “formal universal lattice” M̂6h
ξ comes from a S

G R6h
ξ

-

lattice M6h
ξ with the universal property similar to the one stated in Proposition

11.1.9. Here, S
G R6h

ξ

:= S ⊗o0 OG R6h
ξ

and note that Ĝ R
6h

ξ ⊗̂o0S is the mR-adic

completion of G R6h
ξ ⊗o0 S.

Let us assume furthermore that EndGK (ρF) = F, in which case D6h
ρF

is pro-
representable (Theorem 11.1.2). Let R6h

ρF
∈ ÂRo be the universal deformation

ring and ξuniv ∈ D6h
ρF

(R6h
ρF

) be the universal object. Then the natural projection
pr2 : D6h

S,MF,ξuniv

∼−→ D6h
S,MF

is a 1-isomorphism, so D6h
S,MF

is representable by a
projective R6h

ρF
-scheme G R6h := G R6h

ξuniv
. We put M6h := M6h

ξuniv
.

To summarize, we have shown that Proposition 11.1.9 holds true even if we
allow ξ to be over R ∈ ÂRo. More precisely, we obtain the following corollary:

Corollary 11.1.11. Assume that the residue field k of K is finite, and let ξ ∈
D6h
ρF

(R) for some R ∈ ÂRo. Then there exists a projective R-scheme G R6h
ξ and a

S
G R6h

ξ

-lattice M6h
ξ ⊂Mξ⊗ROG R6h

ξ

of P-height 6 h, with the following property:

M6h
ξ defines a 1-isomorphism G R6h

ξ
∼−→ D6h

S,MF,ξ
, such that for any (A, I) ∈ AugR,

an A-point η ∈ G R6h
ξ (A) is mapped to η∗(M6h

ξ ) ∈ D6h
S,MF,ξ

(A, I). Any two pairs
(G R6h

ξ ,M6h
ξ ) are related by a unique isomorphism, and the formation of this pair

commutes with the base change in the sense of Proposition 11.1.9(1), but working
in ÂRo instead of ARo.

If EndGK (ρF) = F, then we have the following 2-commutative diagram of Augo-
groupoids4:

G R6h //

∼=
��

Spec
(
R6h
ρF

)
∼=

��
D6h

S,MF,ξuniv

pr1 //

pr2 ∼=
��

(D6h
ρF
/ξuniv)

∼=
��

D6h
S,MF

T
6h
S // D6h

ρF
,

where the upper left vertical arrow is induced by the S
G R6h

ξ

-lattice M6h. In other

words, D6h
S,MF

is representable by a projective R6h
ρF

-scheme G R6h together with
the “universal object” M6h. Any two pairs (G R6h,M6h) are related by a unique
isomorphism.

4We identified schemes and the corresponding Augo-groupoids.
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We call M6h
ξ as in Corollary 11.1.11 the universal S-lattice of P-height 6 h

for ξ, and M6h the universal S-lattice of P-height 6 h.

11.1.12. In general, a universal deformation ring R6h
ρF

of P-height 6 h may
not exist. Therefore we often work with the universal framed deformation ring
R2,6h
ρF

of P-height 6 h. Let ξ2
univ ∈ D2,6h

ρF
(R2,6h

ρF
) be a universal framed defor-

mation of P-height 6 h, and we denote the image of ξ2
univ under the “forgetful

1-morphism”D2,6h
ρF

→ D6h
ρF

by the same notation ξ2
univ. Furthermore, the natural

1-morphism (D6h
ρF
/ξ2

univ)→ D6h
ρF

is formally smooth.
We put G R2,6h := G R6h

ξ2
univ

and M2,6h := M6h
ξ2
univ

. This auxiliary space
G R2,6h plays an important role in the study of the generic fiber R2,6h

ρF
⊗o F .

11.2. Generic fibers of deformation rings

In the previous subsection, we have constructed projective morphisms G R6h →
Spec(R6h

ρF
) and G R2,6h → Spec(R2,6h

ρF
). In this subsection, we show that G R6h⊗o

F → Spec(R6h
ρF
⊗o F ) and G R2,6h ⊗o F → Spec(R2,6h

ρF
⊗o F ) are isomorphisms

(Proposition 11.2.6). This reduces the study of the generic fiber of deformation
rings to the study of G R6h and G R2,6h whose points have an interpretation in
terms of S-lattices of P-height 6 h. Using this, we show that R6h

ρF
⊗o F and

R2,6h
ρF

⊗o F are formally smooth over F (Corollary 11.2.10).
As a first step, we need to give an interpretation of an A-point ζA : SpecA→

G R6h
ξ for an R ⊗o F -algebra A which is finite over F , which is done in Lemma

11.2.4. For this, we need a notion of SA-lattice of P-height 6 h where A is a finite
F -algebra; this will be introduced in §11.2.3.

11.2.1. As a motivation, we give an interpretation of the completions ofR2,6h
ρF
⊗o

F and R6h
ρF
⊗o F at a maximal ideal, below in Proposition 11.2.2.

Let E be a finite extension of F , and let ARE denote the category of artin
local E-algebras with residue field isomorphic to E. We put F′ := oE/mE and
ρF′ := ρF ⊗F F′. We fix a deformation η := (ρη, Tη) ∈ D6h

ρF′
(oE) and a framed

deformation η2 ∈ D2,6h
ρF′

. We put ηE :=“η ⊗o E” and η2
E :=“η2 ⊗o E.” We let

D6h
ηE ⊂ DηE denote the ARE-groupoid of deformations of ηE which are of P-height
6 h as F0-representations of GK in a similar way to §10.3.2 and Definition 11.1.1.
We also let D2,6h

ηE ⊂ D2
ηE denote the ARE-groupoid of framed deformations of η2

E

which are of P-height 6 h as F0-representations of GK in a similar way to §10.3.2
and Definition 11.1.1. For simplicity, we often suppress the superscript (·)2 and let
ηE denote either framed or unframed “E-deformation” of ρF.

Proposition 11.2.2. The framed deformation functor
∣∣D2,6h

ηE

∣∣ of P-height 6 h
is prorepresentable by (R2,6h

ρF
)η̂E and the universal object is ξ2

univ⊗R2,6h
ρF

(R2,6h
ρF

)η̂E ,
where (R2,6h

ρF
)η̂E denotes the completion of (R2,6h

ρF
)⊗oE with respect to the kernel

of ηE : (R2,6h
ρF

)⊗o E � E.
If R6h

ρF
exists, then the deformation functor D6h

ηE of P-height 6 h is prorepre-
sentable by (R6h

ρF
)η̂E and the universal object is ξuniv⊗R6h

ρF
(R6h

ρF
)η̂E , where (R6h

ρF
)η̂E

denotes the completion of (R6h
ρF

)⊗oE with respect to the kernel of ηE : (R6h
ρF

)⊗oE �
E.
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Proof. We only give a proof for the framed deformation part of the proposi-
tion, since the deformation part is essentially the same but easier.

For A ∈ ARE , consider an o-map ζA : R2,6h
ρF

→ A which reduces to ηE modulo
mA. Clearly, ζ∗A(ξ2

univ) is a framed deformation of η∗E(ξ2
univ). On the other hand,

ζA is factored by ζAo : R2,6h
ρF

→ Ao for some finite o-subalgebra Ao ⊂ A with
Ao[ 1

π0
] = A, and ζ∗Ao(ξ2

univ) is of P-height 6 h as an o0-lattice representation by
Proposition 9.2.6. It follows that ζ∗A(ξ2

univ) is of P-height 6 h as an F0-lattice
representation.

It is left to show that any framed deformation ζA of η∗E(ξ2
univ) can be obtained as

a pull back of ξ2
univ under a unique map R2,6h

ρF
→ A. Let A+ be the preimage of oE

under the natural projection A� E. By definition of ηE , the framed deformation
ζA descends to ζA+ over A+, so also to ζAo over some finite o-subalgebra Ao ⊂ A
with Ao[ 1

π0
] = A. By Proposition 2.4.9, ζAo is of P-height 6 h as an o0-lattice

representation, so it corresponds to a unique o-map R2,6h
ρF

→ Ao. By composing it
with the natural inclusion Ao ↪→ A, we obtain the desired map R2,6h

ρF
→ A as well

as its uniqueness since the map R2,6h
ρF

→ A is independent of the choice of Ao. �

11.2.3. For a finite algebra A over F := Frac(o), we let Int(A) denote the set of
finite o-subalgebras Ao ⊂ A with Ao[ 1

π0
] = A. Since π0 is not a zero-divisor in Ao ∈

Int(A), we have the notion of isogenies for (ModFI /S)6h
Ao and (ModFI /oE)étAo , and

the isogeny categories (ModFI /S)6h
Ao [ 1

π0
] and (ModFI /oE)étAo [ 1

π0
] are well-defined,

just as in §2.2.7 and §7.1.6. We often denote the isogeny class containing MAo as
MAo [ 1

π0
], and similarly for objects in (ModFI /oE)étAo [ 1

π0
].

Let (ModFI /S)6h
A be the category of ϕ-modules MA over SA such that MA =

MAo [ 1
π0

] for some MAo ∈ (ModFI /S)6h
Ao where Ao ∈ Int(A). We similarly define

(ModFI /oE)étA . For example, ifA = F0, then (ModFI /S)6h
F0

is exactly ModS(ϕ)6h[ 1
π0

],
not ModSF0

(ϕ)6h. (Here, SF0 = S[ 1
π0

].)
For MA ∈ (ModFI /oE)étA , a ϕ-stable SA-submodule MA ⊂ MA is called a

SA-lattice of P-height 6 h if oE,A ⊗SA
MA = MA and MA ∈ (ModFI /S)6h

A .

Lemma 11.2.4. Fix ξ ∈ D6h
ρF

(R) with R ∈ ÂRo and put Mξ := D6h
E (ξ). For

any R-algebra A which is finite over F : Frac(o), the set of A-points G R6h
ξ (A) =

HomR(SpecA,G R6h
ξ ) is naturally in bijection with the set of SA-lattices of P-

height 6 h in Mξ ⊗R A.

Proof. Let MA be a SA-lattice of P-height 6 h in Mξ ⊗R A. Then by
definition, there exists Ao ∈ Int(A) and MAo ⊂MA such that MAo ⊗Ao A = MA

and MAo ∈ (ModFI /S)6h
Ao . We may enlarge Ao so that the structure morphism

R→ A factors through Ao. Therefore, MA corresponds to an R-map ζA : SpecA→
SpecAo ζAo−−→ G R6h

ξ , where ζAo is the unique Ao-point that corresponds to MAo .
This A-point ζA does not depend on the choice of Ao or MAo .

It remains to show that any R-map ζA : SpecA → G R6h
ξ comes from a SA-

lattice MA ⊂Mξ⊗RA of P-height 6 h. We first handle the case when A = E where
E is a finite extension of F . Let ρξ denote the deformation over R which corresponds
to ξ. Since the structure morphism R→ E factors through oE (which follows from
[dJ95, Lemma 7.1.9]), we obtain an oE-representation ρξ⊗RoE which is of P-height
6 h as an o0-lattice representation. In other words, the étale ϕ-module Mξ ⊗R oE
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admits a S-lattice MoE of P-height 6 h equipped with a ϕ-compatible oE-action.
By Lemma 11.2.5 below, we have MoE ∈ (ModFI /S)6h

oE , so ME := MoE [ 1
π0

] is an
SE-lattice of P-height 6 h in Mξ ⊗R E.

For the general case, it is enough to handle the case when A is local. Let
E := A/mA be the residue field of A, and let ηE : SpecE ↪→ SpecA ζA−−→ G R6h

ξ

be the underlying E-point. By the previous discussion for the case A = E, the
E-point ηE is factored by an oE-point η : Spec oE → G R6h

ξ , so ζA is factored by
ζA+ : SpecA+ → G R6h

ξ where A+ is the preimage of oE by the natural projection
A � E. But since A+ ∼= lim−→Ao∈Int(A)A

o, we see that ζA+ is factored by an
R-map ζAo : SpecAo → G R6h

ξ for some R-subalgebra Ao ∈ Int(A). Now, let
MAo ⊂ Mξ ⊗R Ao denote the SAo-lattice of P-height 6 h which corresponds to
ζAo , and put MA := MAo ⊗Ao A. Clearly, the A-point ζA comes from MA. �

Lemma 11.2.5. Let MoE be a (ϕ,S)-module of P-height 6 h equipped with a ϕ-
compatible action of oE. Then MoE is finite free over SoE , so MoE ∈ (ModFI /S)6h

oE .

Proof. First observe that (i) SoE
∼= (W⊗o0 oE)[[u]]; (ii)W⊗o0 oE is a product

of discrete valuation rings; and (iii) the (q-)Frobenius5 endomorphism σW transi-
tively permutes the primitive idempotents ofW ⊗o0 oE . It follows that MoE/uMoE

is finite free over W ⊗o0 oE since it is π0-torsion free and is an étale ϕ-module. The
SoE -freeness of MoE follows from Proposition 7.4.2. �

Now, we are ready to prove the following proposition.

Proposition 11.2.6. Let R ∈ ÂRo. For any ξ ∈ D6h
ρF

(R), the o-morphism
G R6h

ξ ⊗o F → Spec(R ⊗o F ) induced by the structure morphism for G R6h
ξ is an

isomorphism.

Proof. Recall that the proper o-morphism G R6h
ξ ⊗oF → Spec(R⊗oF ) is an

isomorphism if and only if it is an étale monomorphism. (A morphism X → Y of
schemes is called a monomorphism if it induces a monomorphism on the functors
of points, or equivalently by [EGA, I, Proposition 5.3.8], if the diagonal map Y ↪→
Y ×X Y is an isomorphism.) Note that R ⊗o F is a noetherian Jacobson ring by
[Mat86, pp.247 Lemma 1], so G R6h

ξ ⊗oF is a noetherian Jacobson scheme by [EGA,
IV3, Corollaire (10.4.7)]. So in order to check that G R6h

ξ ⊗o F → Spec(R⊗o F ) is
an étale monomorphism, it is enough to show that G R6h

ξ (A) → (SpecR)(A) is a
bijection for any finite F -algebra A.

LetA be a finite local F -algebra. We have (SpecR)(A) ∼= lim−→Ao∈Int(A)(SpecR)(Ao)
by [dJ95, Lemma 7.1.9]. Furthermore, we have G R6h

ξ (A) ∼= lim−→Ao∈Int(A) G R6h
ξ (Ao),

which can be seen as follows. First, if A = E is a field, then we have G R6h
ξ (E) =

G R6h
ξ (oE) by the valuative criterion for properness. Now, if A is finite artin lo-

cal F -algebra with residue field E, then G R6h
ξ (A) = G R6h

ξ (A+) where A+ is the
preimage of oE under the natural projection A � E. Since A+ = lim−→Ao∈Int(A)A

o,
we have the claim. The case of general finite F -algebra A is immediate.

5Recall that q = p if o0 = Zp.
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It immediately follows from Theorem 5.2.3 that G R6h
ξ (Ao)→ (SpecR)(Ao) is

injective for any finite free o-algebra Ao, hence G R6h
ξ (A)→ (SpecR)(A) is injective

for any finite F -algebra A. Now we show that this is also surjective for any finite
F -algebra A. Let A ∈ ARE for some finite extension E/F and pick an A-point
ζA : R→ A. We let ηE : R ζA−−→ A� A/mA

∼= E be the E-point of SpecR on which
ζA is supported. Choose a finite free oE-subalgebra Ao ⊂ A with A = Ao[ 1

π0
] and

an o-map ζ ′ : R → Ao with ζ ′[ 1
π0

] = ζA. (Such ζ ′ always exists for some Ao, as
discussed at the beginning of the proof.) Since ξ ⊗R Ao is of P-height 6 h, there
exists a unique S-lattice MAo of P-height 6 h for MAo := Mξ ⊗R Ao which is
equipped with a ϕ-compatible Ao-action. (As before, we put Mξ := D6h

E (ξ)).
Let M′oE be the image of MAo under the natural surjection MAo � MoE :=

MAo ⊗Ao oE , and we put MoE := M′oE [ 1
π0

] ∩MoE where the intersection is taken
inside MoE [ 1

π0
] ∼= MηE . Then MoE is finite free over S by the first paragraph of

the proof of Theorem 5.2.3, hence is finite free over SoE by Lemma 11.2.5.
By Lemma 11.2.7 below, MA := MAo [ 1

π0
] is free over SA. Now, we choose a

SoE -basis {e1, · · · , en} for MoE and lift it to a SA-basis {ẽ1, · · · , ẽn} for MA. We
choose Bo ⊂ A which contains ζA(R) ⊂ A so that all the coefficients of ϕMA

(σ∗ẽi)
are contained in SBo . Let MBo be the free SBo-submodule of MA spanned by
{e1, · · · , en}. Clearly MBo ⊂ MA is ϕ-stable and MBo [ 1

π0
] = MA. Thus, MBo ∈

(ModFI /S)6h
Bo . This shows that MBo is a (unique) SBo-lattice of P-height 6 h

in the étale (ϕ, oE,Bo)-module which corresponds to the map R → Bo that factors
ζA : R → A. In other words, MBo corresponds to a Bo-point of G R6h

ξ , so MA

corresponds to an A-point of G R6h
ξ which maps to ζA ∈ (SpecR)(A).

Now, it is left to show the following lemma, which is exactly [Kis08, Lemma
1.6.1] if o0 = Zp. �

Lemma 11.2.7. Let A be a finite F0-algebra and let MA be a finitely generated
SA-module which is flat over S[ 1

π0
] and equipped with a map ϕ : σ∗MA → MA

whose cokernel is annihilated by P(u)h. Suppose that MA := MA ⊗S[ 1
π0

] E is finite
free over EA. Then MA is a finite projective SA-module.

Proof. The following proof is a lengthy way to say that the proof in [Kis08,
Lemma 1.6.1] also works if o0 = Fq[[π0]]. We prove the lemma by showing that
the first nonzero Fitting ideal I for MA (i.e., the nth Fitting ideal, where n is the
EA-rank of MA) is equal to SA. (See [Eis95, §20.2] for Fitting ideals.)

Let U ⊂ Spec S[ 1
π0

] denote the largest open subscheme over which MA is SA-
flat, and let Z be its (reduced) complement. Since A is F0-finite and MA ⊗S[ 1

π0
] E

is free over EA by assumption, Z is cut out by some non-zero g ∈ S[ 1
π0

].
The isomorphism (σ∗MA)[ 1

P(u) ] ∼−→MA[ 1
P(u) ] implies that g ∈ (σ(g)·P(u)) and

σ(g) ∈ (g ·P(u)). Assume that g is not a unit, so there exists x ∈ K with |x| < 1
with g(x) = 0. Let x and y be such that |x| < 1 and |y| < 1 are smallest and
largest among the nonzero roots of g, if any exist. Then all the nonzero roots of
σ(g) have absolute values between |x|1/q and |y|1/q, which are strictly bigger than
|x| and |y|, respectively. Clearly x is a common root of g and σ(g)·P(u). But since
σ(g) cannot have a root with absolute value |x|, x is a root of P(u). Similarly,
a root w of σ(g) with |w| = |y|1/q is also a root of g ·P(u), but g cannot have a
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root with absolute value |y|1/q. Hence w is a root of P(u). But all roots of P(u)
have same absolute value (being a S×-multiple of an Eisenstein polynomial), so
|x| = |w| = |y|1/q > |y|, which is a contradiction. This shows that g is either a unit
or a unit multiple of a power of u.

In terms of Fitting ideals, we have shown that ui ∈ I for some i ≥ 0. Therefore,
in order to show that I is a unit ideal, it is enough to show this after taking u-adic
completion. Let Î ⊂ ŜA

∼= K 0[[u]]A be the u-adic completion, so Î = (ui) for
some i > 0. Then σ extends continuously on K 0[[u]]A, and the u-adic completion
ϕ̂ : σ̂∗MA → M̂A is an isomorphism since P(u) ∈ (K 0[[u]]A)×. Since the formation
of Fitting ideals commutes with scalar extension [Eis95, Corollary 20.5], it follows
that σ(Î)·K 0[[u]]A = Î. This rules out Î = (ui) with i > 0. �

The following corollary is a re-interpretation of Proposition 11.2.6 using the
interpretation of F -finite points of G R6h

ξ ⊗o F (Lemma 11.2.4).

Corollary 11.2.8. Let A be a finite F0-algebra, and let ρA be an A-representation
of GK which is of P-height 6 h as an F0-representation. Then there exists a unique
MA ∈ (ModFI /S)6h

A such that T6h
S (MA) ∼= ρA.

Proof. The uniqueness of such MA is a consequence of full faithfulness of the
functor T6h

S : ModS(ϕ)6h[ 1
π0

]→ RepF0(GK) (Theorem 5.2.3), so it suffices to show
the existence. We may assume that A is also local, and let E denote its residue
field. We put F′ := oE/mE and F ′0/F0 the unramified extension corresponding to
the residue field extension F′/Fq. By choosing a GK-stable oE-lattice of ρA ⊗A E
and reducing it modulo mE , we obtain a residual representation ρF′ := ρF ⊗F F′.
By essentially the same argument as the proof of Proposition 11.2.2, there exists
a finite oF ′0 -subalgebra A

o ⊂ A and a GK-stable Ao-lattice ρAo in ρA. Note that
A = Ao ⊗o0 F

′
0. Let ξ ∈ D6h

ρF
(Ao) be the deformation corresponding to ρAo . By

Proposition 11.2.6 we have an isomorphism G R6h
ξ ⊗o0 F

′
0
∼−→ SpecA. By Lemma

11.2.4 this A-point of G R6h
ξ ⊗o0 F

′
0 corresponds to a unique SA-lattice of P-height

6 h, which we have been seeking. �

Theorem 11.2.9. Assume that k is finite. For any η ∈ D6h
ρF

(oE) for a finite
extension E over F , the functor

∣∣D6h
ηE

∣∣ on ARE is formally smooth.

Proof. Let A ∈ ARE with a nilpotent ideal I ⊂ A. We put A := A/I ∈ ARE .
For ζ ∈

∣∣D6h
ηE (A)

∣∣, we want to find ζ ∈
∣∣D6h

ηE (A)
∣∣ which reduces to ζ modulo I. By

Corollary 11.2.8, there exists MA ∈ (ModFI /S)6h

A
such that ζ = T6h

S (MA). So it
suffices to show that there exists MA ∈ (ModFI /S)6h

A such that MA⊗AA ∼= MA.
We first choose a finite flat oE-subalgebra Ao ⊂ A such that Ao[ 1

π0
] = A

and Io[ 1
π0

] = I where Io := I ∩ Ao. So we have A ∼= (Ao/Io)[ 1
π0

], and we put
Ao := Ao/Io and view it as a subring of A. By enlarging Ao if necessary, we can
assume that there exists MAo ∈ (ModFI /S)6h

Ao
such that MAo [

1
π0

] = MA. By
Proposition 8.2.3, ωAo := coker(ϕM

Ao
) is finite free over Ao. Let ωAo be a finite

free Ao-module equipped with ωAo ⊗Ao Ao ∼= ωAo , and let MAo be a finite free
SAo-module equipped with MAo ⊗Ao Ao ∼= MAo . We can choose a SAo/P(u)h-
linear surjective map MAo/P(u)hMAo � ωAo which lifts the natural projection
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MAo/P(u)hMAo � ωAo . Therefore, we obtain the following diagram with exact
rows:

(11.2.9.1) 0 // NAo
//

��

MAo
//

��

ωAo //

��

0

0 // σ∗MAo ϕM
Ao

// MAo
// ωAo // 0,

where NAo is the kernel of MAo � MAo/P(u)hMAo � ωAo . Since ωAo is flat
over Ao, the top row stays short exact after applying (·) ⊗Ao Ao, so NAo ⊗Ao
Ao

∼−→ σ∗MAo (i.e., the left vertical arrow in (11.2.9.1) is surjective). Therefore,
we obtain a surjective map r : σ∗MAo � NAo which factors the natural projection
σ∗MAo � σ∗MAo . Now, we define ϕMAo

: σ∗MAo
r−→ NAo ↪→MAo . Clearly ϕMAo

lifts ϕM
Ao

, and we have coker(ϕMAo
) ∼= ωAo which is annihilated by P(u)h. So

MA := MAo [ 1
π0

] is in (ModFI /S)6h
A and lifts MA. (In fact, it also follows that

r : σ∗MAo � NAo is an isomorphism by the injectivity of ϕMAo
(Corollary 2.2.3.2),

but we do not need this in the proof.) �

Now we are ready to show the formal smoothness of the generic fiber of defor-
mation rings of P-height 6 h, as a corollary of Theorem 11.2.9.

Corollary 11.2.10. Assume that k is finite. Let ξ ∈ D6h
ρF

(R) be such that
the natural 1-morphism (D6h

ρF
/ξ) → D6h

ρF
of ÂRo-groupoids is formally smooth.

Then R[ 1
π0

] is formally smooth over F . In particular, the F -algebras R2,6h
ρF

[ 1
π0

]
and R6h

ρF
[ 1
π0

] (if it exists) are formally smooth over F .

Proof. The second claim of the corollary follows from the first claim by taking
ξ = ξ2

univ and ξ = ξuniv. To obtain the first claim, first note that a noetherian
Jacobson F -algebra A (e.g., A = R[ 1

π0
] for some complete local noetherian o-

algebra R) is formally smooth over F if and only if its completion at each maximal
ideal is geometrically regular, by [EGA, 0IV, Théorème (20.5.8), Corollaires (22.6.5),
(22.6.6)]. So it suffices to show that for any E-point ηE : R→ E where E/F is some
finite extension, the completion Rη̂E of R⊗oE with respect to ker[ηE⊗E : R⊗oE �
E] is formally smooth over E. We use the same notation ηE to denote ηE ⊗ E,
and consider the 1-morphism Spf R η̂E → DηE over ARE defined as follows: a
(continuous) E-map ζA : Rη̂E → A with A ∈ ARE is sent to ξ⊗RA ∈ DηE (A) where
A is viewed as an R-algebra via R → Rη̂E

ζA−−→ A. Now using a similar argument
to the proof of Proposition 11.2.2, one can show that the formal smoothness of the
1-morphism (D6h

ρF
/ξ) → D6h

ρF
implies the formal smoothness of the 1-morphism

Spf Rη̂E → DηE over ARE . The corollary then follows from Theorem 11.2.9. �

11.2.11. Motivation: Relation with crystalline and semi-stable deformation
rings. One can generalize Proposition 11.2.6 as follows. We may also consider

the composition D6h
S,MF

T
6h
S−−−→ D6h

ρF
↪→ DρF of 1-morphisms, where the latter is the

natural inclusion. By Theorem 11.1.2, or rather Proposition 11.7.3, this inclusion
D6h
ρF

↪→ DρF is relatively representable by surjective maps of rings. For any ξ ∈
DρF(R), let R6h be the universal quotient of R which represents (D6h

ρF
)ξ, and let ξ6h
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be the universal object6 of (D6h
ρF

)ξ. Then the 1-morphism D6h
S,MF

→ DρF is relatively
representable; D6h

S,MF,ξ
is representable by a projective morphism G R6h

ξ6h → SpecR
which factors through the closed subscheme SpecR6h. By Proposition 11.2.6, this
projective morphism induces an isomorphism G R6h

ξ6h ⊗o F → Spec(R6h ⊗o F ). In
the case o0 = Zp, this proves [Kis08, Proposition 1.6.4(2)]. Note that R6h may not
equal the schematic image of G R6h

ξ6h in SpecR.
Now, we assume that o0 = Zp. We fix an F-representation ρ̄ of GK , and put

ρ̄∞ := ρ̄|GK∞
. We let R2

ρ̄ be the universal framed deformation ring, and let ξ denote
the restriction to GK ∞ of the universal framed deformation. Applying Theorem
11.1.2, or rather Proposition 11.7.3, we obtain the universal quotient R2,6h

ρ̄ of R2
ρ̄ ,

over which ξ becomes of P-height 6 h. So we obtain a map res : R2,6h
ρ̄∞ → R2,6h

ρ̄ ,
where the source is the universal framed deformation ring of P-height 6 h. From
now on, we put R2,6h

∞ := R2,6h
ρ̄∞ , and often suppress the subscript ρ̄ on GK -

deformation rings. (For example, we put R2 := R2
ρ̄ .)

Let R2,6h
cris and R2,6h

st be the universal quotients of R2 whose artinian local
points correspond to framed deformations that are torsion crystalline and torsion
semi-stable, respectively, with Hodge-Tate weights in [0, h]. These quotients a priori
factor through R2,6h

ρ̄ . Furthermore, Liu [Liu07] shows that for any finite extension
E/Qp, an E-point x : R2 → E factors through the quotient R2,6h

cris or R2,6h
st if

and only if the the corresponding E-representation Vx is crystalline or semi-stable
with Hodge-Tate weights in [0, h], respectively.7 We call them crystalline and semi-
stable framed deformation rings with Hodge-Tate weights in [0, h], respectively. The
generic fibers R2,6h

cris [ 1
p ] and R2,6h

st [ 1
p ] coincide with the crystalline and semi-stable

quotients of R2[ 1
p ] constructed by Kisin [Kis08].

The point is that “restricting to GK ∞
∼= GK” defines the natural maps rescris :

R2,6h
∞ → R2,6h

cris and resst : R2,6h
∞ → R2,6h

st . Even though the map rescris is quite
mysterious in general (let alone resst), we give some applications later on of the
maps rescris and resst in the study of crystalline and semi-stable frame deformation
rings. See §11.4.17 and §11.6.

All the discussions above work for the universal deformation rings if both Rρ̄
and R6h

∞ := R6h
ρ̄∞ exist. The author does not know whether EndGK

(ρ̄) ∼= F guar-
antees EndGK∞

(ρ̄∞) ∼= F (although he suspects that this may not be true). But
we record the following cases where we do have the full faithfulness of restrictions
to GK ∞ on residual representations:

(1) If ρ̄ is absolutely irreducible, then it is necessarily tame. Since the inclu-
sion GK ∞ ↪→ GK induces an isomorphism after quotienting out the wild
inertia groups, we obtain that EndGK∞

(ρ̄∞) ∼= F when EndGK
(ρ̄) ∼= F.

(2) Under the following assumption, we have the full faithfulness of the restric-
tion to GK ∞ for mod p crystalline representations: either K is absolutely
unramified, p > 2, and h < p − 1 [Bre99b]; or h = 1 and p > 2 (or any
more general assumption for which one can prove the classification of finite
flat group schemes over oK [Bre02, Theorem 3.4.3]).

6In a more down-to earth manner, R6h is the biggest quotient of R such that the pull-back
of ξ becomes P-height 6 h, and ξ6h is the pull-back of ξ over R6h.

7This result is also valid when p = 2.
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11.3. Local structure of the generic fiber of deformation ring

The aim of this subsection is to compute the dimension of R6h
ρF
⊗o F and

R2,6h
ρF

⊗oF at a closed point of a given “Hodge-Pink type” (Corollary 11.3.11). We
also show that fixing a “Hodge-Pink type” cuts out an equi-dimensional union of
connected components when K ∼= S[ 1

π0
]/(P(u)) is separable over K 0 (i.e., P(u) is

a S×-multiple of a separable Eisenstein polynomial). See Proposition 11.3.7 for a
precise statement. Note that the separability condition is automatic if o0 = Zp, but
not automatic when o0 = Fq[[π0]]. In the case o0 = Fq[[π0]], note that K = k((u))
is separable over k((u0)) if and only if K /K 0 is so, since S/(π0 − u0) = oK

∼= oK
via u 7→ u. Even though GK ∼= GK′ for any finite purely inseparable extension
K ′/K, the notions of GK-representations of P-height 6 h and GK′ -representations
of P-height 6 h are not the same because the construction of S and the choice
of P(u) are not the same for K and K ′. So we cannot replace K by its maximal
separable subextension Ks ⊂ K over k((u0)), so the assumption that K/k((u0)) is
separable seems to give a genuine restriction.8

Our technique is analogous to Kisin’s technique for studying the local structure
of potentially semi-stable deformation rings [Kis08, §3], with the difference that we
work with weakly admissible Hodge-Pink structures while Kisin works with weakly
admissible filtered (ϕ,N)-modules. This permits us to allow the case o0 = Fq[[π0]]
too, as we shall do.

By Theorem 4.3.4, we have an equivalence of categories H : ModS(ϕ)[ 1
π0

] ∼−→
HPwa,>0

K (ϕ) which restricts to H : ModS(ϕ)6h[ 1
π0

] ∼−→ HPwa,[0,h]
K (ϕ), where the

target category is the full subcategory of objects with all Hodge-Pink weights in
[0, h]. We now generalize this to allow A-coefficients, where A is any finite F0-
algebra.

Let A be a finite F0-algebra. We first make the following definition which is
satisfied by objects of the form (DA,ΛA) := H(MA) for MA ∈ (ModFI /S)6h

A :

Definition 11.3.1. An A-isocrystal is étale ϕ-module DA which is free over
(K 0)A := K 0⊗F0 A. For a free (K 0)A-module DA, we set (DA)x̂0 := O∆̂,x0 ⊗K 0

DA. An A-Hodge-Pink structure for a finite free (K 0)A-module DA is a (O∆̂,x0 )A-
lattice ΛA ⊂ (DA)x̂0 [ 1

P(u) ], which is a direct factor as an A-module (i.e., for h� 0,
the cokernel P(u)−h(DA) x̂0 /ΛA is a projective A-module9). The A-Hodge-Pink
structure ΛA is effective if ΛA contains the standard lattice (DA) x̂0 . We define
Hodge-Pink weights and multiplicities for A-Hodge-Pink structure ΛA as Hodge-
Pink weights and multiplicities for ΛA as Hodge-Pink structure (via forgetting
A-action).

We say that an A-isocrystal with A-Hodge-Pink structure is weakly admissible if
it is weakly admissible as a F0-isocrystal with F0-Hodge-Pink structure (i.e., if it is
weakly admissible after forgetting A-action). In other words, the weak admissibility
is checked for all the subobjects or quotients which do not necessarily respect the
A-module structure.

8The author does not have an example of a GK -representation of P-height 6 h which is not
P-height 6 h as a GKs -representation.

9For MA ∈ (ModFI /S)6h
A , (DA,ΛA) = H(MA) satisfies this condition thanks to Proposition

8.2.3.
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For any map A → B of finite F0-algebras, we have a natural definition of
“change of coefficients” for A-isocrystals with A-Hodge-Pink structure, namely
(DA,ΛA) 7→ (DA ⊗A B,ΛA ⊗A B). Note that the natural map ΛA ⊗A B →
(DB) x̂0 [ 1

P(u) ] is injective since the natural inclusion ΛA ↪→ (DA) x̂0 [ 1
P(u) ] splits

as an A-module by definition. The functor H commutes with the change of coeffi-
cients.

We generalize Theorem 4.3.4 to allow A-coefficients as follows, where A is a
finite F0-algebra.

Lemma 11.3.2. The functor H induces an equivalence of categories from (ModFI /S)6h
A

onto the category of A-isocrystals with weakly admissible A-Hodge-Pink structure
whose Hodge-Pink weights are in [0, h].

Proof. The full faithfulness follows from Theorem 4.3.4, and by Corollary
11.2.8 the essential surjectivity of H follows if we show that V ∗HP(DA,ΛA) is free
over A, where V ∗HP is defined in Corollary 5.2.4. We put VA := V ∗HP(DA,ΛA), and
may assume that A is local. First, we have VA ⊗A A/mA

∼= V ∗HP(DA/mA ,ΛA/mA),
so its A/mA-dimension equals rank(K 0)A DA. On the other hand, observe that
dimF0 VA =

(
rank(K 0)A DA

)
·(dimF0 A), which forces VA to be free with rankA VA =

rank(K 0)A DA. (Indeed, by Nakayama’s lemma there exists a A-linear surjection
A⊕n � VA with n := rank(K 0)A(DA) and both sides have the same F0-dimension.)

�

Remark 11.3.3. In fact, Theorem 11.2.9 can be proved more easily using
Lemma 11.3.2, namely from the fact that affine grassmannian is formally smooth
and that weak admissibility lifts under the infinitesimal thickening of coefficient
rings. (The last assertion follows from applying Proposition 2.3.8 to the short
exact sequence (11.3.10.1) below.)

By Corollary 11.2.10, the noetherian rings R6h
ρF

[ 1
π0

] and R2,6h
ρF

[ 1
π0

] are formally
smooth over F (and in particular, geometrically regular). In order to compute their
dimensions we introduce an invariant which picks out an equi-dimensional union
of connected components, generalizing the Hodge-Pink type defined in §2.2.9. The
dimension will be expressed in terms of the corresponding “Hodge-Pink type.”

11.3.4. Hodge-Pink type with coefficients. We seek to define a “Hodge-Pink
type” for MA ∈ (ModFI /S)6h

A , with A ∈ ARE and E/F0 finite (or rather, for
the A-isocrystal H(MA) with A-Hodge-Pink type). Consider a finite free (K 0)A-
module DA (where (K 0)A := K 0 ⊗F0 A) and an A-Hodge-Pink structure ΛA for
DA (Definition 11.3.1). Let D̂A,x0 := O ∆̂,x0,A ⊗(K 0)A DA (where O ∆̂,x0,A :=
O∆̂,x0 ⊗F0 A). Motivated by the discussion about Hodge-Pink types in §2.2.9 and
§2.3.3, we make the following definition.

Definition 11.3.4.1. For a finite extension E/F0, an E-Hodge-Pink type v is a
pair (n, Λ̄v

E) where n is a positive integer and Λ̄v
E is a SE-quotient of (SE/(P(u)h))⊕n.

For a finite E-algebra A, an A-Hodge-Pink structure ΛA for a finite free (K 0)A-
module DA is of E-Hodge-Pink type v (or simply, Hodge-Pink type v) if DA is of
(K 0)A-rank n and there is an SA/(P(u)h)-isomorphism Λ̄v

E ⊗E A ∼= ΛA/(D)x̂0 .
(Note that SA/(P(u)h) ∼= O∆̂,x0,A /(P(u)h).) For MA ∈ (ModFI /S)6h

A with A a
finite E-algebra, we say that MA is of E-Hodge-Pink type v = (n, Λ̄v

E) (or simply
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of Hodge-Pink type v if there is no risk of confusion), if H(MA) is of E-Hodge-
Pink type v; or equivalently by §3.2.6, if MA is of SA-rank n and there is an
SA/P(u)h-isomorphism Λ̄v

E ⊗E A ∼= cokerϕMA
.

We define the Hodge-Pink type for objects in D6h
ηE , as follows: the Hodge-Pink

type for ξA ∈ D6h
ηE (A) is the Hodge-Pink type for the unique SA-lattice MξA of

P-height 6 h for Mξ ⊗R A, where Mξ := D6h
E (ξ). (The existence of MξA is proved

in Corollary 11.2.8.)

Hodge-Pink type with coefficients behaves well under change of coefficients in
the following sense. Let MA ∈ (ModFI /S)6h

A for a finite E-algebra A, and assume
that MA is of E-Hodge-Pink type v = (n, Λ̄v

E). Then for any finite A-algebra A′,
MA ⊗A A′ is of E-Hodge-Pink type v. Also for any finite extension E′/E and an
E′-algebra A, MA ∈ (ModFI /S)6h

A is of E-Hodge-Pink type v := (n, Λ̄v
E) if and

only if MA is of E′-Hodge-Pink type v′ := (n, Λ̄v
E ⊗E E′). Using these, we will

often replace E with a suitable finite extension of E in applications.
It is not a priori clear if any A-Hodge-Pink structure with A ∈ ARE has an E-

Hodge-Pink type. But when K /K 0 is separable, the following equivalent definition
of E-Hodge-Pink type can be used to show that any A-Hodge-Pink structure has
an E-Hodge-Pink type.

Consider a finite free (K 0)A-moduleDA and an A-Hodge-Pink structure ΛA for
DA. If all the Hodge-Pink weights for ΛA are in [0, h] (i.e., D̂A,x0 ⊂ ΛA ⊂ P(u)−h·
D̂A,x0) then by definition ΛA/D̂A,x0 and (P(u)−h·D̂A,x0)/ΛA are finite projective A-
modules. As in §2.3.3, we can associate decreasing separated exhaustive filtrations
Fil•(D̂A,x0) of D̂A,x0 by (O∆̂,x0 )A-submodules, and Fil•(DA,K ) of DA,K by K A-
submodules, respectively, as follows:

Filw(D̂A,x0) := (D̂A,x0) ∩ (P(u)w ·ΛA) ⊂ D̂A,x0(11.3.4.2)

Filw(DA,K ) := Filw(D̂A,x0)
(P(u)·D̂A,x0) ∩ Filw(D̂A,x0)

⊂ D̂A,x0

P(u)·D̂A,x0

∼= DA,K , for w ∈ Z,(11.3.4.3)

where all the intersections are taken inside D̂A,x0 [ 1
P(u) ]. Note that if we forget the

A-action and view Fil•(DA,K ) as a filtration by K -subspaces, then Fil•(DA,K )
coincides with the filtration (2.4.3.1) or its analogue for the case o0 = Fq[[π0]].

One can also construct Filw(DA,K ) from Λ̄A := ΛA/D̂A,x0 , as follows: since the
submodule Λ̄A[P(u)w] ⊂ Λ̄A of elements killed by P(u)w is the image of P(u)−w ·
Filw(D̂A,x0) under the natural projection, we have an K A-isomorphism

(11.3.4.4) Filw(DA,K ) ∼← Λ̄A[P(u)w]
Λ̄A[P(u)w−1]

for each w, where the isomorphism is induced from multiplication by P(u)w. Now,
for any E-Hodge-Pink type (n, Λ̄v

E) we define Filwv := Λ̄v
E [P(u)w]/Λ̄v

E [P(u)w−1] ⊂
DE,K . It is clear from the isomorphism (11.3.4.4) that if an A-Hodge-Pink struc-
ture ΛA is of E-Hodge-Pink type v then there exists a K A-isomorphism Filw(DA,K ) ∼=
Filwv ⊗EA. We will show later in Lemma 11.3.5 that the converse is also true if
K /K 0 is separable.
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For MA ∈ (ModFI /S)6h
A , the filtration Fil•(DA,K ) for (DA,ΛA) := H(MA)

can be expressed in terms of MA, as follows:
(11.3.4.5)

Filw(DA,K ) ∼=
im(ϕMA

) ∩ P(u)w ·MA

(P(u)·im(ϕMA
)) ∩ P(u)w ·MA

⊂ im(ϕMA
)

P(u)·im(ϕMA
)
∼= DA,K , for w ∈ Z.

Lemma 11.3.5. Assume that K /K 0 is separable.
(1) For a finite E-algebra A, an A-Hodge-Pink structure ΛA for DA := DE⊗E

A is of E-Hodge-Pink type v if and only if there is an K A-isomorphism
Filw(DA,K ) ∼= (Filwv )⊗E A for all w, where Filw(DA,K ) is as defined in
(11.3.4.3).

(2) For a finite F0-algebra A, the grading grw(DA,K ) := Filw(DA,K )
Filw+1(DA,K ) asso-

ciated to an A-Hodge-Pink type ΛA is a finite projective K A-module for
any w ∈ Z. In particular, Filw(DA,K ) is a finite projective K A-module
for any w ∈ Z.

(3) If A is finite radicial E-algebra (e.g. A ∈ ARE), then any A-Hodge-Pink
type ΛA has an E-Hodge-Pink type.

When K /K 0 is separable, we often let v denote the corresponding filtration
Fil•v which is equivalent information by Lemma 11.3.5(1).

Lemma 11.3.5(2) is false (even when A is a field) if K is not separable over
K 0. See Remark 11.3.6 for an example. But the A-Hodge-Pink structure in this
counterexample cannot appear as a weakly admissible A-Hodge-Pink structure.
The author does not know whether Lemma 11.3.5 holds for any weakly admissible
E-Hodge-Pink structure without assuming that K /K 0 is separable.

Proof. The “only if” direction of (1) is already discussed; see the discussion
below (11.3.4.4). To show the “if” direction of (1), we may assume that A is a
finite local E-algebra. Let E′ ⊂ A be a subfield containing E which makes A a
radicial E′-algebra. (For example, we may take E′ to be the maximal separable
subextension of A/mA over E.) To prove the lemma, we may replace E by E′

and v := (n, Λ̄v
E) by v′ := (n, Λ̄v

E), so we are reduced to the case when A is finite
radicial E-algebra. (The point of this step is that for any finite extension E′′ of E,
A⊗E E′′ is local.)

Since K /K 0 and K 0/F0 are separable it follows that K /F0 is separable, so
we have an isomorphism K ⊗F0 E

∼=
⊕

iEi for some finite separable extensions
Ei/E equipped with a fixed F0-embedding K ↪→ Ei. Also we have a unique K 0-
isomorphism O∆̂,x0

∼= K [[P(u)]] (using separability of K /K 0), so we have an
isomorphism O∆̂,x0,E

∼=
⊕

iEi[[P(u)]].

Claim 11.3.5.1. For a finite radicial E-algebra A, any O ∆̂,x0,A /(P(u)h)-
quotient Λ̄A of

(
O∆̂,x0,A /(P(u)h)

)⊕n which is projective as an A-module can be
written as follows:

(11.3.5.2) Λ̄A ∼=
⊕
i

⊕
w=0,··· ,h

(
(Ei ⊗E A)[[P(u)]]

(P(u)w)

)mw,i
.

We choose m0,i ≥ 0 for each i so that we have
∑h
w=0mw,i = n.

To show Claim 11.3.5.1, it is enough to show that Λ̄A is projective over K A

(which is E-isomorphic to
⊕

iEi⊗E A). Since K 0/F0 is separable K A is an étale
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A-algebra. So K A⊗A (A/mA) is a product of finite separable extensions of A/mA,
hence any K A ⊗A (A/mA)-module is projective. Now by local flatness criterion
(especially, [Mat86, Theorem 22.3(4)]), a finitely generated K A-module is K A-
flat if and only if it is A-flat. But by assumption Λ̄A is A-flat, so we proved Claim
11.3.5.1.

Now let us deduce (2), (3), and the “if” direction from Claim 11.3.5.1. First,
observe that Λ̄A in Claim 11.3.5.1 is isomorphic to Λ̄E ⊗E A where

Λ̄E ∼=
⊕
i

⊕
w=0,··· ,h

(
Ei[[P(u)]]
(P(u)w)

)mw,i
.

This shows (3). To show (2), we may assume that A is local and radicial over some
finite extension E/F0 (e.g. by taking E to be the maximal separable subextension
of A/mA over F0). Then any A-Hodge-Pink type ΛA, Λ̄A := ΛA/D̂A,x0 satisfies the
assumption of Claim 11.3.5.1 by definition. Using the isomorphism (11.3.4.4), we
obtain for any w ∈ Z

(11.3.5.3) grw(DA,K ) ∼=
⊕
i

(Ei ⊗E A)⊕mw,i ,

which is visibly projective over K A. The “if” direction of (1) also follows because
for any A-Hodge-Pink type ΛA (with A a finite radicial E-algebra), ΛA/D̂A,x0 is
uniquely determined by non-negative integers {mw,i}w,i up to isomorphism, but
{mw,i}w,i is determined by gr•(DA,K ) as in (11.3.5.3). �

Remark 11.3.6. Consider K := Fq((u)) with u0 = up (so P(u) = π0 − u0 =
π0 − up). In particular, the image πK of u in oK = Fq[[π0, u]]/(π0 − up) is a
uniformizer satisfying πpK = π0. We take E := F0[πE ]/(π0 − πpE) so we have
K E

∼= K [πE ]/(π0 − πpE) ∼= K [πE ]/(πK − πE)p.
Consider DE := (K 0)E ·e ∼= E ·e and set D̂E,x0 := (O∆̂,x0 )E ·e. (Note that

K 0 = F0, so (K 0)E ∼= E.) Consider the following E-Hodge-Pink type:

ΛE :=
p−1∑
w=0

(u− πE)w(π0 − up)−w ·D̂E,x0 .

Clearly ΛE is of height 6 p − 1, and one can that the associated filtration is
Filw(DE,K ) = (πK − πE)w ·DE,K for w ∈ [0, p− 1] which is not free over K E .

It is impossible to give DE an E-isocrystal structure which makes ΛE weakly
admissible; any E-isocrystal structure is pure of some slope w sinceDE is of (K 0)E-
rank 1, but this forces any weakly admissible Hodge-Pink structure to be of the
from P(u)−wD̂E,x0 .

Proposition 11.3.7. Assume that K is separable over K 0. Let ξ ∈ D6h
ρF

(R)
for some R ∈ ÂRo. Then, for any E-Hodge-Pink type v with E a finite extension
over F = Frac(o),10 there exists a (possibly empty) union of connected components
G Rv

ξ ⊂ G R6h
ξ ⊗o E ∼= SpecRE (where RE := R ⊗o E), with the property that for

any finite E-algebra A, an A-point ζA ∈ G R6h
ξ (A) is of E-Hodge-Pink type v if

and only if ζA is supported in G Rv
ξ .

10One can allow E/F0 which does not necessarily contain F , as follows. Pick a finite extension
E′ of E which contains F , and replace v by v′ := {Fil•v⊗EE′}.
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Proof. Recall that we have a S
G R6h

ξ

-lattice M6h
ξ of height 6 h in Mξ ⊗R

O
G R6h

ξ

which is “universal” in the sense of Corollary 11.1.11, where S
G R6h

ξ

:=

S⊗o0 OG R6h
ξ

. We view M6h
ξ,E := M6h

ξ ⊗o E as a S⊗o0 RE-lattice of P-height 6 h

in Mξ ⊗o E via the structure morphism G R6h
ξ ⊗o E

∼−→ SpecRE . Now, set
(11.3.7.1)

FilwS,ξ,E :=
ϕ(σ∗M6h

ξ,E) ∩ P(u)w ·M6h
ξ,E

P(u)·ϕ(σ∗M6h
ξ,E) ∩ P(u)w ·M6h

ξ,E

⊂
M6h
ξ,E

P(u)·M6h
ξ,E

, for w = 0, 1, · · · , h.

(Compare the left side with (11.3.4.5).)
Let G Rv

ξ ⊂ SpecRE be a set of primes p ⊂ RE such that there exists an
K ⊗F0 (RE)p-isomorphism

(11.3.7.2) FilwS,ξ,E ⊗RE (RE)p
∼= Filwv ⊗E(RE)p.

Clearly, G Rv
ξ is an open subspace of SpecRE . We will now show that G Rv

ξ is a
union of connected components of SpecRE and has the desired property for E-finite
points.

We first show that FilwS,ξ,E is finite projective over K ⊗F0 RE .11 It suffices to
show that FilwS,ξ,E ⊗RE (RE)p is finite projective over K ⊗F0 (RE)p for all maximal
ideals p ⊂ RE . Let E′ := RE/p, and let v′ be the E′-Hodge-Pink type for the SE′ -
lattice M6h

ξ,E ⊗RE RE/p of P-height 6 h (which corresponds to the closed point
p ∈ SpecRE

∼← G R6h
ξ ⊗o E). Choose a maximal ideal p′ ⊂ RE′ = R⊗o E

′ over p.
By applying Lemma 11.3.5 to the SRE′/p

′n -lattice M6h
ξ,E ⊗RE RE′/p′

n of P-height
6 h, we obtain an K ⊗F0 (RE′)p̂′ -isomorphism

FilwS,ξ,E ⊗RE (RE′)p̂′
∼= Filwv′ ⊗E′(RE′)p̂′

for all w. Since FilwS,ξ,E ⊗RE (RE)p is finitely generated over K ⊗F0 (RE)p, it is
finite projective by faithful flatness of K ⊗F0 (RE′)p̂′ over K ⊗F0 (RE)p.

Since both FilwS,ξ,E and Filwv ⊗ERE are projective K ⊗F0 RE-modules, there
exists a (possibly empty) union of connected components U ⊂ Spec(K ⊗F0 RE)
over which the ranks of both modules coincide (since the rank of a projective A-
module is a locally constant function on SpecA). Clearly, p lies in G Rv

ξ if and only
if the fiber Spec(K ⊗F0 RE/p) over p is contained in U . Thus, G Rv

ξ is precisely
the union of all the connected components whose preimages in Spec(K ⊗F0 RE)
lie in U .

It is clear from the definition of G Rv
ξ that for any A-point ζA ∈ G Rv

ξ (A) with
A finite over E, the SA-lattice ζ∗A(M6h

ξ,E) of P-height 6 h in Mξ ⊗R,ζA A is of
E-Hodge-Pink type v. Now, let us show that for any ζA ∈ (G R6h

ξ ⊗oE)(A) with A
finite over E, if ζ∗A(M6h

ξ,E) is of E-Hodge-Pink type v then ζA factors through G Rv
ξ .

We may assume that A is local, and let p be the closed point of G R6h
ξ ⊗oE on which

ζA is supported. By the assumption on ζA, the SRE/p-lattice M6h
ξ,E⊗RERE/p of P-

height 6 h is of E-Hodge-Pink type v, so FilwS,ξ,E ⊗RE (RE)p and Filwv ⊗E(RE)p are
projective K ⊗F0 (RE)p-modules with same (locally constant) K ⊗F0 (RE)p-ranks;
i.e., they are isomorphic as K ⊗F0 (RE)p-modules. Thus, p ∈ G Rv

ξ . �

11For a different proof, one can adopt the proof of Lemma 11.3.5 as in [Kis08, Lemma 2.6.1].
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11.3.8. By Proposition 11.2.6, the structure morphism G R6h
ξ ⊗oF → Spec(R⊗o

F ) is an isomorphism, where ξ is over R. Let Rv be the direct factor of R⊗oF such
that the isomorphism induces G Rv

ξ
∼−→ SpecRv. If EndGK (ρF) = F (so ξ = ξuniv

exists over R := R6h
ρF

), then we write Rv
ρF

to denote Rv. We similarly define R2,v
ρF

using ξ = ξ2
univ. The rest of this subsection is devoted to computing the dimensions

of F -algebras Rv
ρF

and R2,v
ρF

for fixed Hodge-Pink type v. Since we already know
that are geometrically regular F -algebras, it is enough to compute the dimension
of the tangent space at each closed point, which can be done after increasing F so
that the closed point becomes an F -rational point and passing to the completed
local ring.

Fix an E-Hodge-Pink type v and a deformation η ∈ D6h
ρF

(oE) such that ηE is of
E-Hodge-Pink type v. We fix a framing βoE for η to obtain a framed deformation
η2 = (η, βoE ) ∈ D2,6h

ρF
(oE). As mentioned in Proposition 11.2.2, the tangent space∣∣D2,6h

ηE

∣∣ (E[ε]) is exactly the Zariski tangent space of R2,v
ρF
⊗oE at the E-point η2

E ,
and similarly if EndGK (ρF) = F then the tangent space

∣∣D6h
ηE

∣∣ (E[ε]) is exactly the
Zariski tangent space of Rv

ρF
⊗o E at the E-point ηE . Note also that even if

∣∣D6h
ηE

∣∣
is not representable, the Zariski tangent space

∣∣D6h
ηE

∣∣ (E[ε]) makes sense as a finite-
dimensional E-vector space since

∣∣D6h
ηE

∣∣ satisfies Schlessinger’s criteria (H1)–(H3)
by §11.7.1 and Theorem 11.7.2.

Let Ad(ηE) be the (natural) GK-representation on EndE(Vη). In particular, we
have (Ad(ηE))GK = EndGK (ηE). Then we can see that

∣∣D2,6h
ηE

∣∣ (E[ε]) is a torsor
over

∣∣D6h
ηE

∣∣ (E[ε]) under the natural tranitive action of Ad(ηE)/ (Ad(ηE))GK , which
can be seen as follows: for a fixed deformation ηE[ε] ∈ D6h

ηE (E[ε]), any two lift of the
framing (i.e., the ordered basis) for ηE are related by the action of id +ε·Ad(ηE),
and two lifts of the framing define isomorphic objects in D2,6h

ηE (E[ε]) if and only if
they are related by the action of id +ε·(Ad(ηE))GK . So we obtain
(11.3.8.1)

dimE

∣∣D2,6h
ηE

∣∣ (E[ε]) = dimE

∣∣D6h
ηE

∣∣ (E[ε]) + dimE Ad(ηE)− dimE (Ad(ηE))GK .

Therefore, it is enough to compute the dimension of the tangent space
∣∣D6h

ηE

∣∣ (E[ε]).
Thanks to Corollary 11.2.8 and Lemma 11.3.2, this can be done by studying (first-
order) deformations of (weakly admissible) Hodge-Pink structures with coefficients.

11.3.9. The following discussion is an analogue of Kisin’s technique [Kis08, §3]
for studying deformations of weakly admissible filtered isocrystals with coefficients.
Let (DE ,ΛE) be a weakly admissible E-Hodge-Pink structure of E-Hodge-Pink
type v. We write (Ad(DE),Ad(ΛE)) := EndE(DE ,ΛE), where the right side is
the internal hom of weakly admissible Hodge-Pink structures in the sense of §2.3.2.
(If V ∗HP(DE ,ΛE) ∼= ηE then we have V ∗HP(Ad(DE),Ad(ΛE)) ∼= Ad(ηE).) The
Hodge-Pink type Ad(ΛE) is not effective if there are distinct Hodge-Pink weights
for ΛE .

Let Ad(D̂E,x0) := O ∆̂,x0 ⊗K 0 Ad(DE) denote the standard lattice. Recall
from §2.3.3 that we also have defined a filtration FilwAd(ΛE) on the standard lattice
Ad(D̂E,x0). The zeroth filtration Fil0Ad(ΛE) is Ad(ΛE)∩Ad(D̂E,x0), where the inter-
section is taken inside Ad(D̂E,x0)[ 1

P(u) ], and can be interpreted as a submodule of
endomorphisms on D̂E,x0 which take ΛE into itself when extended to D̂E,x0 [ 1

P(u) ].
In particular, the image of an endomorphism f ∈ Ad(DE) via the natural inclusion
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 : Ad(DE) ↪→ Ad(D̂E,x0) lies in Fil0Ad(ΛE) if and only if f respects E-Hodge-Pink
structure ΛE . Now we define the following 2-term complex:

C•(DE ,ΛE) :=
[

Ad(DE) (id−ϕ,)−→ Ad(DE)⊕ Ad(D̂E,x0)
Fil0Ad(ΛE)

]
.

We denote by Hi(DE ,ΛE) the ith cohomology of the complex C•(DE ,ΛE).
We discuss how this complex can be used to study the infinitesimal liftings of

weakly admissible Hodge-Pink structures with coefficients. Let A ∈ ARE , and let
I ⊂ A be an ideal with mA ·I = 0. Put Ā := A/I ∈ ARE . We fix a weakly admis-
sible Ā-Hodge-Pink structure (DĀ,ΛĀ) which lifts (DE ,ΛE). By Theorem 11.2.9,
we already know that there exists a (weakly admissible) A-Hodge-Pink structures
which lifts (DĀ,ΛĀ). So we would like to obtain the set of equivalence classes
of such lifts, where two lifts (DA,ΛA) and (D′A,Λ′A) are equivalent if there is an
isomorphism (DA,ΛA)→ (D′A,Λ′A) which reduces to the identity map modulo I.

Proposition 11.3.10. The set of equivalence classes of weakly admissible A-
lifts of (DĀ,ΛĀ) is a principal homogeneous space under the action of H1(DE ,ΛE)⊗E
I. For any fixed such A-lift (DA,ΛA), the group of infinitesimal automorphisms is
isomorphic to H0(DE ,ΛE)⊗E I.

It is natural to expect that there exists a functorial construction of the “ob-
struction class” in H2(DE ,ΛE)⊗E I for the liftability. But the second cohomology
is trivial, which is consistent with Theorem 11.2.9.

Proof. The claim about the infinitesimal automorphisms is immediate, so we
concentrate on the other claim.

Let (DA,ΛA) be an isocrystal with Hodge-Pink structure with A-coefficients
such that (DA,ΛA) ⊗A Ā ∼= (DĀ,ΛĀ). Then (DA,ΛA) is automatically weakly
admissible since we have the following short exact sequence
(11.3.10.1) 0→ (DE ,ΛE)⊗E I → (DA,ΛA)→ (DĀ,ΛĀ)→ 0,
where the flanking terms are weakly admissible. Being an extension of weakly ad-
missible Hodge-Pink structures, (DA,ΛA) is weakly admissible, thanks to Propo-
sition 2.3.8. Therefore, we are reduced to showing that the set of A-lifts (DA,ΛA)
of (DĀ,ΛĀ) as isocrystals with Hodge-Pink structures with coefficients (without a
priori imposing the weak admissibility) is a torsor under H1(DE ,ΛE)⊗E I.

Let ϕ̄ : σ∗DĀ → DĀ be the Frobenius structure for the Ā-isocrystal (DĀ,ΛĀ).
Fixing the underlying K 0⊗F0 A-module for the A-isocrystal DA that lifts DĀ, the
set of A-lifts of (DĀ, ϕ̄,ΛĀ) is a set of (ϕ,ΛA) up to some equivalence relation,
where ϕ : σ∗DA → DA is an isomorphism which reduces to ϕ̄ modulo I, and
ΛA ⊂ (DA)x̂0 is an an (O∆̂,x0 )A-lattice which reduces to ΛĀ ⊂ (DĀ)x̂0 modulo I.

We fix an A-lift (DA, ϕ,ΛA). For any other lift ϕ′ of ϕ̄, we can always find γD ∈
Ad(DE)⊗E I such that ϕ′ = (id +γD)◦ϕ, since ϕ⊗A Ā = ϕ′⊗A Ā = ϕ̄. Conversely,
given any γD ∈ Ad(DE)⊗E I, we obtain another lift ϕ′ := (id +γD)ϕ. For any other
lift Λ′A of ΛĀ, choose an automorphism of (DA)x̂0 [ 1

P(u) ] which takes ΛA onto Λ′A,
and reduces to the identity modulo I. In fact, since (DA,ΛA) and (DA,Λ′A) should
have the same E-Hodge-Pink type, it follows that this automorphism restricts to
an automorphism id +γHP : (DA)x̂0 → (DA)x̂0 , where γHP ∈ Ad

(
D̂E,x0

)
⊗E I.

Conversely, given any γHP ∈ Ad
(
D̂E,x0

)
⊗E I, we can find Λ′A := (id +γHP)(ΛA),
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which clearly lifts ΛĀ = ΛA ⊗A Ā. As remarked above, Λ′A = ΛA if and only if
γHP ∈ Fil0Ad(ΛA).

To summarize, Ad(DE)⊕
(

Ad(D̂E,x0)/Fil0Ad(ΛE)

)
, which is a degree-1 term of

C•(DE ,ΛE), acts transitively on the set of equivalence classes of A-lifts. We now
seek a condition for (γD, γHP) for which the A-lifts (DA, ϕ,ΛA) and (DA, ϕ

′,Λ′A)
are equivalent, where ϕ′ := (id +γD)ϕ and Λ′A := (id +γHP)(ΛA). Assume that
there exists β ∈ Ad(DE)⊗E I such that the A-linear map id +β : DA

∼−→ DA which
respects ϕ-structures (ϕ and ϕ′) and A-Hodge-Pink structures (ΛA and Λ′A). In
other words, we have
ϕ′ = (id +β)◦ϕ◦(id−σ∗β) = ϕ+

(
β − ϕ ◦ (σ∗β) ◦ ϕ−1)◦ϕ = ϕ+(β−ϕAd(DE)(σ∗β))◦ϕ,

(i.e., γD = β − ϕAd(DE)(σ∗β)) and γHP = (β) (by considering the A-Hodge-Pink
structure). In other words, (DA, ϕ,ΛA) and (DA, ϕ

′,Λ′A) are equivalent if and only
if (γD, γHP) ∈ =(id−ϕAd(DE), ), which is the “coboundary condition.” �

We apply the the previous proposition to the following special case. Let A =
E[ε] and I = ε·A, so necessarily we have (DĀ,ΛĀ) = (DE ,ΛE). By the previous
proposition, the set of E[ε]-deformations of (DE ,ΛE), which has a natural E-vector
space structure, is naturally E-isomorphic to H1(DE ,ΛE). (We can directly check
that theH1(DE ,ΛE)-action on the E-vector space of E[ε]-deformations is E-linear.)

We use this result to compute the dimension of the tangent space
∣∣D6h

ηE

∣∣ (E[ε]).
Choose (DE ,ΛE) so that ηE ∼= V ∗HP(DE ,ΛE). By Corollary 11.2.8, Lemma 11.3.2
and the discussion immediately above, we have a natural E-linear isomorphism
H1(DE ,ΛE) ∼=

∣∣D6h
ηE

∣∣ (E[ε]). One can compute the E-dimension of H1(DE ,ΛE),
using the well-known trick that the “Euler characteristic” is equal to the alternating
sum of dimensions of the terms of the complex:

dimE H1(DE ,ΛE) = dimE H0(DE ,ΛE) + dimE

(
Ad(D̂E,x0)
Fil0Ad(ΛE)

)

= dimE

(
Ad(ρηE )GK

)
+ dimE

(
Ad(D̂E,x0)
Fil0Ad(ΛE)

)
,

where the second equality follows from Corollary 5.2.4. Using the equation (11.3.8.1),
we have the following corollary which is the main goal of this subsection.

Corollary 11.3.11. There exists a natural E-linear isomorphism H1(DE ,ΛE) ∼−→∣∣D6h
ηE

∣∣ (E[ε]). Any connected component of SpecR2,6h
ρF

[ 1
π0

] which contains a closed
point corresponding to (DE ,ΛE) of E-Hodge-Pink type v is of dimension

dim
(
R2,v
ρF

)
= d2 + dimE

(
Ad(D̂E,x0)
Fil0Ad(ΛE)

)
.

If EndGK (ρF) = F, then any connected component of SpecR6h
ρF

[ 1
π0

] which contains
a closed point corresponding to (DE ,ΛE) of E-Hodge-Pink type v is of dimension

dim
(
Rv
ρF

)
= 1 + dimE

(
Ad(D̂E,x0)
Fil0Ad(ΛE)

)
.

If furthermore K /K 0 is separable (e.g. when o0 = Zp), then the formally smooth
F -algebras R2,v

ρF
and Rv

ρF
(if it exists) are equi-dimensional.
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Proof. It remains to show that equi-dimensionality assertion; namely that
dimE

(
Ad(D̂E,x0)/Fil0Ad(ΛE)

)
only depends on the fixed E-Hodge-Pink type v.

Consider A-Hodge-Pink structures ΛA and Λ′A of P-height 6 h for a rank-d free
(K 0)A-moduleDA (withA finite over F0) such that there exists anO∆̂,x0,A /(P(u)h)-
isomorphism ΛA/D̂A,x0

∼= Λ′A/D̂A,x0 . Then we can lift this ismorphism to an
O∆̂,x0,A -isomorphism ΛA ∼= Λ′A which maps D̂A,x0 ⊂ ΛA onto D̂A,x0 ⊂ Λ′A. So we
have rankA

(
Ad(D̂A,x0)/Fil0Ad(ΛA)

)
= rankA

(
Ad(D̂A,x0)/Fil0Ad(Λ′

A
)

)
. �

11.3.12. 2-dimensional example. Let ρF be a 2-dimensional GK-representation.
Let us fix the following Hodge-Pink type (or rather F0-Hodge-Pink type) v = (n =
2, Λ̄v := SF0/P(u)h). Choose ME ∈ D6h

S,MF
(E) with E a fixed finite extension

F = Frac(o) such that ME has Hodge-Pink type v. Now, set (DE ,ΛE) := H(ME),
and choose a (K 0)A-basis {e1, e2} for DA, such that ΛE is the O∆̂,x0 -span of
{ 1
P(u)h e1, e2}. Under the basis {eij := e∗i ⊗ ej}i,j=1,2 for Ad

(
D̂E,x0

)
, the Hodge-

Pink structure Ad(ΛE) is the (O∆̂,x0 )E-span of
{

e11,
1

P(u)h e12, P(u)he21, e22

}
.

Therefore, {e11, e12, P(u)he21, e22} spans Fil0Ad(ΛE), so we have

Ad(D̂E,x0)
Fil0Ad(ΛE)

∼=
SE

P(u)h e21.

In particular, it follows from Corollary 11.3.11 that if K /K 0 is separable then
dim

(
R2,v
ρF

)
= 4 +h·[K : F0], and if furthermore EndGK (ρF) = F then dim

(
Rv
ρF

)
=

1 + h·[K : F0]. Here, oK := S/P(u), viewed as an integral extension of o0.
For h = 1, we will determine the connected components of SpecR2,v

ρF
and

SpecRv
ρF

later in §11.4.14 and §11.5 when K /K 0 is separable.

11.3.13. Relation with crystalline and semi-stable deformation rings. This para-
graph is a continuation of §11.2.11. We assume that o0 = Zp. We first recall the
definition of p-adic Hodge type for a weakly admissible filtered (ϕ,N)-module. Let
E/Qp be a finite extension and fix a decreasing separated and exhaustive filtra-
tion v := {Filwv ⊂ (K E)⊕n} by K E-submodules such that the associated graded
module is concentrated in degrees in [0, h]. For a finite E-algebra A, we say that a
weakly admissible filtered (ϕ,N)-module with A-coefficients (DA, ϕ,N,Fil•(DA,K )
is of Hodge type v if there exists a filtered (K A)-linear isomorphism (K ⊗QpA)⊕n ∼=
(DA)K where the filtration on the left side is {(Filwv )⊗E A}. For a semi-stable A-
representation VA of GK with Hodge-Tate weights in [0, h], we say VA is of p-adic
Hodge type v if Dst(VA(−h)) is of p-adic Hodge type v, where Dst : Repst

Qp(GK )→
MF(ϕ,N)waK is the covariant equivalence of categories. By Lemma 11.3.5(1), one
can also view v := {Filwv } as an E-Hodge-Pink type.

Let A be a finite E-algebra. We defined a functor res : MF(ϕ,N)waK →
HPwaK (ϕ) in (5.2.12.1), which takes a filtered (ϕ,N)-module with A-coefficients into
Hodge-Pink structure with A-coefficients. For a fixed v := {Filwv }, we can show that
the weakly admissible filtered (ϕ,N)-module DA := (DA, ϕ,N,Fil•(DA)K ) with
A-coefficients is of p-adic Hodge type v if and only if res(DA) is of Hodge-Pink type
v. This claim essentially follows from [Kis06, Lemma 1.2.1].

As in §11.2.11, fix a mod p representation ρ̄ of GK . Let R2,6h
st and R2,6h

cris
denote semi-stable and crystalline framed deformation ring for ρ̄ in the sense of
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[Liu07], respectively. (For what follows, the same discussion works if the framed
deformation rings are replaced by deformation rings, provided EndGK∞

(ρ̄∞) = F.)
By [Kis08, (2.6)], fixing the Hodge type v cuts out unions of connected components
SpecR2,v

st ⊂ SpecR2,6h
st [ 1

p ] and SpecR2,v
cris ⊂ SpecR2,6h

cris [ 1
p ], respectively. More-

over, the map resst : SpecR2,6h
st → SpecR2,6h

∞ defined by “restricting to GK ∞”
restrict to SpecR2,v

st → SpecR2,v
∞ , where v and v are chosen as above. Similarly,

rescris restricts to SpecR2,v
cris → SpecR2,v

∞ .
The local structure of R2,v

cris and R2,v
st is studied in [Kis08, §3] (including the

case p = 2). For example, R2,v
cris is equi-dimensional and formally smooth, and R2,v

st
is equi-dimensional and admits a dense open subscheme which is formally smooth.
The dimensions can be computed. In particular, by comparing the dimension for-
mulae for R2,v

cris and for R2,v
∞ , we see that they have the same dimension if (and

only if) h = 1.
We give an example in case ρ̄ is a 2-dimensional GK -representation. Let v be

the filtration on K ⊕2 such that dimK Filwv = 2 for w ≤ 0, dimK Filwv = 1 for
1 ≤ w ≤ h, and dimK Filwv = 0 for w > h. We obtain natural maps SpecR2,v

st →
SpecR2,v

∞ and SpecR2,v
cris → SpecR2,v

∞ , and similarly for the deformation rings.
The first two equations of the following are from Kisin [Kis08, (3.3)] and the rest
from §11.3.12 above.

dim(R2,v
cris ) = dim(R2,v

st ) = 4 + [K : Qp],
dim(Rv

cris) = dim(Rv
st) = 1 + [K : Qp], if EndGK

(ρ̄) ∼= F.
dim(R2,v

∞ ) = 4 + h[K : Qp]
dim(Rv

∞) = 1 + h[K : Qp], if EndGK∞
(ρ̄∞) ∼= F

For h > 1, this difference of dimensions reflects the “gap” between GK ∞ -representations
of P-height 6 h and crystalline or semi-stable GK -representations with Hodge-Tate
weights in [0, h].

11.4. “Ordinary” and “formal” components

We again allow o0 = Fq[[π0]]. In addition to Hodge-Pink types, we discuss
two more conditions on R2,6h

ρF
[ 1
π0

] (or rather, on G R2,6h ⊗o F ) which cut out
unions of connected components: more precisely, we show that the “ordinary” and
“formal” deformations, which will be defined below in §11.4.3 and §11.4.6, form
unions of connected components in the generic fiber of the framed deformation ring
of P-height 6 h. Exactly the same results will hold for R6h

ρF
[ 1
π0

] whenever it exists.
Using these finer conditions, we work out a complete description of ordinary

components of a 2-dimensional (framed) deformation ring of P-height 6 h with a
certain fixed Hodge-Pink type (see Proposition 11.4.15)12. We end this discussion
with an application to crystalline and semi-stable (framed) deformation rings in
§11.4.17.

11.4.1. For the proof of Proposition 11.4.2 we need to extend Corollary 8.1.11
to allow coefficients in (B, J) ∈ Augo. First, recall that for TB ∈ Repfree

B (GK) with
B an o0-algebra where π0 is nilpotent, we defined in (11.1.4.1) an étale (ϕ, oE,B)-
module D6h

E (TB) free with oE,B-rank equal to rankB(TB). We also showed that

12For this result, we do not require K /K 0 to be separable.
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D6h
E is exact and commutes with ⊗-products, internal homs, duality, and change

of coefficients.
If, furthermore, TB is unramified (i.e., IK acts trivially on TB), then we define

(11.4.1.1) U(TB) := (W sh ⊗o0 TB)GK/IK ,

where W is as in §1.3.3 and W sh denotes the strict henselization of W . We can
show the following without difficulty:

(1) For TB ∈ Repfree
B (GK/IK), U(TB) is an finite free étale (ϕ,WB)-module

with WB-rank equal to rankB(TB). Here, WB := W ⊗o0 B.
(2) A sequence (†) : 0 → T ′B → TB → T ′′B → 0 in Repfree

B (GK/IK) is short
exact if and only if U(†) is short exact.

(3) The formation of U commutes with ⊗-products, internal homs, duality,
and change of coefficients.

(4) There is a natural isomorphism oE,B ⊗WB
U(TB) ∼= D6h

E (TB(h)) of étale
(ϕ, oE,B)-module, where TB ∈ Repfree

B (GK/IK).
(5) If MB ∈ (ModFI /S)6h

A is étale, then TB := T6h
S (MB) is of Lubin-Tate

type of P-height h (i.e., TB(−h) is unramified) and we have a natural
ϕ-compatible isomorphism MB

∼= SB ⊗WB
U(TB(−h)).

If #(B) < ∞ then (1)–(4) can be proved using Corollary 8.1.11, following the
argument in §8.2.4. The general case of (1)–(4) follows from this case because TB
descends to TB′ ∈ Repfree

B′ (GK/IK) with B′ ⊂ B some finite o0-subalgebra, and
we have a ϕ-compatible isomorphism U(TB) ∼= U(TB′) ⊗B′ B. To show (5), first
observe that TB(−h) ∼= T60

S (MB), where the right side makes sense since MB is
étale. Now TB is of P-height 6 0 by Proposition 11.1.6, so TB is unramified by
Proposition 8.1.10. The second part of (5) is reduced to the case when #(B) <∞
by a similar argument as previously, and then we apply Corollary 8.1.11.

We now state the following proposition which shows the existence of the connected-
étale sequence for MA ∈ D6h

S,MF
(A, I). This generalizes Proposition 8.2.7.

Proposition 11.4.2. Consider (A, I) ∈ Augo, and assume that SpecA is
connected. Any MA ∈ D6h

S,MF
(A, I) has a “maximal” étale submodule Mét

A ∈
(ModFI /S)6h

A and a “maximal” Lubin-Tate type quotient MLTA ∈ (ModFI /S)6h
A

with the following properties.
(1) Both the quotient MA/M

ét
A and the kernel of MA �MLTA are finite locally

free over SA; i.e. they are objects in (ModFI /S)6h
A .

(2) For any morphism (A, I)→ (B, J) in Augo, the natural morphisms

Mét
A ⊗A B → (MA ⊗A B)ét, (MA ⊗A B)LT →MLTA ⊗A B

are isomorphisms.
(3) The natural morphisms (MLTA )∨ → (M∨A)ét and (M∨A)LT → (Mét

A)∨ are
isomorphisms.

(4) The formation of Mét
A and MLTA is “functorial,” in the following sense:

any ϕ-compatible map MA → M′A in (ModFI /S)6h
A takes Mét

A into
(M′A)ét and induces a map MLTA → (M′A)LT .

Proof. The proof is essentially identical to [Kis09b, Proposition 2.4.14]. The
existence and properties of MLTA can be reduced to the corresponding claims on
Mét
A by duality of P-height h, so it suffices to handle the claims on Mét

A . We
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may assume that A is finitely generated over o. Then A is Jacobson since Ared
is finitely generated over Fq. The key step is to show that for any closed point
x ∈ SpecA, d(x) := rankSκ(x)(MA ⊗A κ(x))ét is locally constant in MaxSpecA
(hence in SpecA), where κ(x) denotes the residue field at x ∈ SpecA.

We first show that d(x) is lower semi-continuous (i.e., d(x) goes down along
a closed subset), as follows. Consider a ϕ-module MA/uMA and choose a basis.
Let P (T ) be the characteristic polynomial for the matrix representation of ϕ̄ :
σ∗(MA/uMA) → MA/uMA with respect to the chosen basis. Then d(x) equals
the largest integer d such that the coefficient of Tn−d in P (T ) does not vanish at
x.

In order to show that d(x) is upper semi-continuous, we will define for each
d ∈ [0, n] a projective A-scheme Xd

MA
, such that d(x) ≥ d if and only if x is in

the image of Xd
MA

. To construct Xd
MA

, consider MA ∈ D6h
S,MF

(A, I) with (A, I) ∈
Augo, and let TA := T6h

S (MA) as defined in (the proof of) Proposition 11.1.6. For
any A-algebra B, we define Xd

MA
(B) to be the set of GK-stable B-submodules

LB ⊂ TA ⊗A B with the following properties.
(1) The submodule LB is locally free of B-rank d and the quotient (TA ⊗A

B)/LB is locally free over B.
(2) The Tate twist LB(−h) is unramified.
(3) We identify MA[ 1

u ] with D6h
E,A(TA) using Proposition 11.1.6. The ϕ-stable

WB-submodule U(LB(−h)) ⊂ D6h
E,A(TA) is contained in MA ⊗A B.

We now show that the functor Xd
MA

is representable by a projective A-scheme
equipped with a universal rank-d GK-stable subbundle LXd

MA

⊂ TA ⊗A OXd
MA

of
Lubin-Tate type of P-height h. It is clear from the definition that the formation
of Xd

MA
and LXd

MA

, if they exist, commutes with arbitrary scalar extension for
A → B. For the proof of representability, first observe that the conditions (1)
and (2) obviously define a closed subscheme (which we denote by Y dMA

) of the
grassmannian of rank-d subspaces of TA. We now show that the third condition
is closed in Y dMA

, as follows. It is enough to show that for any A-algebra B and
any B-point LB ∈ Y dMA

(B), there exists an ideal J ∈ B with the property that
LB ⊗B C ⊂ TA⊗AC satisfies (3) above for a B-algebra C if and only if JC = 0. It
is clear that the construction of J ⊂ B is compatible with scalar extension, so we
obtain the universal closed subscheme of the grassmannian with conditions (1)–(3)
by gluing such ideals Jα ⊂ Bα for some open affine covering {SpecBα}α of Y dMA

.
To construct the ideal J ⊂ B as above, put MB := MA ⊗A B and TB :=

TA ⊗A B. Since SB [ 1
u ]/SB is free over B, MB [ 1

u ]/MB is also free over B. Choose
an B-basis {ej}j for MB [ 1

u ]/MB . Now consider the following composite of B-linear
maps

rB : U(LB(−h)) ↪→ D6h
E (TB)� D6h

E (TB)/MB
∼−→MB [1/u]/MB

∼−→
⊕
j

Bej .

Note that U(LB(−h)) is finite free over B sinceWB is so. Choose a B-basis {ui} for
U(LB(−h)), and let J ⊂ B be the ideal generated by rB(ui). Since the formation
of U and the B-linear map rB commutes with change of coefficients, the ideal J
has the required property.

Now, let us show that for a closed point x ∈ Spec(A), we have d(x) ≥ d if and
only if x is in the image ofXd

MA
. (This shows that d(x) is locally constant on SpecA,



194 11. DEFORMATIONS FOR GK -REPRESENTATIONS OF P-HEIGHT 6 h

so it is constant if SpecA is connected.) First, it directly follows from the definition
of Xd

MA
that for any map (A, I)→ (B, J) in Augo we have a natural isomorphism

Xd
MA
⊗A B ∼= Xd

MB
where MB := MA⊗A B. By taking (B, J) = (κ(x), (0)) where

κ(x) is the residue field at x, we are reduced to showing that the Xd
Mκ(x)

is non-
empty if and only if rankSκ(x)(Mκ(x))ét ≥ d, where Mκ(x) := MA ⊗A κ(x). If we
have the inequality rankSκ(x)

(
(Mκ(x))ét

)
≥ d, then any d-dimensional GK-stable

subspace Lκ(x) of T6h
S

(
(Mκ(x))ét

)
defines a κ(x)-point of Xd

Mκ(x)
. (That Lκ(x)

satisfies condition (3) of the definition of Xd
MA

follows Corollary 8.1.11, especially
the special case of (2) and (5) in §11.4.1.) Conversely, if Xd

Mκ(x)
is non-empty

then there exists a κ-point Lκ ∈ Xd
Mκ(x)

(κ) for some finite extension κ/κ(x). By
definition of Xd

Mκ(x)
, especially by condition (3), we have Sκ ⊗Wκ U(Lκ(−h)) ⊂

(Mκ(x) ⊗κ(x) κ)ét ∼= (Mκ(x))ét ⊗κ(x) κ (where the isomorphism is obtained from
Proposition 8.2.7), so we have the desired inequality rankSκ(x)(Mκ(x))ét ≥ d.

This shows that d(x) is locally constant on SpecA. We can furthermore show
that the structure morphism Xd

MA
→ SpecA induces an isomorphism over the

(possibly empty) union of connected components on which d(x) = d. Assume that
SpecA is connected and d(x) = d for all closed point x ∈ SpecA. Since Xd

MA
is

proper over A, it is enough to show that if the formal completion at each closed
point of SpecA is an isomorphism. Since the formation of Xd

MA
commutes with

scalar extension A→ A/mn
x (where mx is the maximal ideal corresponding to x), it

suffices to show that if A is local with #(A) < ∞ then we have rankSA
(Mét

A ) = d
and Xd

MA
(B) → (SpecA)(B) is a bijection for any finite A-algebra B. To prove

this claim, observe that for any B-point LB ∈ Xd
MA

(B) we have U(LB) ⊂ (MA⊗A
B)ét ∼= Mét

A ⊗A B by definition of Xd
MA

and Proposition 8.2.7, so (essentially by
Corollary 8.1.11) we have an inclusion LB ⊂ T6h

S (Mét
A ) ⊗A B of rank-d free B-

modules which are direct factors in TB (as abstract B-modules). Thus, we have an
equality LB = T6h

S (Mét
A)⊗A B, which proves the claim.

Now, assume that A is connected and finitely generated over o0 with d(x) = d
for all closed point x ∈ SpecA. Since the structure morphism Xd

MA
→ SpecA is

an isomorphism, we obtain the universal GK-stable submodule LA ⊂ TA of Lubin-
Tate type of P-height h. When #(A) < ∞, it follows from Corollary 8.1.11 and
the discussion of the paragraph immediately above that Mét

A = SA ⊗WA
U(LA)

as submodules of MA. In general, we put Mét
A := SA ⊗WA

U(LA). Since the
formations of LA and U commute with any change of coefficients for A → B, we
obtain the equality Mét

A ⊗A B = (MA ⊗A B)ét of submodules of MA ⊗A B for any
A → B, and if #(B) < ∞ then this is known to be a maximal étale submodule
of MA ⊗A B. In particular, Mét

A ⊗A B contains the image of
⋂∞
i=1 ϕ

r(σr∗MA) in
MA ⊗B. So for any maximal ideal m ⊂ A and any positive integer i, we have

∞⋂
i=1

ϕr(σr∗MA)/Mét
A ⊂ mi(MA/M

ét
A ),

thus, we have Mét
A =

⋂∞
i=1 ϕ

r(σr∗MA). This shows that Mét
A is a maximal étale

submodule of MA. To see MA/M
ét
A is a finite locally free SA-module, note that

(MA/M
ét
A ) ⊗SA

S
Âm

is finite locally free over S
Âm

for any maximal ideal m ⊂ A

because the formation of Mét
A commutes with change of coefficients and MA/M

ét
A is
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finite locally free over SA when #(A) <∞ by Proposition 8.2.7. The functoriality
assertion is clear. �

11.4.3. Definition: formal GK-representations. A torsion o0-representation T̄
is said to be formal if there exists a a unipotent13 torsion ϕ-module M ∈ (Mod /S)6h

such that T̄ ∼= T6h
S (M) = T ∗S(M∨). A lattice o0-representation T is said to be

formal if there exists a unipotent ϕ-module M ∈ (Mod /S)6h such that T ∼=
T6h

S (M) = T ∗S(M∨). It follows from Proposition 9.2.6 and the existence of (the
dual of) connected-étale sequence that a lattice o0-representation T is formal if and
only if T/πn0 T is formal as a torsion representation for each n.

Let Ao be a complete local noetherian o0-algebra with finite residue field. We
say an Ao-representation TAo is formal if TAo ⊗Ao (Ao/mn

Ao) for each n is formal
as a torsion o0-representation. Observe that if Ao = o0 then this definition recov-
ers the definition of formal o0-lattice representations by the above application of
Proposition 9.2.6.

An F0-representation V is said to be formal if there exists a GK-stable o0-
lattice T ⊂ V which is formal as a lattice o0-representation. In fact, for an F0-
representation V , if a GK-stable lattice T ⊂ V is formal then any other GK-
stable lattice is formal. (Proof: if M ∈ ModS(ϕ)6h is ϕ-nilpotent then any M′ ∈
ModS(ϕ)6h which is isogenous to M is ϕ-nilpotent. Now apply Proposition 5.2.9.)
For a finite F0-algebra A, we say an A-representation VA is formal if it is formal as
an F0-representation.

We record some special cases of this, which justifies the name “formal” GK-
representation

If o0 = Fq[[π0]] and A is finite flat over Fq[[π0]], then formal GK-representations
(over A) of P-height 6 h are exactly those that come from formal (i.e., connected)
π0-divisible groups of P-height 6 h (with A-action). Next, suppose o0 = Zp and
h = 1. We shall use the notations from §1.3.1.2. Assume that p > 2 so that we
can use the Breuil-Kisin classification of Barsotti-Tate groups and finite flat group
schemes. Let A be a finite flat Zp-algebra, and consider a Barsotti-Tate group
G over oK with an action of A. Then the GK ∞-restriction of the Tate module
Tp(G) is formal if and only if G is a formal (i.e., connected) Barsotti-Tate group.
Similarly, let A be a finite Zp-algebra of finite length and let G be a finite flat
group scheme over oK with an action of A. Then the GK ∞-restriction of the
torsion GK -representation G(K ) is formal if and only if G is connected.14

Now let us define the full subgroupoids Du,6h
S,MF

⊂ D6h
S,MF

whose objects are
unipotent of P-height 6 h, and Df,6h

ρF
⊂ D6h

ρF
whose objects are formal deforma-

tions. That they are subgroupoids follows from the fact that if MA ∈ (ModFI /S)6h
A

is ϕ-nilpotent then the change of coefficients MA ⊗A A′ is also ϕ-nilpotent (so
we have enough co-cartesian lifts). The composition of 1-morphisms Du,6h

S,MF
↪→

D6h
S,MF

T
6h
S−−−→ D6h

ρF
factors through Df,6h

ρF
.

Proposition 11.4.4. Let Repo0(GK) be the category of finitely generated o0-
modules with a continuous GK-action, and RepF0(GK) the category of F0-representations
of GK . The full subcategories of Repo0(GK) and RepF0(GK) whose objects are

13Recall from §8.3.6 that M is unipotent if and only if M
∨ is ϕ-nilpotent.

14The “if” direction is still true when p = 2 by [Kis09a].
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formal of P-height 6 h are closed under subobjects, quotients and direct sums.
Therefore, the natural inclusion Df,6h

ρF
⊂ D6h

ρF
of ÂRo-groupoids is relatively rep-

resentable by surjections of rings.
For ξ ∈ D6h

ρF
(R) and R ∈ ÂRo, let Rf be the universal quotient of R which

represents the inclusion Df,6h
ρF

⊂ D6h
ρF

. Then the subscheme Spec(Rf ⊗o F ) ⊂
Spec(R⊗o F ) is open and closed.

Assume that K /K 0 is separable (which is automatic if o0 = Zp) and let v
be any E-Hodge-Pink type for some finite extension E/F . Let SpecRv denote the
union of connected components of Spec(R ⊗o E) whose closed points have Hodge-
Pink type v. (Such a quotient Rv exists by Proposition 11.3.7.) It follows from
the proposition above that there exists an open and closed subscheme SpecRf,v ⊂
SpecRv whose closed points corresponds to formal GK-representation of Hodge-
Pink type v.

Proof. The first claim is reduced to the fact that ϕ-nilpotentness of ϕ-modules
is closed under subobjects, quotients, and direct sums, by a schematic closure ar-
gument similar to Proposition 9.2.2. (The claims for formal F0-representations
are reduced to the claims for formal lattice o0-representations.) Applying Ra-
makrishna’s relative representability criterion [Ram93], it follows that the natural
inclusion Df,6h

ρF
⊂ D6h

ρF
is relatively representable by surjections of rings.

It is left to show that the map Spec(Rf ⊗o F ) ↪→ Spec(R ⊗o F ) is formally
étale at each closed point (since R ⊗o F is Jacobson). Put Vξ := Tξ[ 1

π0
] where Tξ

is the representation space which corresponds to ξ. Let A be a finite artin local F -
algebra, let I ⊂ A be a square-zero ideal, and put Ā := A/I. Let us fix an A-point
x : R→ A such that x̄ : R x−→ A� Ā factors through Rf . Set Vx := Vξ ⊗R,x A and
Vx̄ := Vξ⊗R,x̄Ā. Then we have a short exact sequence 0→ Vx̄⊗ĀI → Vx → Vx̄ → 0,
Now it follows that Vx is formal, being an extension of formal GK-representations.
In other words, x factors through Rf . �

Proposition 11.4.5. The natural inclusion Du,6h
S,MF

↪→ D6h
S,MF

is open and
closed. In particular, for any ξ ∈ D6h

ρF
(R) and R ∈ ÂRo, there exists a universal

open and closed immersion G Ru,6h
ξ ↪→ G R6h

ξ of R-schemes which represents the
fully faithful inclusion Du,6h

S,MF,ξ
↪→ D6h

S,MF,ξ
, where Du,6h

S,MF,ξ
:= (D6h

ρF
/ξ)×

D6h
ρF

Du,6h
ρF

.

Furthermore the composition G Ru,6h
ξ ↪→ G R6h

ξ → SpecR factors through SpecRf

and induces an isomorphism G Ru,6h
ξ ⊗o F → Spec(Rf ⊗o F ).

From the proposition above, one can immediately deduce that an A-point MA ∈
G R6h

ξ (A) (with A finite over F ) is supported in G Ru,6h
ξ if and only if MA is

unipotent of P-height 6 h (i.e., MA allows a SAo-lattice MAo ⊂ MA which is
“unipotent” of P-height 6 h, where Ao ⊂ A is a finite flat o-subalgebra with
Ao[ 1

π0
] = A).

Proof. Let us first show that Du,6h
S,MF

↪→ D6h
S,MF

is open and closed. Con-
sider MA ∈ D6h

S,MF
(A, I) for (A, I) ∈ Augo. Let SpecAf ⊂ SpecA be the locus

where the rank of maximal Lubin-Tate quotient dLT is zero, which is open and
closed by Proposition 11.4.2 applied to connected components of SpecA. Thus,
there is a unique union of connected components Ĝ R

u,6h

ξ ⊂ Ĝ R
6h

ξ such that
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its functorial points are exactly the “unipotent points” of G R6h
ξ . Now clearly

Ĝ R
u,6h

ξ is obtained from mR-adic completion of an open and closed subscheme
G Ru,6h

ξ ⊂ G R6h
ξ . The last claim in the proposition readily follows from the def-

inition of formal GK-representations of P-height 6 h and the structure morphism
G R6h

ξ ⊗o F → Spec(R⊗o F ) being isomorphic. �

11.4.6. Definitions: ordinary GK-representations. Let A be one of the fol-
lowing: A ∈ ÂRo, (A, I) ∈ Augo, or a finite F -algebra A. A (continuous) A-
representation VA of GK of P-height 6 h is said to be ordinary if there exists a
GK-stable A-submodule LA ⊂ VA such that VA/LA is a projective A-module (of
constant rank) and both VA/LA and LA(−h) are unramified representations15. In
other words, VA is an extension of an unramified representation by a Lubin-Tate
type representation of P-height h. For a complete local noetherian o-algebra A, the
ordinary-ness for VA is equivalent to the ordinary-ness for each VA ⊗A (A/mn

A). If
A is a finite F0-algebra, then the ordinary-ness for VA is equivalent to requiring the
existence of an ordinary “GK-stable Ao-lattice” for some finite flat o0-subalgebra
Ao ⊂ A by Lemma 11.4.7 below.

Let A be either an object in ÂRo or (A, I) ∈ Augo for some ideal I with SpecA
connected. By Proposition 11.4.2 any MA ∈ (ModFI /S)6h

A admits the maximal
étale subobject Mét

A ⊂MA and the maximal ϕ-nilpotent quotient MA/M
ét
A , which

are both objects in (ModFI /S)6h
A . In other words, there exists a “connected-

étale sequence” for any MA ∈ (ModFI /S)6h
A . We say that MA ∈ (ModFI /S)6h

A

is ordinary if the maximal ϕ-nilpotent quotient MA/M
ét
A is of Lubin-Tate type

of P-height h. When A ∈ ÂRo, the ordinary-ness of MA is equivalent to the
ordinary-ness of MA ⊗A (A/mn

A) for each n. For a finite F -algebra A, we say
MA ∈ (ModFI /S)6h

A is ordinary if there exists a finite flat o-subalgebra Ao ⊂ A

and MAo ∈ (ModFI /S)6h
Ao such that MA = MAo [ 1

π0
] and MAo is ordinary. The

ordinary-ness is stable under the duality of P-height h.
Let A be either a complete local noetherian o0-algebra or a finite F0-algebra,

and consider MA ∈ (ModFI /S)6h
A . Then we can see that T6h

S (MA) is ordinary
as a GK-representation if and only MA is ordinary. (The ‘if” direction of the case
when A is F0-finite uses Lemma 11.4.7 below and Theorem 5.2.3.)

Lemma 11.4.7. Let A be a finite F0-algebra. Consider a short exact sequence
V • : 0 → V ′A → VA → V ′′A → 0 of finite free A-modules with continuous GK-
action and assume that all the maps are GK-equivariant. Then there exists a finite
flat o-subalgebra Ao ⊂ A with Ao[ 1

π0
] = A, and GK-stable Ao-lattices T ′Ao ⊂ V ′A,

TAo ⊂ VA, and T ′′Ao ⊂ V ′′A , such that the short exact sequence V • restricts to a short
exact sequence 0→ T ′Ao → TAo → T ′′Ao → 0.

Proof. We modify the argument in [Kis03, Proposition 9.5], at the bottom of
page 433. We may assume that A is local, and let E be its residue field. Let A+ be
the preimage of oE under the natural projection A� E. Note that A+ is a rising
union of finite flat o0-subalgebras Ao ⊂ A. Since the claim is clear when A = E (by
taking Ao := oE), we may choose an A-basis {e1, · · · , er′ , er′+1, · · · , er′+r′′} of VA
such that {e1, · · · , er′} is an A-basis for the image of V ′A in VA, {er′+1, · · · , er′+r′′}

15If o0 = Zp, then GK ∼= GK∞ acts on Zp(1) via the restriction of the p-adic cyclotomic
character; and if o0 = Fq [[π0]], then GK acts on Fq [[π0]](1) via the Lubin-Tate character.
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reduces to an A-basis for V ′′A , and the image of {e1, · · · , er′+r′′} in V ⊗AE generates
a GK-stable oE-lattice (i.e., the A+-span of {e1, · · · , er′+r′′} is GK-stable). By
compactness of GK , the image of GK in GLr′+r′′(A+) has to lie in GLr′+r′′(Ao) for
some finite flat o0-subalgebra Ao ⊂ A+. Now, we put TAo ⊂ VA be the Ao-span
of {e1, · · · , er′+r′′}, T ′Ao ⊂ V ′A the Ao-span of {e1, · · · , er′}, and T ′′Ao ⊂ V ′′A the
Ao-span of {er′+1, · · · , er′+r′′}. �

11.4.8. Let ξ ∈ D6h
ρF

(R) for some R ∈ ÂRo. We now show that the “ordinary-
ness condition” cuts out a union of connected components in G R6h,d

ξ . Choose
non-negative integers d := {dét, dLT } such that dét + dLT ≤ n := dimF(ρF). We
define a full Augo-subgroupoid D6h,d

S,MF
⊂ D6h

S,MF
such that MA ∈ D6h,d

S,MF
(A, I) for

(A, I) ∈ Augo if and only if Mét
A is of SA-rank dét and MLTA is of SA-rank dLT .

This is a Augo-subgroupoid by Proposition 11.4.2, especially by (2). If d = dét and
dét + dLT = n, then we put D6h,d,ord

S,MF
:= D6h,d

S,MF
; i.e., MA ∈ D6h

S,MF
is an object in

D6h,d,ord
S,MF

(A, I) if and only if it is an extension of a Lubin-Tate type object of rank
n− d by an étale object of rank d.

For anyR ∈ ÂRo and ξ ∈ D6h
ρF

(R), the 2-fiber product D6h,d
S,MF,ξ

:= (D6h
ρF
/ξ)×

D6h
ρF

D6h,d
S,MF

is a full AugR-subgroupoid of D6h
S,MF,ξ

. By Corollary 11.1.11, D6h
S,MF,ξ

can
be represented by a projective R-scheme G R6h

ξ .

Proposition 11.4.9. The full AugR-subgroupoid D6h,d
S,MF,ξ

is representable by
an open and closed R-subscheme G R6h,d

ξ of G R6h
ξ . As a special case, the full

AugR-subgroupoid D6h,d,ord
S,MF

can be represented by an open and closed R-subscheme
G R6h,d,ord

ξ of G R6h
ξ .

Proof. The proof is essentially identical to the proof of Proposition 11.4.5.
Consider MA ∈ D6h

S,MF
(A, I) for (A, I) ∈ Augo. Let SpecAd ⊂ SpecA be the locus

where the rank of MLTA is dLT and the rank of Mét
A is dét, which is open and closed

by Proposition 11.4.2 applied to connected components of SpecA. Thus, there is a
unique union of connected components Ĝ R

6h,d
ξ ⊂ Ĝ R

6h

ξ such that its functorial
points are exactly the points of G R6h

ξ with the “condition d” on the ranks of a
maximal étale subobject and a maximal Lubin-Tate type quotient. Now clearly
Ĝ R

6h,d
ξ is obtained from mR-adic completion of an open and closed subscheme

G R6h,d
ξ ⊂ G R6h

ξ . �

Let Spec(R[ 1
π0

])d ⊂ SpecR[ 1
π0

] be the union of connected components which
is the image of G R6h,d

ξ under the structure morphism G R6h
ξ ⊗o F

∼−→ SpecR[ 1
π0

].
We put (R[ 1

π0
])d,ord := (R[ 1

π0
])d with d = dét and dLT = n−d (where n = dimF ρF).

From the discussion in §11.4.6 and the proposition above, we can easily deduce that
an o-map R[ 1

π0
]→ A (with A finite over F ) factors through (R[ 1

π0
])d,ord if and only

if ξ⊗RA is ordinary with maximal Lubin-Tate A-subrepresentation of rank d. One
can deduce a similar assertion for A-points of G R6h,d

ξ , Spec(R[ 1
π0

])d, and G Ru,6h
ξ

(with A finite over F ).
We will often apply this discussion to R = R2,6h

ρF
and R = R6h

ρF
, in which case

we respectively write R2,6h,d,ord
ρF

and R6h,d,ord
ρF

for Rd,ord.
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Remark 11.4.10. Consider an F0-Hodge-Pink type vd :=
(
n, (SF /P(u))⊕d

)
.

(If K /K 0 is separable then fixing the Hodge-Pink type vd is equivalent by Lemma
11.3.5(1) to fixing the filtration Fil•vd of K ⊕n given as follows: dimK (gr0

vd) = n−d,
dimK (grhvd) = d, and dimK (grwvd) = 0 if w 6= 0, h.) We claim that for a finite F -
algebra A, an A-point ζA ∈ G Rvd

ξ (A) factors through G R6h,d,ord
ξ ⊗o F if and only

if the corresponding SA-lattice of P-height 6 h is ordinary with F0-Hodge-Pink
type vd. In particular, if K /K 0 is separable then G R6h,d,ord

ξ ⊗o F is contained
in G Rvd

ξ (as a union of connected components).
In fact, we have the following general claim. Let A be one of the following:

complete local noetherian o0-algebra with finite residue field, an o0-algebra with
πN0 ·A = 0, and a finite F0-algebra. For any MA ∈ (ModFI /S)6h

A of Lubin-Tate
type of P-height h (as defined in §8.3.5), the image of ϕMA

is precisely P(u)hMA. If
MA fits in the following short exact sequence 0→Mét

A →MA →MLTA → 0 where
Mét
A is an finite free étale (ϕ,SA)-module and MLTA ∈ (ModFI /S)6h

A is of Lubin-
Tate type of P-height h, then we have an SA/(P(u)h)-isomorphism coker(ϕMA

) ∼=
MLTA /P(u)hMLTA ∼= (SA/(P(u)h))⊕dLT where the second isomorphism is obtained
by choosing SA-basis for MLTA (where dLT is the SA-rank of MLTA ).

11.4.11. Let n := dimF(ρF). We choose MF ∈ D6h,d,ord
S,MF

(F); i.e., MF is a SF-
lattice of P-height 6 h for D6h

E (ρF) such that Mét
F is of rank d and MF/M

ét
F is

of Lubin-Tate type of P-height h. We consider an ARo-groupoid D6h,d,ord
MF

whose
objects over A are (MA, ιA), where MA ∈ D6h,d,ord

S,MF
(A) and ιA : MA ⊗A A/mA

∼−→
MF. There is a natural 1-morphism D6h,d,ord

MF
→ D6h,d,ord

S,MF
, defined by forgetting

ιA. If EndGK (ρF) ∼= F, then D6h,d,ord
MF

is pro-representable by the completed local
ring of G R6h,d,ord at the closed point corresponding to MF. In general, the 2-fiber
product D6h,d,ord

MF,ξ
:= (D6h

ρF
/ξ)×

D6h
ρF

D6h,d,ord
MF

is pro-representable by the completed

local ring of G R6h,d,ord
ξ at the closed point corresponding to MF. By increasing F,

we obtain the completed local ring of G R6h,d
ξ at any closed point.

There is an SF/(P(u)h)-isomorphism βF : (SF/P(u)h)⊕n ∼−→MF/P(u)hMF by
Remark 11.4.10, and we choose one. We define an ARo-groupoid16 D̃6h,d,ord

MF
, where

an object over A is MA ∈ D6h,d,ord
MF

(A) together with an SA/P(u)h-isomorphism
βA : (SA/P(u)h)⊕n ∼−→ MA/P(u)hMA which lifts βF. (Note that such an iso-
morphism exists by Remark 11.4.10.) By forgetting this isomorphism, we obtain a
1-morphism D̃6h,d,ord

MF
→ D6h,d,ord

MF
, which makes the former into a torsor under the

formal completion of the Weil restriction ResSo/P(u)h
o GLn at the identity section.

In particular, this 1-morphism is formally smooth.
Now, we define another ARo-groupoid Gr6h(n, d) whose objects are quotients of

(SA/P(u)h)⊕n which are free of SA/P(u)h-rank d. This groupoid is representable
by (the π0-adic completion of) a grassmannian for ResSo/P(u)h

o GLn, which is a
smooth formal o-scheme. We have a 1-morphism D̃6h,d,ord

MF
→ Gr6h(n, d) by send-

ing (MA, βA) to the composite (SA/P(u)h)⊕n ∼−−→
βA

MA/P(u)hMA
ϕ−→ cokerϕ. We

now show that this 1-morphism is formally smooth, as follows. Let A ∈ ARo and

16Here, the tilde in the notation does not mean the extension by 2-direct limits, which is
defined in §10.4.4.
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let I ⊂ A be a square-zero ideal. Put Ā := A/I. Let (MĀ, βĀ) ∈ D̃6h,d,ord
MF

(Ā), and
we put (SĀ/P(u)h)⊕n � Λ̄d

Ā
be the corresponding point in Gr6h(n, d)(Ā) and fix a

lift (SA/P(u)h)⊕n � Λ̄dA. We put MA := S⊕nA and choose MA �MĀ which lifts
βĀ. Now, we can give ϕ on MA by choosing a lift of ϕ̄ := ϕMĀ

in the commutative
diagram below with exact rows:

0 // σ∗MA
ϕ //

����

MA
//

����

Λ̄dA //

����

0

0 // σ∗MĀ

ϕ̄ // MĀ
// Λ̄d
Ā

// 0.

Now, let Mét
A and MLTA be a maximal étale subobject and a maximal Lubin-Tate

type quotient of MA, respectively. Since the formation of Mét
A and MLTA commutes

with change of coefficients by Proposition 8.2.7, we have natural isomorphisms
Mét
A ⊗A Ā ∼= Mét

Ā
and MLTA ⊗A Ā ∼= MLT

Ā
. This shows that MA together with the

obvious choice of βA defines an object in D̃6h,d,ord
MF

(A).
Now, we are ready to prove the following

Proposition 11.4.12. Assume that (D6h
ρF
/ξ)→ D6h

ρF
is formally smooth. Then

G R6h,d,ord
ξ is formally smooth over o. In particular, G R2,6h,d,ord is formally

smooth over o and G R6h,d,ord is formally smooth over o if D6h
ρF

is representable.

Proof. It is enough to show the completed local ring of G R6h,d,ord
ξ at each

closed point is a formally smooth o-algebra. Now consider the following diagrams
where all the arrows are formally smooth.

D̃6h,d,ord
MF,ξ

//

��

D̃6h,d,ord
MF

//

��

Gr6h(n, d)

D6h,d,ord
MF,ξ

// D6h,d,ord
MF

The two horizontal arrows in the square are formally smooth since they are 2-
pull back of the formally smooth 1-morphism (D6h

ρF
/ξ) → D6h

ρF
and the formal

smoothness pulls back under 2-base changes (Proposition 10.2.8). Since the square
is 2-cartesian and the right vertical arrow is formally smooth, the left vertical arrow
is because the formal smoothness pulls back under 2-base changes. Finally, we have
seen that Gr6h(n, d) is a smooth formal o-scheme, and D6h,d,ord

MF,ξ
is prorepresentable

by the completed local ring of G R6h,d
ξ at the closed point which corresponds to

MF. �

Let G R6h,d,ord
ξ,0 be the fiber over the closed point of SpecR under T6h

S :
G R6h,d,ord

ξ → SpecR. The following corollary shows that distinct connected
components of G R6h,d,ord

ξ ⊗o F “reduce” to distinct connected components of
G R6h,d,ord

ξ,0 . We let H0(X) denote the set of connected components of X.

Corollary 11.4.13. We keep the assumption that (D6h
ρF
/ξ)→ D6h

ρF
is formally

smooth. Then the natural maps below
H0(G R6h,d,ord

ξ ⊗o F )→ H0(G R6h,d,ord
ξ )← H0(G R6h,d,ord

ξ,0 )
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are bijective.

Proof. The first bijection is clear from the formal smoothness of G R6h,d,ord
ξ .

By the theorem on formal functions, the natural mapH0(Ĝ R
6h,d,ord
ξ )→ H0(G R6h,d,ord

ξ )

is a bijection, where Ĝ R
6h,d,ord
ξ is the mR-adic completion. Since Ĝ R

6h,d,ord
ξ and

G R6h,d,ord
ξ,0 have the same underlying topological space, we have the second bijec-

tion. �

11.4.14. Rank-2 example. We assume that (D6h
ρF
/ξ)→ D6h

ρF
is formally smooth,

so G R6h,d,ord
ξ is formally smooth over o. Thus, to compute the connected com-

ponents of G R6h,d,ord
ξ ⊗o F it is enough to compute the connected component of

the fiber G R6h,d,ord
ξ,0 over the closed point of SpecR (by the theorem on formal

functions). We now do this computation for the case when that dimF(ρF) = 2 and
d := dét = 1. We let G R6h,ord

ξ denote the ordinary locus of G R6h
ξ with d := dét =

1. When K /K 0 is separable, G R6h,ord
ξ ⊗o F is a union of connected components

of the G Rv
ξ ’s where v := (n = 2, Λ̄v := SF0/P(u)h) (by Remark 11.4.10), and its

complement is precisely the “unipotent locus” in G Rv
ξ (which is open and closed,

by Proposition 11.4.5). But even when K /K 0 is not separable, any A-point of
G R6h,ord

ξ ⊗oF has F0-Hodge-Pink type v := (n = 2, Λ̄v := SF0/P(u)h) by Remark
11.4.10. In this sense, the following discussion is the continuation of §11.3.12.

We now set up some notations. Let χLT : GK → F×q be the character by which
GK acts on Fq(1) := T ∗S (S(1)) ⊗o0 Fq. If o0 = Zp, then χLT is the restriction of
the p-adic cyclotomic character to GK ∞

∼= GK . (Note that q = p in this case.) If
o0 = Fq[[π0]], then χLT is obtained from the π0-torsion points of the Lubin-Tate
formal group. For an unramified character ψ, let Mψ denote the unique Lubin-
Tate type ϕ-module over SF of P-height h such that T6h(Mψ) ∼= ψ. (So the Tate
twist Mψ(−h) is an étale (ϕ,SF)-module such that GK acts on T6h

S (Mψ(−h)) via
ψχhLT .)

Proposition 11.4.15. Assume that (D6h
ρF
/ξ) → D6h

ρF
is formally smooth. If

G R6h,ord
ξ,0 is non-empty then it consists of a single point, unless ρF ∼=

(
ψ1 0
0 ψ2

)
where both ψ1 and ψ2 are unramified (so necessarily χLT is unramified). In the
latter case, we have two possibilities:

(1) If ψ1 6= ψ2 then G R6h,ord
ξ,0 consists of two (reduced) points which corre-

spond to

(11.4.15.1)
(
Mψ1χ

−h
LT

)
(−h)⊕Mψ2 , and

(
Mψ2χ

−h
LT

)
(−h)⊕Mψ1 , respectively.

(2) If ψ = ψ1 = ψ2 then any MF ∈ G R6h,ord
ξ,0 (F) is of the following form:

(11.4.15.2) MF ∼=
(
Mψχ−hLT

)
(−h)⊕Mψ.

Furthermore, we have a natural isomorphism G R6h,ord
ξ,0

∼−→ P1
F of F-

schemes, and this sends MF ∈ G R6h,ord
ξ,0 (F) to LF := T6h

S (Mét
F ) ⊂ TF
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(which defines an F-point of P1
F), where TF := T6h

S (MF) is the representa-
tion space for ρF. Note that under the isomorphism (11.4.15.2), we have
Mét

F =
(
Mψχ−hLT

)
(−h).

Proof. Let A be a finite artin local F-algebra, and put TA := TF⊗FA, MA :=
D6h
E (TA). We first consider a point MA ∈ G R6h,ord

ξ,0 (A), which is a SA-lattice of
P-height 6 h for MA. Then we have a short exact sequence

0→Mét
A →MA →MLTA → 0.

We put LA := T6h
S (Mét

A ), so the locally free quotient TA/LA ∼= T6h
S (MLTA ) is

unramified.

Claim. Let TA be an A-representation of GK of P-height 6 h (as an o0-torsion
GK-representation in the sense of Definition 8.1.717) and we put MA := D6h

E (TA).
For any GK-stable A-line LA ⊂ TA (i.e., TA/LA is A-projective of constant rank)
such that LA(−h) and TA/LA are unramified, there exists a unique SA-lattice
MA ∈ (ModFI /S)6h

A in MA such that T6h
S (Mét

A ) = LA and T6h
S (MLTA ) = TA/LA.

We first grant this claim and deduce the proposition. The proposition follows
straightforwardly from the claim except when ρF ∼=

(
ψ 0
0 ψ

)
, in which case we only

have a functorial isomorphism G R6h,ord
ξ,0 (A) ∼= P1

F(A) for finite artinian F-algebras
A. However, this implies that the smooth proper F-scheme G R6h,ord

ξ,0 has zeta
function coinciding with that of P1

F, which forces G R6h,ord
ξ,0 to be a smooth curve

of genus 0. Since F is finite, we have G R6h,ord
ξ,0

∼= P1
F.

It remains to show the claim. Consider the étale S-lattice Mét
LA
∈ (Mod /S)6h

inD6h
E (LA), and the Lubin-Tate type S-lattice MLTTA/LA ∈ (Mod /S)6h of P-height

h in D6h
E (TA/LA). Note that the A-action on LA induces a ϕ-compatible A-action

on Mét
LA

(by functoriality of a maximal S-lattice of P-height 6 h), and one can
show that this makes Mét

LA
a finite free SA-module by an argument as sketched

in §8.2.418; i.e., Mét
LA
∈ (ModFI /S)6h

A . By duality of P-height h, we also have
MLTTA/LA ∈ (ModFI /S)6h

A .
Now, we can rephrase the claim that there exists a unique SA-lattice MA of P-

height 6 h inMF⊗FA which is an extension of MLTTA/LA by Mét
LA

in (ModFI /S)6h
A .

To show the existence of MA with the required property, consider a maximal SA-
lattice M+

A of P-height 6 h inMF⊗FA, so the inclusion LA ↪→ TA induces Mét
LA

↪→
M+
A. Since Mét

LA
is a maximal SA-lattice in D6h

E (LA), it follows that M+
A/M

ét
LA

has no non-zero u-torsion so it is a S-lattice of P-height 6 h in D6h
E (TA/LA).

Now, M+
A/M

ét
LA

contains MLTTA/LA because the latter is a minimal S-lattice of P-
height 6 h, and let MA be the preimage of MLTTA/LA under the natural projection

17A priori, we do not necessarily have MA ∈ (ModFI /S)6h
A such that TA ∼= T6h

S (MA);
the definition only guarantees the existence of MA ∈ (Mod /S)6h which may not be a (ϕ,SA)-
module, such that TA ∼= T6h

S (MA) as o0-torsion GK -representations.
18We briefly recall the argument. Essentially by Corollary 8.1.11, we have Mét

LA
∼= S ⊗W

U(LA) in (Mod /S)6h which respects the natural A-actions on both sides. (See the proof of
Proposition 8.1.10 for the definition of U .) Now, we repeat the argument in §8.2.4 to show that
U(LA) is WA-free with rank equal to rankA(LA).
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M+
A �M+

A/M
ét
LA

. By construction MA has a natural ϕ-compatible A-action, so we
have a short exact sequence 0→Mét

LA
→MA →MLTTA/LA → 0 of (ϕ,SA)-modules.

Since both flanking terms are finite free over SA, so is the middle term MA; i.e.,
MA ∈ (ModFI /S)6h

A .
To show the uniqueness, observe that if MA and M′A are extensions of MLTTA/LA

by Mét
LA

in (ModFI /S)6h
A then so is MA + M′A where the sum is taken inside

MF ⊗F A; clearly MA + M′A is an extension of MLTTA/LA by Mét
LA

as a (ϕ,SA)-
module, so SA-freeness follows. By Lemma 9.2.4 there exist maximal and minimal
SA-lattices M

(+)
A ,M

(−)
A ⊂ MF ⊗F A of P-height 6 h among the extensions of

MLTTA/LA by Mét
LA

. Now, we have the following commutative diagram with short
exact rows:

0 // Mét
LA

//

id
��

M
(−)
A

//
� _

��

MLTTA/LA
//

id
��

0

0 // Mét
LA

// M(+)
A

// MLTTA/LA
// 0

,

where the vertical map in the middle is the natural inclusion. By 5-lemma, the
vertical map in the middle is an isomorphism, which shows the uniqueness. �

Corollary 11.4.16. Assume that dimF(ρF) = 2 and K /K 0 is separable (so
that we can apply Proposition 11.3.7). Let R be R2,6h

ρF
, or R6h

ρF
if it exists. Let

E/F be a finite extension, and let x1, x2 ∈ (SpecRv)(E), where v is the F0-Hodge-
Pink type (n = 2,SF /P(u)h). If x1 and x2 lie in the same connected component
of SpecRv then Vx1 and Vx2 are either both ordinary or both non-ordinary.

If both Vx1 and Vx2 are ordinary, then x1 and x2 are in the same connected
component if for the unique E-line Li ⊂ Vxi on which IK acts via χhLT , the Galois
group GK acts on L1 and L2 via o×E-valued characters with the same reduction
modulo mE.

Assuming that K /K 0 is separable, the natural question that arises is to
compute the non-ordinary connected components of SpecRv, where v := (n =
2,SF /P(u)h) is as in the statement of the corollary. If h = 1, then we can show
that the non-ordinary locus in SpecRv is connected, which will be seen in the next
section. On the other hand, this question for h > 1 seems to require a new idea.

11.4.17. Application to crystalline and semi-stable deformation rings. Assume
o0 = Zp, and use the same notations as in §11.2.11. Let V be a p-adic GK -
representation which is semi-stable with Hodge-Tate weights in [0, h]. We say that
V is ordinary if there exists a GK -stable subspace L ⊂ V such that both L(−h)
and V/L are unramified. Equivalently, one can require that D∗st(V ), or equivalently
Dst(V )(h), is an extension of a weakly admissible filtered ϕ-module pure of slope
h by an étale filtered ϕ-module. We say that V is formal if V admits no non-
trivial unramified quotient. Equivalently, one can require that D∗st(V ) has no non-
trivial étale subobject, or equivalently that Dst(V )(h) admits no weakly admissible
quotient which is pure of slope h. We can naturally extend these definitions to
semi-stable A-representations VA of GK where A is a finite Qp-algebra, as follows:
we say that VA is ordinary if it is ordinary as a p-adic representation and the
maximal unramified quotient VA/LA is projective as an A-module; we say that
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VA is formal if it is formal as a p-adic representation. (Note that the maximal
unramified Qp-linear quotient V ét

A of VA is automatically an A-linear quotient.)
As before, we fix a mod p representation ρ̄ of GK . Let R6h

st and R6h
cris respec-

tively denote the semi-stable and crystalline deformation ring or framed deforma-
tion ring of ρ̄ in the sense of [Liu07]. We will use Propositions 11.4.4 and 11.4.9,
and the maps rescris and resst to prove:

Proposition 11.4.18. Let R ∈ ÂRo, and consider a semi-stable deformation
ρR of ρ̄ with Hodge-Tate weights in [0, h]; i.e., each artinian quotient ρR⊗R (R/mn

R)
is torsion semi-stable with Hodge-Tate weights in [0, h].

(1) There exists a unique open and closed subscheme Spec(Rf⊗oF ) of Spec(R⊗o

F ) with the following property: for any finite Qp-algebra A, a map x :
R→ A factors through Rf if and only if the corresponding representation
ρR ⊗R,x A is formal.

(2) There exists a unique open and closed subscheme SpecRd,ord of Spec(R⊗o

F ) with the following property: for any finite Qp-algebra A, a map x :
R ⊗o F → A factors through Rd,ord if and only if the corresponding rep-
resentation ρR ⊗R,x A is ordinary and its maximal unramified quotient is
of A-rank (n− d).

Proof. The uniqueness is clear, so we just have to prove existence. Let
SpecRf ⊂ SpecR be the maximal closed subscheme (which is also open in the
Qp-fiber) such that (ρR ⊗R Rf )|GK∞

is formal as a GK ∞-representation, and let
SpecRd,ord ⊂ Spec(R⊗o F ) be the maximal open and closed subscheme such that
(ρR ⊗R Rd,ord)|GK∞

is ordinary and its maximal unramified quotient is of rank
(n−d). The existence of Rf and Rd,ord is proved in Propositions 11.4.4 and 11.4.9,
respectively. It follows from the lemma below that Rf and Rd,ord satisfy the desired
properties. �

Lemma 11.4.19. Let A be a finite local Qp-algebra and let VA be a rank-n
semi-stable A-representation of GK with Hodge-Tate weights in [0, h]. Let V ét

A be
the maximal unramified A-quotient of VA|GK∞

as a GK ∞-representation, which
exists and is a projective A-module by Proposition 8.2.7. Then V ét

A is the maximal
unramified A-quotient of VA as a GK -representation; i.e., the kernel of the natural
projection VA � V ét

A is GK -stable and has no non-trivial unramified quotient as a
Qp-representation space.

As special cases, we have the following:
(1) The GK ∞-representation VA|GK∞

is formal if and only if VA is formal
as a GK -representation.

(2) The GK ∞-representation VA|GK∞
is ordinary of P-height 6 h with max-

imal unramified GK ∞-quotient of A-rank d if and only if VA is ordinary
as a GK -representation with maximal unramified GK -quotient of A-rank
d.

Proof. Let DA = (DA, ϕ,N,Fil•(DA)K ) := D∗st(VA) be the weakly admis-
sible filtered (ϕ,N)-module which correspond to VA. Let res(DA) be the weakly
admissible Hodge-Pink structure corresponding to VA|GK∞

. (The functor res is
defined in §5.2.12.)
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We may assume that the residue field k of oK is algebraically closed, and that
A is local. Let V ét

A be the maximal unramified quotient of VA|GK∞
as a GK ∞ -

representation, and set d := rankA(V ét
A ). Let Dét

A be the maximal étale subobject
of res(DA) as an isocrystal with Hodge-Pink structure, so Dét

A is of K 0,A-rank d.
Since k = k̄, by the Dieudonné-Manin decomposition DA

∼= Dét
A ⊕D′A, where any

subquotient of D′A has positive slopes. Thus, the relation Nϕ = pϕN implies that
N |Dét

A
= 0. So by the weak admissibility, we see that (Dét

A )K ∩ Filw(DA)K = 0
for all w > 0. Thus, Dét

A defines a weakly admissible subobject of DA. Clearly,
V ∗st(Dét

A ) is the maximal unramified quotient of VA as a GK -representation over Qp,
and is an A-quotient of V ét

A . Now, we claim that V ét
A = V ∗st(Dét

A ) as A-quotients
of VA. For this, it suffices to show the inequality rankSA

(Mét
A ) 6 rank(K 0)A(Dét

A ).
First, observe that Mét

A/uM
ét
A is pure of slope 0, because by definition there exists a

finite flat Zp-subalgebra Ao ⊂ A and a finite free étale (ϕ,SAo)-module MAo with
MAo [ 1

p ] = MA. But since DA
∼= MA/uMA, we have Mét

A/uM
ét
A ⊂ Dét

A , thus we
obtain the desired inequality. �

Consider a filtration Fil•v of K ⊕n (i.e., a p-adic Hodge type v). Proposition
11.4.18 provides a “universal” open and closed subscheme SpecRf,v ⊂ SpecRv,
where SpecRv is the open and closed subscheme of Spec(R⊗o F ) corresponding to
the Hodge type v. Let vd be a filtration of K ⊕n such that dimK gr0

vd = n− d for
w ≤ 0, dimK grhvd = d, and dimK grwvd = 0 for w 6= 0, h. It follows from Proposition
11.4.18 that the natural open and closed inclusions SpecRd,ord ↪→ Spec(R ⊗o F )
factors through SpecRvd .

We will often apply Proposition 11.4.18 to the following cases. We let R denote
one of the following: R2,6h

cris , R2,6h
st , R6h

cris, and R
6h
st . With these choices of R, the

ordinary and formal loci Rd,ord and Rf ⊗o F in R[ 1
p ] have an obvious “mapping

property.” For example, for any finite F -algebra A, an A-point of R2,6h
cris [ 1

p ] factors
through R2,6h,d,ord

cris if and only if the corresponding framed A-deformation is ordi-
nary such that the maximal étale quotient is of A-rank n− d. With this said, the
proposition can be rephrased as follows. Let R denote one of the following: R2,6h

cris ,
R2,6h

st , R6h
cris, and R

6h
st . Let x1, x2 be closed points of Spec(R ⊗o F ), and Vx1 , Vx2

be corresponding GK -representations. If x1 and x2 lie in the same component then
either both Vx1 and Vx2 are ordinary or both are non-ordinary. Similarly, if x1 and
x2 lie in the same component then either both Vx1 and Vx2 are formal or both are
non-formal.

11.5. Connected components: h = 1 Case

Now we restrict ourselves to the case when h = 1 and K /K 0 is separable.
We assume that dimF(ρF) = 2, and choose ξ ∈ D61

ρF
(R) for some R ∈ ÂRo such

that (D61
ρF
/ξ) → D61

ρF
is formally smooth. Important examples are ξ := ξuniv if

EndGK (ρF) ∼= F, and ξ := ξ2
univ.

We fix a Hodge-Pink type v := (n = 2, Λ̄v := SF0/P(u)) as in §11.3.12. We
already described connected components of G Rv

ξ which correspond to ordinary lifts
in Proposition 11.4.15 and Corollary 11.4.16. In this subsection, we show that the
non-ordinary locus in G Rv

ξ is connected, which completes the description of the
connected components of G Rv

ξ . Actually, we will content ourselves with reducing
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the proof to the affine grassmannian computation which is done in [Kis09b, §2.5]
and [Ima08].

We briefly explain the idea and indicate where we need the assumption h = 1.
We start with defining a closed subscheme G Rv,int

ξ ⊂ G R61
ξ such that G Rv,int

ξ ⊗o

F = G Rv
ξ , and G Rv,int

ξ is “reasonably nice” as a scheme so that each connected
component of G Rv,int

ξ ⊗oF “uniquely reduces” to a connected component of G Rv,int
ξ ⊗R

R/mR. The author does not know any analogue of G Rv,int
ξ for h > 1. Once we show

this, then the affine grassmannian computation in loc.cit. gives the connectedness
result we want.

11.5.1. For an o0-algebra A, let DA be a free SA/P(u)-module of rank 2. We
say a SA/P(u)-submodule LA ⊂ DA is Lagrangian if it is a direct factor as an
A-module and the submodule LA is its own annihilator under a SA/P(u)-bilinear
symplectic pairing on DA (which is unique up to unit multiple).

If K /K 0 is separable and A is a finite F0-algebra, then ϕ(σ∗MA)/P(u)MA

is necessarily projective SA/P(u)-module of rank 1; since SA/P(u) is a finite
étale A-algebra, A-flatness of DA/LA implies SA/P(u)-flatness by local flatness
criterion. But in general, a Lagrangian is not necessarily projective over SA/P(u).
If π0·A = 0 then the SA/P(u)-span of {uie1, u

e−ie2} for i ∈ [0, e] is a Lagrangian in⊕
i=1,2 SA/P(u)ei. If K /K 0 is not separable then one can construct Lagragians

in DA which is not projective over SA/P(u) even when A = E is a finite extension
of F0, using an idea similar to Remark 11.3.6.

We now define a full subgroupoid Dv,int
S,MF

⊂ D61
S,MF

over Augo and ÂRo whose
objects MA overA are those satisfying that the SA/P(u)-submodule ϕ(σ∗MA)/P(u)MA ⊂
MA/P(u)MA is a Lagrangian. Note that this submodule is a direct factor as an
A-module, by Proposition 8.2.3.

Proposition 11.5.2. The natural inclusion of Augo-groupoids Dv,int
S,MF

↪→ D61
S,MF

is relatively representable by closed immersions; i.e., for any ξ ∈ D6h
ρF

(R) with
R ∈ ÂRo, the AugR-groupoid Dv,int

S,MF,ξ
:= (D61

ρF
/ξ)×

D61
ρF

Dv,int
S,MF

is representable by

a closed subscheme G Rv,int
ξ ⊂ G R61

ξ . If K /K 0 is separable, then G Rv,int
ξ ⊗oF ⊂

G R61
ξ ⊗o F is precisely G Rv

ξ with v := (n = 2, Λ̄v := SF0/P(u)). (In particular,
G Rv,int

ξ ⊗o F is a union of connected components of G R61
ξ ⊗o F .)

Even though G Rv,int
ξ ⊗o F makes sense without the separability assumption

on K /K 0, the author does not know whether all closed points of G Rv,int
ξ ⊗o F

have Hodge-Pink type v := (n = 2, Λ̄v := SF0/P(u)), nor whether G Rv,int
ξ ⊗o F is

a union of connected components of G R61
ξ .

If K /K 0 is separable, one can adapt the discussions in [Kis09b, (2.2)] to define
a closed subscheme G Rv,int

ξ of G Rξ⊗ooE for any E-Hodge-Pink type v of P-height
6 1 (with E/F a finite extension) such that G Rv,int

ξ ⊗oE E = G Rv
ξ .

Proof. We construct G Rv,int
ξ as follows. Put S

G R61
ξ

:= S ⊗o0 OG R61
ξ

and

consider the universal S
G R61

ξ

-lattice M61
ξ of P-height 6 1 inMξ⊗ROG R61

ξ

. Let ϕξ
denote the universal ϕ-structure on M61

ξ . By Proposition 8.2.3, im(ϕξ)/P(u)M61
ξ ⊂
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M61
ξ /P(u)M61

ξ is a direct factor as a vector bundle over G R61
ξ . Now, choose a

S
G R61

ξ

/P(u)-basis for M61
ξ /P(u)M61

ξ and let 〈, 〉 denote the standard symplec-

tic pairing on M61
ξ /P(u)M61

ξ with respect to the fixed basis. Choose an open
(affine) covering {Uα} of G R61

ξ which trivializes im(ϕξ)/P(u)M61
ξ , and choose an

OUα -basis {e1,α, · · · , erα,α} of (im(ϕξ)/P(u)M61
ξ )|Uα . Now, let G Rv,int

ξ be the
closed subscheme of G R61

ξ cut out by a coherent ideal I , where I |Uα is gener-
ated by {〈ei,α, ej,α〉}i,j=1,··· ,rα , viewing 〈, 〉 as an O

G R61
ξ

-bilinear pairing. Clearly

G Rv,int
ξ represents the groupoid Dv,int

S,MF,ξ
. If K /K 0 is separable then any A-point

MA ∈ G R61
ξ (A) with A finite over F is supported in G Rv,int

ξ ⊗o F if and only if
MA is of Hodge-Pink type v := (n = 2, Λ̄v := SF0/P(u)) since any Lagrangian
in (SA/P(u))⊕2 is free of rank 1 over SA/P(u). Since both G Rv,int

ξ ⊗o F and
G R61

ξ ⊗o F are Jacobson, this implies G Rv,int
ξ ⊗o F = G Rv

ξ as a subscheme of
G R61

ξ ⊗o F . �

11.5.3. As in §11.4.11, we construct a common “formally smooth covering” of
the completed local rings of G Rv,int

ξ and a “model space” whose local structure
can be understood. Using this technique, we will show that G Rv,int

ξ is o-flat and
a relative complete intersection, and that G Rv,int

ξ ⊗o o/mo is reduced. If o0 = Zp
then the model space will coincide with the Deligne-Pappas étale-local model for
Hilbert-Brumenthal modular surfaces [DP94], as one expects from Kisin’s work
[Kis09b]. (For more general Hodge-Pink types v, the model space that appears
is the Pappas-Rapoport étale-local model for a certain type of Shimura varieties
[PR03] in the case o0 = Zp.)

We fix MF ∈ Dv,int
S,MF

(F). We consider an ARo-groupoid Dv,int
MF

whose objects
over A are (MA, ιA), where MA ∈ Dv,int

S,MF
(A) and ιA : MA⊗AA/mA

∼−→MF. There
is a natural 1-morphism Dv,int

MF
→ Dv,int

S,MF
, defined by replacing ιA with ιA[ 1

π0
] :

(MA⊗A A/mA)[ 1
π0

] ∼−→MF. If EndGK (ρF) ∼= F, then Dv,int
MF

is pro-representable by
the completed local ring of G Rv,int at the closed point corresponding to MF. In
general, the 2-fiber product Dv,int

MF,ξ
:= (D6h

ρF
/ξ)×

D6h
ρF

Dv,int
MF

is pro-representable by
the completed local ring of G Rv,int

ξ at the closed point corresponding to MF. By
extending F, we obtain all completed local rings of G Rv,int

ξ at closed points.
We fix a SF/P(u)-isomorphism βF : (SF/P(u))⊕2 ∼−→MF/P(u)MF. We define

an ARo-groupoid19 D̃v,int
MF

, where an object over A is MA ∈ Dv,int
MF

(A) together with
a SA/P(u)-linear isomorphism βA : (SA/P(u))⊕2 ∼−→MA/P(u)MA which lifts βF.
By forgetting this isomorphism, we obtain a 1-morphism D̃v,int

MF
→ Dv,int

MF
, which

makes the former into a torsor under the formal completion of the Weil restriction
ResSo/P(u)

o GLn at the identity section. In particular, this 1-morphism is formally
smooth.

Now, we define another ARo-groupoid Mv whose objects are Lagrangians of
(SA/P(u))⊕2 under the standard symplectic form (in the sense of §11.5.1). This
groupoid is representable by (the π0-adic completion of) a closed subscheme of a

19Again, the tilde in the notation does not mean the extension by 2-direct limit, which is
defined in §10.4.4.
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grassmannian. We let the same notation Mv denote the representing projective
o-scheme. The argument given in [DP94, §4], which also works in the case of
o0 = Fq[[π0]], shows that Mv is o-flat and a relative complete intersectionT and
thatMv⊗oo/mo is reduced. (For the o-flatness, see [EGA, IV2, 3.4.6.1].) We have a
1-morphism D̃v,int

MF
→Mv by sending (MA, βA) to the kernel of (SA/P(u))⊕2 ∼−−→

βA

MA/P(u)MA
ϕ−→ cokerϕ, which is seen to be formally smooth by an argument

similar to §11.4.11.
Now, we are ready to prove the following
Proposition 11.5.4. Assume that (D6h

ρF
/ξ)→ D6h

ρF
is formally smooth. Then

G Rv,int
ξ is o-flat and a relative complete intersection, and G Rv,int

ξ ⊗o o/mo is re-
duced.

Proof. The proof is similar to that of Proposition 11.4.12. Consider the fol-
lowing diagrams where all the arrows are formally smooth.

D̃v,int
MF,ξ

//

��

D̃v,int
MF

//

��

Mv

Dv,int
MF,ξ

// Dv,int
MF

Since Mv has the desired properties, we conclude that G Rv,int
ξ has the desired

properties. �

Let G Rv,int
ξ,0 be the fiber over the closed point of SpecR under T6h

S : G Rv,int
ξ →

SpecR. The following corollary shows that distinct connected components of
G Rv,int

ξ ⊗oF “reduce” to distinct connected components of G Rv,int
ξ,0 . We let H0(X)

denote the set of connected components of X.
Corollary 11.5.5. We keep the assumption that (D6h

ρF
/ξ)→ D6h

ρF
is formally

smooth. Then the natural maps below
H0(G Rv,int

ξ ⊗o F )→ H0(G Rv,int
ξ )← H0(G Rv,int

ξ,0 )
are bijective.

Proof. The second bijection follows from the theorem on formal functions.
The first bijection follows from an argument similar to the proof of [Kis09b, Corol-
lary 2.4.10] using o-flatness and the reducedness of G Rv,int

ξ ⊗o o/mo. �

We now state the following theorem.
Theorem 11.5.6. Assume that K /K 0 is separable and ξ ∈ D6h

ρF
(R) is such

that (D6h
ρF
/ξ) → D6h

ρF
is formally smooth. Let Rv be the universal quotient of

R[ 1
π0

] whose points are of Hodge-Pink type v := (n = 2, Λ̄v = SF0/P(u)). Then
the non-ordinary locus of SpecRv is connected.

Proof. By Corollary 11.5.5, the problem is reduced to showing the connected-
ness of the non-ordinary locus in G Rv,int

ξ,0 . This follows from the affine grassmannian
computation in characteristic p by Kisin [Kis09b, (2.5)] in the case of k = Fq (where
q = p if o0 = Zp), and by Imai [Ima08] in the general case20. �

20The author believes, but has not carefully checked, that Imai’s computation works in the
case p = 2.
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11.6. Application to flat deformation rings

Throughout this subsection, we assume that o0 = Zp and let ρ̄ be a 2-dimensional
“finite flat” F-representation of GK ; i.e., we assume that ρ̄ comes from the generic
fiber of a finite flat group scheme over oK . Let R2,61

cris , R61
cris, R2,61

∞ and R61
∞ be

as in §11.2.11. By Kisin’s theorem21 (also stated in Theorem 2.4.11(2)), any crys-
talline Qp-representation with Hodge-Tate weights in [0, 1] comes from the p-adic
Tate module of a Barsotti-Tate group over oK . Therefore, the crystalline defor-
mation rings R2,61

cris and R61
cris coincide with the flat deformation rings R2

fl and Rfl,
respectively.

The goal of this subsection is to prove the following theorem, which was origi-
nally proved by Kisin [Kis09b, Corollary 2.5.16] under the assumption that p > 2,
and [Kis09a, §2] for any p (especially, p = 2). Note that this theorem plays a crucial
role in Kisin’s modularity lifting theorem for potentially Barsotti-Tate representa-
tions.

Theorem 11.6.1 (Kisin). Assume that ρ̄ is finite flat.22 Let v be the p-adic
Hodge type such that dimK grwv = 1 for w = 0 or 1, and dimK grwv = 0 for w 6= 0, 1.

(1) There is at most one non-ordinary connected component in SpecR2,v
cris .

(2) There exists at most one ordinary connected component in SpecR2,v
cris if

and only if ρ̄ �
( χ1 0

0 χ2

)
where both χ1 and χ2 are distinct unramified

characters.
(3) If ρ̄ ∼=

( χ1 0
0 χ2

)
where χ1 6= χ2 are both unramified, then there exist exactly

two ordinary connected components in SpecR2,v
fl . For a finite extension

E/F , let x1 and x2 be E-points of SpecR2,v
cris such that the corresponding

GK -representations Vx1 and Vx2 are ordinary. Then x1 and x2 are in the
same connected component if and only if for the unique E-line Li ⊂ Vxi
on which IK acts via χhLT , the Galois group GK acts on L1 and L2 via
o×E-valued characters with the same reduction modulo mE.

The same holds for SpecRv
cris if EndGK

(ρ̄) ∼= F.

11.6.2. Preliminary reduction: the case p > 2. Let v be as in the statement of
Theorem 11.6.1 and set v := (n = 2, Λ̄v = SF0/P(u)). Recall from §11.3.13 that a
semi-stable Qp-representation is of p-adic Hodge type v if and only if its restriction
to GK ∞ is of Hodge-Pink type v. In particular, the map rescris : SpecR2,61

cris [ 1
p ]→

SpecR2,61
∞ [ 1

p ] restricts to SpecR2,v
cris → SpecR2,v

∞ . Now assume that ρ̄ comes from
a finite flat group scheme and EndGK

(ρ̄) ∼= F. Then we will show later in Lemma
11.6.12 that EndGK∞

(ρ̄∞) ∼= F, so we get SpecRv
cris → SpecRv

∞.
On the other hand, we have obtained the complete description of the connected

components of SpecR2,v
∞ , which is very similar to the statement of Theorem 11.6.1.

See §11.4-§11.5, especially Proposition 11.4.9 and Theorem 11.5.6. So in order
to obtain Theorem 11.6.1 from this, we need more information about the map
SpecR2,v

cris → SpecR2,v
∞ , and the map SpecRv

cris → SpecRv
∞ if EndGK

(ρ̄) ∼= F.

21Breuil [Bre00] gave the first proof of this theorem for the case p > 2, and Kisin reproved
the theorem without assuming p > 2.

22It follows from [Kis06, Corollary 2.2.6] that any torsion crystalline GK -representation
comes from the generic fiber of a finite flat group scheme over oK (even when p = 2), so this
assumption can be removed.
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Proposition 11.6.3. Assume that p > 2 and ρ̄ is finite flat. The natural
map rescris : SpecR2,61

cris [ 1
p ] → SpecR2,61

∞ [ 1
p ] defined by the restriction to GK ∞

is an isomorphism. If furthermore EndGK∞
(ρ̄|GK∞

) ∼= F then the natural map
rescris : SpecR61

cris[ 1
p ]→ SpecR61

∞ [ 1
p ] is an isomorphism.

11.6.4. Preliminary reduction: the case p = 2. It is conjectured that we can
remove the hypothesis p > 2 from the statement of Proposition 11.6.3.23 On the
other hand, the hard part in proving Theorem 11.6.1 is to show the connectedness of
the non-ordinary locus in SpecRv

cris (i.e., the “formal” locus in the sense of §11.4.17);
the ordinary connected components can be analyzed using Kummer theory and
some Galois cohomology considerations.24 (See [Kis09a, §2.4] for an argument.)

This leads us to consider the following setting. By Proposition 11.4.4, there
exists the universal closed subscheme SpecR2,61,f

cris of SpecR2,61
cris whose points cor-

respond to deformations which restrict to a formal GK ∞-representation (in the
“torsion” sense). Recall that on the Qp-fiber, the subscheme Spec(R2,61,f

cris [ 1
p ]) ⊂

Spec(R2,61
cris [ 1

p ]) is open and closed, with finite artinian points corresponding to “for-
mal” lifts of ρ̄ in the sense of §11.4.17. (See Proposition 11.4.5 and Lemma 11.4.19
for more details.)

By definition, the natural map rescris : SpecR2,61
cris → SpecR2,61

∞ restricts to
rescris : SpecR2,61,f

cris → SpecR2,61,f
∞ , where R2,61,f

∞ is a universal quotient of
R2,61
∞ classifying “formal” framed deformations. If EndGK

(ρ̄) ∼= F, then we can
apply the same discussion to “unframed” deformation rings. Now, we are ready
to state the following modification of Proposition 11.6.3 which we prove with no
assumption on p.

Proposition 11.6.5. Assume that ρ̄ is finite flat. The natural map rescris :
SpecR2,61,f

cris [ 1
p ] → SpecR2,61,f

∞ [ 1
p ] defined by the restriction to GK ∞ is an iso-

morphism. If furthermore EndGK∞
(ρ̄|GK∞

) ∼= F, then the natural map rescris :
SpecR61,f

cris [ 1
p ]→ SpecR61,f

∞ [ 1
p ] is an isomorphism.

Combining the proposition above with Theorem 11.5.6, one obtains the con-
nectedness of SpecR2,v,f

cris , and so completes the proof of Theorem 11.6.1.

11.6.6. Kisin’s original proof of Theorem 11.6.1, or rather Propositions 11.6.3
and 11.6.5, can be rephrased as follows (using our deformation rings R2,61

∞ , R61
∞

for GK ∞ that were not considered in [Kis09b, Kis09a]). If p > 2, then we can use
the Breuil-Kisin classification of finite flat group schemes25 over oK to show that
the restriction to GK ∞ induces an equivalence of categories Reptor,cris,[0,1]

Zp (GK )→
Reptor,[0,1]

Zp (GK ∞). (See [Bre02, Theorem 3.4.3] for a proof.) In particular, the
natural maps rescris : R2,61

∞ → R2
fl and rescris : R61

∞ → Rfl are isomorphisms26.
This proves Proposition 11.6.3.

23If the Breuil-Kisin classification of finite flat group schemes work in the case p = 2, which
is conjectured in [Bre98], then the proposition 11.6.3 for p = 2 follows.

24In particular, the argument does not use the Breuil-Kisin classification of finite flat group
schemes over oK .

25See [Kis06, Theorem 2.3.5] for the precise statement.
26By the full faithfulness, EndGK

(ρ̄) ∼= F implies EndGK∞
(ρ̄|GK∞

) ∼= F, in which case R61
∞

exists.
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For the case p = 2, Kisin [Kis09a, §1] extended the classification theorem to
connected finite flat group schemes over oK . Now repeating the same argument,
one obtains Proposition 11.6.5 (in a stronger form, without inverting p). We note
that Kisin’s work in [Kis09a, §1] uses Zink’s theory of windows and displays. We
re-emphasize that the modularity lifting theorem for 2-adic Barsotti-Tate represen-
tations has an important consequence, namely the even conductor case of Serre’s
modularity conjecture.

We now present a different proof of Propositions 11.6.3 and 11.6.5 (hence,
of Theorem 11.6.1), which avoids the Breuil-Kisin classification of finite flat group
schemes (so in turn, it eliminates the use of Zink’s theory of windows and displays).

Let us discuss the proof of Proposition 11.6.3. By avoiding the classification of
finite flat group schemes, we lose our grip on the torsion theory to some extent. So
instead of trying to study the artinian points of the deformation ring (concentrated
on the closed point), we use the following theorem of Gabber to study the Qp-fiber
of the deformation ring more directly. We state Gabber’s theorem in the form that
we will use in our situation, but the original statement in [Kis07, Appendix] is more
general.

Theorem 11.6.7 (Gabber). Let R and R′ be complete local noetherian o-
algebras with residue fields finite over o/mo. Assume that both R and R′ are p-
torsion free, R is reduced, and R′ is normal. Let f : R′ → R be a o-algebra map
such that Spec(f [ 1

p ]) : SpecR[ 1
p ] → SpecR′[ 1

p ] induces a bijection between the set
of closed points and isomorphisms on the residue fields at each closed point. Then
f is an isomorphism.

This theorem is certainly very delicate – it is not even obvious that the as-
sumption implies that f is of finite type. The proof uses the flattening technique
of Raynaud-Gruson (and very ingenious commutative algebra). See Gabber’s ap-
pendix in [Kis07] for more details.

11.6.8. We outline how to use Gabber’s theorem to prove Proposition 11.6.3.
Fix an F-representation ρ̄ of GK (of arbitrary dimension) and let ρ̄∞ denote the
restriction of ρ̄ to GK ∞ . Let R and R∞ be one of the following:

(1) Assuming p > 2, we set R := R2,61
cris and R∞ := R2,61

∞ .
(2) Assuming p > 2 and EndGK

(ρ̄) ∼= F, we set R := R61
cris and R∞ := R61

∞ .
(3) Under no assumption on p, we set R := R2,61,f

cris and R∞ := R2,61,f
∞ .

(4) Assuming EndGK
(ρ̄) ∼= F and under no assumption on p, we set R :=

R61,f
cris and R∞ := R61,f

∞ .
In all the cases above, the restriction to GK ∞ induces a natural map res : R∞ → R.
Although both the source and the target of res are each finite over some formal
power series ring (being complete local noetherian o-algebras with the same residue
field as o), they may not be normal nor reduced. But we know that both R[ 1

p ] and
R∞[ 1

p ] are formally smooth over Qp. We fix this situation by applying normaliza-
tion, as follows.

We let R̃∞ be the normalization of the image of R∞ in R∞[ 1
p ]. (More naturally

speaking, R̃∞ is the normalization of (R∞)red/(R∞)red[p∞].) Note that R̃∞ is
finite over R∞ since every complete local noetherian ring is excellent [EGA, IV2,
(7.8.3)(iii)], so R̃∞ satisfies the assumptions on R′ in the statement of Gabber’s
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theorem. By the property of normalization, we have a natural map R̃∞ → R∞[ 1
p ]

which induces an isomorphism R̃∞[ 1
p ] ∼−→ R∞[ 1

p ]. We identify R̃∞ with its image
in R∞[ 1

p ].
We also define R̃ to be the normalization of the image of R in R[ 1

p ]. We view
R̃ as an o-subalgebra of R[ 1

p ] via the natural isomorphism R̃[ 1
p ] ∼−→ R[ 1

p ]. The
normalization R̃ is finite over R, reduced and p-torsion free. (Thus, R̃ satisfies the
assumptions on R in the statement of Gabber’s theorem.) Furthermore the map
rescris[ 1

p ] : R∞[ 1
p ]→ R[ 1

p ] restricts to r̃es : R̃∞ → R̃.
Now, we prove the following proposition.

Proposition 11.6.9. Let R and R∞ be as above §11.6.8. Then the F -morphism
res[ 1

p ] : SpecR[ 1
p ]→ SpecR∞[ 1

p ] induces a bijection between the sets of closed points
and trivial residue field extension at each closed point.

By Gabber’s theorem (Theorem 11.6.7), the proposition implies that the map
r̃es : R̃∞ → R̃ induced on the normalized deformation rings is an isomorphism, so
in particular, res[ 1

p ] : R∞[ 1
p ]→ R[ 1

p ] is an isomorphism.

Remark 11.6.10. A similar situation to Proposition 11.6.9 came up in Kisin’s
work [Kis07, Proposition 3.13], where he analyzed a certain crystalline deformation
ring of “intermediate” Hodge-Tate weights (with K = Qp). Kisin constructed a
concrete ring which maps into the normalized crystalline deformation ring, and
after inverting p induces a bijection on the set of closed points and induces trivial
residue field extensions at such points. Kisin uses Gabber’s theorem and obtained
the connectedness result of the crystalline deformation ring which is strong enough
to prove the modularity lifting theorem in his setup.

11.6.11. We outline the proof of Proposition 11.6.9. Let R and R∞ be as
in §11.6.8. By the full faithfulness of the restriction to GK ∞ on crystalline Qp-
representations (as stated in Theorem 2.4.10), we see that res[ 1

p ] : SpecR[ 1
p ] →

SpecR∞[ 1
p ] induces an injective map on the sets of closed points. In order to show

the surjectivity and triviality of residue field extensions at closed points, it suffices
to show that for any finite extension E/F , the map (SpecR) (E)→ (SpecR∞) (E)
induced by res is surjective. Let x ∈ (SpecR∞) (E) and let Vx be the corresponding
E-representation of GK ∞ . Since the o-algebra map x : R∞ → E factors through
oE , we also obtain a GK ∞ -stable oE-lattice Tx ⊂ Vx, such that Tx ⊗oE oE/mE

∼=
ρ̄∞⊗F oE/mE as a GK ∞-representation. We now proceed by showing the following.

Step(1): The GK ∞ -representation Vx (uniquely) extends to a crystalline
GK -representation with Hodge-Tate weights in [0, 1].

Step(2): The GK ∞-stable oE-lattice Tx ⊂ Vx is GK -stable.
Step(3): We have a GK -equivariant isomorphism Tx ⊗oE oE/mE

∼= ρ̄ ⊗F
oE/mE extending the initial such GK ∞ -isomorphism.

The above claims imply that Tx defines an oE-point of SpecR which maps to
x ∈ (SpecR∞) (E) by res, hence we obtain the desired surjectivity.

Step (1) is an immediate consequence of [Kis06, Lemma 2.2.2], which is also
stated as Corollary 2.4.7 in this paper. The following lemma takes care of Step (3).
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Lemma 11.6.12. The functor from the category of mod p finite flat GK -representations
to the category of GK ∞-representations over Fp defined by “restricting to GK ∞”
is fully faithful.

Proof. The main idea is to use Fontaine’s ramification estimates for mod
p finite flat GK -representations [Fon85], which turn out to be “very sharp.”27
Fontaine’s ramification estimate asserts that the higher ramification group Ie

∗

K is
in the kernel of any mod p finite flat GK -representation, where e∗ = ep

p−1 . (We
follow Serre’s upper indexing [Ser79, Ch.IV] while the convention Fontaine used in
[Fon85] differs from Serre’s by a shift by 1.) The idea is to show that the natural
inclusion induces an isomorphism
(11.6.12.1) GK ∞/(Ie

∗

K ∩ GK ∞) ∼−→ GK /Ie
∗

K .

The lemma follows from this isomorphism, since any mod p finite flat representation
ρ̄ : GK → GL(n,Fp) factors through GK /Ie

∗

K so the isomorphism (11.6.12.1) shows
the equality ρ̄(GK ∞) = ρ̄(GK ) of the images (i.e., ρ̄ and ρ̄|GK∞

are essentially the
same representation.)

To rephrase the isomorphism (11.6.12.1), we want to show that the open sub-
group Ie∗K ·GK ∞ ⊂ GK fills up the full Galois group GK ; i.e., there is no non-trivial
subextension of K ∞/K fixed by Ie∗K . This follows from the claim below, which is
a nice exercise with higher ramification groups.

Claim. Let K 1 := K (π(1)) for π(1) ∈ K ∞ such that (π(1))p = π. Then Ie∗K
does not fix K 1.

Put K ′ := K (ζp) where ζp ∈ K is a primitive p-th root of unity, and consider
K ′

1 := K ′(π(1)), which is a Galois closure of K 1/K . We put G := Gal(K ′
1/K ) ∼=

Gal(K ′
1/K

′) o Gal(K ′
1/K 1). Here, Gal(K ′

1/K
′) ∼= Z/pZ is the wild inertia

subgroup of G, and Gal(K ′
1/K 1) ⊂ (Z/pZ)× acts on Gal(K ′

1/K
′) by Kummer

theory.
Since the upper indexing is well-behaved under passing to quotients [Ser79,

IV.§3, Proposotion 14], it is enough to show that Ge
∗
does not fix K 1. Indeed, we

show that Ge
∗

= Gal(K ′
1/K

′) by computing the higher ramification subgroups Gi
in the lower numbering and using the Herbrand function, exploiting the explicitness
of the situation.

Clearly, G1 = Gal(K ′
1/K

′), and Gi is a subgroup of Gal(K ′
1/K

′) for all
i > 0. Let c :=

∣∣IK ′
1/K 1

∣∣ denote the ramification index of K ′
1/K 1, so the ab-

solute ramification index of K ′
1 is epc. (Also note that [G0 : G1] = c.) Choose

a uniformizer π′1 of K ′
1 so that (π′1)p ∈ K ′; this is possible because there exists

a uniformizer π′ ∈ K ′ such that (π′)c ∈ [α]π for some α ∈ oK ′/mK ′ , where [·]
denotes the Teichmüller lift, so we have K ′( p

√
π) = K ′( p

√
π′) in K .

For any non-trivial γ ∈ G, we have

vK ′
1

(γ(π′1)− π′1)− 1 = vK ′
1

(
ζε(γ)
p − 1

)
+ vK ′

1
(π′1)− 1 = e∗c,

where ε is the Kummer cocycle associated to π′1. This shows that Gi = Gal(K ′
1/K

′)
for 0 < i ≤ e∗c, and Gi = {id} for i > e∗c. Since [G0 : Gi] = c for 0 < i ≤ e∗c+c−1,
we obtain

Gr = Gal(K ′
1/K

′), for 0 < r ≤ e∗
Gr = {id}, for r > e∗.

27The author learned this idea from [Abr10, Proposition 8.5.1]
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In particular, Ge
∗

= Gal(K ′
1/K

′) does not fix K 1.
�

For Step (2), we use Breuil’s theory of strongly divisible lattices (of weight 6 1).
We only use the fact that one can naturally associate a GK -stable Zp-lattice of Vx
to a strongly divisible “lattice” by purely semilinear algebra means (i.e., without
relating the strongly divisible modules of weight 6 1 with Barsotti-Tate groups over
oK ). Since it takes a significant digression to introduce the relevant definitions, we
carry out these steps in a separate section §12.

11.7. Appendix: Representability

In this subsection, we prove Theorem 11.1.2. In fact, the proof is via Ramakr-
ishna’s theory [Ram93, Theorem 1.1], which is built upon Schlessinger’s criterion
[Sch68, Theorem 2.11]. This is familiar from the flat deformation problem for the
Galois group of a finite extension of Qp. But the crucial difference is that the tan-
gent spaces of |DρF | and

∣∣D2
ρF

∣∣ are not finite, even when the residue field k of K is
finite, so we additionally have to show that the finiteness of the tangent spaces of∣∣D6h

ρF

∣∣ and ∣∣D2,6h
ρF

∣∣ when k is finite.

11.7.1. Resumé of Mazur’s and Ramakrishna’s theory. Given a functor F :
ARo → (Sets), Schlessinger found three conditions (H1)-(H3) which are equivalent
for F to have a hull. He also showed that F is pro-representable if and only if F
satisfies an additional condition (H4). For the statement and a proof, see [Sch68,
Thm 2.11].

Mazur [Maz89, §1.2] showed that for a profinite group Γ and a continuous F-
linear Γ-representation ρ̄, the deformation functor Dρ̄ always satisfies (H1)-(H2),
and satisfies (H4) if if EndΓ(ρ̄) ∼= F (e.g. if ρ̄ is absolutely irreducible). Furthermore,
Mazur showed that the framed deformation functorD2

ρ̄ always satisfies (H1), (H2)
and (H4) with no assumption on ρF.

On the other hand, in order to show that the deformation functor and the
framed deformation functor satisfy (H3) (i.e., the tangent space is a finite-dimensional
F-vector space) we need a p-finiteness assumption on Γ [Maz89, §1.1], which is sat-
isfied by an absolute Galois group for a finite extension of Qp and certain quotients
of the absolute Galois group of any finite extension of Q. Unfortunately, GK does
not satisfy the p-finiteness even when the residue field k of K is finite. In fact, (H3)
fails even when ρF is 1-dimensional. To see this, consider the cohomological in-
terpretation of the tangent space; i.e., |DρF | (F[ε]) ∼= H1(K,Ad(ρF)), where Ad(ρF)
is EndF(TF) with the natural GK-action. If ρF is 1-dimensional, then Ad(ρF) is
the trivial 1-dimensional GK-representation, so H1(K,Ad(ρF)) ∼= Homcont(GK ,F),
which is always infinite since we have infinitely many Artin-Schreier cyclic p-
extensions (via the theory of norm fields and local class field theory in charac-
teristic p > 0). This also shows that |DρF | and

∣∣D2
ρF

∣∣ never satisfies (H3) for any
finite-dimensional ρF, since we have a surjective map |DρF | (F[ε])�

∣∣Ddet(ρF)
∣∣ (F[ε])
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induced by taking determinant28, and in particular these ‘unrestricted’ deformation
functors are never represented by a complete local noetherian ring.

Now, let us look at the subfunctors
∣∣D6h

ρF

∣∣ ⊂ |DρF | and
∣∣D2,6h

ρF

∣∣ ⊂ ∣∣D2
ρF

∣∣ which
consist of deformations with extra properties of interest. We have seen, in Proposi-
tion 9.2.2, that these subfunctors are closed under subobjects, quotients, and direct
sums. Under this setup, Ramakrishna [Ram93, proof of Theorem 1.1] proved that
if the ambient functor satisfies (Hi) for some i =1, 2, 3 or 4, then so does the
subfunctor. (For this result, see also §25 and §23 of [Maz97].)

Applying this to our setup, we obtain the following results.
(1) The functor

∣∣D6h
ρF

∣∣ always satisfies (H1)-(H2), and satisfies (H4) if EndGK (ρF) ∼=
F.

(2) The functor
∣∣D2,6h

ρF

∣∣ always satisfies (H1), (H2), and (H4) with no as-
sumptions on ρF.

Recall that the natural 1-morphism D6h
ρF
→
∣∣D6h

ρF

∣∣ is a 1-isomorphism if EndGK (ρF) ∼=
F. Therefore, the representability assertion of Theorem 11.1.2 reduces to the fol-
lowing theorem.

Theorem 11.7.2. Assume that the residue field k of oK is finite. Then the tan-
gent spaces

∣∣D6h
ρF

∣∣ (F[ε]) and
∣∣D2,6h

ρF

∣∣ (F[ε]) are finite-dimensional F-vector spaces.

Proof. Since D2,6h
ρF

is a P̂GL(n)-torsor over D6h
ρF

, it is enough to show that
the set

∣∣D6h
ρF

∣∣ (F[ε]) is finite. We proceed in the following steps.

11.7.2.1. Setup. Let [(ρF[ε], TF[ε], ι)] ∈
∣∣D6h

ρF

∣∣ (F[ε]). Set MF := D6h
E (TF) and

MF[ε] := D6h
E (TF[ε]). See §11.1.4 for the definition of D6h

E . Viewing MF[ε] as a oE,F-
module, there is a SF-lattice MF[ε] ⊂ MF[ε] of P-height 6 h for MF[ε]. In general,
there may be no SF[ε]-lattice of P-height 6 h forMF[ε], as we saw in Remark 11.1.7

11.7.2.2. Strategy and Outline. Using the 1-isomorphism D6h
E , we rephrase our

goal. We need to show that there exist only finitely many equivalence classes of
étale ϕ-modulesMF[ε] which are free over oE,F[ε] and equipped with an isomorphism
ι : MF

∼−→MF[ε] ⊗F[ε] F, where two such lifts (MF[ε], ι) and (M ′F[ε], ι
′) are equivalent

if there exists an isomorphism MF[ε]
∼−→M ′F[ε] which respects ι and ι′.

One possible approach is to fix a oE,F-basis for MF and a lift to a oE,F[ε]-basis
for each deformation MF[ε] once and for all, and identify MF[ε] with the “ϕ-matrix”
with respect to the fixed basis and interpret the equivalence relations in terms of
the “ϕ-matrix.” Then the problem turns into showing the finiteness of equivalence
classes of matrices with some constraints – namely, having some “integral structure”
or more precisely, having a SF-lattice of P-height 6 h. So the fixed basis has to
“reflect” the integral structure.

This approach faces the following obstacles. First, the deformations MF[ε] we
consider do not necessarily allow any SF[ε]-lattice of P-height 6 h as we have seen at
Remark 11.1.7. In other words, we cannot expect, in general, to find a oE,F[ε]-basis
{ei} for MF[ε] in such a way that {ei, εei} generates a SF-lattice of P-height 6 h.

28For any deformation det(ρF) + ε·c ∈
∣∣Ddet(ρF)

∣∣ (F[ε]) (where c : GK → F is a cocycle), the

deformation ρF + ε·c̃ with c̃ :=

c 0 · · ·
0 0
...

. . .

 has determinant det(ρF) + ε·c.
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In §11.7.2.3–§11.7.2.5 we show that a slightly weaker statement is true. Roughly
speaking, we show that there is an oE,F[ε]-basis {ei} forMF[ε] so that there exists an
SF-lattice of P-height 6 h with a SF-basis only involving “uniformly” u-adically
bounded denominators as coefficients relative to the oE,F-basis {ei, ε·ei} of MF[ε].

Second, we may have more than one SF-lattice of P-height 6 h for MF or for
MF[ε], especially when he is large. In particular, a fixed SF-lattice for MF may
not “lift” to any SF-lattice for some deformation MF[ε] of P-height 6 h. We get
around this issue by varying the basis for MF among finitely many choices. This
step is carried out in §11.7.2.6. In fact, we only need finitely many choices of bases
because there are only finitely many SF-lattices of P-height 6 h for a fixed MF,
thanks to Lemma 9.2.4.

Once we get around these technical problems, we show the finiteness by a σ-
conjugacy computation of matrices. This is the key technical step and crucially uses
the assumption that the F[ε]-deformations we consider (or rather, the corresponding
étale ϕ-module MF[ε]) admits a SF-lattice of P-height 6 h (in MF[ε]). See Claim
11.7.2.7 for more details.
11.7.2.3. LetMF[ε] correspond to some deformation of P-height 6 h. Even though
there may not exist any SF[ε]-lattice of P-height 6 h for MF[ε], we can find a SF-
lattice MF[ε] with P-height 6 h such that MF[ε] is stable under multiplication by
ε.29 In fact, the maximal S-lattice M+

F[ε] of P-height 6 h does the job. (More
generally, a maximal S-lattice M+ of P-height 6 h in a torsion étale ϕ-module M
is easily seen to be functorial in M .)
11.7.2.4. For a SF-lattice MF[ε] ⊂MF[ε] of P-height 6 h which is stable under the
ε-multiplication, we can find a SF-basis which can be “nicely” written in terms of
some oE,F[ε]-basis of MF[ε], as follows. Let MF be the image of MF[ε] →MF induced
by the natural projection MF[ε] → MF, which is a SF-lattice of P-height 6 h in
MF. Now, consider the following diagram:

0 // N //
� _

��

MF[ε] //
� _

��

MF //
� _

��

0

0 // ε·MF[ε] // MF[ε] // MF // 0,

where N := Ker[MF[ε] �MF] is a SF-lattice of P-height 6 h inMF[ε]. We choose a
SF-basis {e1, · · · , en} of MF. Viewing them as a oE,F-basis ofMF, we lift {ei} to an
oE,F[ε]-basis of MF[ε] (again denoted {ei}). By assumption from the previous step,
we have

⊕n
i=1 SF·(εei) ⊂ N, where both are SF-lattices of P-height 6 h for ε·MF[ε].

It follows that ( 1
uri ε)ei form a SF-basis of N, for some non-negative integers ri.

Therefore, {ei, ( 1
uri ε)ei} is a SF-basis of MF[ε].

11.7.2.5. In this step, we find an upper bound for the non-negative integers ri
only depending on MF and the choice of SF-basis of MF. Since N is a ϕ-stable

29This means that MF[ε] is a ϕ-module over SF[ε], but does not force MF[ε] to be a projective
SF[ε]-module. Hence, such MF[ε] may not be a SF[ε]-module of P-height 6 h. The example
MF[ε] ∼= SF ·e⊕SF ·( 1

u
εe) discussed in Remark 11.1.7 is such an example.
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submodule, it contains

(†) ϕMF[ε]

(
σ∗
(

1
uri

εei

))
=
(

1
uqri

ε

)
·ϕMF(σ∗ei) = 1

uqri
ε·

n∑
j=1

αijej ,

where αij ∈ SF satisfy ϕMF(σ∗ei) =
∑n
j=1 αijej . Note that we obtain the first

identity because ϕMF[ε](σ∗ei) lifts ϕMF(σ∗ei) and the ε-multiple ambiguity in the
lift disappears when we multiply against ε. Since any element of N is a SF-linear
combination of ( 1

uri ε)ei, we obtain inequalities ordu(αij)−qri ≥ −rj for all i, j from
the above equation (†). Let r := maxj{rj} and we obtain qri ≤ r+minj{ordu(αij)}
for all i. (Note that the right side of the inequality is always finite.) Now, by taking
the maximum among all i, we obtain

r ≤ 1
q − 1 max

i

{
min
j
{ordu(αij)}

}
<∞

This shows that the non-negative integers ri has an upper bound which only de-
pends on the matrices entries for ϕMF with respect to the SF basis of MF.

11.7.2.6. Recapitulation. For each SF-lattice M
(a)
F of P-height 6 h for MF, we fix

a SF-basis {e(a)
i } and let α(a) = (α(a)

ij ) ∈ Matn(SF) be the “ϕ-matrix” with respect
to {e(a)

i }. In other words, ϕ
M

(a)
F

(σ∗e(a)
i ) =

∑n
i=1 α

(a)
ij e

(a)
j . We also view {e(a)

i } as

a oE,F-basis for MF and (α(a)
ij ) is the matrix for ϕMF with respect to {e(a)

i }. Note
that (α(a)

ij ) is invertible over oE,F since MF = M
(a)
F [ 1

u ] is an étale (ϕ, oE,F-module.
We pick an integer r(a) ≥ 1

q−1 maxi
{

minj{ordu(αij)}
}
<∞, for each index a. As

remarked earlier in §11.7.2.2, there exist only finitely many SF-lattices of P-height
6 h for MF, thanks to Lemma 9.2.4, so the index a runs through a finite set.

For anyMF[ε] which corresponds to a deformation of P-height 6 h, we may find
a SF-lattice MF[ε] ⊂ MF[ε] of P-height 6 h which is stable under ε-multiplication
§11.7.2.3. The image of MF[ε] inside MF is equal to some M

(a)
F . Lift the chosen

basis {e(a)
i } to an oE,F[ε]-basis for MF[ε]. Then MF[ε] admits a SF-basis of form

{e(a)
i , ( 1

uri ε)e
(a)
i } for some integers ri ≤ r(a) (§11.7.2.4–§11.7.2.5).

Let us consider the matrix representation of ϕMF[ε] with respect to the basis
{e(a)
i }. We have ϕMF[ε](e

(a)
i ) =

∑
i(α

(a)
ij + εβ

(a)
ij )e(a)

j for some β(a) = (β(a)
ij ) ∈

Matn(oE,F) because ϕMF[ε] lifts ϕMF . In fact, since MF[ε] is ϕ-stable, it follows that
β ∈ 1

ur
(a) ·Matn(SF). We say two such matrices β and β′ are equivalent if there

exists a matrix X ∈ Matn(oE,F) such that β′ = β + (α(a) ·σ(X) − X ·α(a)). This
equation is obtained from the following:

(α(a) + εβ′) = (Idn +εX)−1 ·(α(a) + εβ)·σ(Idn +εX),

which defines the equivalence of two étale ϕ-modules whose ϕ-structures are given
by (α(a) + εβ) and (α(a) + εβ′), respectively.

Now, the theorem is reduced to prove the following claim: for each a, there
exist only finitely many equivalence classes of matrices β ∈ 1

ur
(a) ·Matn(SF). In-

deed, by varying both a and the equivalence classes of β, we cover all the possible
deformations MF[ε] of “P-height 6 h” up to isomorphism, hence the theorem is
proved.
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From now on, we fix a and suppress the superscript (a) everywhere. For ex-
ample, r := r(a) and α := α(a). Proving the following claim is the last step of the
proof.

Claim 11.7.2.7. For any X ∈ uc Matn(SF) with c > 2he, the matrices β and
β +X are equivalent.30

(Granting this claim, we have a surjective map from
( 1
ur ·Matn(SF)

)
/ (uc ·Matn(SF))

onto the set of equivalence classes of β’s, and the former is a finite set31, as desired.)
We prove the claim by “successive approximation.” Let γ = uhe ·α−1. Since

MF := M
(a)
F is of P-height 6 h and P(u) has image in SF ∼= (k ⊗Fq F)[[u]] with

u-order e, we know that γ ∈ Matn(SF). We set Y (1) := 1
uhe
·(Xγ), which is in

uc−he Matn(SF ) by the assumption on X. Then β +X is equivalent to
(β +X) + (α·σ(Y (1))− Y (1)α) = β + α·σ(Y (1)) =: β +X(1)

with X(1) ∈ uc
(1) ·Matn(SF), where c(1) := q(c − he) > c. Now for any positive

integer i, we recursively define the following

Y (i) := 1
uhe
·(X(i−1)γ), X(i) := α·σ(Y (i)), c(i) := q(c(i−1) − he).

One can check that c(i) > c(i− 1)(> 2he), X(i) ∈ uc
(i) ·Matn(SF), and Y (i) ∈

uc
(i−1)−he Matn(SF). Also, β +X is equivalent to

(β +X) +
(
α·σ(Y (1) + · · ·+ Y (i))− (Y (1) + · · ·+ Y (i))α

)
= β +X(i).

From the inequality c(i) > c(i−1), it follows that the infinite sum Y :=
∑∞
i=1 Y

(i)

converges and X(i) → 0 as i→∞. Therefore we see that β +X is equivalent to

(β +X) + (α·σ(Y )− y ·α) = (β +X) +
(
α·σ

( ∞∑
i=1

Y (i))− ( ∞∑
i=1

Y (i))·α)
= lim

i→∞
(β +X(i)) = β,

so we are done. �

To complete the proof of Theorem 11.1.2, it remains to show the following
relative representability result, which is, again, “essentially” a consequence of Ra-
makrishna’s theory [Ram93, Theorem 1.1].

Proposition 11.7.3. The natural inclusions D6h
ρF

↪→ DρF and D2,6h
ρF

↪→ D2
ρF

of ÂRo-groupoids are relatively representable by surjective maps in ÂRo and its
formation commutes with 2-projective limits in the sense of Definition 10.4.8. In
other words, for any given deformation or framed deformation over A ∈ ÂRo,
there exists a universal quotient A6h of A over which the deformation or framed
deformation is of P-height 6 h.

Recall that the formation of the natural inclusions D6h
ρF

↪→ DρF and D2,6h
ρF

↪→
D2
ρF

commutes with 2-projective limit (as observed below Definition 10.4.2). From
this we obtain a natural isomorphism A6h ∼= lim←−n(A/mn

A)6h for any A ∈ ÂRo.

30The inequality c > 2he is used to ensure q(c − he) > c. Therefore, if q 6= 2 then c = 2he
also works.

31We crucially used the fact that we can bound the denominator.
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Proof. It is enough to show that D6h
ρF

↪→ DρF is relatively representable by
surjective maps, since the other inclusion D2,6h

ρF
↪→ D2

ρF
is a “2-base change” of

D6h
ρF

↪→ DρF under D2
ρF
→ DρF , and relative representability pulls back.

Consider ξ ∈ DρF(A) for A ∈ ÂRo. The natural projection pr1 : (D6h
ρF

)ξ =
(DρF/ξ) ×DρF

D6h
ρF
→ (DρF/ξ) is fully faithful, so we regard the left side as a full

subcategory of the right side via pr1. And since (DρF/ξ) is co-fibered in equiva-
lence relations, so is its full subcategory (D6h

ρF
)ξ. Therefore, it is enough to show

the natural monomorphism of functors |pr1| :
∣∣(D6h

ρF
)ξ
∣∣ ↪→ |(DρF/ξ)| is relatively

representable by surjective maps of rings.
The objects of |(DρF/ξ)| are the isomorphism classes [ξ → η] of morphisms in

DρF , so we have a natural notion of direct sums, sub-objects and quotients using the
corresponding notion for η. By Proposition 9.2.2, the subfunctor

∣∣(D6h
ρF

)ξ
∣∣ is closed

under these operations. We can therefore repeat the proof of [Ram93, Theorem
1.1] for our setup to show that

∣∣(D6h
ρF

)ξ
∣∣ is representable.

Now letA′ ∈ ÂRo be the object which represents (D6h
ρF

)ξ, and letA→ A′ be the
morphism in ÂRo which represents the 1-morphism (D6h

ρF
)ξ ↪→ (DρF/ξ). It is left to

show that A→ A′ is surjective. Since both rings are complete local noetherian with
the same residue field, it is enough to show that the morphism induces a surjective
map on “reduced” Zariski cotangent spaces mA/(mo + m2

A) → mA′/(mo + m2
A′),

which in turn is equivalent to the injectivity of
∣∣(D6h

ρF
)ξ
∣∣ (F[ε]) → |(DρF/ξ)| (F[ε])

by the duality of finite-dimensional F-vector spaces. But the morphism of functors∣∣(D6h
ρF

)ξ
∣∣→ |(DρF/ξ)| is a monomorphism, by assumption. �





CHAPTER 12

Appendix IV: Integral p-adic Hodge theory

Assume o0 = Zp. We introduce new semilinear algebra objects which give rise
to lattice semi-stable GK -representations of low Hodge-Tate weights, initiated by
Breuil. Using these, we complete Steps (2) in §11.6.11, hence the proof of Theorem
11.6.1. Even though we will apply the results only for crystalline representations
with Hodge-Tate weights in [0, 1], we present the theory in more generality than
we need.

Since we only need classical, if not basic, results in this subject, we direct
interested readers to [Bre02] for an overview of the theory. See [Liu10] for more
recent developments in this subject.

12.1. Definitions

12.1.1. Basic assumption. Let V be a p-adic GK -representation with Hodge-
Tate weights in [0, h]. Throughout this section we assume that 0 < h 6 p − 1. If
h = p − 1, then we additionally require V to be “formal” in the sense of §11.4.17.
For example, if p = 2 (so h = 1) we only consider “formal” representations.

Let D := Dst(V (−h)) be the weakly admissible filtered (ϕ,N)-module1 covari-
antly associated to V with filtration jumps in [0, h]. Then V is “formal” in the
sense of §11.4.17 if and only if D is “unipotent” in the sense of [Bre02, Definition
2.1.1]; i.e., D does not admit any weakly admissible quotient pure of slope h. So
we assume throughout this section that if h = p − 1 then we only consider weakly
admissible filtered (ϕ,N)-modules that are unipotent.

Although the key lemma below (Lemma 12.2.4) requires this basic assumption
(not to mention the full force of Breuil’s theory of strongly divisible modules requires
this assumption), a lot of the results proven in this section do not require this
assumption. So we will indicate whenever we actually need this assumption.

12.1.2. Breuil’s theory of “filtered modules”. Let S be the p-adic completion of
the divided power envelop of W (k)[u] with respect to the ideal generated by P(u).
It can be shown, with some work, that S can be viewed as a subring of K 0[[u]]
whose elements are precisely those of the form

∑
i≥0 ai

ui

q(i)! , where q(i) := b iec with
e := degP(u), and ai ∈ W (k) converge to 0 as i → ∞. We define a differential
operator N := −u d

du on S. We define σ : S → S via extending the Witt vector
Frobenius on the coefficients by σ(u) = up. We let Filh S ⊂ S denote the ideal
topologically generated by P(u)i/i! for i > h. If h 6 p−1 then σh := σ

ph
: Filh S →

S is well-defined. On the other hand, if h > p − 1 then the image of Filh S under
σ is not divisible by ph. (Idea of proof: consider σ(u

ei

i! ) = ueip

i! = (ip)!
i! ·

ueip

(ip)! and

1Following the usual convention, ϕ is a σ-semilinear endomorphism throughout this section.
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compute ordp( (ip)!
i! ).) As will be clear later in this section, this is one of the main

reasons why we work under the running assumptions in §12.1.1.
12.1.2.1. Qp-theory. Let D be a weakly admissible filtered (ϕ,N)-module over
K with non-negative Hodge-Tate weights. We consider the finite free S[ 1

p ]-module
D̂ := S ⊗W (k) D equipped with the σ-linear endomorphism ϕD̂ := σS ⊗ ϕD, the
differential operator ND̂ := N ⊗ id + id⊗N over N : S → S, and the decreasing
filtration Fil• D̂ which is defined as follows: set Fil0 D̂ := D̂, and for any i ≥ 0 we
set

Fili+1 D̂ := {x ∈ D̂| ND̂(x) ∈ Fili D̂, prπ(x) ∈ Fili+1DK },

where prπ : D̂ � DK is induced from S � S/P(u) ∼= oK where u 7→ π. If all
the Hodge-Tate weights of D are in [0, h], then the associated grading to Fil• D̂ is
concentrated in degrees [0, h].

Let us record the following observations:
(1) There exists a unique section D ↪→ D̂ to the projection D̂ � D̂/uD̂ ∼=

D which is compatible with ϕ and N . This identifies D with the K 0-
subspace of D̂ which consists of elements killed by some power of ND̂.
The filtration on DK coincides with the image of Fil• D̂ by under prπ :
D̂ � D̂/P(u)D̂ ∼= DK . In particular, the construction D 7→ D̂ defines a
fully faithful functor into a suitable target category. See [Bre97, §6] for
the proofs and more details.

(2) Assume that all the Hodge-Tate weights of D are in [0, h]. Then the
filtration Fil• D̂ can be (uniquely) recovered from Filh D̂ as follows:

Fili D̂ = {x ∈ D̂ : P(u)h−1x ∈ Filh D̂}.

Also ϕD̂ can be recovered from ϕh := ϕ
ph

: Filh D̂ → D̂. (c.f. See the
definition of strongly divisible lattices in §12.1.2.2.)

(3) The monodromy operator N : D → D is the zero map if and only if
ND̂ ≡ 0 mod uD̂.

Later, we will associate to D̂ a Qp-representation V̂ ∗st(D̂) of GK which is
naturally isomorphic to V ∗st(D) (so V̂ ∗st(D̂) is semi-stable with Hodge-Tate weights
in [0, h]). We will define V̂ ∗st later in §12.2.1, for which we need to define Âst, an S-
algebra where the “integral structure” of periods lie in. See §12.1.3 for the definition
of Âst, and see [Bre97, §6] or [Liu10, §2.2] for more details.

The construction D 7→ D̂ makes sense without any assumptions on h. But
for the case h 6 p − 1, one can give an intrinsic characterization2 of the “filtered
S[ 1

p ]-modules” D̂ which can be obtained as D̂ := S⊗W (k)D for a weakly admissible
filtered (ϕ,N)-module D over K with Hodge-Tate weights in [0, h]. This is done
in [Bre97, Bre99a] under the assumption h < p − 1, but it is claimed in [Bre02,
Theorem 2.2.3] that this can be done when h = p−1. In the intended application in
this paper, any “filtered S[ 1

p ]-module” we study are known to come from a weakly

2i.e., a description purely in terms of ϕ, N , and the filtration on D̂, without mentioning the
weakly admissible filtered (ϕ,N)-module D from which D̂ was constructed. For this statement,
we do not need to assume that all the weakly admissible filtered (ϕ,N)-modules are unipotent
when h = p− 1.
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admissible filtered (ϕ,N)-module, so we do not need the intrinsic characterization
of the essential image of the functor D 7→ D̂.
12.1.2.2. Zp-theory. Let D be a weakly admissible filtered (ϕ,N)-module with
Hodge-Tate weights in [0, h]. We impose our running assumptions; i.e., h 6 p− 1,
and that D is “unipotent” if h = p − 1. Let D̂ := S ⊗W (k) D be the “filtered
S[ 1

p ]-module.” We say that an S-latticeM ⊂ D̂ is a strongly divisible lattice (of
weight 6 h) ifM satisfies the following properties.
(SD1) M is a finite free S-submodule of D̂ which is stable under ϕ : D̂ → D̂ and

such thatM[ 1
p ] = D̂.

(SD2) Set FilhM := M ∩ Filh D̂, then we have ϕ(FilhM) ⊂ phM. We set
ϕh := 1

ph
ϕ : FilhM →M. (In fact, this axiom implies the seemingly

stronger axiom, namely that ϕh(FilhM) generatesM.)
(SD3) M is stable under N : D̂ → D̂; i.e., N(M) ⊂M.
Any strongly divisible latticeM inD is equipped with a S-submodule FilhM ⊂

M, σ-linear map ϕh : FilhM → M whose image generates M, and a differ-
ential operator NM : M → M over N : S → S. As previously, the datum
(M,FilhM, ϕh, NM) which is obtained as a strongly divisible lattice in some
D̂ := S ⊗W (k) D can be characterized purely in terms of FilhM, ϕh, and NM.
See [Bre02, Theorem 2.2.3] for the statement. We will later construct a GK -stable
lattice T ∗st(M) in V̂ ∗st(D̂), which is semi-stable with Hodge-Tate weights in [0, h].

We say that an S-latticeM ⊂ D̂ is a quasi-strongly divisible lattice3 (of weight
6 h) ifM only satisfies (SD1) and (SD2). SuchM is equipped with FilhM :=
M∩Filh D̂ and ϕh : FilhM→M, but has no differential operator NM. For such
an object, we can only associate a GK ∞-stable Zp-lattice T ∗qst(M) in V̂ ∗st(D̂), but
not necessarily GK -stable.

Tong Liu [Liu10] showed that any GK -stable Zp-lattice of V̂ ∗st(D̂) ∼= V ∗st(D)
comes from a strongly divisible lattice in D̂. Note that it is not obvious (and was
not fully known before Tong Liu’s theorem) that for any weakly admissible filtered
(ϕ,N)-module D over K with Hodge-Tate weights in [0, h], D̂ := S⊗W (k)D admits
a strongly divisible latticeM ∈ D̂. These seemingly more complicated objects D̂
are introduced and studied because one can obtain “integral” p-adic Hodge theory.
On the other hand, in our intended application we will be given D̂ together with a
strongly divisible latticeM from the outset. All we need for the application would
be thatM gives rise to a GK -stable Zp-lattice of V̂ ∗st(D̂).
12.1.2.3. Coefficients. We can extend the definitions to allow various coefficients
by requiring that all the structures are linear over the coefficient ring. We give
an example which will be used later. Let E/Qp be a finite extension and oE
its valuation ring. We put SE := S ⊗Zp E and SoE := S ⊗Zp oE . Now for a
weakly admissible filtered (ϕ,N)-module DE with E-coefficients, we see that D̂E :=
S ⊗W (k) DE is finite free over SE . We consider strongly divisible lattices in D̂E
which are SoE -free.

3This terminology is introduced by Tong Liu [Liu08].
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12.1.3. More “period S-algebras”. In order to define the functors into the cat-
egories of GK ∞ - and GK - representations, we need to introduce some S-algebras
where the “integral structure” of p-adic periods lie. First of all, we put R :=
lim←−
xp←x

oK /(p). It is well-known that the k̄-algebra R is complete with respect

to a naturally given valuation and Frac(R) is algebraically closed. See [Fon94a,
§1] for basic properties of R. As in §1.3.1.2, we fix a uniformizer π ∈ oK such
that P(π) = 0 and we choose successive p-power roots π(n); i.e., π(0) = π and
(π(n+1))p = π(n). The sequence π := {π(n)} is an element of R, and we embed
oK := k[[u]] ↪→ R over k via u 7→ π.

Take the “canonical lift” θ : W (R)� oCK of the first projection R� oK /(p).
This map is GK -equivariant for the natural actions on both sides and is a topo-
logical quotient map (for the “product topology” on the source and the natural
p-adic topology on the target). We define Acris as the p-adic completion of the
divided power envelop of W (R) with respect to ker(θ). The Witt vector Frobenius
map and the GK -action on W (R) extend to Acris. By construction, the inclusion
W (k)[u] ↪→ W (R), which satisfies u 7→ [π] (where [π] is the Teichmüller lift of
π), uniquely extends to S ↪→ Acris which makes Acris an S-algebra. (This map is
well-defined since P([π]) ∈ ker(θ).) This inclusion respects the Frobenius structures
and is GK ∞-stable, but not GK -stable. We let FilhAcris be the ideal topologically
generated by 1

i! (ker θ)i for i > h. We have (Filh S)Acris ⊂ FilhAcris, and from the
running assumption h 6 p−1 we have σ(FilhAcris)Acris ⊂ phAcris, so we can define
σh := σ

ph
: FilhAcris → Acris.

As observed above, Acris cannot produce GK -representations from Breuil’s
divisible S-modules because the map S ↪→ Acris is not GK -stable. Also, Acris
does not have a “monodromy operator.” For these reasons, we introduce a “bigger
ring” with more structures. Let Âst be the p-adic completion of the divided power
“polynomial ring” Acris[X, X

i

i! ]i≥1. We first define the embedding S ↪→ Âst by
u 7→ [π]

1+X and then define the structures on Âst in such a way that this embedding
respects all the structures: define a Frobenius map σ : Âst → Âst using σ : Acris →
Acris on the coefficients and σ(1+X) = (1+X)p, so σ( [π]

1+X ) =
(

[π]
1+X

)p
. We define

the ideal

Filh Âst := {
∑
i≥0

ai
Xi

i! ∈ Âst| ai ∈ Fili−hAcris, lim
i→∞

ai = 0},

where we set Filw Acris := Acris for w ≤ 0. Then (Filh S)Âst ⊂ Filh Âst and the map
σh := σ

ph
: Filh Âst → Âst is well-defined. Let N : Âst → Âst be the Acris-derivation

(1 +X) d
dX , so that N( [π]

1+X ) = − [π]
1+X . For any γ ∈ GK , we let ε(γ) := γ[π]

[π] ∈ Acris,
and γ 7→ ε(γ) is a continuous cocycle. We define γ(1 + X) := ε(γ)(1 + X), so
γ( [π]

1+X ) = [π]
1+X . In particular, the embedding S ↪→ Âst is GK -stable! (Actually,

we even have S ∼−→ (Âst)GK . See [Bre97, §4] for the proof.) The choice of the
coordinate X depends on the choice of π := {π(n)}, but if we replacing π with
π′ := ε ·π where ε = {ε(i)}i>0 ∈ R with ε(0) = 1, then X gets replaced by X ′ =
[ε]X + ([ε] − 1) ∈ Fil1 Âst \ Fil2 Âst (obtained by setting [π]

1+X = [ε][π]
1+X′ ). One

can directly check that this change of coordinates does not modify the embedding
S ↪→ Âst defined by u 7→ [π]

1+X = [ε][π]
1+X′ , and it respects σ, N , and the filtration.
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So Âst only depends on the choice of π = π(0). (In fact, Âst has a coordinate-free
description in terms of log-crystalline cohomology which only depends on the choice
of π = π(0).)

We also record that the map Âst → Acris defined by X 7→ 0 is a map of S-
algebras which respects the Frobenius structures and GK ∞ -actions on both sides.
We emphasize that even though we are only interested in crystalline representations,
we still need to work with Âst to obtain functors into GK -representations because
the embedding S ↪→ Acris is only GK ∞-stable. (Readers are advised not to be
tricked by the notations Acris and Âst.)

We discuss the relation of Âst with Fontaine’s period rings. Let B+
dR be the

completion of W (R)[ 1
p ] with respect to the kernel of θ[ 1

p ], and let BdR := B+
dR[ 1

t ],
where t is Fontaine’s p-adic analogue of 2πi. Recall that Acris naturally embeds into
BdR (and in fact K ⊗K 0 Acris embeds into BdR by [Fon94a, Théorème 4.2.4]), and
we define an embedding Âst ↪→ BdR over Acris by X 7→ [π]

π − 1. This embedding
respects the natural GK -actions and the filtrations on both sides.

From Acris we obtain Fontaine’s crystalline period ring Bcris := Acris[ 1
p ,

1
t ] =

Acris[ 1
t ]. On the other hand, B̂st := Âst[ 1

p ,
1
t ] = Âst[ 1

t ] is strictly larger than
Fontaine’s semi-stable period ring Bst. In fact, Bst has an embedding into B̂st which
respects all the structures, and the image is the Bcris-subalgebra Bcris[log(1+X)] ⊂
B̂st, or equivalently the subring of elements on which N is nilpotent. See [Bre97,
Lemma 7.1] for the proof.

Now we are ready to functorially associate to a strongly divisible S-lattice in
D̂ := S ⊗W (k) D a GK -stable Zp-lattice of V ∗st(D). We also define functors from
other semi-linear algebra categories to the category of strongly divisible S-modules,
and compare the associated Galois representations.

12.2. Galois representations

12.2.1. Construction of GK -stable lattices of a semi-stable representation. Let
D be the weakly admissible filtered (ϕ,N)-module with Hodge-Tate weights in
[0, h], and consider D̂ := S ⊗W (k) D with the structure of ϕ, N , and filtration as
discussed in §12.1.2.1. LetM ⊂ D̂ be a strongly divisible lattice. Now, we define
a Qp[GK ]-module V̂ ∗st(D̂) and its GK -stable Zp-submodule T ∗st(M), as follows.

V̂ ∗st(D̂) := HomS[ 1
p ],ϕh,N,Fil•(D̂, B̂st)(12.2.1.1)

T ∗st(M) := HomS,ϕh,N,Filh(M, Âst),(12.2.1.2)

where GK acts through B̂st := Âst[ 1
t ] and Âst respectively. The natural inclusion

T ∗st(M) ↪→ V̂ ∗st(D̂) induces an isomorphism T ∗st(M)[ 1
p ] ∼−→ V̂ ∗st(D̂), which follows

from the fact that an S[ 1
p ]-map D̂ → B̂st respects the filtrations on both sides if

and only if it respects Filh on both sides (by §12.1.2.1). Since T ∗st(M) is clearly
p-adically separated and complete, T ∗st(M) is finite free over Zp so it can naturally
be viewed as a GK -stable lattice of V̂ ∗st(D̂).

Theorem 12.2.1.3 (Breuil). Let D be the weakly admissible filtered (ϕ,N)-
module (with no assumptions on Hodge-Tate weights), and D̂ := S ⊗W (k) D. Then
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there exists a natural GK -isomorphism

V̂ ∗st(D̂) ∼= V ∗st(D) := HomK 0,ϕ,N,Fil•(D̂, Bst),

Assume that all the Hodge-Tate weights of D are non-negative. Then under the
above identification, we view T ∗st(M) as a GK -stable Zp-lattice in the semi-stable
representation V ∗st(D).

Proof. The proof of this theorem is sketched in [Bre02, Proposition 2.2.5].
We can reduce to the case when all the Hodge-Tate weights of D are non-negative,
which will be assumed from now on. We embed all the period rings and “period
S-algebras” into BdR in a compatible way.

We first define a map V̂ ∗st(D̂)→ V ∗st(D), and then we show this is an isomor-
phism. As discussed in §12.1.2.1, D can be identified with the K 0-subspace of D̂
whose elements are killed by some power of ND̂. For any f ∈ V̂ ∗st(D̂), one can
show that the image of D under f is contained in B+

st since Bst has an embedding
into B̂st (which respects all the structures) and the image is precisely the subring of
elements killed by some power of N . In order to show that f |D ∈ V ∗st(D), the only
non-trivial part is to show that f |D respects the filtrations. For this, we use that
Fil•DK = prπ(Fil• D̂) where prπ : D̂ � D̂/P(u)D̂ ∼−→ DK , and that the following
diagram commutes:

(12.2.1.4) D̂
f //

prπ
��

B̂st
+
� _

��
DK 1⊗f |D

// K ⊗K 0 B
+
st

� � // BdR.

So f 7→ f |D defines an injective GK -equivariant map V̂ ∗st(D̂)→ V ∗st(D).
Now, we define its inverse as follows. For any g ∈ V ∗st(D), consider D g−→

B+
st ↪→ B̂st

+
:= Âst[ 1

p ] and S[ 1
p ]-linearly extend it to g̃ : D̂ → B̂st

+
. Once we

show that g̃ ∈ V̂ ∗st(D̂) then one can check that g 7→ g̃ defines the inverse of the
mapV̂ ∗st(D̂)→ V ∗st(D) defined by f 7→ f |D.

Clearly, g̃ respects ϕ and N . So it is left to check that g̃ takes Fili D̂ to
Fili B̂st

+
:= (Fili Âst)[ 1

p ] for all i. For this, we use the induction on i. The case

i = 0 is trivial. Now, we assume that g̃ takes Fili−1 D̂ to Fili−1 B̂st
+
.

For any x ∈ Fili D̂, we have
(1) g̃(x) = g(prπ(x)) ∈ Fili(B+

st ⊗K 0 K ) = FiliB+
dR ∩ (K ⊗K 0 B

+
st), by (12.2.1.4),

(2) N(g̃(x)) = g̃(N(x)) ∈ Fili−1 B̂st
+
(by the induction hypothesis).

Write g̃(x) =
∑
n≥0 an

Xn

n! where an ∈ B+
cris such that an → 0 p-adically. Then

Fili−1 B̂st
+
contains

N(g̃(x)) = (1 +X)
∑
n≥0

an+1
Xn

n! = a1 +
∑
n≥1

(an + an+1)X
n

n! .

By the definition of Fili−1 B̂st
+
, we have a1 ∈ Fili−1B+

cris and a1 +a2 ∈ Fili−2B+
cris,

so we obtain a2 ∈ Fili−2B+
cris. By repeating this process, we get an ∈ Fili−nB+

cris
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(where Filw B+
cris := Bcris for w ≤ 0. This shows

∑
n≥1 an

Xn

n! ∈ Fili B̂st
+
. But (1)

implies that a0 ∈ FiliB+
cris, which shows that g̃(x) ∈ Fili B̂st

+
. �

12.2.2. GK ∞-representations. Let D̂ be as in §12.2.1, and let M ⊂ D̂ be
a quasi-strongly divisible lattice (for example, a strongly divisible lattice M by
“ignoring” the differential operator N : M →M). Now, we define a Qp[GK ∞ ]-
module V̂ ∗qst(D̂) and its GK ∞ -stable Zp-submodule T ∗qst(M), as follows.

V̂ ∗qst(D̂) := HomS[ 1
p ],ϕh,Filh(D̂, Acris[1/p])(12.2.2.1)

T ∗qst(M) := HomS,ϕh,Filh(M, Acris),(12.2.2.2)

where GK ∞ acts through Acris[ 1
p ] and Acris, respectively. Clearly, T ∗qst(M) is p-

adically separated and complete, so the following lemma shows that T ∗qst(M) is
finite free over Zp. The following lemma is taken from [Liu08, Lemma 3.4.3].

Lemma 12.2.2.3. Let D be the weakly admissible filtered (ϕ,N)-module (with
no assumptions on Hodge-Tate weights), and D̂ := S ⊗W (k) D. Then the natural
map
(12.2.2.4)
V̂ ∗st(D̂) = HomS[ 1

p ],ϕh,N,Filh(D̂, B̂st
+

)→ HomS[ 1
p ],ϕh,Filh(D̂, B+

cris) = V̂ ∗qst(D),

induced by the map B̂st
+
→ B+

cris defined by X 7→ 0 is a GK ∞-isomorphism.
Assume that all the Hodge-Tate weights of D are non-negative. For a strongly

divisible latticeM in D̂, the above isomorphism V̂ ∗st(D) ∼−→ V̂ ∗qst(D) restricts to
the isomorphism of GK ∞-stable lattices T ∗st(M) ∼−→ T ∗qst(M).

Using this lemma, we identify the representation spaces of T ∗st(M) and T ∗qst(M)
so we regard T ∗qst(M) as the restriction of the GK -action on T ∗st(M) to GK ∞ .

Proof. The second claim follows from the first. Let us show that the natural
GK ∞ -equivariant map (12.2.2.4) is an isomorphism.

Let f ∈ V̂ ∗st(D̂) and let f̄ ∈ V ∗qst(D̂) denote the image of f . We identify D
with the K 0-subspace of D̂ whose elements are killed by some power of N . Since
the image of Bst in B̂st

+
is Bcris[log(1 +X)] and the map B̂st

+
� B+

cris defined by
X 7→ 0 maps [π]

1+X to [π] = [π]
1+X ·

∑
i>0 γ

i(log(1 +X)), it follows that for any x ∈ D
we have

f(x) =
∑
i>0

f̄(N ix)γi(log(1 +X)),

where γi is the standard ith divided power. In particular, if f̄ = 0 then f = 0.
This shows that the natural map (12.2.2.4) is injective.

We now show the surjectivity. For any f̄ ∈ V̂ ∗qst(D̂), we consider the following
“formal expression:”

f(x) =
∑
i≥0

f̄(N ix)γi(log(1 +X)) ∈ B+
cris[[X]], for any x ∈ D̂.

If x ∈ D (i.e., if N i(x) = 0 for some i), then f(x) converges in B̂st
+
. On the

other hand, f turns out to be S-linear, hence f defines a map into B̂st
+
. Instead of

proving the S-linearity, we give the following “heuristics” which can be turned into
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a proof. Recall that we embed S → Acris via u 7→ [π] and S → Âst via u 7→ [π]
1+X .

We want to show f(γn(u)x) = γn( [π]
1+X ) ·f(x) for all x ∈ D̂, where γn is the nth

standard divided power. The following equation is a formal consequence of the
Leibnitz rule:

N i(γn(u)x) =
i∑

j=0

(
i

j

)
N j(γn(u))N j(x) =

i∑
j=0

(
i

j

)
(−n)i−jγn(u)N j(x).

By “reordering” the sum, we obtain

f(γn(u)x) = γn([π])
∑
i≥0

i∑
j=0

f̄(N j(x))(−n)i−j
(
i

j

)
γi(log(1 +X))

= γn([π])
∑
i≥0

i∑
j=0

f̄(N j(x))
(

(−n)i−jγi−j(log(1 +X))
)
γj(log(1 +X))

“ = ” γn([π]) exp(−n log(1 +X))
∑
j≥0

f̄(N j(x))γj(log(1 +X))

= γn( [π]
1 +X

)·f(x).

The step of “reordering the sum” (i.e., the equality in quotes) can be made precise
by truncating both sides and estimating the error terms.

Now, it remains to check that:
(1) f respects ϕ: for any x ∈ D̂,

σ(f(x)) =
∑
i≥0

σ(f̄(N ix))·γi(σ(log(1 +X)))

=
∑
i≥0

f̄(p−iN iϕ(x)))·(γi(p log(1 +X)))

= f(ϕ(x)).

(2) f respects N : for any x ∈ D̂, we have

N(f(x)) =
∑
i≥0

f̄(N ix)·N(γi(log(1 +X))) (since N is Acris-linear, and f̄(N ix) ∈ Acris)

=
∑
i≥1

f̄(N ix)·γi−1(log(1 +X)) (since N(log(1 +X)) = 1)

= f(N(x)).

(3) f respects the filtrations: if x ∈ Filw D̂, then we claim f(x) ∈ Filw B̂st
+
.

But we have γi(log(1 +X)) ∈ Fili B̂st
+
, and since f̄ : D̂ → B+

cris respects
the filtrations we have f̄(N ix) ∈ Filw−iB+

cris, where Filw B+
cris := Bcris for

w ≤ 0.
This shows that f ∈ V̂ ∗st(D̂), which completes the proof. �

Kisin’s theory [Kis06] provides another category of ϕ-modules which classify
GK ∞ -stable Zp-lattices in semi-stable GK -representations, namely S-lattices of
P-height 6 h in the (ϕ,N∇)-vector bundleMMF (D) over ∆. (See Theorem 2.4.5
for notations.) The next section associates a quasi-strongly divisible latticeM in
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D̂ to a S-lattice of P-height 6 h in MMF (D) compatibly with the functors into
the category of lattice GK ∞ -representations.

12.2.3. Relation with Kisin’s theory. Let D be a weakly admissible filtered
(ϕ,N)-module over K with Hodge-Tate weights in [0, h], where h 6 p − 1. Kisin
[Kis06, §1] constructed a (ϕ,N∇)-moduleM :=MMF (D) over O∆ from a filtered
(ϕ,N)-module D and showed that D is weakly admissible if and only ifM is pure
of slope 0 in the sense of Kedlaya. Let M ⊂ M be a S-lattice of P-height 6 h.
We setM := S ⊗σ,S M ∼= S ⊗S (σ∗M). We have an S-linear map id⊗ϕM :M ∼=
S ⊗S (σ∗M) → S ⊗S M. Using this, we define a S-submodule FilhM ⊂M and
ϕh : FilhM→M as follows.

FilhM := {x ∈M| id⊗ϕM(x) ∈ Filh S ⊗S M ⊂ S ⊗S M}(12.2.3.1)

ϕh : FilhM id⊗ϕM−−−−−→ Filh S ⊗S M
σh⊗id−−−−→ S ⊗σ,S M =M(12.2.3.2)

The following lemma directly follows from [Liu10, Corollary 3.2.3].

Lemma 12.2.3.3. With the same notations as above, M := S ⊗σ,S M has a
natural structure of quasi-strongly divisible lattice in D̂ := S ⊗W (k) D.

In fact, the above construction M  S ⊗σ,S M induces an equivalence of
categories between ModS(ϕ)6h and the category of quasi-strongly divisible lattices
of weight 6 h [CL07, Theorem 2.2.1]. We will not use this fact.

Sketch of Proof. Let ι : O∆ ↪→ S[ 1
p ] denote the embedding defined by u 7→

u, which is well-defined as can be directly checked. Put σ : O∆
σ∆−−→ O∆

ι
↪→ S[ 1

p ].
For a (ϕ,N∇)-moduleM pure of slope 0, consider D̂M := S[ 1

p ]⊗σ,O∆M. We define
Filh D̂ and ϕh in the same manner to (12.2.3.1) and (12.2.3.2). We put ND̂M :=
N⊗1+ p

σ(λ) (1⊗N∇). (For any f ∈ O∆
ι
↪→ S, we have N(ι(f)) = ι( p

σ(λ)N∇(f)).) By
direct computations, one show that D̂M satisfies the “intrinsic characterization” for
filtered S[ 1

p ]-modules which come from weakly admissible filtered (ϕ,N)-modules.
See [Liu08, Proposition 3.2.1] for the proof.

Let M := MMF (D) and let M ⊂ M be a S-lattice of P-height 6 h. Then
clearly,M := S⊗σ,S M is a quasi-strongly divisible lattice in D̂M := S[ 1

p ]⊗O∆M.
So the lemma will follow if we show that naturally D̂M ∼= D̂D := S ⊗W (k) D as a
filtered S[ 1

p ]-module. Note that the functor D  D̂D from the category of weakly
admissible filtered (ϕ,N)-modules to the category of filtered S[ 1

p ]-modules is fully
faithful; that we can recover the underlying (ϕ,N)-module D as D̂D/uD̂D, and the
filtration Fil•DK is prπ(Fil• D̂D) where prπ : D̂D � D̂D/P(u)D̂D ∼= DK is the
natural map. It can be directly seen that this recipe, when applied to D̂M, precisely
gives DMF (M) which is naturally isomorphic to D by Kisin’s result (stated in
Theorem 2.4.5 of this paper). This verification uses the construction of the functor
DMF . See [Liu10, Corollary 3.2.3] for the complete proof. �

Let M ∈ ModS(ϕ)6h. Recall that we have a contravariant functor T ∗S(M) =
HomS,ϕ(M, o Êur ) ∼← HomS,ϕ(M, Ŝur) if M ∈ ModS(ϕ)6h. (That the arrows
are isomorphisms follows from [Fon90, §B Proposition 1.8.3], which is also stated
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as Lemma 8.1.6 in this paper.) Therefore, we obtain a natural GK ∞-equivariant
morphism:
(12.2.3.4)

TM : T ∗S(M) ∼= HomS,ϕ(M, Ŝur)→ HomS,ϕh,Filh(M, Acris) = T ∗qst(M)
where the arrow in the middle is defined as follows: for a S-linear map f : M →
Ŝur, we consider f̃ : M = S ⊗σ,S M → Acris obtained by S-linearly extending
M

f−→ Ŝur σ−→ Acris, where we view S as a S-algebra via σ : S→ S. One can check
that if f respects ϕ, then f̃ respects ϕh and takes FilhM to FilhAcris, so f 7→ f̃
defines a map T ∗S(M) → T ∗qst(M). This map is furthermore GK ∞-equivariant
since σ : Ŝur ↪→ Acris is GK ∞ -equivariant.

Let us state the key lemma, which crucially uses all of the basic assumptions
in §12.1.1. We postpone the proof to §12.3.

Lemma 12.2.4. Let h 6 p − 1 and M ∈ ModS(ϕ)6h. Assume that M is
unipotent in the sense of §8.3.6 if h = p − 1. Then the natural map T ∗S(M) →
T ∗qst(M) in (12.2.3.4) is an isomorphism as a Zp-lattice GK ∞-representation.

The following lemma is very specific to the case of h = 1, which is proved in
[Bre00, Proposition 5.1.3] under the assumption that p > 2. The identical proof
works when p = 2 (even without assuming that D is “unipotent”).

Lemma 12.2.5. Let D be a weakly admissible filtered isocrystal with Hodge-
Tate weights in [0, 1]. (So the monodromy operator N : D → D is a zero map.) Let
D̂ := S[ 1

p ] ⊗W (k) D as before. Then any quasi-strongly divisible latticeM ∈ D̂ is
stable under ND̂ : D̂ → D̂, henceM is a strongly divisible lattice in D̂.

Corollary 12.2.6. Let V be a crystalline Qp-representation of GK with Hodge-
Tate weights in [0, 1], and let T ⊂ V be a GK ∞-stable Zp-lattice. If p = 2 then
assume that either V has no nontrivial unramified quotient, or V has no non-trivial
GK -subrepresentation on which the inertia group IK acts via the p-adic cyclotomic
character. Then T is necessarily GK -stable.

Proof. Let D := Dcris(V (−1)) be the corresponding weakly admissible fil-
tered isocrystal, so D is unipotent if and only if V has no nontrivial unramified
quotient. If V has no non-trivial GK -subrepresentation on which the inertia group
IK acts via the p-adic cyclotomic character, then we replace V with V ∗(1).

Let D̂ := S ⊗W (k) D be the corresponding filtered (ϕ,N)-module over S. We
identify V with V ∗cris(D∗(1)) and V̂ ∗st(D̂∗(1)) via natural isomorphisms, where
D̂∗(1) is the filtered S-module corresponding to D∗(1). Kisin’s theory produces
a M ∈ ModS(ϕ)61 equipped with a GK ∞-equivariant isomorphism T ∗S(M) ∼= T .
(See the comment below Theorem 2.4.10 or see [Kis06, Proposition 2.1.15].) By
Lemma 12.2.3.3, M := S ⊗σ,S M can be naturally viewed as a quasi-strongly
divisible lattice in D̂ such that T ∗qst(M) = T as a Zp-lattice in V . Lemma 12.2.5
asserts thatM is a strongly divisible lattice, hence T ∗st(M) = T ∗qst(M) = T by
Lemmas 12.2.2.3 and 12.2.4. In particular, T is a GK -stable lattice. �

12.3. Proof of Lemma 12.2.4

Let us recall the statement of of Lemma 12.2.4. Let h 6 p − 1 and M ∈
ModS(ϕ)6h. Assume that M is unipotent in the sense of §8.3.6 if h = p − 1.
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Consider the following natural GK ∞-equivariant map

TM : T ∗S(M) ∼= HomS,ϕ(M, Ŝur)→ HomS,ϕh,Filh(M, Acris) = T ∗qst(M)

induced by σ : Ŝur → Acris. See the discussion following (12.2.3.4) for the con-
struction of this map.

Clearly, TM is injective since σ : Ŝur → Acris is injective. So in order to prove
Lemma 12.2.4, it is enough to show the surjectivity of TM. Since T ∗qst(M) is p-
adically separated and complete (which is immediate from the definition), we may
apply successive approximation4 to reduce to showing the surjectivity of TM⊗ZpFp :
T ∗S(M)⊗Zp Fp → T ∗qst(M)⊗Zp Fp.

Let us consider the “mod p reduction” M := S/pS⊗S M, andM := S/pS⊗S
M equipped with FilhM := S/pS⊗S FilhM and ϕ̄h : FilhM→M. By Lemma
5.1.9, the Fp[GK ∞ ]-module T ∗S(M)⊗ZpFp is naturally isomorphic to T ∗S(M). Now,
by Fontaine’s lemma [Fon90, §B, Proposition 1.8.3] (which is Lemma 8.1.6), we have
the natural isomorphism

HomS/pS,ϕ(M, Ŝur/pŜur) ∼−→ HomS/pS,ϕ(M, oÊur /poÊur ) =: T ∗S(M),

which is induced from the natural inclusion Ŝur/pŜur ↪→ oÊur /poÊur .
From the natural projection Acris � Acris/pAcris, we obtain the following nat-

ural injective map:

(12.3.0.1) T ∗qst(M)⊗Zp Fp = HomS,ϕh,Filh(M, Acris)⊗Zp Fp
→ HomS/pS,ϕh,Filh(M, Acris/pAcris) =: T ∗qst(M).

Therefore we obtain the natural map

(12.3.0.2) TM : T ∗S(M)
TM⊗ZpFp−→ T ∗qst(M)⊗Zp Fp

(12.3.0.1)−→ T ∗qst(M).

The same map TM : HomS/pS,ϕ(M, Ŝur/pŜur)→ HomS/pS,ϕh,Filh(M, Acris/pAcris)
can be obtained using the map on the second arguments σ : Ŝur/pŜur → Acris/pAcris,
by the construction similar to (12.2.3.4). The following lemma is the main step of
the proof.

Lemma 12.3.1. Let h 6 p − 1 and M ∈ ModS(ϕ)6h. Assume that M is
unipotent in the sense of §8.3.6 if h = p−1. Then, the natural map TM : T ∗S(M)→
T ∗qst(M) is injective.

12.3.2. Deducing Lemma 12.2.4 from Lemma 12.3.1. We now show that Lemma
12.3.1 implies that TM ⊗Zp Fp : T ∗S(M) ⊗Zp Fp → T ∗qst(M) ⊗Zp Fp is an isomor-
phism, so Lemma 12.2.4 follows from successive approximation as we noted at the
beginning of §12.3.

Since TM : T ∗S(M) → T ∗qst(M) is injective by Lemma 12.3.1, it follows the
construction of TM that TM⊗Zp Fp : T ∗S(M)⊗Zp Fp → T ∗qst(M)⊗Zp Fp is injective.
So it is enough to show that the Fp-dimensions of the source and the target are

4More precisely, we are applying Nakayama’s lemma to TM ⊗Zp Z/(pn), for which we don’t
a priori have to know the target is finitely generated. If we assume that M corresponds to a
GK∞ -stable Zp-lattice of some semi-stable representation with non-negative Hodge-Tate weights
(which will be the case in the intended application) then TM⊗Zp Qp is an isomorphism by Lemma
12.2.2.3 and Theorem 2.4.10, so we see that the target T ∗qst(M) of TM is a finitely generated
Zp-module.
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equal. We have dimFp T
∗
qst(M) = rankS/pSM = rankS/pS M by [Bre99a, Lemme

2.3.1.2], which forces TM and (12.3.0.1) to be isomorphisms.
The following special case of Lemma 12.2.4 which suffices for proving Corol-

lary 12.2.6 can be deduced from Lemma 12.3.1 without invoking [Bre99a, Lemme
2.3.1.2]: namely whenM comes from the mod p reduction of M which comes from
a GK ∞-stable lattice of a semi-stable GK -representation. In this case, we know by
Lemma 12.2.2.3 and Theorem 2.4.10 that TM[ 1

p ] : T ∗S(M)[ 1
p ] → T ∗qst(M)[ 1

p ] is an
isomorphism, so in particular the Zp-ranks of T ∗S(M) and T ∗qst(M) are the same.
Thus, injectivity of TM implies surjectivity.

The rest of the subsection is devoted to proving Lemma 12.3.1.

12.3.3. Proof of Lemma 12.3.1: the case h 6 p − 2. We give a proof for the
case h 6 p − 2 following Breuil [Bre99b, Proposition 4.2.1]5. (This automatically
rules out the case when p = 2 and h = 1.)

We recall the notation from §12.1.3. Let R := lim←−
xp←x

oK /(p) and consider

the canonical lift θ : W (R) � oCK of the “first projection” R � oK /(p). We
set Fil1W (R) := ker θ and Fil1 R := ker[θ ⊗Zp Fp : R � oK /(p)]. Recall that
Acris is the p-adic completion of the divided power envelop of W (R) with respect
to Fil1W (R). It can be checked that Acris/pAcris is precisely the divided power
envelop of R with respect to Fil1 R. (See [BO78, Remark 3.20(8)] for the proof.)

Recall that the map TM is induced from the map σ : Ŝur/pŜur → Acris/pAcris
on the second argument. (See the comment below (12.3.0.2).) One can check, by
hand, that the kernel of σ : Ŝur/pŜur → Acris/pAcris is principally generated by
ue, where e is the ramification index of K .

Assume that f ∈ T ∗S(M) = HomS/pS,ϕ(M, Ŝur/pŜur) is in the kernel of
TM. Then, for any x ∈ M, we have f(x) ∈ ue(Ŝur/pŜur). Suppose f(x) ∈
ue
′(Ŝur/pŜur) for some e′ ≥ e. Since M is of P-height 6 h, there exists y ∈ M

such that ϕM(σ∗y) = uehx. Since P(u) mod p is (a unit multiple of) ue, we have

f(x) = u−ehf
(
ϕM(σ∗y)

)
= u−ehσ (f(y)) ∈ ue

′p−eh(Ŝur/pŜur) ⊂ u2e′(Ŝur/pŜur),
since we assumed that h 6 p−2. By iterating this process, we conclude that f = 0.

12.3.4. Non-example: the case h = p − 1. Before we present the proof of the
case h = p− 1, we give an example of non-unipotent M ∈ ModS(ϕ)6p−1 where the
lemma fails to hold. Take M := S(p−1); i.e., M ∼= S·e with ϕM(σ∗e) = P(u)p−1e.
Let M := M ⊗S S/pS andM := S/pS ⊗σ,S M. We show that TM : T ∗S(M) →
T ∗qst(M) is the zero map, which in turn implies that TM⊗Zp Fp : T ∗S(M)⊗Zp Fp →
T ∗qst(M) ⊗Zp Fp is the zero map. In particular, TM cannot be injective (so TM

cannot be an isomorphism).
Let f ∈ T ∗S(M) = HomS/pS,ϕ(M, Ŝur/pŜur) be any element. Then we have

(f(e))p = σ (f(e)) = f
(
ϕM(σ∗e)

)
= αu(p−1)e ·f(e),

where αue = P(u) mod p with α ∈ k×. If f is non-zero then we have f(e) = α·ue.
On the other hand, σ : Ŝur/pŜur → Acris/pAcris maps any multiple of ue to 0. This
proves that T is the zero map.

5Although [Bre99b, Proposition 4.2.1] is only worked out when e = 1, the argument works
with little modification for any e.
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12.3.5. Proof of Lemma 12.3.1: the case h = p − 1. Now, we handle the re-
maining case.6 Put h = p − 1, and assume that M is unipotent of P-height
6 h (or equivalently, M is). Let f ∈ T ∗S(M) be in the kernel of TM. We set
N := f(M) ⊂ Ŝur/pŜur, which is a S/pS-submodule stable under the pth power
map σ : Ŝur/pŜur → Ŝur/pŜur. This makes N into a (ϕ,S/pS)-module. Since
we have the ϕ-compatible surjection f : M � N, it follows that N is of P-height
6 p− 1; i.e., u(p−1)eN ⊂ ϕN(σ∗N).

Since f is in the kernel of TM, the same argument as §12.3.3 implies that N ⊂
ue(Ŝur/pŜur). Using that ϕN is induced from the pth power map σ : Ŝur/pŜur →
Ŝur/pŜur, we have ϕN(σ∗N) ⊂ upe(Ŝur/pŜur), so u(p−1)eN ⊃ ϕN(σ∗N). Since N

is of P-height 6 p − 1, we obtain ϕN(σ∗N) = u(p−1)eN; i.e., N is of Lubin-Tate
type of P-height p− 1. But by the definition of unipotent-ness of P-height 6 p− 1,
M does not admit any non-zero quotient of Lubin-Tate type of P-height p − 1.
Therefore N = 0, so f = 0.

6The author thanks Tong Liu for providing his idea.
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