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ABSTRACT. Let % be a finite extension of Qp, and choose a uniformizer
m € #. Choose m,11 = Py/m such that WZ+1 = 7, and put F o =

Un H (mn+1). We introduce a new technique using restriction to Gal(# /. # o)
to study deformations and mod p reductions in p-adic Hodge theory. One of
our main results in deformation theory is the existence of deformation rings
for Gal(J¢ /¥ s )-representations “of height < h” for any positive integer h,
and we analyze their local structure. Using these Gal(J# /. oo )-deformation
rings, we give a different proof of Kisin’s connected component analysis of flat
deformation rings of a certain fixed Hodge type, which we used to prove the
modularity of potentially Barsotti-Tate representations. This new proof works
“more uniformly” for p = 2, and does not use Zink’s theory of windows and
displays.

We also study the equi-characteristic analogue of crystalline representa-
tions in the sense of Genestier-Lafforgue and Hartl. We show the full faith-
fulness of a natural functor from semilinear algebra objects, so-called local
shtukas, into representations of the absolute Galois group of a local field of
characteristic p > 0. We also obtain equi-characteristic deformation rings for
Galois representations that come from local shtukas, and study their local
structure.

Key Words: Norm fields, representations of finite height, integral p-adic
Hodge Theory, mod p crystalline representations, local Galois deformation
theory, equi-characteristic analogue of Fontaine’s theory, local shtukas, Hodge-
Pink structures.
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CHAPTER 1

Introduction

1.1. Motivation and overview

1.1.1. p-adic local Galois representations. Since the pioneering work of Wiles
on the modularity of semi-stable elliptic curves over Q, many classes of 2-dimensional
(mod p or p-adic) global Galois representations are known to “come from” modu-
lar forms. One of the main difficulties of proving modularity lies in the study of
local deformation problems with various p-adic Hodge theory conditions, for which
one needs to understand Galois-stable Z,-lattices in (potentially) semi-stable p-
adic representations and their reductions mod p™. On the other hand, “integral
p-adic Hodge theory” is much more delicate than “classical” p-adic Hodge theory,
which makes it hard to study deformations satisfying various p-adic Hodge theory
conditions.

This paper introduces a new technique of using the norm fields to study defor-
mations and mod p reductions in p-adic Hodge theory, which is explained below.
Let J#/Q, be a finite extension. Choose a uniformizer 7 € 0, and consider an
infinite Kummer-type extension ¥ o, := # (*/7). We put G» = Gal(# /.*)
and Gy = Gal(# /H ). Kisin [Kis06] showed that the restriction to G
of a semi-stable G y-representation with Hodge-Tate weights in [0, h] is so-called
a Gy -representation “of height < h."! The precise definition will be given later
in Definition 5.2.8. The point is that integral theory for G »__-representations “of
height < h” is much simpler than integral p-adic Hodge theory, and that we lose no
information by restricting crystalline Gy -representations to G __.? See §2.4 for a
summary of Kisin [Kis06].

In order to study (or even, to define) deformations “of height < h” one needs
to define and study torsion representations “of height < h,” which is carried out
in Part I of this paper. One of the main results of this paper is the existence of
universal G »__-deformation rings “of height < A” for any positive integer h:

THEOREM (11.1.2). Let F be a finite extension of F, and let ps be an F-
representation of Gy of finite dimension. Then there exists a complete local
noetherian W (F)-algebra Rgfh with residue field F and a framed deformation of

Do OUVET Rgo’fh which is universal among all the framed deformations of ps with
“height < h.” If Endg ,, (Poo) = T then there exists a complete local noetherian

1Later in this paper, we use the terminology P-height instead of height where P(u) is an
Eisenstein polynomial over the maximal unramified subextension J# o of .# such that P(w) = 0.
This is to avoid confusion with the analogous notion of height which uses the p-adic cyclotomic
extension instead of an infinite Kummer-type extension.

2There is a semi-stable analogue of this statement. Roughly speaking, it says that by re-
stricting the G - -action of a semi-stable representation to G __, we only lose the monodromy
operator of the corresponding filtered (¢, N)-module.

5



6 1. INTRODUCTION

W (FF)-algebra R/ig with residue field F and a deformation of pso over R;@Z which
is universal among all the deformations of poo with “height < h.”

The existence of such G »__ -deformation rings is surprising because the usual
‘unrestricted’ G __-deformation functor has a infinite-dimensional tangent space
(so ‘unrestricted’ G, __-deformation rings do not exist in the category of complete
local noetherian rings); see §11.7.1 for the proof of this claim. Note that G __ does
not satisfy the cohomological finiteness condition that is usually used to prove the
finite-dimensionality of the tangent space of interesting Galois deformation functors.

Let p be a finite-dimensional F-representation of G such that plg, =
Poo- Then “restricting the G -action to G » 7 defines natural maps from Rgf
constructed in the above theorem into crystalline/semi-stable framed deformation
rings® of p with Hodge-Tate weights in [0, 2]. (If Endg,, _(pso) = F then we obtain
the same result for deformation rings without framing.) By using these maps and
analyzing the structure of G -deformation rings constructed above, we obtain
the following results on crystalline/semi-stable deformation rings.

e The “ordinary” condition cuts out a union of connected components in
(the Qp-fiber of) a crystalline or semi-stable (framed) deformation ring
with Hodge-Tate weights in [0, h] (where the crystalline and semi-stable
deformation rings are as defined by Kisin [Kis08] and Tong Liu [Liu07]).
This is done in Proposition 11.4.18.

e Assume dimp p = 2. Let RﬁD ¥ be the quotient of the flat framed deforma-
tion ring with the property that the determinant of the action of the inertia
group I is equal to the p-adic cyclotomic character®. Kisin gave a com-
plete description of the connected components of Spec RE ’v[%], which is
used as the main technical ingredient for the proof of his modularity lifting
theorem [Kis09b, Kis09a]. Assuming p > 2, the author gives a new proof
of Kisin’s description of the connected components of Spec Ry ’V[%], which
was crucially used in Kisin’s modularity lifting theorem [Kis09b, Kis09a].
The idea is to “resolve” Spec RE "V using the Breuil-Kisin classification of
finite flat group schemes. This paper presents another method to resolve
Spec RE "V using G __-deformation rings, so we eliminate the Bruil-Kisin
classification from the proof of Kisin’s modularity theorem. The virtue of
this new method is that it works more uniformly in the case p = 2 (af-
ter minor modifications), while the Breuil-Kisin classification of finite flat
group schemes is quite problematic when p = 2. Kisin needs a separate
paper [Kis09a] to prove the classification of connected finite flat group
schemes over a 2-adic base, which uses Zink’s theory of windows and dis-
plays, and the full proof of Serre’s conjecture by Khare-Wintenberger uses
the modularity of 2-adic Barsotti-Tate liftings. See §11.6 for more details.

We digress to record the following result of separate interest, which is obtained
as a byproduct of the study of torsion representations “of height < h.” Observe
that a semi-simple mod p representation of G » can be uniquely recovered from
its restriction to G . Indeed, since any semi-simple mod p representation of

3A crystalline/semi-stable (framed) deformation ring “over Q,” was defined by Kisin [Kis08],
and later Tong Liu [Liu07] defined it without inverting p We will use Tong Liu’s definition, which
recovers Kisin’s ring after inverting p.

4This condition can be thought of as fixing a p-adic Hodge type.
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G ¢ is tame, this assertion follows from the fact that the extension J# /% does
not have any non-trivial tame subextension. By studying restrictions to G »__, we
thereby obtain an explicit description of mod p crystalline characters with Hodge-
Tate weights in [0, k] for any positive h. (See Proposition 9.4.8 for the case when
the residue field of JZ is big enough. The author plans to generalize this results to
accommodate “descent data for a tame extension” in a subsequent work.) Even the
case h =1 (i.e., finite flat mod p characters) is interesting. Savitt [Sav08] obtained
the same result for the case p > 2 and h = 1 via elaborate computations with Breuil
modules, but the author’s argument is much simpler and works in the case p = 2
as well (in addition to allowing any h > 1).

This result is a first step towards understanding the reduction mod p of crys-
talline G »-representations up to semisimplification, since any absolutely irreducible
mod p representation of G arises as an “unramified induction” of a character.

1.1.2. Equi-characteristic analogue. There exists an equi-characteristic “ana-
logue” of Kisin’s theory [Kis06], which historically came first as initiated by Genestier-
Lafforgue [GL] and Hartl [Har10, Har09] in an attempt to find an equi-characteristic
analogue of Fontaine’s theory of crystalline representations. To explain this we first
introduce some notations. We fix a formal power series ring F[[mo]], which will play
the role of Z,, (and my will play the role of p). We also fix a finite field k, a com-
plete discrete valuation ring ox = k[[u]] with the fraction field K = k((u)) and a
local map F,[[m]] — ok which makes ox a finite F,[[mo]]-module. In particular,
this specifies an embedding F, — k. Let Gx denote the absolute Galois group
for K. Genestier-Lafforgue and Hartl studied F,[[m]]-representations of G x which
can be viewed as analogues of crystalline representations, and their theory bears
an incredible resemblance with the class of p-adic G __ -representations “of finite
height.”

Before we discuss the work of Genestier-Lafforgue [GL] and Hartl [Harl0,
Har09], let us explain why their theory can be regarded as an equi-characteristic
analogue of Fontaine’s theory of crystalline representations. (The idea presented
below is also found in Hartl’s work [Har10, Har09].) If one wants to find a class of
F,[[mo]]-representations of G which can be viewed as an “analogue” of crystalline
representations (or Barsotti-Tate representations), then the natural candidate is
the mp-adic Tate module of a “mp-divisible group” G over ox. But it turns out
that in order to get a nice theory we need more assumptions on the my-divisible
groups. We say that a mo-divisible group G is of “finite height’® if the Verschiebung
of G vanishes® and the induced F,[[mo]]-action on the Lie algebra satisfies a certain
natural assumption. We say a G g-representation over Fy[[m]] is of finite height if
it is isomorphic to the mp-adic Tate module of a my-divisible group of finite height.
See [Har09, §3.1] or §7.3 of this paper.

An amusing fact is that whereas the p-adic Tate module of a Barsotti-Tate
group always has its Hodge-Tate weights in [0, 1], the mp-adic Tate module of a

5Hartl calls it a divisible Anderson module in [Har09, §3.1]. A mo-divisible formal Lie group
of height < 1 is also known as a Drinfeld formal Fg[[mo]]-module, and these have been widely
studied since being introduced by Drinfeld in [Dri76].

6The mo-divisible group associated to a Drinfeld module or to any mp-divisible formal Lie
group has vanishing Verschiebung, so this is not a restrictive assumption. See [Gen96, Ch.I, Prop
2.1.1] for the case of mp-divisible formal Lie groups.
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mo-divisible group of finite height can have any non-negative “weights.” To illus-
trate, consider the Lubin-Tate character x .7 of G, which can be thought of as a
representation of “weight 1.” Then for any positive number A, the character XZT
comes from the mp-adic Tate module of a certain 1-dimensional mo-divisible formal
Lie group over og of “height h” It is reasonable to regard G g-representations
of finite height as the equi-characteristic analogue of crystalline representations of
non-negative Hodge-Tate weights.

The “Dieudonné-type classification” for finite flat group schemes with triv-
ial Verschiebung [SGA, 3, Exp VII4, 7.4}7 induces a classification of my-divisible
groups of finite height. This result was first announced by Hartl in [Har05], and
is surely well-known to experts. Since the proof was not available to the author,
we work out a proof in §7 of this paper.® The Frobenius modules which occur
as the “Dieudonné module” of such m-divisible groups were studied by Genestier-
Lafforgue [GL] and Hartl [Har10, Har09]°, and their theory exhibits many features
that are remarkably similar to Kisin’s theory [Kis06] of Frobenius &-modules which
classify G »__-representations “of finite height.”

Although G i -representations of finite height have properties akin to those of
G v -representations of finite P-height, it still makes sense to regard them as the
equi-characteristic analogue of crystalline representations of the full Galois group
G » (with non-negative Hodge-Tate weights) for the following reason. In a field of
characteristic p, adjoining a pth root induces a purely inseparable extension and
so does not change the absolute Galois group. Therefore the gap between G and
the absolute Galois group of any infinite Kummer-type extension K| ¢%/u] collapses
since char(K) =p > 0.

The analogy between Kisin’s theory and its equi-characteristic analogue is fur-
ther strengthened by the following theorem proved by the author, which is also a
very useful tool in applying the theory of Genestier-Lafforgue and Hartl to Galois
representations.

THEOREM (5.2.3). The mp-adic Tate module functor from the category of mo-
divisible groups over o of finite P-height to the category of lattice F,[[mo]]-representations
of finite height is fully faithful.

The statement of the above theorem is clearly reminiscent of Tate’s theorem
of the full faithfulness of the p-adic Tate module functor on Barsotti-Tate groups
[Tat67, §4.2]. For the proof, we use the “Dieudonné-type classification” to translate
the theorem into a statement about Frobenius modules. The proof is completely
analogous to that of [Kis06, Proposition 2.1.12], except the following two modifica-
tions. First, we need to work with “isocrystals with weakly admissible Hodge-Pink
structures”!® instead of weakly admissible filtered isocrystals (or weakly admissi-
ble filtered (¢, N)-modules). Second, we need to eliminate the use of logarithmic
connections over the open unit disk from the proof of [Kis06, Proposition 2.1.12],
which have no good equi-characteristic analogue.

"For readers’ convenience, we reproduce the proof in §7.2 of this paper.

8The classification of Drinfeld formal Fq[[mo]]-modules (i.e., mo-divisible formal Lie groups of
height < 1) is also proved in [Gen96, §1].

9Such Frobenius modules are exactly the same as effective local shtukas in [GL, Har10, Har09]
(since og is noetherian). See Proposition 7.1.9 of this paper.

10See Definition 2.3.1 and §2.3.7 for the definition.
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Our modified argument works verbatim in the p-adic case and thus gives a vari-
ant of Kisin’s proof of the p-adic version of Theorem 5.2.3; i.e., [Kis06, Proposition
2.1.12]. In particular, we construct an analogue of weakly admissible Hodge-Pink
structures in the Z,-coefficient case, and this is often useful. For example, one
can give an explicit criterion, in terms of such “mixed characteristic” Hodge-Pink
structures, to figure out whether an explicitly given 93?[1%] € Mod@(w)[%] comes
from a weakly admissible filtered isocrystal. See Remark 3.2.4 and Proposition 7?7
of this paper.

Thanks to the similarity between Z,-linear representations of G _»__ “of finite
height” and F,[[mo]]-linear representations of G of finite height, any discussion
below for one adapts to the other. In particular, the same proof of Theorem 11.1.2
gives the existence of the universal deformation and framed deformation rings in the
equi-characteristic setting, even though Gk has infinite p-cohomological dimension
in the equi-characteristic case.

1.2. Structure of the Paper

Since most of the results and proofs for p-adic G __-representations “of finite
height” and their equi-characteristic analogues are completely parallel, in §1.3 we
give conventions to simultaneously discuss both cases simultaneously.

In Part I, we introduce various semilinear algebra objects which are used in the
study of p-adic G »__-representations “of finite height” and their equi-characteristic
analogues, and settle the relations between them (e.g. equivalences of categories).
The following two results are the main theorems of Part I, which are crucially
used in the study of deformations. First, we give another proof of the theorem of
Genestier-Lafforgue [GL, Théoréme 3.3] which asserts the equivalence of categories
between the category of local shtukas and the category of isocrystals with weakly
admissible Hodge Pink structure. The argument presented in this paper is more
akin to arguments of Kisin [Kis06, §1.3] and also proves the analogous statement
in the classical p-adic setting. (In the p-adic setting, “Kisin modules,” or (p, &)-
modules of finite height, play the same role as effective local shtukas. See Definitions
2.2.1 and 2.3.1 for the relevant definitions.) Second, we show the full faithfulness
of natural functors from various categories of semi-linear algebra objects into the
category of suitable Galois representations (Theorem 5.2.3). The p-adic case of this
theorem was proved by Kisin [Kis06, Proposition 2.1.12].

In §2, we define various semilinear algebra objects which are used to study p-
adic G »__-representations “of finite height” and their equi-characteristic analogues.
In §2.4, we outline the results of Kisin [Kis06] in order to “preview” the discussions
to follow.

In §3, we construct equivalences of categories between the category of isocrys-
tals with “effective” Hodge-Pink structures and the category of certain vector bun-
dles over the open unit disk with Frobenius structure. (We will define these objects
in §2 for both the p-adic and equi-characteristic cases.) This section is “modeled”
after [Kis06, §1.2], except that we work with Hodge-Pink structures instead of
filtered (¢, N)-modules.

In §4, we show the equivalence between the weak admissibility of an isocrystal
with Hodge-Pink structure and the property that the corresponding vector bundle
with Frobenius structure is pure of slope 0 in the sense of Kedlaya (in the p-adic
setting) and Hartl (in the equi-characteristic setting). The key ingredient is the
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theory of slopes, which is due to Kedlaya in the p-adic case and due to Hartl in
the equi-characteristic case. This section is “modeled” after [Kis06, §1.3] except
that we have to work solely with the Frobenius structure and eliminate the use of
logarithmic connections on vector bundles over the open unit disk.

In §5.1, we review Fontaine’s theory of étale p-modules and develop its equi-
characteristic analogue, which allows us to define natural functors from various
categories of Frobenius modules we study into the category of suitable Galois rep-
resentations. In §5.2, we finally prove the full faithfulness of these functors, using
all the results in the previous sections.

In §6, we prove the equi-characteristic analogue of Kedlaya’s matrix factoriza-
tion lemma [Ked04, Prop 6.5] which was used in §4. This section could be replaced
by the following single sentence: the same argument that proves the p-adic state-
ment as appears in [Ked04, §6] also proves the equi-characteristic analogue.

The main result of §7 is the equivalence of categories between the category
“effective local shtukas”'! and the category of mo-divisible groups of finite height
(Theorem 7.3.2). This result serves as an equi-characteristic analogue of the Breuil-
Kisin classification of Barsotti-Tate groups [Kis06, Theorem 2.2.7], which is also
stated as Theorem 2.4.11(1) in this paper. This result was announced by Hartl
[Har05], but since the proof was not available to the author, we work out the proof
here.

Part II develops the theory of torsion G -representations of finite height
and its equi-characteristic analogue. In §8, we introduce torsion Frobenius modules
which give rise to torsion Galois representations. In §9, we prove various results
which play the same role in the study of deformations “of finite height” as Ray-
naud’s theory [Ray74] does in the study of flat deformations. As a byproduct,
we obtain an explicit description of mod p crystalline G -characters by studying
mod p characters of G with finite height. See Proposition 9.4.8 for the precise
statement.

In Part III, we apply all of the preceding results to study of deformations “of
height < h.” Since we work with the language of deformation groupoids instead
of deformation functors, we provide a section (§10) to recall definitions and prove
some basic properties that are needed. The discussion would be familiar to experts
in stacks, except that we do not use a Grothendieck topology!2.

In §11.7, we show the existence of (framed) deformation rings for G »__-representations
“of height < h” as well as for their equi-characteristic analogue (Theorem 11.1.2).
In §11.1, we imitate the discussion in [Kis09b, (2.1)] to construct an analogue of
Kisin’s moduli space of finite flat group schemes over the (framed) deformation rings
“of height < h.” Here, we use the moduli of “G-lattices of height < h” in place of
finite flat group schemes. In §11.2, we show that this auxiliary space we constructed
over a deformation ring “of height < h” has generic fiber isomorphic to the generic
fiber of the deformation ring (Proposition 11.2.6). This result crucially uses the full
faithfulness of the natural functors from various categories of p-modules into Galois

HUThe definition we use (Definition 7.1.1) slightly differs from Hartl’s, which is the reason
why this term is in quotes: we modify the definition in order to be able to show the equivalence
of categories with mp-divisible groups. If either the base is locally noetherian or the image of mg
is locally topologically nilpotent in the base, then our definition and Hartl’s definition coincide
(Proposition 7.1.9).

120r rather, one can view a category cofibered in groupoids as a stack by giving the “silly”
Grothendieck topology on the base where only isomorphisms are coverings
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representations (Theorem 5.2.3). Using this, we show that the generic fibers of de-
formation rings of “height < h” are formally smooth (Corollary 11.2.10). In §11.3,
we define “types” on the generic fiber of a (framed) deformation ring “of height < h”
and show that (under a suitable “separability” assumption which is automatic in
the p-adic case) fixing a type cuts out a equi-dimensional union of connected com-
ponents in the generic fiber. We also compute the dimension of the dimension in
terms of a fixed “type.” The discussion of this section is akin to [Kis08, §3], except
that we work with isocrystals with weakly admissible Hodge-Pink structure instead
of weakly admissible filtered (¢, N)-modules.

The remaining sections are devoted to the study of connected components
of the generic fibers of various (framed) deformation rings. In §11.4, we show
that the “ordinary” condition cuts out a union of connected components in the
generic fiber of a (framed) deformation ring “of height < h” for any positive h, and
in the case of 2-dimensional representations we give a complete description of all
connected components with a certain fixed “type.” In the p-adic case we use the
natural map into crystalline/semi-stable (framed) deformation rings to show that
the “ordinary” condition cuts out a union of connected components in the Q,-fiber
of crystalline/semi-stable (framed) deformation rings.

In §11.5, for 2-dimensional representations (under a suitable “separability” as-
sumption which is automatic in the p-adic case) we determine the connected com-
ponents of (framed) deformation rings “of height < 1” and of a certain fixed “type,”
using Deligne-Pappas local models for Hilbert-Blumenthal modular surfaces (and
its equi-characteristic analogue). Since the “moduli of finite flat group schemes”
and the “moduli of G-lattices of height < 1”7 are defined in a very similar man-
ner, Kisin’s argument [Kis09b, (2.4), (2.5)] applies with few modifications to show
that if p > 2 then “restricting to G _»__ " induces an isomorphism from the Q,-fiber
of a framed G __-deformation ring “of height < 1”7 to the Q,-fiber of a framed
flat deformation ring; we explain this in §11.6. The point is that this allows us
to reduce the connected component analysis of flat deformation rings to that of
G . -deformation rings “of height < 1,” which was carried out in §11.5. For the
case p = 2, we prove a weaker statement which is good enough for the application
to Kisin’s modularity theorem for 2-adic potentially Barsotti-Tate representations
[Kis09a]. The proof uses Breuil’s theory of strongly divisible modules (§12). We
use strongly divisible lattices to produce some Z,-lattice crystalline representations
with Hodge-Tate weights in [0, 1] whose restriction to G »_ is naturally isomorphic
to a specified one.

Acknowledgement. The author deeply thanks Brian Conrad for his guidance.
The author especially appreciates his careful listening of my results and numerous
helpful comments. The author would also like to thank Gebhard Béckle and Urs
Hartl for various helpful comments. The author thanks Tong Liu for providing his
idea to prove Corollary 12.2.6 when p = 2.

1.3. Notations/Definitions

We define a o-ring to be a pair (R,or) where R is a ring and o : R — R is
a ring endomorphism. For example (R,idg) is a o-ring. We say (R,oRr) is o-flat if
op is flat. For two o-rings (R,or) and (R',op/), we say that (R',op/) is defined
over (R,oR) if R’ is an R-algebra and og/ is og-semilinear. In this paper, og
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usually has an interpretation as a Frobenius endomorphism (or a partial Frobenius
endomorphism) on R.

Let oo be either Z, or Fy[[mg]]. We set mg := p if 09 = Z,,. Let F := 00[7%0]
be the fraction field; i.e., Fy = Q, or Fy = Fy(mp)). We view them as o-rings by
setting o :=id. All the o-rings (R, o) that appears in this paper are defined over
(09,1d). We let ¢ denote the size of the residue field of og, so ¢ = p if 09 = Z,,.

Let K be a complete discretely valued field of characteristic p. Let ox be its
valuation ring and let k be its residue field. We assume that & is perfect if 0g = Zy,
and that k has a finite p-basis and contains F, if 09 = Fy[[no]]; i.e., k is a finite-
dimensional kP-vector space. In both cases, the ¢gth power map on k (and hence, on
K) is finite. We fix a uniformizer u € og, so we often identify ox with k[[u]]. We
fix a separable closure K3 and set G = Gal(K*P/K). We would like to study
a certain class of G g-representations over o0g, Fy, or finite algebras thereof.

1.3.1. Motivating examples. We first describe some motivating examples of
G k-representations with p-adic and equi-characteristic coefficient. By letting og
denote either Z, or F,[[mo]] and developing a consistent set of notations for each
choice, we shall study p-adic and equi-characteristic G i-representations simultane-
ously.

1.3.1.1. The case og = Fy[[mo]]. Let us fix an injective local map o — ox. We
are interested in o0g-linear representations of G i which are obtained as the mp-adic
Tate modules of a certain class of my-divisible groups over o0y, namely “mg-divisible
groups of finite height” (Definition 7.3.1).

1.3.1.2. The caseog = Zy,. Let 2 be a finite extension of Q,, and " the maximal

unramified subfield of % (i.e., # o = W(k)[%] where k is the residue field of .J%).

Let us fix a uniformizer 7 € 0% and an Eisenstein polynomial P(u) € 0., [u] such
that P(r) = 0. Pick 7™ € o5 for n > 0 so that 7(¥) = 7 and (z("*D)P =
(™). Set H o = Un>o (™) as subfields of a fixed algebraic closure .#. The

theory of norm fields provides a natural isomorphism G . — G (call norm-field
isomorphism) where K = k((u)). See §1.3.2 below for more discussions, and [Win83]
for a complete exposition on norm fields.

We are interested in a certain class of p-adic representations of G 5, which are
called semi-stable representations. Kisin [Kis06] observed that while the study of
G v-stable Z,-lattices in semi-stable representations is very subtle in general, their
G v _-stable Zy-lattices are much more accessible.

1.3.2. Norm-field isomorphism. In the case 0y = Z, we give a useful description

of the norm-field isomorphism G »__ — G, which will be used later in §9.4.
Consider the following ring R := lim o57/(p) of characteristic p > 0. By

xP—x

[Win83, Théoréme 4.1.2], R is a complete valuation ring for the valuation vy defined
as follows: for any z := {x, }n>0 € R, define vy (z) := ord, (limnﬁoo(ﬁcn)pn) where
In € oc,, is any lift of @, € 057/(p) = oc, /(p). (One can easily check that
the sequence {(Z,)"" }, always converges in oc,, and its limit is independent of
the choice of lifts Z,.) We have a natural surjection 8 — k given by sending
{Zn}n>0 € R to zp mod m-z. This surjection has a natural section k — % which
sends a € k to {[a® "] mod p},>o, where [a? "] € oc,, denotes the Teichmiiller
lift of o? . We view R a k-algebra via this map. Now, consider an element
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7 = {7(™ mod p},>0 € R, and clearly we have vp(r) = 1. So we obtain a
continuous k-algebra embedding ox = k[[u]] — R via u +— 7, and we view R as a
complete ring extension of ok by this map. Note that G » continuously acts on R
via its natural action on each factor o—-/(p), and the embedding ox — N is stable
under the G » __-action on the target.

By [Win83, Corollaires 3.2.3, 4.3.4], there exist a natural isomorphism G ,» _ —»
Gr (called norm-field isomorphism), and a natural og-isomorphism oc,, — R
which “respects” the natural actions of G »__ on the source and Gg on the target
(where G »__ and G are identified via the norm-field isomorphism).

1.3.3. We start with introducing some og-algebras over which various semilinear
algebra objects shall be defined.

W or o, if 09 = Z,,, then W := W (k) is the ring of Witt vectors of
k with the p-adic topology;
if 09 = Fy[[mo]], then W = 0o®r,k = k[[mo]] with the mo-
adic topology.

H o :=W][X] the fraction field of W.

S :=W([u] with the natural og-algebra structure from the one on W.

og the mo-adic completion of &[] (i.e., formal Laurent series
> apu™ with a, € W, a, — 0).

£ = o0g[L] the fraction field of og.

Note that og is a complete discrete valuation ring with 7y generating the max-
imal ideal and the residue field K = k((u)). Thus, og is a Cohen ring for K if
00 = Zy,. If og = Fy[[mo]], then under the identification ox = k[[u]] we have
S = oi[[mo]] = oO@)quK. Similarly, we have 0g = K|[[mg]] = 00®FqK. In particular,
we are given inclusions 0 — & and K < og in the equi-characteristic case.

We define a Frobenius endomorphism o for each of above rings as follows. If
09 = Zy, then let oy : W — W be the usual Witt vector Frobenius endomorphism.
If 09 = [Fy[[mo]], then define ow by o(my) = m and o(a) = a? for all « € k. We
extend it by continuity to & by setting oe(u) = u?, where ¢ = p if 09 = Z,. This
rule defines a unique endomorphism for each of rings defined above, which is finite
and flat. (In the case o9 = Fy[[mo]], we need the assumption that k has a finite
p-basis in order to show that o is finite.) We always view above rings as o-rings by
this construction of o. This o lifts the usual gth power map modulo 7y and fixes
the image of 0. In other words, all the above o-rings are defined over (o¢,id).

Now, we fix an element P(u) € & which will play an important role throughout
the paper, as follows.

The case 09 = Z,.: We view Wu] as a subring of &. Let P(u) € Wlu] be
an Eisenstein polynomial, and let e be the degree of P(u). We normalize
P(u) so that P(0) = p = my.'3 Note that P(u) = p mod u and P(u) = cu®
where ¢ € W*.

The case 0g = F[[m9]].: Fix a nonzero element ug € mg (or equivalently, fix
a continuous injective Fg-map 09 — ox and let ug be the image of ).
Put P(u) :=m —up € & and let e := ord, (up).

I3The definition of Tate objects &(h) (Definition 2.2.6) depends on the choice of a specific
polynomial P(u), not just on the ideal P(u)-&. Our normalization P(0) = p will be used later in
§4.3.6 and §5.2.13.
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REMARK 1.3.4 (The case 0g = IFy[[m9]]). We give another interpretation on the
element P(u) := my — ug. Within this remark, we give & the mg-adic topology,
and we give the natural valuation topology to 0y and ox. Then we have an isomor-
phism & = oo@)FqU K as a topological Fg-algebra. Now, fix a “structure morphism”
Spfox — Spfog asin §1.3.1.1, and let v : Spf ox — Spf & = Spf 0g Xspecr, Spf ok
be the graph morphism. Then, v is a closed immersion defined by the (closed) ideal
P(u)-6.

Since 6/(P(u)) = ok is a ring extension of W which induces the trivial ex-
tension on the residue field, we see that P(u) is a &*-multiple of some Eisenstein
polynomial in u over W with degree e. This explains the notations.

REMARK 1.3.5 (The case o9 = Fg[[mo]]). As observed by G. W. Anderson
[And86] and Hartl [Harl10], it is good to distinguish two roles of a uniformizer of
0o by using different notations: a uniformizer my of the “coefficient ring” og of a
G k-representation (and hence, a uniformizer of W), and the image wug of 7 in the
“base ring” og. To illustrate, let us consider an og-linear representation coming
from a “mp-divisible group” over ox. Then 7y is an “operator” acting on the mg-
divisible group and ug is the function on the base scheme. They both act on the Lie
algebra of the my-divisible group, but a priori they have nothing to do with each
other. The situation is quite different if oy = Z,,. For a p-divisible group G over a
p-adic ring o0, the action of p € Z,, on G induces the multiplication by p € 0 on
the Lie algebra of G.



Part 1

G k-representations of finite P-height



In Part I, we introduce a rigid-analytic technique to study G k-representations
of finite P-height (in both p-adic and equi-characteristic settings; see Definition
5.2.8). The technique is closely related to Kisin’s work [Kis06] which associates to a
weakly admissible filtered (¢, N)-module a certain p-adic differential equation with
Frobenius structure over the open unit disk, which is an analogue of Berger’s work
[Ber07] in the (¢,T')-module setting. In our setting, we associate a vector bundle
with Frobenius structure (without differential structure) to so-called Hodge-Pink
structures (Definition 2.3.1) which are the replacement for filtered (¢, V)-modules.
(See §3 for the construction.) Originally, Hodge-Pink structures were defined by
Pink [Pin97] in the o9 = F,[[mo]] case, as a “correct” analogue of Hodge structures in
the function field arithmetic. Our technique applies to (equi-characteristic) Hodge-
Pink structures, as well as a p-adic version of Hodge-Pink structure.

The main results of Part I can roughly be described as follows:

(1) a theory of weak admissibility for Hodge-Pink structures (Theorem 4.3.4)
(2) the full faithfulness of various natural functors from categories of semi-
linear algebra objects into G g-representations (Theorem 5.2.3)

The equi-characteristic case of Theorem 4.3.4 was proved by Genestier-Lafforgue
[GL, Théoréeme 3.3], while the p-adic case is first formulated and proved in this
paper. The p-adic case of the full faithfulnes result (Theorem 5.2.3) is due to Kisin
[Kis06, Proposition 2.1.12].

Lastly in §7, we define the equi-characteristic analogue of Barsotti-Tate groups,
and prove the analogue of the Breuil-Kisin classification of Barsotti-Tate groups
[Kis06, Theorem 2.2.7], which is also stated as Theorem 2.4.11(1) in this paper.
See Theorem 7.3.2 for the precise statement. This result was announced by Hartl
[Har05], but since the proof was not available to the author, we work out the proof
here.

We provide more detailed and technical overview of Part I later in §2.4.12.



CHAPTER 2

Frobenius modules and Hodge-Pink theory

2.1. Rigid-analytic objects

2.1.1. Rigid-analytic rings. We now introduce more notations from rigid-analytic
geometry. We review some background in rigid-analytic geometry in Appendix §6.1,
for the sake of completeness.

We normalize the absolute value |-| on o = FracW and on any algebraic
field extension of it so that |mg| = ¢~!. (Recall that ¢ is the cardinality of the
residue field of 09.) Let C, be the completion of a fixed separable closure .
Let I C [0,1) be a subinterval, and we always assume that all radii of disks and
endpoints of I lie in ¢@<¢, even if not stated.

A the rigid-analytic open unit disk over £y with u as a “coordinate.”
Concretely, its points z satisfy |u(x)| < 1.
A;  the subdomain of A whose points satisfy |u(x)| € I,
where I C [0,1) is a subinterval (allowing I = {r}) with endpoints in ¢®<c.
Oa  the ring of rigid-analytic functions on A (or the structure sheaf of A).
Oa, the ring of rigid-analytic functions on Ay (or the structure sheaf of Ay).

Concretely, an element of Oa, is f(u) = ), o5 anu™ with a, € o such that
f(z) converges for any = € C, with |x| € I. We occasionally use the notation
Oa, to denote the structure sheaf on A; — for more detail, see §6.1. We point
out that the construction of Oa, relies on the fact that K is discretely valued,
since we use a uniformizer u of K. In the case 0g = F[[m]], one can take a differ-
ent approach which allows K to be non-discretely valued (e.g. algebraically closed
complete non-archimedean field); see §2.1.5 for more details.

Fix r € ¢@<0, and put 7 := — log, 7. Let f(u) = 3,., a;u’ be a rigid-analytic
function which converges in A[m]; ie, fe OA[M,]. Note that OA[m- contains Oa,

ifrel. )
IIfll,  The sup-norm on Ay, ,j.Concretely, || f||, := max;{|a;|r*}.

w~(f) The additive valuation: w(f) := —log, || f||, = min;{v(a;) +v-i}.

1

We recall the following well-known properties of Oa,, which will be used later.

(1) The ring Oa,, ,, is complete with respect to || - ||,., hence is a Banach ¢ -
algebra. The ring OA[TJ‘/] is complete with respect to a submultiplicative
norm max{|| - ||,.,| - ||, }, hence is a Banach J# ¢-algebra. If I is not closed
then Oa, is not a Banach algebra, but it is a Fréchet space for the (count-
able family of) norms || ||, where r € I N ¢%<0. Concretely, this means
that any sequence {f,} in Oa, converges if and only if {f,} is Cauchy
with respect to the norm | - ||,. for each r € I N gQ<e.

(2) The ring Oa, is a principal ideal domain if (and only if) I is a closed
subinterval. In general, Oa, does not even have to be noetherian. But

17



18 2. FROBENIUS MODULES AND HODGE-PINK THEORY

since the base field J¢ is discretely valued, the ring Oa, is a Bézout
domain for any I; i.e., any finitely generated ideal of O is principal. (This
follows from the work of Lazard [Laz62].) Finitely presented modules over
a Bézout domain behave like finitely generated modules over a principal
ideal domain. See §6.2.7 for an overview of where these properties come
from, and [Ked04, §2.4] or [Ked05b, §2.9] for more detail about the Bézout
properties.

For f(u) := 3, cpanu™ € Oa, where a, € £, one can check that g(u) :=
> onez Ok o(an)u?™ € Oa ,,,, where T4 C [0,1) is the subinterval whose endpoints
are qth root of the endpoints of I. So we obtain a ¢ ,-semilinear ring morphism
0:0a, = Oa,,,, by setting o(f(u)) := g(u). Note that o is flat because Oa, is a
Bézout domain and o makes OAI1 /a into a torsion-free Oa ,-module. Furthermore,
one can check that o is a finite map, granting that the gth power map on k is a finite
map (which we assumed at the very beginning of §1.3). Since we have I = I'/a
when I =[0,1) or I = (0,1) (and not otherwise), o is an endomorphism of Oa and
Oag.y-

Since 0 : Oa; — Oa ,,, is not A g-linear but o ,-semilinear, it does not give
rise to a morphism A1, — Aj in the sense of classical rigid-analytic geometry?.
Instead, we should linearize o to obtain A/ — a}OA 7 the map induced on the
rigid-analytic spaces, where 07, Aj is the scalar extension of A; under o, in the
sense of [BGR84, §9.3.6]. The geometric map A — 0%, A is not an endomorphism
on A, whereas o is an endomorphism of Oa (over o). This is not a serious
problem but causes some annoying expository issues. We will avoid using rigid-
analytic geometry when this issue comes up. Alternatively, one may handle this
issue by identifying o’ A with A; in other words, by identifying an OU*)KO A-
module with a sheaf on A where Oa-multiplication has been twisted by a;glo
(for which we need to assume that k is perfect when oy = F,[[mg]]) — under this
identification, oA becomes an endomorphism of A and induces the continuous % -
algebra map defined by u +— u? on the global sections. We do not take this point
of view.

DEFINITION 2.1.2. The Robba ring R is the rising union of the rings of rigid-
analytic functions on some open annulus with outer radius 1. The bounded Robba
ring R’® is the rising union of the rings of rigid-analytic functions bounded near
the outer radius. In other words,

R = lim I'(Ap,1),04)
r—1-
Rbd .= h_n)1 F(A[nl),OA)bd,

r—1-—
where T'(Ap. 1), Oa)% denotes bounded rigid-analytic functions on Ap -
The Robba ring R is not noetherian, but is a Bézout domain (being a rising

union of Bézout domains). The subring R is a field with the following discrete
valuation:

(2.1.2.1) vgea(f) = lim w,(f), for f € R,

Y=o

IThis issue is resolved if we are willing to use Berkovich spaces, which has better functorial
properties.
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where w, (f) := —log, || f||,. is the additive valuation.

Let @rea be the valuation ring. One can check that 7y € @rea is a uniformizer,
k((u)) is the residue field, and ogea = 0g where the completion on the left-hand side
is with respect to the mg-adic topology. We also remark that oa : Oa, — OAll/q
induces “Frobenius” endomorphisms of R, R, and @xua.

It is immediate that:

(2.1.2.2) S[1/m) = Oa NRY™,
In particular, & = Oa N Drea.

2.1.3. Let P(u) € &(= W([u]]), as defined in §1.3.3. Recall that P(u) is a
G*-multiple of an Eisenstein polynomial in W{u] (and in fact, is an Eisenstein
polynomial if o9 = Z,). Therefore o™ (P(u)) is also a &*-multiple of an Eisenstein
polynomial in W{u], and in particular generates a maximal ideal in 6[%0}

Denote by z,, € A the unique point where 0™ (P(u)) vanishes. Note that if the
residue field J#o(xzg) at xg is separable over J¢, then the residue field J¢ o (z,,) is
separable for all n > 0. Now we define a convergent infinite product

(2.1.3.1) A= o (ZESD ’

n>0

which is a rigid-analytic function on A and has simple zeroes exactly at {z, }n>0
and no other zeroes. From the construction, we have
P(0)
(2.1.3.2) o(A) = Plu) A
In particular, Oa[1/A] is stable under o inside Frac(Oa).

Let OAa 2, be the ring of germs of rigid-analytic functions at z,, € A, which is
known to be a discrete valuation ring [BGR84, §7.3.2]. Since Ox ., is faithfully flat
over O ., we may study analytic local properties of a coherent sheaf at x,, € A
via completed stalks at z,,. In fact, Oa ., can be thought of as the o™ (P(u))-adic
completion of Oa, or equivalently, the o™ (P(u))-adic completion of (‘5[;10]; for the
proof, we take the global sections of the short exact sequence of coherent sheaves

o P(u)? .
0 0a" 7% 0, O /(0" P (1)) — 0

and use that the global sections functor I'(A, -) is exact on coherent sheaves. As a
consequence of this argument, the residue field J¢ o (z,,) at x,, € A is isomorphic to
Oa/(c"P(u)) < G[%]/(U”P(u)) We often write & := J¢ o(xg) = 6[%0]/73(11)

We have a canonical ¢ g-algebra isomorphism Oa ., = & o(xn)[[0™(P(u))]]
lifting the residue field identification, when ¢ /¢ is separable. But if 0g =
F,[[mo]] then such an isomorphism can fail to exist, so in general we avoid using
this isomorphism.

For n,m > 0, the Frobenius endomorphism ¢” : Oa — Oa induces, on com-
pleted local rings, local injections

(2133) 0-” : OZ‘,ITIL — O/A\vwn+m )

which are o™-semilinear inclusions of O a-algebras carrying the uniformizer o™ (P(u))
to the uniformizer "™ (P(u)). By linearizing it over Oa, we obtain the following
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isomorphism:
(2134) Yn,m * Oa Ron,0p (’)&Im = O/A\’anrm .

That this natural map is isomorphism uses that ¢ : Oa — O, is finite and flat.
Recall that in the case when oy = F,[[no]], the finiteness of o follows from the
assumption that k has a finite p-basis.

We also obtain o, -semilinear inclusions o™ : #'o(zm) — Ho(Tnim) by
reducing the map (2.1.3.3) modulo maximal ideals. When J# /¢, is separable
then via the canonical isomorphism Oa ., = & o(xy)[[c™P(u)]] for each m we
can view the map (2.1.3.3) as 0™ : (@) [[0™(P(w))]] = H o(@pim)[[c" TP (u)]]
which restricts to the natural map o™ : () — £ o(Tn+m) on coefficients and
o™ (P(u)) — o™t (P(u)). We do not us this later, since it is not available when
H | is not separable.

REMARK 2.1.4 (The case 0y = Z,). Using the notations from §1.3.1.2, if n > 0
then #¢(z,) and # o(7(™) do not not have to be isomorphic extensions of #.
The former is generated over % bya root of the irreducible polynomial o™ (P (u)),
while the latter is generated over .# o by a root of P(u?"). We have U;}OP(u?’n) =
o™P(u), where o, acts on the coefficients.

2.1.5. “Conversion” from Hartl’s Dictionary. We momentarily assume that
09 = Fy[[m]]. Then we may consider the rigid-analytic open unit disk over K
and use 7 as its “coordinate.”? This open unit disk will be denoted, in this paper,
by Ak, to emphasize that the disk is defined over K. For a subinterval J C [0,1)
with endpoints in ¢%<0 U {0}, we let Ak, ; denote the subdomain of Ax whose
points x satisfy mo(x) € J. For f(mo) := >, cpanmy € Oa, , where o, € K,
one can check that g(m) := >, o, (an)imy € OAK,Jl/w where J/7 C [0,1) is the
subinterval whose endpoints are gth root of the endpoints of J. So we obtain a
og-semilinear ring morphism o : Oa, , = Oa,_ ,,, by setting o(f(m)) := g(mo).
Since we assumed that K has a finite p-basis, the gth power map ox : K — K
is finite and flat so o is finite and flat. In [Har10, Har09], Hartl works with Ag
instead of A.

Put I :=[¢~% ¢~ "] and J := [¢~'/", ¢~ /] for some positive rational numbers
r,5. The K-algebra Oa, , naturally sits inside of the K-vector space K|[m, 7%0]],

1

formal Laurent series over k. On the other hand, tuhe K o-algebra Oa, sits in-
side of the J# y-vector space J o[[u, %]], which naturally sits in the k-vector space

E[[mo, %O,u L]]. One can see that Oa, and Oa,., define the same subspace of

T u

which naturally sits in the k-vector space k[[mg, Wl—o, u, —|] of 2-variable infinite-tailed

k[[mo, Wio,u, %]], and has the same multiplication law. (Indeed, one can charac-

terize the ¢ g-subspace Oa, C #o[[u, 2]] via some “growth condition” of the
coefficients as worked out in §6.1.2, and one has a similar description of the K-
subspace Oa, , C Kl[mo, ﬂ—lo]] Then, one directly checks that they define the
same k-subspace of k[[mg, 7%0, u, 1]].) From this, one can also see that the functions
bounded near the boundary of A correspond functions which have an isolated pole

at the origin of A, and vice versa. In particular, one can recover Oa, the Robba

2This has no “geometric” analogue for oy = Zj, but OiAm(o b can be thought of as an analogue

of Oap-
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ring, and the bounded Robba ring using A .

Oa = {Zaiﬂ'é S F(AK,OAK”CM € og, VZ}
1E€EZ
R = h_n)l F(AK,(07T],0AK)
r—0t

. 1
Rbd  — h_r)n F(AK?[O,T])OAK)[i]’

r—0+ 7o
where A is the punctured open unit disk over K with coordinate mg.

The advantage of using Hartl’s A g over using A is that K does not have to be
discretely valued.® (The right sides of above equations make sense even if K is not
discretely valued.) One can even replace K by any affinoid K-algebra and develop
the theory for “families”, which makes the argument in [Har10, §3] work. It is very
useful to allow K to be an algebraically closed ground field. For example, using

Ac,, we can give natural definitions for the following analytic rings, which are also
defined in §6.1.10:

(2151> Ralg = h_r)n F(ACK,(O,T)7OACK)
r—0t

1
(2.1.5.2) Ralebd  — @F(ACK,[O,T),OACK)[*]

r—0+t 7o
These rings play a crucial role in “Dieudonné-Manin type” classification (Theorem
4.1.2).

2.2. ¢-modules of finite P-height

Let (R, 0) be a o-ring, and we always assume o-flatness unless stated otherwise.
For any R-module M, we write 0*M := R®, rM. A finitely presented R-module M
equipped with an R-linear map ¢ : 0*M — M is called a (¢, R)-module, or simply
a @-module if there is no risk of confusions. A morphism (M, ¢ ) — (N, ¢n) of
w-modules is an R-linear map f : M — N such that fopy = ¢noo*f. For two
w-modules (M, ppr) and (N, ¢n), the tensor product M ® g N is again a p-module
via o @ pnN-.

From now on, assume further that (R,o) is defined over (&,0), so P(u) is
viewed as an element of R. We further assume that my and P(u) are not zero-
divisors in R. The main examples of such R are &, og, £, Oa, R, and R,

DEFINITION 2.2.1 (p-module of finite P-height). We call a (¢, R)-module (M, ¢)
is of finite P-height if M is a locally free* R-module and coker ¢ is killed by some
power of P(u). We say that (M, ) is of P-height < h if P(u)"-coker o = 0. We
let Modp(p) denote the category of ¢-modules over R of finite P-height, and let
Mod ;(¢)S" denote the full subcategory of Mod (¢) whose objects are of P-height
< h.

If P(u) € R* (for example, if R = og, R, R"?), then a p-module (M, @) is of
finite P-height if and only if s is an isomorphism. Hence we make the following
definition.

3In fact, Hartl proves Theorem 4.3.4 of this paper allowing more general K than discretely
valued ones, with the statement modified if K is not discretely valued.
1A locally free module is always assumed to be of constant rank.
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DEFINITION 2.2.2. An ¢-module (M, ¢) over R is étale if ¢ is bijective. The
category of étale p-modules over R is denoted by Mod$ () taking morphisms to
be those of p-modules. We denote by Mg’ﬁee(@) the full subcategory of étale
p-modules whose underlying R-modules are free. We denote by M%’tor(go) the
full subcategory of étale ¢-modules whose underlying R-modules are annihilated
by some power of 7.

Since torsion étale p-modules play important roles in proofs (even though state-
ments may only concerns finite free étale p-modules), we do not require R-freeness
in the definition of étale p-modules.

2.2.3. Injectivity of . The following lemma can be useful to prove the injec-
tivity of ¢ in many cases.

LEMMA 2.2.3.1. Let (R,0) be a o-ring over (8,0g) and let (M, pnr) be a -
module over R. Suppose that there exists an R-algebra R’ (not necessarily a o-ring)
such that the natural maps M — R'@r M and idgr @pp : R'Qgr(0*M) - R'@pM
are injective. Then, the map @y s injective.

PRrROOF. It follows from chasing the diagram below.
c*M—— R ®p (6*M)
Wl s
M~ R ®r M
O

COROLLARY 2.2.3.2. Assume that P(u) € R is not a zero-divisor (as assumed
at the beginning of the section). For any M € Modz(p),” the map oy : o*9M — M
1s injective.

PROOF. Since P(u) € R is not a zero-divisor, the free R-module M has no

non-trivial P(u)-torsion. So we obtain the corollary by applying the above lemma
to R = R[ﬁ]. (]

2.2.4. Formal Properties. Here we record some immediate properties, which
mostly follow from o-flatness of R.

(1) For a short exact sequence 0 — M’ — M — M" — 0 of p-modules, if
two of them are étale (respectively, of finite P-height and all three terms
are free), then so is the third. If M is of P-height < h, then M’ and M"
are also of P-height < h. To verify the claims on P-height, we use the
injectivity of ¢ (Corollary 2.2.3.2).

(2) (scalar estension)® Let (R,0) ER (R',0’) be a morphism of o-flat rings
where ¢’ lies over o; i.e., 0/ o f = foo. Let M be a (p, R)-module. Then,
the “scalar extension” R’ @ g M is naturally a (¢, R')-module via R’ ® ¢:

this makes sense as a Frobenius structure, using
id
R ®q 5 (R ®p.r M) = R @p 5 (R©er M) =% R @5 p M

SWe write M € Mod% (¢) to mean M € Ob(Modj’i‘./@t (¢)). We keep this convention throughout
the paper.
6We do not have to require o-flatness for these claims, except for the étaleness assertion.
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Moreover, if M is of finite P-height (respectively, étale), so is R’ @7 r M.
(3) The condition of being of finite P-height (respectively, étale) is stable un-
der ®-product. The rank-1 free module R together with the linearization
of ¢ := idg ®o defines the “neutral object” among ¢-modules in the sense
that it is the “left and right identity” under ®-product. (Under the iden-
tification R®pr s R = R by >, a; ® b; — >_a;0(b;), the map ¢ = idg Qc
induces idg : R — R.) We often let R denote this neutral object.

Etale ¢-modules enjoy further nice properties.

(4) Internal Hom is defined in Mod$! (): since we have a natural isomorphism
Homp(c*M,c*M') = o* Hompg(M, M’) for finitely presented R-modules
M and M’, we define (Homp(M, M'), f + @ o fopy)t) € Mod%(y),
where f € 0* Homp(M, M') =2 Hompg(c*M,oc*M').

(5) On finite free objects M € Mod5™°(¢), one can define the duality functor
M* := Hompg (M, R) by taking the internal hom into the “neutral object”
(R, idg ®O‘).

(6) Duality for torsion étale p-modules is not a good concept in general. But if
R is a discrete valuation ring, we may show that M* := Hompg (M, Frac(R)/R)
with a natural ¢+ is a good duality functor. More specifically, we es-
sentially interpret this as in (4) except Frac(R)/R is not an object of
Mod¥*" (). Nonetheless, all R-linear morphism from M into Frac(R)/R
factors through some finite submodule m"¥ R/R C Frac(R)/R for N > 0
since M is of finite length, so there is no problem.

REMARK 2.2.5. To give a natural p-module structure on Hompg (M, M’) in
(4), we need to invert pps. If we try to carry out the same construction for non-
étale p-module M of finite P-height, then the @-structure on the internal Hom
Homp (M, M') will pick up a “pole” at the ideal P(u)R. (At the beginning of the
section, we assume that P(u) is not a zero divisor in R.)

Next, we define Tate objects and Tate twist.
DEFINITION 2.2.6. For n € Z>¢, the Tate object R(n) is the ¢-module
R(n) := (R, P(u)"-(idg ®0)).

For (M, ¢n) € Modg(y), the Tate twist M (n) is the tensor product M(n) :=
M ®@gr R(n) =2 (M, P(u)™ o).

It is clear that R(n) = R(1)®™. For n > 0, we write M (—n) := (M, P(u) "pnr)
if P(u)"™pps is well defined, which is always the case if P(u) € R*. It follows that
(M(n))(n') = M(n + n') whenever both sides are well-defined.

Note that the definition of R(n) depends upon the specific element P(u) € R,
not just upon the ideal P(u)-R. In the case 09 = Z,, our normalization P(0) = p
will play a role in §4.3.6 and §5.2.13.

2.2.7. Isogeny. Recall that Mod () denotes the category of (¢, R)-modules
of P-height < h (Definition 2.2.1). A morphism f : M — M’ in Modg(¢p) is called
an isogeny if f is injective and coker f is killed by some power of mg, say by 7.
Then, there exists a unique g : M’ — M such that fog =7} and go f =}, by
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the following commutative diagram

M*f>M’*»cokerf

/7
7/
ﬂé\’l /H!Q lﬂé\] lO
P

M —f> M' ——> coker f.

Here the uniqueness of g follows from our assumption that 7y is not a zero divisor
in R. Hence we can define the isogeny category Mod R(gp)[%ﬂ] by formally inverting
o on morphisms.

The natural functor Mod p(p)[~] — ModR[%](go) which sends M to M[T%O] is

o
fully faithful. Using this, we identify the isogeny class containing M with M [7%0]
This functor does not have to be essentially surjective unless R = R[X]. For

0
example, if R = & or og¢ then the functor is not essentially surjective.

2.2.8. Vector Bundle on A with Frobenius Structure. We will see later (in
§6.1.5) that one can view Mod 5 (¢) as the category of vector bundles on A equipped
with a certain nice Frobenius structure in the following sense. For M € Mod A (),

let M and (;7\7) be the vector bundles over A with global sections M and o*M,

respectively. Then ¢ : 0* M — M corresponds to a map @ : o*M — M of coherent
Oa-modules, and this is an isomorphism outside o € A (which is the point cut
out by P(u) = 0).

By the discussion of §2.2.4, the scalar extension M — Oa ®g M defines a
functor Modg () — Moda (¢) that factors through the isogeny category of the
source category, so we obtain a functor

1
(2.2.8.1) Modg ((p)[w—o] — Modx ().
We will see, after some nontrivial work, that the essential image of this functor is
precisely the objects pure of slope 0 in the sense of Kedlaya (for the case 0g = Zj)
and Hartl (for the case 09 = Fy[[mg]]). This is proved in Proposition 4.3.3 of this

paper.

2.2.9. Hodge-Pink type. We now work with the case R = 6[7%0] or Oa. Since
Oa is a Bézout domain and 6[7%0] is a principal ideal domain, we have a struc-
ture theorem for finitely presented R-modules. Furthermore, the natural inclusion
6[7%0] — Oa induces an isomorphism between P(u)-adic completions; in particu-
lar, we have an isomorphism 6[7%0]/”P(u)w = Oa/P(u)? for any w > 0.

A Hodge-Pink type v is a collection of integers m,, for each non-negative integer
w, such that only finitely many m,, are nonzero. We call n := ), m,, the rank of
v. If my, =0 for all w ¢ [0, h], we say v is of P-height < h, and we then define a

quotient AV of (R/P(u)")®" as follows.
e (SEL) . _Oa \™
(2294 V=0 <<7><u>w>> =9 (wom)

Although the term for w = 0 does not influence AV, my may be positive and in
(2.2.9.1) we are viewing AV as a quotient of (R/P(u)")®". Any R/P(u)"-module
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which can be generated by n elements is isomorphic to AV for a unique v with rank
n and P-height < h.

Let M be a (¢, R)-module of P-height < h. Assume furthermore that rank M =
n. Then the cokernel of @y, being annihilated by P(u)", is isomorphic to A for
a unique Hodge-Pink type v of rank n (and necessarily of P-height < h). We say
M is of Hodge-Pink type v if rank M = rank v and coker o = AY as R-modules.
We say w € Zx>( is a Hodge-Pink weight of M if m,, # 0, and we call m,, the
multiplicity of w for M.

The following equivalent formulation can be useful. Keeping the notations as
above, M is of Hodge-Pink type v if and only if there exists a choice of R-basis for
M which induces the following commutative diagram:

(2.2.9.2) (R/P(u)h)®m — M/P(u)- M
AY =~ coker @ aq

For M € Modg (p)S", the cokernel of @gy can be a non-trivial extension among
S /P (u)™s, so inverting g is crucial to obtain the simple form as above. The point
is that 6[7%0] is a principal ideal domain while & is not.

REMARK 2.2.10. In due course, we discuss the relationship between the notion
of Hodge-Pink type/weights and the notion of Hodge-type/Hodge-Tate weights for
crystalline G, -representations in the case 09 = Z,.

2.2.11. Generalized p-module of finite P-height. As previously, assume that
R be a G-algebra with no non-zero P(u)-torsion (i.e., we have R C R[ﬁ])
This condition is satisfied if R is a domain and P(u) # 0 in R. Then we can
make the following generalization of Mody(¢) by allowing ¢ to have a “pole” at
P(u)-R. Consider a finitely generated locally free R-module M, equipped with a
R[ﬁ]—linear map ¢ : (J*M)[ﬁ] = M[ﬁ] We call such a pair (M, ) a
generalized (¢, R)-module of finite P-height or a generalized (p, R)-module if P is
understood. If P(u) € R*, then they are just étale ¢-modules. In general, the
category of generalized p-modules of finite P-height contains Mod (@) as the full
subcategory of objects (M, ) such that ¢ restricts to a map c*M — M, and is
thereby equivalent to Modg(¢p) if P(u) € R*. For any N > 0 (depending on M),
the map P(u)N ¢ restricts to o*M — M, so (M, P(u)-¢) € Mod ().

We can extend all the natural operations on Mod () as in §2.2.4 to generalized
w-modules. For example, we can define duals and internal homs for generalized -
modules of finite P-height, as suggested earlier at Remark 2.2.5. In particular,
we can define the Tate objects R(n) for all n € Z, so R(—n) = R(n)*. For any
generalized g-module (M, o), the Tate twist M (n) := M®grR(n) for n > 0 becomes
an actual ¢-module.

Most of our results on Mody(p) can extend to generalized ¢-modules by Tate
twist, and some results and definitions can be stated more neatly using generalized
p-modules. But we do not crucially use this notion. For 0y = F,[[m0]], the definition
of generalized ¢-module over & is exactly that of a local shtuka over ox. (See
Definition 7.1.1.)
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2.3. Hodge-Pink structure

In this subsection, we define the objects (so called, isocrystals with Hodge-Pink
structure) which are the equi-characteristic replacement for “filtered isocrystals”.
In §3.2 we will see how these objects arise from Moda (¢) and Modg ((p)[ﬂ—lo} This
subsection is written based on [Harl0, §2.2].

We call an étale p-module over £ an isocrystal, or more precisely a isocrystal
over k. Recall that o € A is the point cut out by P(u) = 0, and we denoted by
A the residue field at g € A. In §2.1.3 we have seen that there is a canonical
isomorphism ORa ,, = Z[[P(u)]] as J g-algebras when J¢ /¢ is separable, and
in general P(u) is a uniformizer of Oa 4, -

DEFINITION 2.3.1. For a finite-dimensional .# o-vector space D, we put’ YSZO =
R 2y @y D. A Hodge-Pink structure® on D is a (K, -lattice A inside D,, [ﬁ] =
OA z, [ﬁ] ®., D. A Hodge-Pink structure A on D is effective if A contains the
standard lattice 13930. An effective Hodge-Pink structure A is of P-height < h if A
is contained in P(u)~"-D,,.

Let A and A’ be Hodge-Pink structures on D and D’, respectively. We say that
a J o-linear map f : D — D’ respects Hodge-Pink structures if id @ f : ﬁzo[%] —

D, [5(ay] takes A into A, where D, = Oau, Ox, D'

An isocrystal with Hodge-Pink structure (respectively, with effective Hodge-Pink
structure) is a tuple (D, ¢, A), where (D, ) is an isocrystal and A is a Hodge-Pink
structure (respectively, an effective Hodge-Pink structure) on the underlying J# o-
vector space D. We denote by HP () the category of isocrystals with Hodge-Pink
structure, where a morphism is a ¥ -linear map on the underlying vector spaces

which is ¢-compatible and respects Hodge-Pink structures. We denote by 'H’Pio(cp)

(respectively, H”P[Ig’h} (p)) the full subcategory of isocrystals with effective Hodge-
Pink structure (respectively, with Hodge-Pink structures of P-height < h).

REMARK. Originally, Hodge-Pink structures were defined by Pink [Pin97] in
the case 09 = Fy[[mo]], as a “correct” analogue of Hodge structures in function field
arithmetic.

2.3.2. Let D := (D, p,A) and D’ := (D', ', A’') be objects in HPx (). The
category HP i () is equipped with the ®-product

(D, ¢, M) @ (D', ¢, M) i= (D @y D' @ ¢, A@pn A)
and the internal hom via the identification Hom »,(¢*D, 0*D") = ¢* Hom (D, D’):
Hom((D,A), (D', A")) :== (Hom ¢, (D,D"), f — ¢’ o fo ga_l,HomO;mO (A, A)),
which satisfy all the expected properties. One can check that 1 := (¢, id®c, X 4, )
is the “neutral object” in HP i (¢) and the contravariant functor (D, A) — (D*, A*) =

Hom((D, A), 1) defines a duality. The category 'H”Pio(ap) is stable under ®-product,
but not under internal hom or duality.

7Later, we will put D := Oa ® ¢, D, so 510 is the completed stalk of D at zg € A.

8The usual definition of a Hodge-Pink structure is a OZ’IO -lattice A inside (OZ,ZO )[ﬁ] ®
o*D. But via the isomorphism ¢ : ¢*D — D one can pass between this definition and the usual
one - including all the statements involving “Hodge-Pink structure.”
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For any integer n, we define the Tate object 1(n) to be:
(2.3.2.1) 1(n) := (X e, p(o*e) = mie, P(u) " Oa,z )-

For any (D,A) € HPk(p), we define the n-fold Tate twist to be (D,A) ® 1(n) =
(D, P(u)~™-A). Clearly for any Hodge-Pink structure (D,A) € HPx(p), the
Hodge-Pink structure (D,A) ® 1(n) = (D, P(u)~"-A) is effective for n > 0.

A subobject (D';A') C (D,A) in HPk(p) simply means that the natural
inclusion is a morphism of HPk(p); ie., D' C D is p-stable and A’ C AN

(73;0[73(1@]) We say that a subobject (D’,A’) C (D, A) is saturated® if A’ =

AN (73’ [P(lu)]) holds, where the intersection is taken inside ﬁxo[ﬁ} Similarly,

xo
a quotient (D", A") of (D, A) means that D" is a quotient of D as a % ¢-vector space
and that A" coincides with the image of A under the map Dy, [ﬁ] — ﬁgo[ﬁ]
induced by the natural projection. For any saturated subobjects (D', A’) C (D, A),
we can form the quotient (D/D’, A/A’), and the kernel (D', A’) of the natural pro-
jection (D, A) — (D"”,A”) onto a quotient is a saturated subobject such that the
natural projection induces an isomorphism (D/D’, A/A) = (D", A").

A short exact sequence in HP k() (HP7 (), respectively) is defined as a
short exact sequence of underlying % o-vector spaces which induce a short exact
sequence on the Hodge-Pink structures (i.e., on Oa 4, -lattices A’s). The left/right
flanking term is a saturated submodule/quotient of the middle term, and conversely,
any saturated submodule or quotient can be placed in a short exact sequence in an
evident manner.

2.3.3. Hodge-Pink type and Hodge-Pink structures. Let v be a Hodge-Pink
type; i.e., a collection of non-negative integers m,, for each integer w, such that
only finitely many m,, are nonzero. In §2.2.9 we only considered m,, when w is
non-negative. Now we are allowing “negative weights.”

Now we associate such a v to a Hodge-Pink structure A on a J# y-vector space
D. First, we define a decreasing filtration on ﬁro from the Hodge-Pink structure
as follows:

(2.3.3.1) Fil® (ﬁm) = (Dy) N (P(w)” - A)  for w e Z

where the intersections are taken inside ﬁro[ﬁ] In turn, we obtain a separated
and exhaustive filtration Fil® D on D := # ®_, D by taking the image of this
filtration Fil} (ﬁxo) under the natural projection map ﬁmo — ﬁxO/P(u)ﬁxo x~

Dy . Note that gr¥ Dy := Fﬂﬂ% =0 for w < 0 and for w > 0.

DEFINITION 2.3.3.2. Let v := {m,, := dimy (gr(Dx))}. We say (D, A) is
of Hodge-Pink type v. The Hodge-Pink weights for (D,A) are w € Z such that
my, # 0, and we call m,, the multiplicity of w. The Hodge-Pink type for an isocrystal
(D, ¢, A) with Hodge-Pink structure means the Hodge-Pink type for (D, A).

If (D, A) is of Hodge-Pink type v = {my, }wez, then ), m,, equals dim » (# ®
D = dim_y, D. Clearly a Hodge-Pink structure (D, A) is effective (respectively, of

9n [Har10, §2.2], saturated subobjects are called “strict subobjects” We chose to call them
“saturated” because a subobject (D', A’) C (D, A) is saturated if and only if A’ C A is saturated.
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P-height < h) if and only if m,, = 0 for all w < 0 (respectively, m,, = 0 for all
w ¢ [0, h)).

The following proposition shows the behavior of Hodge-Pink types/weights
under the natural operations, such as duality, tensor product, and internal Hom.

PROPOSITION 2.3.4. Assume that (D,A) € HPk(p) has Hodge-Pink weights
{w1,--- ,ws} and each weight w; has multiplicity m;.

(1) The dual (D*,A*) has Hodge-Pink weights exactly {—w1, - ,—ws} and
each weight —w; has multiplicity m;; i.e., the duality inverts the signs of
the Hodge-Pink weights.

(2) Assume (D',A') € HPk(p) has Hodge-Pink weights {w{,--- ,wl} and
each weight w}, has multiplicity m’,. Then the tensor product (D® D', A®
A') induces the tensor product filtration on (K 5, @, (DRD’). In particu-
lar the Hodge-Pink weights for the tensor product are {w;+w}, }i=1,... s =15
and each weight w has multiplicity Zj,j/ m; + m;», where the summation
is over (j,j') such that w = w; + w.

(3) F07'" the Tate twist (D, A\)®1(n) = (D, P(u)""A), we have that Filé;(u)_n,A =
Fil)y ™; i.e., the Tate twist shifts the filtration. In particular, the Hodge-
Pink weights for the twist (D, P(u)~"A) are exactly wj+n with multiplicity
mj.

Using (1) and (2), we can obtain the filtration, Hodge-Pink weights, and mul-
tiplicities for the internal hom, which is left to the reader.

The following easy lemma shows how to recover the Hodge-Pink structure A
from the filtration Fil} defined by A.

LEMMA 2.3.5. Let (D,A) € HPk(v), and let Fﬂj“{(’lswo) be the filtration on
D, associated to the Hodge-Pink structure A. Then,

A=Y (p(u)*w .Fﬂx(ﬁxo)) = Fil° (ﬁmo [I/P(U)]) ;
wWEZ

where the last term is the Oth filtration for the tensor product filtration on ﬁxo [p(lu)]

12

OA 2o [ﬁ] ® 02w Dy,, where we put the P(u)-adic filtration on OA .z [P(lu)].

Let v := {my }wez be a Hodge-Pink type, and assume that m,, = 0 for all

w < 0. In §2.2.9, we associated to v a G[io}—module AV killed by some power of

P(u) which recovers all m,, except mg. The following corollary shows how AV is
related to any Hodge-Pink structure A on D of Hodge-Pink type v.

COROLLARY 2.3.6. Consider an effective Hodge-Pink structure (D, A) € HP7 (i)
that is of Hodge-Pink type v := {my}, so m,, =0 for all w < 0. Then we have

(2.3.6.1) A/Dy, = A = P (%) .

Mgy 70

In §2.2.9, we also defined the notion of Hodge-Pink type on Modg () [ﬂ—lo] Later

in §3.2.6, we will define a functor H : Mode(go)[%o] — HPZ’(p) which preserves
Hodge-Pink types, so the notion of Hodge-Pink type for these two categories is
compatible.
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2.3.7. Weak admissibility. Let (D, p,A) € HPk(p) be of rank 1; i.e., D is a
1-dimensional vector space over . Necessarily, A = P(u)~"-D,, C D,, [%] for
a unique h € Z. We define the Hodge number for (D, ¢, A) to be tg (D, A) := h. We
often write ¢y (D) if A is understood. For any % ¢-basis e € D, there is a nonzero
element o, € ' such that p(c*e) = ae - e. Note that ord,,(ae) is independent
of the choice of basis though a. is not. We define the Newton number for the
isocrystal (D, ¢) to be tx(D) := ordy, (ce)-

Since the category HPx(¢) has an obvious notion of exterior products (us-
ing ®-products and quotients), we define Hodge and Newton numbers for any
(D,p,A) € HPk(yp) as follows: tg(D) := tg(det D) and ty(D) := ty(det D).
Now, we can define “weak admissibility” for Hodge-Pink structures.

DEFINITION 2.3.7.1. An object (D,A) € HP k() is called weakly admissible if
the following properties hold:

(1) tu(D) = tn(D).

(2) For any subobject (D', A’) C (D, A), we have tg (D', A') < ty(D").
The full subcategory of isocrystals D with a weakly admissible Hodge-Pink struc-
ture A will be denoted by HPL%(¢). We similarly define HPY>> () and HPL"1" (o)

as full subcategories in HP?{O(QD) and HP[Ig’h](g@) consisting of weakly admissible
objects.

LEMMA 2.3.7.2. Condition (2) in Definition 2.3.7.1 is equivalent to:
(2) For any saturated subobject (D', A") C (D, A), we have tg(D',A") <
ty (D)
In particular, an isocrystal (D,A) of rank 1 is weakly admissible if and only if
tu(D)=tn(D).

PROOF. It is enough to show (2)" implies (2). By passing to the determinant
of (D', A’), we may assume that D’ has rank 1. Let (D', AL,,) be the “saturation”

sat

of (D', A\);ie., Al :=AN (ﬁ;o[p(lu)]) The saturation AL, necessarily contains

A’ by the definition of subobject, so we have ty (D', AL ) > tg(D’,A’). But the

sat
Newton numbers of both subobjects are the same because they only depend on the
underlying isocrystals, not on the Hodge-Pink structure. Therefore, the inequality
tg (D', N) <tn(D') follows if it holds for the saturation (D', AL,,). O

sat

PROPOSITION 2.3.8. The full subcategory HPR" (v) of HPk () is closed under
the formation of tensor, symmetric and exterior products, internal homs and dual-
ity, extensions and direct sums. A direct sum (D, AN)® (D', \) is weakly admissible
if and only if both factors are weakly admissible. Moreover, HPR* () is an abelian
category.

A direct proof of this proposition is presented in [Pin97, §4,§5]. (Note that
Pink uses the terminology “semistability” to mean our weak admissibility.) The
direct proof is rather tedious but elementary except the assertion about tensor
products which can be proved by adapting Totaro’s argument for weakly admissible
filtered ¢-modules [Tot96]. It is also possible to deduce these using the rigid-analytic
interpretation of weak admissibility (Theorem 4.3.4) and the theory of slopes.

Since Tate objects 1(n) are weakly admissible for any n € Z, an isocrystal with
weakly admissible Hodge-Pink structure (D, A) is weakly admissible if and only if its
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Tate twist (D, A)(n) is weakly admissible for some n, by the previous proposition.
One can also directly see this since the Tate twist (D, A)(n) increases ty and ¢tz by
n for all subobjects and quotient objects. We also note that if the residue field & is
algebraically closed, then any rank-1 isocrystal with weakly admissible Hodge-Pink
structure is isomorphic to 1(n) for some n € Z. As mentioned in Remark 4.1.3, this
is a direct consequence of the Dieudonné-Manin classification (Theorem 4.1.2).

2.4. Summary of Kisin’s Integral p-adic Hodge Theory

We assume that oy = Z, throughout the subsection and follow the notations
from §1.3.1.2. We fix the uniformizer 7y = p of Z,. The main purpose of this
subsection is to explain the relationship between crystalline G, -representations
and the semilinear algebra objects introduced so far, which will motivate the later
discussions. Most of the results in this subsection are proved in [Kis06]. We assume
some basic knowledge of crystalline and semi-stable representations (and p-adic
Hodge theory), for which we refer to [Fon94a, Fon94b].

2.4.1. Filtered isocrystals. A filtered isocrystal is (D, ¢, Fil®* D ), where (D, ¢)
is an étale p-module!® which is finite-dimensional over .#7 (i.e., an isocrystal) and
Fil* D is a decreasing separated and exhaustive filtration on Dy := % ® 4, D by
A -linear subspaces. We also define a filtered (¢, N )-module to be (D, p, N, Fil®* D )
where (D, ¢, Fil® Dy ) is a filtered isocrystal and N : D — D is a (necessarily nilpo-
tent) % ¢-linear endomorphism such that Ny = ppN. We call N a monodromy
operator. We view a filtered isocrystal as a filtered (¢, N)-module by setting N = 0.
We let MF (o) denote the category of filtered isocrystals, and MF (@, N) ¢ the
category of filtered (p, N)-module with the obvious notions of morphisms. We have
natural definitions of subobjects and quotients; direct sums; tensor products; in-
ternal homs; and duality. We leave the exact formulation to readers, or refer to
[Fon94b).

Recall that a “Hodge-Pink type” in the sense of §2.3.3 is a collection v of
non-negative integers m,, for each integer w € Z such that only finitely many m,,
are nonzero. We say v := {my, := dim_y (gr* D)} is the p-adic Hodge type for
(D, p, N,Fil®* D), or Hodge type for (D, p, N,Fil® D) in short. Note that the
numerical datum v determines the decreasing separated and exhaustive filtration
Fil® D of D_ by its # -subspaces, uniquely up to .# -automorphism of D_,. We
call w for which m,, # 0 a Hodge-Tate weight for (D, p, N,Fil®* D), and m,, the
multiplicity of w. Note that the definitions of Hodge type, Hodge-Tate weights,
and their multiplicities have nothing to do with ¢ and N but only use Fil® D .
We let MF (Lp)i? (respectively, MF (np)([;}h]) denote the full subcategory of filtered
isocrystals such that all the Hodge-Tate weights are non-negative (respectively, are
in [0, h]). We make similar definitions for MF (¢, N)i? and MF (¢, N)k[;}h].

We now define the Hodge and the Newton numbers for D := (D, ¢, N, Fil® Dy ).
We first assume that D is 1-dimensional. Then we define the Hodge number
try(D) =t (D,Fil®* D) to be the unique Hodge-Tate weight. To define the New-
ton number ¢y, choose a basis D & J# e so p(e) = aee for some ae € H# . The
Newton number tn(D) = tn(D, ) is ord,(e). If D is of arbitrary dimension, we

10Follovving the usual convention, ¢ is a o-semilinear endomorphism throughout this
subsection.
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define tg (D) := ty(det D) and tn (D) := tx(det D). Note that the Hodge number
only uses the filtration, while the Newton number only uses the Frobenius structure.

A filtered (p, N)-module (D, ¢, N, Fil®* D ) is called weakly admissible if t ;7 (D)
ty (D) and the inequality ¢ (D’) < tn(D’) holds for any y-stable subspace D' C
D where D', is given the subspace filtration. We let MF(p)%* (respectively,
MF(p)252° MF(p )w" - h]) denote the full subcategory of weakly admissible fil-
tered isocrystals (respectively, weakly admissible filtered isocrystals with the condi-
tions on Hodge-Tate weights). We similarly define MF (¢, N)%¢ , MF(p, N)4>0,

and MF (¢, N)') a:[0:h] , where now D’ C D ranges over ¥ o-subspace stable under
@ and N.
From Fontaine’s “period ring formalism,” we obtain a contravariant functor
D? . Repms(g x) — MF(p)%#, and another contravariant functor V7, from
MF () to such (not necessarily finite-dimensional) Q,[G »]-modules. Similarly
we get Dj : Repap(g%) — MF(p,N)%2 and Vi from MF(p)k to (not nec-
essarily finite-dimensional) Q,[G.¢]-modules such that G acts continuously on
any G -stable subspaces of finite Q,-dimension. See [Fon94b] for the definitions.
There are at least four proofs of the following fundamental theorem: [CF00], [Col02],
[Ber07], and [Kis06].

THEOREM 2.4.2 (Colmez-Fontaine). The contravariant functor D
tively, D% ) is an anti-equivalence of categories, and V.
stricted to weakly admissible objects is its quasi-inverse.

~cris (Tespec—
(respectively, V7%, ) re-

~_cris

For each n € Z, the Tate object 1yx(n) is a filtered isocrystal defined as
follows: the underlying isocrystal is (€ ge, p(e) = p™e) and the associated grading
is concentrated in degree n. Clearly, 1,7 (n) is weakly admissible. For any filtered
isocrystal D, we put D(n) := D ® 1yp#(n) and call it the n-fold Tate twist of D.
One can check without difficulty that a filtered isocrystal D is weakly admissible
if and only if its Tate twist D(n) for some n € Z is weakly admissible. Later in
Remark 4.1.3, we will see that if the residue field k is algebraically closed, then any
rank-1 weakly admissible filtered isocrystal is isomorphic to some Tate object 1(n).
This follows from Dieudonné-Manin classification (Theorem 4.1.2).

2.4.3. Filtered isocrystals and isocrystals with Hodge-Pink structure. For a
Hodge-Pink structure on a finite dimensional .#¢-vector space D, we obtain a
filtration on DTO = 0a ay @y D, as discussed in §2 3.3. And by reducing the
associated filtration Fil§ D,, on D,, modulo P(u) - D,,, we obtain a filtration
Fili D) on D since Dy = Dmo /P (u on More precisely,

(2.4.3.1)
Fily Dy := Fily D = D“Lm Pu)A C D“L ~D,.
Fil}y DIO N 77( )-D o P(w)Dzy NPw)YA  P(u) Dy,
The assignment (D, p,A) — (D, p,Fil} D) defines a functor F : HPg(p) —
MF (@)

This functor F has a “section” res : MF(p)x — HPxr(p), in the sense that
there exists a natural isomorphism Fores = id vz (y),. - Namely, for (D, ¢, Fil* D) €
MF (@), we put res(D, p, Fil®* D) := (D, ¢, A), where

A:=Fil’(Dyy @ O, [1/P(w)]) = Y (Fil D) @ (P(t) " OA .z, )-
weEZ
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The natural isomorphism F ores = id y(r(,),, is immediate from the construction.

Here is the motivation for introducing the functor res. By Theorem 2.4.2,
the category MF(p)% is equivalent (or anti-equivalent) to the category of crys-
talline representations of G . On the other hand, we will see later in Corollary
5.2.4 that there exists a fully faithful (contravariant) functor Vi, p : HPE" (¢) —
Repg, (G.7..)- Kisin's work [Kis06, §2.1] shows that the functor Dj; ores o Vip :
Repap (Gx) — Repg, (G.x..) induced by res is naturally isomorphic to the functor
obtained by restricting the G »-action to G __. (See §5.2.12 for more discussion.)

We now record some properties of F and res which directly fall out of the
definition. The functors F and res commute with quotients, tensor products (hence,
symmetric and alternating products), internal homs, and duality. Clearly, both
functors F and res preserve the Newton numbers ¢ on both sides, since each does
nothing on the underlying isocrystal (D, ¢). They also preserve the Hodge numbers
ty on both sides. In fact, the functors F and res, by construction, “respect” Hodge
type for MF(p)» and Hodge-Pink type for HP k() in the following sense: for a
fixed v := {my}, if (D, ¢, Fil®* D) is of Hodge type v, then res(D, ¢, Fil® D ) is
of Hodge-Pink type v and similarly for F.

Now we show that the functors F and res take weakly admissible objects in one
category to weakly admissible objects in the other. One can directly show that F
takes a saturated subobject in HPk(¢) to a saturated subobject in MF(p) . In
other words, for a Hodge-Pinks structure (D, A) and a J# g-subspace D', the Hodge-
Pink structure A’ := Aﬂﬁ;o [ﬁ] for D’ induces the subspace filtration Fily, D’,, =
D’X NFily D for each w. Since F preserves Hodge and Newton numbers, we have
that (D, p,A) € HPk(yp) is weakly admissible if and only if F(D,¢,A) is. The
claim for res also follows from the natural isomorphism F ores = id 7 (y) -

Even though F and res are not quasi-inverse equivalences of categories in gen-
eral, they are quasi-inverses on rank-1 objects. Indeed, a Hodge-Pink structure
on 1-dimensional J# g-vector space is uniquely determined by its Hodge number,
and the same holds for a filtration on 1-dimensional .%# y-vector space. Note also
that this functor HPk(p) — MF(p)x sends the Tate object 1(n) in HP k()
to Lyr(n) in MF(p)r. This explains our notations for Tate objects in HP i (¢)
and Tate objects in MF ()¢ .

2.4.4. For the rest of this subsection, we outline the results from [Kis06] which
are relevant to this work. Let Ng = —ul-%, a ¥ y-linear derivation on Oa. We

du’
have an equality Ny oo = pg%g (0 o Ny). For a vector bundle M on A (i.e.,

a finite free Oa-module M), a differential operator N@A : M — M over Ny is a
J p-linear map such that for any f € Oa and m € M we have the “Leibnitz rule”
N (f-m) = Ny (f)-m+ f-N&'(m). Giving such an N&* is equivalent to giving a
logarithmic connection VM : M — M ®0, Qa[-x], as follows: for a given N,
set VM(m) := N&'(m) @ (—24); for a given VM, define

M .
N M YD M @0, Qall/ud] L2595 M,

where Ny : Qa — Oa denotes the map w +— fw)\ﬁ induced from the derivation
Ny = fu/\% by the universal property of Qa.
Now, we consider M € Moda (¢) equipped with a differential operator N&! :

M — M over Ny which satisfies N@" ocppm = p%(gp/\,{ o) Né"); or equivalently,
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a logarithmic connection VM which commutes with ¢ ¢. Now, it follows from the
“Leibnitz rule” that N&'(u-m) € u-M for any m € M, so the reduction of N&*
modulo u- M makes sense. We put N := N@’t mod u- M, and clearly it satisfies
Nop=ppoN, where ¢ : M/uM — M/uM is the reduction of ¢ modulo uM.
Let Mod (¢, Nv) be the category of such “(¢, Ny)-modules” (M, o, N&1), and
Moda (¢, Nyv; N = 0) the full subcategory of Mod (¢, Nv) whose objects satisfy
N = 0. In terms of the logarithmic connection, N = 0 means that the pole of VM
at u = 0 can be removed.

THEOREM 2.4.5. [Kis06, §1.2] There exist quasi-inverse equivalences of &-

categories ./\/le MEF(p, N )?0 — Modu (¢, Ny) and DM7 . Mod (¢, Ny) —

MF (o, ) . which restricts to equivalences of categories M™M7 MF (o )}0 —

Mod (¢, Ny; N = 0) and D7 Moda (¢, Nv; N = 0) — MF(p)7.. Un-
der these equivalences of categories, filtered (o, N)-modules (respectively, filtered

isocrystals) with Hodge-Tate weights in [0, h] corresponds to the (@, Nv)-vector bun-
dles (respectively, with N =0) of P-height < h.

In order for this equivalence of categories to be useful, we need to be able to
identify the essential image of weakly admissible objects in Mod A (¢, Nv; N = 0)
and Mod (¢, Ny ).

THEOREM 2.4.6. [Kis06, §1.3] A filtered (¢, N)-module D € MF (¢, )}0 is
weakly admissible if and only if there exists M € Modg(p) such that Oa ®@e M =
MM (D).

The proof makes a crucial use of Kedlaya’s slope filtration theorem. The proofs
can be found in [Ked04], [Ked05b], and [Ked07]. The notion of slope for an étale
w-module over R is reviewed in §4.1 below.

One can improve the statement of the theorem, using the following results.

(1) The functor Modg (¢ )[f] — Moda (), M — M s Oa is fully faithful
(and the essential image exactly consists of the object which are “pure of
slope 0” in the sense of Kedlaya). In other words, the ¢-stable G-lattice!!
M in M € Mod 4 () is unique up to isogeny if exists. See [Kis06, Lemma
1.3.13], which is also proved in Proposition 4.3.3 in this paper.

(2) The forgetful functor Mod s (¢, Nv; N = 0) — Moda (¢); (M, o1, NG')
(M, o) is fully faithful, and the essential image has a description in
terms of a certain singular connection given by a concrete formula being
logarithmic. See [Kis06, Lemma 1.3.10] for the proof. We comment on
this in more detail later in §5.2.12.

Combining above results, we obtain the following corollary.

COROLLARY 2.4.7. Let D be a weakly admissible filtered (¢, N)-module with
non-negative Hodge-Tate weights, and let M(D) := EUI[%] where M is a p-stable
G-lattice in MMF( ), whose existence is guaranteed by Theorem 2.4.6. This as-
signment defines a functor of ®-categories M : MF(p, N)~ 20, Modg (¢ )[1],

which restricts to a fully faithful functor on MF(p )“”“20
Furthermore, I induces an equivalence of categories between objects of rank 1

and between objects “of Barsotti- Tate type,” i.e., MF(p )wa 0312, Mod sl )<1[%],

Hn this paper, a lattice is always assumed to be locally free of constant rank.
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The failure of the full faithfulness of 9t on MF(p, N )%”20 is exactly because
M “forgets” the monodromy operator N. See [Kis06, Corollary 1.3.15]. The failure
of the essential surjectivity, if it occurs, comes from the step where we forgets the
differential operator NQA. In fact, it is hard to expect to have any more general
essential surjectivity result than the above corollary.!? But the essential image of
Mf(go)w%a’>o under 9 has a simple discription. See [Kis06, Lemma 1.3.10] and
Proposition ?? of this paper.

While it is hard to associate to a filtered isocrystal (or a filtered (, N)-module)
an integral structure which corresponds to a G x-stable Z,-lattice in a crystalline
representation, an object in the target category Modg (go)[%] has an obvious notion
of “integral structure,” namely a choice of p-stable G-lattice 21 in the isogeny class
sm[%] € Modei(ga)[%]. To interpret the meaning of this integral structure, we now
return to the “Galois representation” side. We first need the following result.

PROPOSITION 2.4.8. [Kis06, proposition 2.1.12] The functor Modg () — Mod, . (¢),
defined by M — o0g @ M, is fully faithful.

The proof of this innocent-looking proposition requires all the equivalences of
categories we discussed above.

We have an anti-equivalence of categories T'c from the category of étale ¢-
modules free over og into the category of finite free Z,-modules with continuous
Gw., = Gg-action. (See [Fon90, §A.1.2] or Proposition 5.1.7 of this paper.)
So we can associate to M € Modg(¢) a lattice G -representation T (M) :=
T:(og ®s 9M). The previous proposition shows that the contravariant functor
Ts(M) : Modg () — Repz**(Gur .. ) is fully faithful.

Let Repfpo(g #..) denote the essentially image of Modg () under the fully

faithful functor T'g, and Repgg(g .. ) denote the isogeny category of Repi) (Gx.);
i.e., the category of QQp-representations V' of G such that there exists a G »_ -
stable lattice T € Repi?(g #..)- Clearly, we have an anti-equivalence of categories

Ve Modg(w)[%] — Repgf(g;gw). It can be seen, with some work, that if

Ve Repég(g%x), then any G _-stable lattice in V' belongs to Repi?(g%oo).
More precisely, we have the following proposition which is proved in Proposition
5.2.9.

PrOPOSITION 2.4.9. If V = T§ (970[%], then the set of Gy __-stable lattices

T’ in V is naturally in inclusion reversing bijection with @-stable &-lattices MM C

93?[%], and M’ is automatically of P-height < h if M is.

1256e §11.3.13 which indicates that G, __-deformation spaces of P-height < h usually have
bigger dimension than crystalline or semi-stable deformation spaces with Hodge-Tate weights in
[0, k.
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We now discuss applications of Corollary 2.4.7 to semi-stable and crystalline
G ~-representations. Consider the composition of functors

(2.4.9.1)

s D, wazo 2 Vs >
Rep, ™ (Gor) —2'= MF(p, N)>* —=> Mod (9)[1/p] —=> Rep3 (G .)

Repr (Gr.),

where Repafo (G.x) is the category of semi-stable representations with non-negative

Hodge-Tate weights, and the second arrow 90t is as defined in Corollary 2.4.7. All

the arrows become fully faithful'® when we replace D7, by D . : Rep&s’>o(g x) —

cris, >0

MF (@)13’;’20, hence the composition is a fully faithful functor Repg ~~"(Gr) —
Repr (g%m )

On the other hand, we also have another functor Repgfo (Gx) — Repg, (Gx..)
obtained by restricting a semi-stable G -representation to a G __-representation.

THEOREM 2.4.10. [Kis06, Proposition 2.1.5] The two functors Repafo(g)g) —
Repg, (G ..), one of which is the restriction to G, and the other of which is
the composition of functors from (2.4.9.1), are naturally isomorphic. In partic-
ular, the functor obtained by restricting to a G -representation is fully faith-

cris

Jul on Repg (Gw). Furthermore, the restriction to G of a semi-stable Q-
representation of G » with non-negative Hodge- Tate weights belongs to chgf(g%w).

To digress, note also that Theorem 2.4.2 follows from above; it has been well-
known that the proof of Theorem 2.4.2 reduces to showing that a certain inequality
of dimensions is in fact an equality, which directly follows from above.

Let D be a weakly admissible filtered (¢, N)-module with non-negative Hodge-
Tate weights, and choose 9T € Modg (¢) so that DJT[%] = MWi(D)(Corollary 2.4.7).
The above theorem, combined with Proposition 2.4.9, tells us that the choice of 90t
exactly corresponds to the G »__-stable Z,-lattice of the semi-stable representation
V(D).

In using the fully faithful functor M : MF(p)%>" — MG(@)[%] to study
crystalline representations, we face two major roadblocks. First, 9 is not essentially
surjective. Second, a choice of M € Modg(p) in the isogeny class wt[}l)] = M(D)
corresponds to a G __-stable lattice of V5, (D) which is not necessarily G  -stable.
On the other hand, for crystalline G -representations with Hodge-Tate weights in
[0, 1], we have the following result which completely removes these roadblocks when

p> 2.

THEOREM 2.4.11. [Kis06, §2.2]

(1) (Kisin’s classification of Barsotti-Tate groups) If p > 2, then there exists
an anti-equivalence of categories G* from Modg(¢)S?t to the category of
Barsotti-Tate groups over oy . Furthermore, for any 9 € Modg (p)S*
we have a Gy _ -equivariant isomorphism T, (G*(9M)) = T's(IM).

3Lt is not a deep theorem that D} . and D7 are fully faithful; the hard part is the essential

—cris
surjectivity, which requires Theorem 2.4.2
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(2) There exists an anti-equivalence of categories between the isogeny category
of Barsotti-Tate groups over 0 and Me(cp)gl[%]. Furthermore, for
an isogeny class [G] containing a Barsotti-Tate group G, and an object
93?[1%] € MG(@)gl[%] which correspond to each other under the anti-
equivalence of categories G*, we have a G __ -equivariant isomorphism
Vo(G) =V (Em[%]) In particular, for any crystalline G 5 -representation
V', there exists a Barsotti-Tate group G, , such that V = V,(G) as a
G v -representations.

One also has a covariant version of Kisin’s classification, by taking duality on
Barsotti-Tate groups (or equivalently, by taking suitable duality on Modg(¢)S?t,
which will be defined in Definition 8.3.2). Theorem 2.4.11(1) was originally con-
jectured by Breuil in [Bre98| for all primes p including p = 2. For p > 2 Kisin
[Kis06, §2.2, § A] proved the conjecture. Allowing p = 2, Kisin [Kis09a] proves this
conjecture for connected Barsotti-Tate groups using a certain full subcategory of
Modg ()St; his proof rests on Zink’s theory of windows and displays. (Under the
contravariant correspondences, G*(9) is connected if @oy is “topologically nilpo-
tent.”) It is conjectured that Kisin’s classification of Barsotti-Tate groups should
hold for p = 2 without the connectedness assumption.

As a consequence, if p > 2 then any G __-stable Z,-lattice of crystalline rep-
resentation with Hodge-Tate weights in [0, 1] is G ¢ -stable. Therefore Modg () S*
classifies G -stable Z,-lattices crystalline representations with Hodge-Tate weights
in [0,1].

2.4.12. Overview of Part I, §3-§7. In this work, we shall study Repgf(g%w),

which is classified by Modg(¢) [%] As stated above, we have a fully faithful functor
Mode(go)[%] — Moda (), defined by the scalar extension & — Oa, where the

essential image is the full subcategory of ¢-vector bundles “pure of slope 0” in
the sense of Kedlaya. At the first part of what follows, we shall prove results
analogous to [Kis06, §1], but without using the differential operator N@’t (which is
not available in the equi-characteristic case).

The role of N&! is quite limited in [Kis06, §1]. There are two places where N
is used, one of which is avoidable and the other not. One place where Né/‘ is used
is the “Dwork’s trick” argument in the proof of Theomem 2.4.6. We carry out this
step only using the Frobenius map ¢; see Proposition 4.2.1. (An analogous situation
can be found in [Ked05a], which carries out the “Dwork’s trick” step [dJ98] in the
proof of de Jong’s theorem only using the Frobenius structure.)

Kisin [Kis06, (1.2)] crucially used N&! in order to show that D7 and MM*
are quasi-inverse equivalences of categories between MF (<p)i9 and Mod (¢, Ny; N =
0). In fact, we should not get equivalences of categories between Mod 5 () and
M]:(cp)igo, because the forgetful functor Mod (¢, Nv; N = 0) — Mod A (¢) is not
an equivalences of categories. On the other hand, the construction of DM does not
involve N@" (more precisely, the construction only uses that N@A mod u- M = 0),
and the construction of the filtration from M € Mod A () suggests that one may

be able to factor D7 as Moda (¢) — HPZ" () E2R Mf(go)i? where the second
map is defined in §2.4.3. See [Kis06, (1.2.7)] for the construction. In fact, this idea
works and we obtain quasi-inverse equivalences of categories D and M between
HPZ’(p) and Mod (). This is proved in Propositions 3.2.1 and 3.2.5.



2.4. SUMMARY OF KISIN’S INTEGRAL p-ADIC HODGE THEORY 37

Next, we will interpret the weak admissibility of (D, ¢, A) € HP7 (¢) in terms
of M(D,p,A) being pure of slope 0 in the sense of Kedlaya [Ked04, Ked05b,
Ked07]. But recall that this full subcategory of pure slope 0 objects is equiva-

lent to Modg(gp)[%}, $0 we obtain an equivalence of categories H : HP%Q’%(@) =
Modg (@) [%] By composing with the anti-equivalence of categories T'g : Modg () [%] —

Repgg(g ..) we obtain an anti-equivalence of categories Vi,p : HP4>(p) =

Repgf(g «#..). This anti-equivalence of categories plays an important role in the
study of deformations later in §11.

Having eliminated the differential operators N&!, we now have a reasonable
analogue for 0y = F[[mo]] by replacing various ¢-modules with the analogous con-
structions for oy = Z,. In fact, most of the proofs work in this equi-characteristic
analogue with few modifications. This equi-characteristic theory may be thought of
as an “equi-characteristic analogue of Fontaine’s p-adic Hodge theory,” as observed
by Genestier-Lafforgue [GL] and Hartl [Har10, Har09].

REMARK 2.4.13 (The case 0p = F,[[m0]]). Instead of considering Hodge-Pink
structures, one might want to consider the filtration on D ®_, £ obtained by
reducing (2.3.3.1) modulo P(u), as in the p-adic case. In fact, one obtains the same
Hodge-Pink weights and multiplicities using this filtration on D ®_, . With
the absence of the differential operator N&* as in [Kis06], however, it turns out
that the category of isocrystals D with filtration on D does not have enough
information to build an equivalence of categories with Mod (¢). See also [Har10,
Rmk 2.2.3] for more discussion on the inadequacy of “filtered ¢-module” in the
equi-characteristic setting.






CHAPTER 3

Hodge-Pink theory and rigid analytic ¢-vector bundles

In this section, we give construct a vector bundle over the open unit disk from
an isocrystal with Hodge-Pink structure. The construction is closely related to
Kisin’s work [Kis06, (1.2)] which was motivated by Berger’s work [Ber07, §II, I11]
in the (p,I')-module setting. Our construction differs from Kisin’s in that we work
with Hodge-Pink structures instead of filtered (¢, N)-modules (hence the theory
works in the equi-characteristic setting), and we use Frobenius structure but avoid
differential structure.

3.1. Construction

Let D := (D,p,A) € H’P?{O(go) throughout this section; i.e., we assume that all
the Hodge-Pink weights for D are non-negative. We would like to construct a vector
bundle M(D) € Mod 4 (¢) such that M(D)/uM(D) = D and M(D)z, = A.

We state the following classical lemma without proof, which will be useful:

LEMMA 3.1.1. Let I C [0,1) be a sub-interval, M be a finite free Oa,-module
and N C M be an Oa,-submodule. Then N' C M is closed if and only if N is
finite free.

PrOOF. The hard part is “only if” direction, which is reduced to the case when
M is free of rank 1 by [Ked04, Lemma 2.4]. This case is handled by [Laz62, (7.3)].
The proof crucially uses that Oa, is a Bézout domain, which uses the discrete
valuation of £y (or more generally, the spherical completeness). O

3.1.2. By §2.2.4, the scalar extension Oa ®., D is an étale p-module over
Oa. For each non-negative integer n, define

id® —n
tn: OA ®u, D “Z%p Oa ®x, (6*"D)

— ngn QS (U*nD) = Og,mn ®mz702 z0 (OZJJD R D),

where 0" : Oa z, > OaA.s, is induced by 6" : Oa — Oa, as discussed at (2.1.3.3).
We set D := Oa ®.x¢, D.
Now we extend ¢,, to the following map:

(3.1.2.1) tn : D[I/N — Oa.. [1/N ®

on ,OZ@O Dwo :

The target of this map carries the tensor product filtration, where the second factor
ZSIO carries the filtration coming from the Hodge-Pink structure A, as defined in
(2.3.3.1), and the first factor OA ,, [3] has a decreasing filtration defined by A’ -
Oa x,, = (0"P(u))" - Oa 4, - Also, observe that the target of this map is naturally
isomorphic to D, [4] using ¢ : D = 0*nD over g (i.e., not respecting how D
“naturally” sits in each if n > 0), where 13% is the completed stalk of D at z,, € A.

39
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3.1.3. Set
M, (D) = ()" (Fil’(D,, [1/A]))
M(D) = ﬂ M, (D) ={x € D[1/A]: tn(x) € Filo(ﬁxn[l/)\]), Yn > 0},

n>0

Let h be the maximum among Hodge-Pink weights for (D, A). Then we have
D Cc M(D) c M, (D) C (A\™"-D). Clearly each M,, (D), hence M(D), is closed in
A~".D, so by Lemma 3.1.1,both M, (D) and M(D) are finite free Oa-modules.

The inclusions induce isomorphisms D[1] = M(D)[5] = M,,(D)[}]. In other
words, D, M, (D), and M(D), viewed as coherent sheaves on A, are naturally
isomorphic outside the zero locus {x,}n>0 of A\. To study the local behavior of
M(D) near z,,, we look at the completed stalks and make use of the following fact:
the inclusion M(D) € M, (D) induces an isomorphism near x,, and ¢, induces
the isomorphism below, which can be seen from the definition.

(3.1.3.1) M(D)z, = M, (D)s, = Fil’(D,,[1/X).

In particular M(D)z, = A inside of 1310[%, by Lemma 2.3.5.

By §2.2.4(2), the natural ¢p-module structure on D := Oa ® », D is étale since
D is an étale p-module. So the Oa-linear isomorphism ¢p : 0*D — D induces
an Oa[4]-linear isomorphism ¢p[5] : (6*D)[3] = D[5]. We will prove that the
Oa-submodule M(D) C D[3] is ¢p-stable; i.e., o*(M(D)) is carried into M(D).
Once this is done, we show that the induced ¢-structure on M(D) over O is of
finite P-height by “analytic-local” argument.

3.1.4. Rank-1 example. Before we move on, let us work out M(D, A) when D
is of rank 1 and the Hodge-Pink structure A is effective. We choose a % o-basis
e € D, and write p(c*e) = ae - e for some a, € #. Since A = P(u)’hﬁxo
for some h > 0, we obtain M., (D, A) = (6™(P(u)))”" D for all n > 0. Therefore,
M(D,\) = A\~"D, which is stable under Ppra 0*D[5] — D[]. We can also
compute ¢p[+] on M(D,A) = A7"D for the Oa-generator A\~"e, as follows (using
the definition of A in §2.1.3):

‘(4= P\
(3.1.4.1) p(c*(A7"e)) = ae P0) -(A"e).
If dimy, D > 1, then it may be much harder to compute M(D,A) explicitly;
M(D, A) may not have a simple expression such as A="D.

PROPOSITION 3.1.5. Let D := (D, pp,A) € HPZ (p). Then, op[L]: (0*D)[L] =
D[] restricts to ¢ : 0* M(D) — M(D). Furthermore, we have an isomorphism

(3.1.5.1) coker ¢ & A/(ﬁro) = @((9&10 JP(u)?)me,

w>0

where the right side is a finite direct sum.

Upon verifying the proposition, we would obtain a functor M : HP?(O (¢) —
Moda (¢) because one can check that if a J#g-linear map f : D — D’ respects
Hodge-Pink structures on both sides then Oa[3]® f : D[5] — D'[}] takes M, (D)
into M,,(D") for each n > 0, hence M(D) into M(D’). The proposition also says
that we can recover the Hodge-Pink type of an effective Hodge-Pink structure D
from M(D), since coker ¢ = A/ﬁmo. (See Corollary 2.3.6.)
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Proor. When oy = Z,, this proposition can be read off from the proof of
[Kis06, Lemma 1.2.2]. The same argument goes through with few modifications
when 09 = Fy[[mg]]. The statement can be checked locally at each point on A.
Having that D[+] = M(D)[5], it is enough to verify the result locally at a,,, for
each n > 0.

Let h be the maximum of the Hodge-Pink weights for D so that we have
M(D) C M, (D) C A~"D. In (2.1.3.4) we have seen that o : Oa — Oa induces an
Oa-isomorphism 7,1 : 0*Oa », — OA i1 > Where 0¥ Oa s, = OA ®0,04 OAz,, -
We have the following commutative diagram which shows how ¢,, and ¢ interact.

(3.1.5.2)
)\_h"(O'*D) (oA o* (J"P(u))‘”((’)&w" ®%O (U*nD))>
pp=id ®pp | = (U"+17’(U))_h'((a* A ) @t (UMD))
~ | vp,1®id

Ln41

\»hpD —mM > (O.n-i-lp(u))—h_ <J*n+1 (03,1n+1 R, D))

Choose an interval I,, so that Ay contains z, but does not contain z,, for

m # n. We can further assume that (In)l/q = I,+1 for all n > 0, so that we have
0:0a,, — Oa,,,, for each n. Then, since (A\=".D)/M,,(D) is supported on the
(discrete) zero locus of A, we have the following exact sequence

n —h . D
o @P@)" D,

Fil’(D,,, [1/A])
Indeed, the cokernel of 3, is supported at x, from the choice of I, so the right
exactness follows from the isomorphism (3.1.3.1) and the definition of A. Let us
denote by @,, the cokernel of j,.

Combining (3.1.5.2) and (3.1.5.3), we obtain the following commutative dia-
gram of coherent sheaves on Ay, :

(3.1.5.3) 0— M, (D), 2 XDy

00— (U*MH(D))In+1 - ()‘_h'(U*D))IH =, (0" Qn) 1,11 >0
|
3 (‘PD)InJrli"‘ 'yn‘1®idl~
N
00— Mn(D)In+1 )\_h'DI,L+1 s (Qn)bwﬂ —0

Hence, the left vertical arrow induced by QOD[%} exists and is an isomorphism. Since
the inclusion M(D) C M, (D) induces an isomorphism at z, (as may be seen on
completed stalks using (3.1.3.1)), we conclude that ¢p : o*(A™"-D) — X\~h.D
restricts to an isomorphism ¢, ., : (60*M(D))a,,, — M(D),, ., for all n > 0.

~

Now, it is left to verify the lemma at zo. From the isomorphism D[] =

~

M(D)[}] induced by the natural inclusion, we obtain (J*D)[ﬁ} — (U*M(D))[ﬁ]
Since o(\) does not vanish at g € A (by definition or by (2.1.3.2)), the natural



42 3. HODGE-PINK THEORY AND RIGID ANALYTIC ¢-VECTOR BUNDLES

map (0*D),, — (O'*M(D))IO induced by the natural inclusion is an isomorphism.
So we have the following maps:

(0" M(D)), <= (0"D)sy o> (D) gy M(D).

Zo = — 0
This proves that ¢p[5] : (6*D)[3] — D[}] restricts to a map ¢ : o*M(D) —
M(D), and that

coker p — M(D)q, /sto = A/ﬁmo,
where the second isomorphism follows from n = 0 case of (3.1.3.1) and from Lemma
2.3.5. This proves the isomorphism (3.1.5.1). O

PROPOSITION 3.1.6. The functor M : HP7"(p) — Mod () is an ezact func-
tor of ®-categiries. In other words, M satisfies the following properties.

(1) M commutes with ®-products.

(2) M takes a short exact sequence of the source category into that of the
target category.

PROOF. Since M(D) is a coherent sheaf on A, it suffices to check these prop-

erties on completed stalks at each point of A. We also have D[+] = M(D)[1].

For D, D’ € HP?(O(ga), we obtain a natural map M(D)QM(D’') - M(D®D’)
from the universal property of ®-product, which is clearly an isomorphism outside
{zn}. Now we use (3.1.3.1) to conclude that this natural map is an isomorphism
at x,, for each n.

For a short exact sequence 0 — (D',A’) — (D,A) — (D",A”) — 0 in
HPZ’(p), one gets a sequence of maps 0 — M(D') — M(D) — M(D") — 0. Tt is
enough to check the exactness completed stalks at x,,, for which we use (3.1.3.1). O

3.2. Equvalence of categories

In this subsection, we construct a functor D : Moda (¢) — HPZ’ (), which
will shown to be a quasi-inverse to the functor M constructed in the previous
subsection.

Let M € Mod, (¢); i-e., a (¢, Oa)-module of finite P-height, and consider the
p-module M /uM, which is an isocrystal (i.e., an étale p-module over J¢ ) since
P(0) is a unit in ¥ . Hence the scalar extension Oa ®, (M/uM) is an étale
w-module on A by §2.2.4(2). We set

(3.2.0.1) D(M) := (Oa @, (M/uM), Oa @ ¢)

To give a Hodge-Pink structure on M /uM, we need the following lemma. The
case 0p = Z, can be extracted from the proof of [Kis06, Lemma 1.2.6] (except the
functorial property; i.e., (2) in the statement below). The same proof also works if

09 = Fy[[mo]]-

PROPOSITION 3.2.1. For M € Mod (), there exists a unique Oa-linear “p-
compatible section” & : D(M) — M. In other words, there exists a unique & which
reduces to the identity map modulo u and commutes with @-structures on both sides.
Furthermore, £ enjoys the following properties:

(1) The section & induces an isomorphism D(M)[1/A] = M[1/A]. Further-
more, on any A1 which contains xo and does not contain x, for n # 0,
the images of € and paq coincide.
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(2) Consider M, M’ € Moda (). Let & and &' be the unique p-compatible
sections for M and M’, respectively. Then, for any morphism f : M —
M’ of Mod A (¢), the following diagram commutes:

DIM) ——= M

0A®fl lf

DM') > M,

(3.2.1.1)

where f: M/uM — M’ JuM'’ is the reduction of f modulo u.

REMARK 3.2.2. Before we begin the proof, let us discuss a consequence of
the lemma. We view My, as an effective Hodge-Pink structure for the isocrystal
M /uM. We define a functor D : Mod s (¢) — HPZ’ (), as follows:

(3.2.2.1) DM, pm) = (./\/l/u./\/l,goM mod uM, ./T/l\m) ,

The functor D carries a morphism f : M — M’ of Moda (¢) to a morphism
(f mod uM) : M/uM — M’/uM’. This defines a morphism of H'P?(O(QO) (i.e.,
takes the Hodge-Pink structure of the source into that of the target) essentially
because of the functoriality of the ¢-compatible section (Proposition 3.2.1(2)).

3.2.3. Rank-1 Example. Before we prove Proposition 3.2.1, we work out the
rank-1 case. Let M € Mod (¢) be of rank 1 over Oa and set D := M/uM
equipped with ¢ := pa mod uM. We choose a Oa-basis e € M, and denote by
é € D the image of e under the natural projection. Since ¢ ((c*e) spans P (u)" M

h
for a suitable h > 0, we may write or(0*€) = e (7;%;) -e for some e € H(.

Then we have ¢(0*€) = ae-e. Therefore, we have g (0*(\'-€)) = ae-(A"-€), and
A(0) = 1 (or rather, A = 1 mod u), so A\"-e reduces to € modulo uM. This shows
that e — Ae induces a g-compatible map ¢ : Oa ®x, D — M. By Proposition
3.2.1, this is the unique such map. Following the recipe of Remark 3.2.2, we obtain a
Hodge-Pink structure A = A\="D,, = P(u)~"D,,. This defines D(M) € HPZ ()
of rank 1.

From the above discussion and §3.1.4, it is not difficult to show that M and D
are quasi-inverse equivalences between categories of rank-1 objects. The equivalence
will be generalized to an arbitrary rank later in Proposition 3.2.5(3).

PROOF OF PROPOSITION 3.2.1. We proceed in four steps.

(1) existence of &
Recall that Oa is a Fréchet space with respect to norms |- ||, for r € ¢%<0. See
§2.1.1 for the definition of the norms. By choosing a Oa-basis {e; };=1,...q for M, one
can define a norm || - ||, on M by taking the maximum of || - ||,. on coefficients, which
makes M a Fréchet space. The topology on M generated by || - ||, is independent
of the choice of basis for M. Likewise, 0*" (M) is a Fréchet space for all n > 0.

Starting from any ¢ g-linear section sg : M/uM — M, which does not have
to be @p-compatible, we would like to construct a new section s : M/uM — M
such that s o @ = paq 0 0*s. Here we give a formula for s, and will show that it is
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well-defined.

(3.2.3.1)

§ = 50+Z(¢%‘11 oo—*i+lsoo<)5*(i+1),(p§vl og*isoogp*i) —« }iglo((p;\" og*iSOOQE*i) »
>0

Since ¢ : 0*(M/uM) — M /uM is bijective, p~' makes sense. If the right side is

well defined, then it clearly satisfies so p = @ 00*s. Since M is a Fréchet space,

it is enough to check the convergence for each norm || - ||, ..

We have uniquely p(c¥e;) = Z?zl a;je; where o*e; :=1®e; € o*(M/uM)
and a;; € Oa. Take a non-negative integer b such that ¢* > max; ;{|a;],}-
(Note that b depends on r.) Then we have |[pr(c*e;)|l, < ¢°|le;],, and it follows
that [[prm(c*m)|,. < ¢°||m||, for any m € M by using the inequality |o(f)
1 £l,27a = || fll, (which follows from the maximum modulus principle).

Take any o0.,-lattice £ C M/uM. Increase b so that we have p~1(L) C
75 "(0*L). (Sonow, b depends on both r and £.) Since im (¢ 0 0590 ¢~ — 59) C
uM, we set £ =y} (goM oo*sgop Tt — so) (L) € M. Now we have

I,

H ((p.z/\—;l o (0*)i+150 ° @*(i+1) _ 907}\/( o (O,*)iso o @77,) (L)

T

<" |[ur (@) D) <a®r 2]

T T
where HEHT = sup, _={[ml|,}, which is clearly ﬁnite?. (We normalized the ab-
solute value so that |mp| = é) Observe that ¢?r¢" — 0 as i — oo for any

r € (0,1) and any non-negative b (hence for any choice of £). For any z € M /uM,
choosing £ to contain x proves that the formula for s(z) makes sense. Now let

§:=id®s: 0a ®@x (M/uM) — M.

(2) uniqueness of & and diagram (3.2.1.1)
Consider M, M’ € Mod (¢) and an Oa-linear p-compatible map f : M — M.
Let f: M/uM — M’'/uM’ be the reduction of f modulo u. Consider some (-
compatible sections s : M/uM — M and s’ : M'/uM’ — M’  and we show that
fos=s"of. This shows the commutative diagram (3.2.1.1), and the uniqueness
of £ also follows from the case when M = M’ and f = id .

Observe that both f o s and s’ o f are p-compatible map M/uM — M’ such
that the post-composition of both with the natural projection M’ — M’ /uM’ is

f. So we have im(f o s — s’ o f) C uM’. From the ¢-compatibility, we obtain:
o (0" (fos—sof))=(fos—sof)od,
for any positive integer . Since ¢ : 0*(M/uM) — M/uM is an isomorphism, we

deduce from above equality that im(fos—s'of)Cu? M for any positive integer
i, s0 we have fos—s o f=0.

(3) claims on im(§)
Since ¢ is an isomorphism modulo u, & induces an isomorphism on stalks at the
origin, so it is an isomorphism on some neighborhood of the origin. Let A,
denote the rigid analytic closed disk of radius r centered at 0 over £ . Take r
such that A, contains zy and not x,, for n # 0, and choose ¢ such that fgrqi is an
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isomorphism. Since ¢ is p-compatible, we have the following commutative diagram

o*D(M) - U*lM
D(M) : M

If ¢« > 1, the right vertical arrow is an isomorphism on Agrqiq by the finite
P-height condition. So we get that & <pai-1 IS an isomorphism. And when i = 1,
the above diagram exactly tells that the image of £, coincides with the image of
¢, <r- Hence the cokernel of ¢« is killed by some power of P(u), say P(u)".

By repeating this argument for A <ram with n > 0, we obtain that the cokernel

_ h
of &_,,-n is killed by (1‘[;;0 01(2%3» for all n > 0. Therefore, coker ¢ is killed

by A" O

REMARK 3.2.4. In this remark, we show that (D,¢p,A) := D(M) can be
easily computed if @aq is explicitly given (with respect to a basis). The only
possibly non-trivial part is to compute the Hodge-Pink structure A, which can be
done as follows.

Choose M € Mod 5 () and fix an Oa-basis {e1, - ,e,} of M. We let e; also
denote its image in A := M\IO. Let €; to denote the image of e; in D := M/uM
and view it as an element in ﬁmo. We want to give a basis of A in terms of
Exo (e;). So Proposition 3.2.1(1) shows that the Exo (e;) and the prq(o*e;) generate
the same submodule in A, so0 ), a'i&,, (e;) generates A, where (a) = (ai;)~* with
(aiy) € GLn(OA[ﬁ]) is the matrix representation of @4 for the chosen basis;
Le,ej =3 a%¢pm(0"e;).

Having defined M : HP7%(¢) — Mod () and D : Moda (¢) — HPZ" (), it
is quite straightforward to check the following:

PROPOSITION 3.2.5. The functor D : Mod s (¢) — HPZ'(p) is an exact equiv-
alence of ®-categories. More precisely, we have the following properties:
(1) D commutes with ®-products.
(2) D takes a short exact sequence of the source category into that of the
target category.
(8) M and D are quasi-inverse to each other.

Since the functors M and D commute with ®-products (in particular, with Tate
twists), we can extend them to quasi-inverse equivalences of ®-categories between
HP i (p) and generalized p-modules over Oa defined at §2.2.11.

PROOF. First two claims are straightforward from Proposition 3.2.1, espe-
cially from the uniqueness of £&. By construction, the underlying isocrystal for
(D o M)(D,A) is naturally isomorphic to D. That this isomorphism takes the
Hodge-Pink structure for (D o M)(D, A) isomorphically onto A follows from the
isomorphism (3.1.3.1) and Lemma 2.3.5. This shows the natural isomorphism
Do M = id.

Recall that (M o D)(M) is constructed as a submodule of D[1/)\], where D :=
Oa @, (M/uM). We view M as a submodule of D[1/A] via M C M[1/\] &
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D[1/)] where the isomorphism is induced from the unique p-compatible section & :
D — M (Proposition 3.2.1). To obtain a functorial isomorphism (MoD)(M) = M,
we show that both sides defines the same Oa-submodule of D[1/A]. It is enough
to check locally at x, for each n.

The completed stalks of both at zo define the same ORAa ,, -lattice A inside

2310 [1/A]. So for A, which contains xy but not z,, for n # 0, we have an equality
(Mo D)(M)g, = Mg, inside D(M)«,[1/A]. By pulling back (M o D)(M)g, =
M, by 0™, we obtain (an(MoQ)(M))@l/qn = (0" M),1/qam . Since M is of finite
P-height, ¢’ is an isomorphism outside x¢ and the same holds for (M o D)(M).
Therefore we have (M o D)(M) = M. O

3.2.6. Relation with (¢, &)-modules of finite P-height. Let us define the fol-
lowing functor of ®-categories:
(3.2.6.1)

H : Modg (¢)[1/m0] — HPZ (), H(M[1/mo]) = D(Oa @i /me) M1/m0)).-

One can directly see that the functor H preserves the Hodge-Pink type; more
precisely, sm[ﬂio} € Mg(w)[%] is of Hodge-Pink type v if and only if ﬂ(im[%o])
is of Hodge-Pink type v. This follows from the definitions of Hodge-Pink type,
together with Proposition 3.1.5. (Note that 6[%]/(77(101”) = O0a/(P(w)?).)

In next section, we show that H is fully faithful (or equivalently, the scalar
extension functor MG(@)[%] — Mod, (p) is fully faithful) and the essential
image is exactly the full subcategory of weakly admissible objects. Similarly, we
may extend H to a fully faithful functor from the isogeny category of generalized
w-modules over Oa to HP i (p), with an essential image HPR" (¢).

For the case 09 = F,[[mo]], it is proved by Genestier-Lafforgue [GL, Lemma
2.8] that H induces an equivalence of categories Modg (¢)[=] — HPYZ0(p). (A
proof can be found in Hartl [Har10, Theorem 2.5.3].) In the next section, we give
a slightly different proof which is closely related to Kisin’s proof for [Kis06, Thm
1.3.8]. Our proof also works for the case of 09 = Z,, which has not been studied as
far as the author is aware of.



CHAPTER 4
Weakly admissible Hodge-Pink structure

In this section, we prove that the functor H : ModG(g))[ﬂio] — HP7%(¢) defined

in (3.2.6.1) is fully faithful and that the essential image is exactly HP'2">%(). (See
Theorem 4.3.4 for the precise statement.) The key step is to show that weak admis-
sibility on HP?(O(QD) is equivalent to the “pure-of-slope-0” condition on Mod A (¢),
under the equivalences of categories M and D. The main technical ingredient
for the key step is the slope filtration theorem, which was proved by Kedlaya
[Ked04, Ked05b, Ked07] in the case of 0y = Z,, and by Hartl [Har10, Theorem
1.7.7.] in the case of 09 = F,[[mo]]. Below we review the theory of slopes and state
relevant properties without proof.

The idea of relating the “pure-of-slope-0” condition and weak admissibility of
filtered (¢, N)-modules originally came from Berger [Ber07, §IV]. Our approach
is more akin to Kisin’s variant [Kis06, (1.3)]. In the p-adic setting, the difference
with Kisin’s approach and ours is that Kisin used a logarithmic connection [Kis06,
Lemma 1.3.5] for the “Dwork’s trick” step, while we solely work with Frobenius
structure so the same argument works in the analogous equi-characteristic setting;
see Proposition 4.2.1. Note that there is no good analogue of the logarithmic
connections in the equi-characteristic setting.

4.1. Review of slopes

For completeness of the exposition, we give a definition of slope and state the
slope filtration theorem of Kedlaya in the p-adic setting and Hartl in the equi-
characteristic setting.

4.1.1. Simple objects. We define the slope using the “Dieudonné-Manin classi-
fication” over R*8. (See §6.1.10 for the definition of R*8.) For these, we need to
define basic “building blocks.”

Let k/k be an algebraic closure, and recall that Fj := 00[7%0]. Let R be an Fy-
algebra, equipped with an endomorphism o : R — R that fixes Fj. In the intended
applications R will be one of the following:

(1) (The case 0g = Z,) a complete field extension % o(k) over # o where
Ho(k) = W(l;;)[%], equipped with the Witt vector Frobenius endomor-
phism o.

(2) (The case 0g = Fy[[mo]]) a complete field extension # (k) over # o where
K o(k) := k((mo)), equipped with the unique continuous endomorphism o
such that o(mg) = mp and o(a) = af for all a € k. (If k is not perfect,
which is allowed when o = F[[mo]], then .# (k) is not the completion of
the maximal unramified extension of J#.)

47
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(3) the Robba rings R*& and R’ equipped with the natural Frobenius
endomorphism o, introduced in §6.1.10.
We define the following étale @-module (Mg, @) € Mod% (o) for any d,n €
Z>0:

n

Man = EP(R-e)

i=1
p(o7e;)) = ei1, i#n
p(o*e,) = wg -eq

In particular, since o(m) = mp, for any m € My, we have ¢" (U*Tlm) =nd-m.

(We define slopes and slope filtrations so that My, is “pure of slope d/n.”) Observe
that M, has a nontrivial proper ¢-stable subobject if d and n are not coprime.

THEOREM 4.1.2 (Dieudonné-Manin Classification). Let (R, o) be either (# o(k), o)
or (R¥8,5). Then any M € Mod%"™ () is isomorphic to a dzrect sum @j_, Ma; n;),
where dj € Z and n; € Zsq satisfy (dj,n;) = 1 for each j. The pairs (d;,n;) are
uniquely determined up to permutation.

ProoF. If 09 = Z,, then Kedlaya [Ked05b, Theorem 4.5.7] proves the theorem
simultaneously for both R = J# (k) = W(k)[;] and R = R¥#&. Simpler proofs

for the case R = W(k)[;] can be found in [Die55], [Man63|, [Kat79], and [Ked04,

Theorem 5.6]. If 0y = F,[[mo]], then the theorem for R = # (k) = k((m)) is proved
in [Lau96, §A 2.1]. The theorem for the case R = R*# is proved in to [HP04,
Theorem 11.1, Corollary 11.8]. O

REMARK 4.1.3. We record the following special case of the theorem: for any

rank-1 étale p-module D € Mode;gif)e (), one can find a basis e € M so that

¢(o*e) = md - e for some d € Z. This gives a classification of rank-1 isocrystals
with weakly admissible Hodge-Pink structure, and rank-1 weakly admissible filtered
isocrystals if 0g = Z,,.

4.1.4. Slope. Let M be an étale p-module of rank n over R*%. The degree’
of M, which is denoted by deg(M), is the unique integer d such that det M =
M1, which is always well-defined by Theorem 4.1.2. The ratio sl(M) := d/n
of d := deg(M) and n := rankr (M) is called the slope of M. In more con-
crete terms, if M = @7_; Mg, n,), then we have deg(M) = 3~ d; and sl(M) =

(zj dj) / (2 ; nj). Clearly, we have deg(M) = sl(det M).
We say that M is pure® of slope s = d/n, where d/n is a reduced fraction, if
M = M®C for some ¢. The full subcategories of étale p-modules pure of slope s

will be denoted by ModSyais ().

For a ¢-module M free over a base ring contained in R*# (for example, over
Realebd R R or Opa), the degree and the slope of M are defined to be the
degree and the slope of R*& ® M, respectively. One can check that the degree

IThis definition of degree differs by sign from Hartl’s definition [Har10, Def 1.5.1]. As Hartl
remarked, Hartl’s definition follows the “geometric” convention whereas this definition follows the
“arithmetic” convention.

2Sometimes7 it is called isoclinic of slope s.
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for M € Modgsa(p) or M € Modpaisa(p) coincides with the valuation of the
determinant of any Frobenius matrix.

We say that M is pure of slope s if R¥8 @ M is so. We use superscript sl = s
to denote the full subcategories of étale ¢-modules pure of slope s, for example,
Modi!=" (), Mod3i (1), Mod2h=*(¢2), and so on.

We state the following proposition without proof, which will be used later in
proving Theorem 4.3.4.

PROPOSITION 4.1.5. The p-modules My, over R satisfy Homy,(Mgpn, Mar n/) =
0 if and only if d/n > d'/n'. In particular, any @-submodule of My, has slope
< d/n.

If o9 = Z,, then the proposition is just [Ked05b, Proposition 4.1.3(a)]. If
09 = IFy[[m0]], then by a standard argument (e.g. [Harl0, Proposition 1.4.1]) we are
reduced to [HP04, Proposition 8.5].

For any M®& € Mod g (¢), we have an isomorphism M8 2 B (Mg, , )%
from the Dieudonné-Manin decomposition. By re-indexing if necessary, one can ar-
range to have dy/ny < da/ng < -+ < d./n.. The following filtration is called the
slope filtration for M?s:

(4.1.5.1)

0=M®C M C-o o M= MM, where M3 := ) (Mg, )"

i<j

If M € Modx(¢), then the following (very difficult) theorem asserts that the
slope filtration for R*® @ M descends over R.

THEOREM 4.1.6 (Slope Filtration Theorem).

(1) The scalar extension functor Modiges () — Mods=*(¢) is an equivalence
of categories. In particular, any M € Mod$s=*(¢) uniquely descends to
M € Modiis? (¢)

(2) For any M € Modg (), there exists a unique and canonical filtration
(called the slope filtration) 0 = Mo C My C --- C M. = M by saturated
p-stable R-submodules such that each subquotient M;/M;_1 is pure of
slope s; and s1 < sy < --- < Sc. Furthermore, the slope filtration for
Re @r M is ezactly {R¥8 ®r M;}.

PrROOF. If 09 = Z,, then the first part is [Ked05b, Theorem 6.3.3] and the
second part is [Ked04, Theorem 6.10]. If o = F,[[mo]], then the first part is [Har10,
Corollary 1.7.6] and the second part is [Har10, Theorem 1.7.7]. O

For the future reference, we give a useful characterization of étale p-module
(over R* or R) pure of slope 0.

LEMMA 4.1.7. An étale p-module MY finite free over R*® is pure of slope 0
if and only if there exists a @-compatible isomorphism Mb? = R4 O roa Mint for
some étale p-module M™ over Grva. Similarly, an étale p-module M finite free
over R is pure of slope 0 if and only if there exists a p-compatible isomorphism
MZRRg_,, M™ for some étale p-module M™ over Bpua.

PRrROOF. The claim for étale (¢, R)-modules is reduced to the claim for étale
(¢, R*)-modules by Theorem 4.1.6(1). Let M®@ € Modyss (¢) be pure of slope 0
and of R-rank n. By definition, we have a ¢-compatible isomorphism

Malg,bd .— Ralg,bd Qb Mbd ~ (MO,I)EBTL 7
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where Mo, is the simple object over R*&%d defined in §4.1.1. In particular,
M8t has a p-stable 0gasa-lattice M&0 which is an étale ¢p-module over
opaigva. (Indeed, this claim holds for My 1, hence for any finite direct sum thereof.)
We put Mt .= Mal&int 0 A0 where the intersection is taken inside M?18:bd,
Clearly, M is a (-stable @gua-lattice of MP?. Furthermore, M™ is an étale -
module over @rua, which can be seen by taking the faithfully flat scalar extension
ORalg,bd ®@Rbd Mint =2 Aq2leint,

Conversely, assume that we have a p-compatible isomorphism Mb? = R®z 1
Mt for some étale p-module M™ over @pea. Let M; be the smallest non-zero
slope filtration of M := R®z 0a M which is pure of slope dj /n; where d; and n;
are coprime. We put Mt := M;NM™ where the intersection is taken inside M.
Then M is a p-stable étale ogai va-lattice in M?lg, which cannot happen if the
slope s1 is negative. This shows that any successive quotient M /M;_; of the slope
filtration for M is pure of some slope s; > 0 for each j > 1. On the other hand,
the top exterior power det M is pure of slope 0, since R*® @z det M = Mg for
some d > 0 and admits an étale opaisba-lattice ogaigoa g, det Mt (Note that
Mg,1 admits an étale ogaiea-lattice only when d = 0.) Since we showed that each
successive quotient M, /M ;_; of the slope filtration is pure of some non-negative
slope, that det M is pure of slope 0 implies that M is pure of slope 0 (so in turn,
Mb is pure of slope 0). O

4.2. “Dwork’s trick” for p-modules

The aim of this subsection is to prove the following: for any M € Modx (),
the slope filtration for R ® o, M extends uniquely to a filtration of M by @-stable
saturated Oa-submodules of M. The crucial difference with [Kis06, Lemma 1.3.5]
is that our proof only uses the Frobenius map ¢, not a logarithmic connection. The
argument works for both cases 09 = Z, and 09 = F,[[mo]]. A similar situation can
be found in the proof of de Jong’s theorem: Dwork’s trick [dJ98, Prop 6.4] can be
carried out without a connection. See [Ked05a, §5].

Let R be a Bézout domain, and let M be a finite free R-module. We say that
an R-submodule N C M is saturated if N is finitely presented (or equivalently,
finite free) and the quotient M/N has no nontrivial R-torsion. Since flatness and
torsionfree-ness coincide over a Bézout domain, it is equivalent to require that M /N
is free over R. In particular, if N C M is saturated, then an R-basis of N extends
to an R-basis of M.

PROPOSITION 4.2.1. Let M € Moda (), and let Ng C Mg be a p-stable
saturated submodule over R. Then there exists a p-stable saturated submodule N° C
M such that R @0, N = Ng.

COROLLARY 4.2.2. Let M € Moda(p) and 0 = Mgo C Mgy C -+ C
Mp.c = Mg be the slope filtration for Mg := R ®o, M. Then for each Mp ;,
there exists a saturated @-stable submodule M; C M such that R®op, M; = Mg ;.

PROOF OF PROPOSITION. We show the existence of A/ in the following steps
(4.2.3)—(4.2.6).

4.2.3. Uniqueness. Let I be either (r,1) or [r, 1) for some 0 < r < 1, and assume
that there exists a saturated submodule N7 C M; such that R ®0a, Nt = Ng as
a submodule of Mz. Then we have an equality N7 = M; N Ng inside My . This
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can be seen, for example, by choosing a Oa,-basis for N and extending it to a
Oa,-basis for M. Therefore, such N7 is unique if exists. By taking I =[0,1), we
obtain the uniqueness assertion of the proposition.

4.2.4. Reduction to the case when rankg (Mg) = 1. This can be done by the
following well-known trick. If the proposition holds for rank-1 submodules, then
det N of extends to “det N over Oa. (Note that A is finite free since it is closed
in M.) Now one can check that N := {m € M|m Az =0, Vo € “det N} extends
Nz.

From now on, assume that rankg (Ngz) = 1 and let I be either (r,1) or [r, 1)
for some 0 < r < 1. Consider the submodule N7 := M; NNz in M;, which can
be seen to be saturated inside Mz. Therefore we have R ®0a, N7 = Ng if and
only if N7 # {0}. In particular, if N':= M NNz # {0}, then R ®p, N = Ng.

CLAIM 4.2.5. There exists a unique saturated submodule N1y C Mg 1, such
that R ®o,, |, No,1) = Nx.

This claim is exactly [Kis06, Lemma 1.3.4] if o9 = Z,, and the same proof
works for 0g = F,[[mo]]-case. We give a proof below, closely following the argument
of [Kis06, Lemma 1.3.4].

Since Nz is finitely presented, there exists ~ € (0,1) and a saturated Oa,, ,,-
submodule NV,1) C M(,,1) such that R ®0a,,, Nr,1) = Nr. The Frobenius map
¢ on N induces ¢ : 0 (N(y1)) — Npi/a 1), where 0*(N(r,1y) is the scalar extension
by o : OA(M) — OA(TI/“).

We set N(ya,1) := Mra,1) N N(y1), which is a saturated submodule of M ;q 1.
As mentioned in §4.2.4, in order to show that R ®0A<v~q b ./\/(qul) = -/v(nl)’ it is
enough to show that N, 1y is non-zero. For this, we look at the following diagram
with left exact rows.

0——>0" (Npa,1)) —> 0" (Mpa 1)) ® 0" (Nr1)) —= 0" (M)

0——Np M1y ® Nigsa g Mp17a1)s

where the left horizontal maps are diagonal inclusions and the right horizontal maps
are defined by (a,b) — a—b. The top row is left exact since o is flat. (Recall that a
torsion free module over a Bézout domain is always flat.) Furthermore, the central
and right vertical maps are injective, so the cokernels of both maps are torsion
modules. It follows that the cokernel of the left vertical map is also torsion, which
proves that N4 1) is nonzero.

By repeating this process, we obtain a vector bundle /\/(anﬁl) of rank-1 for
each n, which glues to give a vector bundle N ) of rank-1. By construction,
N,1) € M(o,1) is saturated and we have R ®OA(0,1) No,1) = Nr. The uniqueness
of such Vg 1) follows from (4.2.3). (Here, we identify a vector bundle of rank n on
A with its global sections, which is necessarily a free Oa ,-module of rank n. See
§6.1.5 for more discussions.)

4.2.6. Extending N 1) to V. This is the key step. Roughly speaking, we ex-
tend a saturated Oa , ,, [5]-submodule Mg 1)[5] € Mq,1)[5] to a saturated Oa[5]-
submodule N[1] C M[3], and glue N'[3] and N{g 1) to obtain A/. The point is that
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we have the ¢-compatible section £ : Oa ® ., (M/uM) — M, whose cokernel is
killed by some power of A (Proposition 3.2.1). We use this to find a basis for M[}]
which makes the “p-matrix” very simple.

Let él, .., e, bea %/0 basis for M /uM, and we put e; := £(1®¢;). Then {e;}
is a Oa[5]-basis for M[1]. By construction, the matrix for @[] with respect to
the basis {ez} is the same as the matrix for ¢ := ¢ /a4 With respect to the basis
{€;}. In particular, all the entries of this matrix lie in .#7. (In fact, if p(c*e;) =
> i@ with a5 € o, then we have p(o*e;) = £ (p(07e))) = >, aije;.)

Let Ay () be the open unit disk over o (k), and let M ;| 1) denote Oa . o ®04
M. By the Dieudonné-Manin decomposition over .# o(k) (Theorem 4.1.2), we can
find a % o(k)- basis {e)} for M%o(k)/“M%o(E) =~ #o(k) @5y (M/uM) so that
P (0" "E)) = 770 e . We put € := §%O(k)(1®e ), where Exoli) = OA%o(E) ®&. By
construction the bases {e’} and {e;} are related by GL, (/# o(k k)). Since Exok) I8
p-compatible by construction, the matrix for ¢ g o) [%] with respect to the basis
{e}} is in GL,(#(k)) by the same argument as above.

Let Ay (7),0,1) be the punctured open unit disk over A o(k). Choose a
-basis e € -/\/(0,1)» and express it as a linear combination of e; as follows:

1 & 1 &
:Ezflelzng;ei’ fi?.geOA(oyly
i=1 i=1

where g divides < a for a > 0. We choose f; and g so that f; and A generate the
unit ideal in Oa, ,,. As above, fi € Oa .\ iy 00 BT€ H o(k)-linear combinations
of f; and conversely. Then the proposition can be reduced to the following claim.

CLAH\j{ 4.2.6.1. There exists [ € OAx(,(fc),(o,l) such that fj = ¢ - f' where
C;v S fo(k‘)

Oa

H0(R),(0,1)

Let us grant the claim for a moment. Since f; are % o(k)-linear combinations
of f}, we can write f; = ¢ - ' for ¢ € K o(k). Hence, the ratio for nonzero f;
and f; satisfies f;/f; = ¢} /c] € Jifo(l;:) N Frac(Oa,,,) = # 0, S0 we may write
Ji = c¢i- f, for some ¢; € ¢ and some f € Op,,, that is coprime to A by our

choice of f;. Set
1 1 —
€y = —e = - E C;€;.

Observe that e is an element in ./\/'0 1) = N(O 1) [ ] ﬂ/\/’(o,l)[%] and generates N 1
over Oa, - Furthermore, ey belongs to M = M[%] 0,1)- Now, N := Oaeg C
M is the submodule which extends N%.

It is left to prove Claim 4.2.6.1. Let a € Oa, ,, be such that ¢"(0c*"e) = ae,

where n is the rank of M. Since ¢"(c*"€}) = ﬂ'gj e}, we obtain, for each j,

fi"iﬂdj.anﬁ 77de.0'n(fjl')
Cg T (9)7 O on(g)

i

Here, the divisions are performed inside Frac (OAxO@).(o 1)>. So we get that ao™(g)

[ = wdjg-o”(f;). Hence, for any pair of nonzero f; and f;, we have 0‘"(%) =
J

S — }C, By lemma 4.2.6.3, we are reduced to the following claim:
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Cram 4.2.6.2. Let f =) ., apu™ € Ho(k k)[[u, 111, and assume that o™ (f) =
f for some d € Z. Then d = 0 and f € H# o(k), which is fived by o™. (In other
words, f € W(Fpn) if oo = Zp, and f € Fgn(m0)) if 00 = Fg[[m0]].)

The equation ),
Since o : # o(k) — H# o(k) preserves mg-order, d = 0 and o™ (ag) = ao.

71'00 "an)ud™ = Yoy anu” forces that a, = 0 for n # 0.

To complete the proof of the proposition. it is left to show the following lemma:
O

LEMMA 4.2.6.3. Let F' be a complete discretely valued field with residue char-
acteristic p. For any subinterval I € [0,1) with endpoints in {0} Up<c, let Ap
be the subdomain of the open unit disk over F with coordinate uw which is defined
by the “suitable” boundary condition corresponding to I. Then the natural map
Frac(Oa,,) — Fl[u, 1]] of F-vector spaces, which sends a “meromorphic” func-
tion f to its formal mﬁmte tailed Laurent expansion in u, is injective.

Note that F[[u,2]] does not have a natural ring structure; the expression

(ZzEZ )~(2:]€Z Biu ) = ZneZ(Zi+j:n a;8;)u™ for oy, B; € F does not make
sense Without any convergence assumption on (possibly infinite) sums ), tj=n a;f;
for each n € Z. Therefore the natural inclusion Oa ., < F[[u, 1]] does not imply
the lemma.

PROOF. Choose f,g € Oa;., so that the formal Laurent expansion of f/g is
zero. Then we want to show that f = 0. We first handle the case when I = [r, 7]
for some r € p%<o. Then for any point = € Ap -, such that g(z) # 0, (f/g)(x)
makes sense and is zero. In particular, f(x) = 0 for all but finitely many points
r € Ap .. But since the zero locus of f is a “closed” affinoid subdomain, f(z) =0
for any point z € Apj.,). Therefore f = 0 (since the sup norm on Ag|.,; is a
norm, not just a semi-norm.)

Now assume that I has a non-zero length. Then we can find a closed subinterval
J C I such that g does not vanish in A ;. This implies that g is a unit in Oa,, , by
Remark 6.2.3(1) and Proposition 6.2.6.1 (or by some direct computation), so f/g is
a rigid-analytic function on Ap, ;. But since the natural map Oa, , — Fl[[u, £]] is
injective, we obtain f =0 in Oa, ,. Since the natural “restriction” map Oa,, —
OA. , is injective, so f =0 in Oa, ;- g

4.3. ¢-vector bundle pure of slope 0 and weak admissibility

Recall that ModA="(p) C Moda (¢) denotes the full subcategory of @-vector
bundles pure of slope 0; i.e., M such that R*® ®n, M is pure of slope 0. We
first show that the scalar extension functor induces an equivalence of categories
Mg(ap)[%] = Mod™(p), up to a certain technical lemma whose proof will

be given later in §6.3. Next, we show that the weak admissibility on HP?(O(QD) is
equivalent to the “pure-of-slope-0” condition on Mod A (¢) under the equivalences
of categories M and D. The proof uses the slope filtration on M € Moda (¢) by
@-stable saturated Oa-submodules (Corollary 4.2.2). Combining these two results,
we see that the functor H, defined in (3.2.6.1), induces an equivalence of categories
Modgs (¢)[;] = HPR">° ().

We start with the following well-known lemma, which we call the “extension
lemma.”
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LEMMA 4.3.1. Let M be a finite free 6[;—0]—m0duleg, and M a finite free og-
module such that there exists an E-isomorphism « : 5®6[ 1 ]Mbd = ERo, M. Then

there exists a finite free G-module M, and isomorphisms 6 (‘5[ ] Re M = Mbd

and v : 0g @ M — M over G[R] and og, respectively, such that ao B =n; the
triple (M, B,7y) is unique up to unique isomorphism.

If M and M are p-modules over their respective base rings and o is a -
compatible isomorphism, then one can give a unique ¢ structure on M so that 3
and vy are p-compatible. If, furthermore, M is an étale p-module and the cokernel of
O pppa 2 0" MY — MO s annihilated by P(u)® then the cokernel of on : M — M
is annihilated by P(u)"; i.e., MM € Modg(¢)S"

Therefore, the above lemma can be viewed as an analogue of the result that on
a smooth surface, a vector bundle defined outside a closed point uniquely extends
over the point.

PROOF. Let us first handle the case without p-structure. Let &(,,) be the lo-
calization of &[] at the prime ideal ToS[1]. Note that o is the mo-adic completion
of &(r,). We first observe the following general fact whose proof is immediate:

CLAIM. Let R be a discrete valuation ring with mazximal ideal mpg, and R the
mpg-adic completion of R. Let F := Frac R and F' := FracR. Let V be a finite-
dimensional vector space over F. Then there exists a natural bzyectwe correspon-
dence between the set of R- lattzces M in V and the set ofR lattices M in F QrV,
as follows: M +— R ®r M and M — V 1 M where the intersection is taken inside
FerpV.

Applying this claim to R = &,y and V := Frac6 ®@g1 M we obtain a

™0
unique & )-lattice Mz, in V such that of @, ) Mz,) = M in € QgL Mbd
0
(Note that we view M as an og-lattice in & ®g[1 M?® via the isomorphism « :
™0
EQg MY = £®,. M.) Now M(r,) “smears out” to a vector bundle over some
0

open neighborhood of () € Spec G[1]. Gluing this with M"? (a vector bundle on
Spec 6[7%0]) we obtain a vector bundle M™) on (Spec &) — V(mg) where V(mg)
is the closed point of Spec&. By [SGA, 2, Exp XI, Corollaire 3.8] we obtain a
unique vector bundle 9t on Spec & which extends M=), By construction we are
naturally given isomorphisms 3 : 6[ ]®6 M = Mb and v : 0g @ I — M over
6[?0] and og, respectively, as abberted in the statement. Furthermore, we have by
construction that 91 = M®% N M inside £ ®¢ (4] MP (which is identified with
E ®o, M via ).

Let us prove the claim regarding ¢-structure. Clearly, 9t = M N M is a
p-stable G-submodule of both M and M. Now, assume that M is an étale -
module and P(u)" annihilates the cokernel of ¢ pa : 0*MP — MY, Using f3,
o @ 0¥ — M has cokernel killed by P(u)? after inverting my. But coker ™
vanishes after scalar extention to &) = og due to v, so coker pgn has no nontrivial
mo-torsion. In other words, coker ggy is killed by P(u)". O

3We use the notation M®9 because G[ﬁ—lo] is the ring of bounded global rigid-analytic functions

on the open unit disk.
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We need another auxiliary lemma, which we call a “gluing lemma” or “matrix
factorization lemma.” We give the full proof later in §6.3.

PROPOSITION 4.3.2. For any A € GL,(R), there exists U € GL,(Oa) and
V € GL,(R"®) such that A=UV.

PrOOF. If 0y = Z,, then the proposition is exactly [Ked04, Prop 6.5]. The
discussion in [Ked04, §6] carries over word-by-word to the case of oy = F,[[mo]].
For interested readers, see §6.3 of this paper. O

Now we are ready to prove the following:

PROPOSITION 4.3.3. The scalar extension 93?[7%0] — Oa Qg1 93?[7%0] induces
0

an equivalence of ®-categories Mode(@)[ﬂ%] = ModiA™(¢). Furthermore, a three-
term complex (1) : 0 — 9)?’[;10] — sm[ﬁ—lo] — 93?”[7%0] — 0 14s short exact in

Mode(go)[ﬂ—lo] if and only if Oa ® (1) is short ezact in ModA=" ().

ProOOF. For any 9 € Modg (), the scalar extension Oa ®g M is necessarily
pure of slope 0. In fact, @rva @M is an étale p-module since P(u) € (Grva)™, and
is a p-stable @rea-lattice of R ®s M. Now, the claim follows from the discussion in
Lemma 4.1.7. The exactness assertion follows since O4 is faithfully flat over 6[7%0}
by Proposition 6.2.8.

Fix any M € Modx™"(¢), free of rank n. By Theorem 4.1.6(1), there exists
Mupsa € Modiysd (¢) such that R @gee Mgea = Mz. Hence Mg carries two R-
bases: one from Oa-basis for M and the other from R"¥-basis for Mysa. They are
related by a matrix in GL,,(R), but the preceeding “gluing lemma” (Proposition
4.3.2) implies that one can modify the chosen bases so that they coincide in Mx.

Let MY be the 6[7%0]—Span of this common basis. Since G[ﬂ—lo] = RN Og,
we have an equality M = Mpgwa N M as a submodule of Mz. Therefore M®?
is a -stable 6[%]—submodule of both Mpws and M. Now we obtain the full
faithfulness as follows. Assuming M = Oa ®s M for some M € Mods (), the
construction above gives M% = sm[%] And thanks to Theorem 4.1.6(1), any

morphisms M ®g Oa — M ®s Oa of Mod (¢) restrict to sm[%] — sm’[ﬂio]
For the essential surjectivity, the “extension lemma” (Lemma 4.3.1) produces
the p-stable G-lattice M of both M and 0g ®ga Myea, which is of P-height < h

if M®? is. On the other hand, if M = Oa Qa[L] MP? s of P-height < h, then so
)
is M®? by the faithful flatness of Oa over 6[7%0] (Proposition 6.2.8). O

THEOREM 4.3.4. Let D € HP?(O(QD). Then D is weakly admissible if and only
if M(D) is pure of slope 0. In particular, H : 93?[7%0] — D (OA Qs[L] im[%o])
0

induces an equivalence of categories Modg (@)[%0] — HP%ago((p). Furthermore, a

three-term complez (1) : 0 — 9)?’[7%0] — 93?[7%0] — Dﬁ”[%o] — 0 is short exact in

Mode(ap)[%] if and only if H(}) is short exact in HP%“’>O(30).

T

ProoOF. Granting that D is weakly admissible if and only if M(D) is pure of
slope 0, it follows from Propositions 4.3.3 and 3.2.5(3) that H : Modg (@)[ﬂio} —

H'P?(O(QO) is fully faithful with essential image HP%I’>O(90). The exactness asser-
tion follows from Propositions 3.1.6(2) and 3.2.5(2), and the exactness assertion of
Proposition 4.3.3.
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We first verify that
(4.3.4.1) deg(M(D)) =ty (D) —tg(D)

Since M(-) commutes with ®-product (Proposition 3.1.6), one can replace D with
its determinant and reduce the verification of the equality (4.3.4.1) to the rank-1
case. In the rank-1 case, (4.3.4.1) can be directly read off from the computation of
M(D) which is done in §3.1.4, especially from (3.1.4.1). This verifies (4.3.4.1), and
proves the theorem for the rank-1 case.

Now, assume that M(D) is pure of slope 0 and of any rank. Then for any
subobject D', we have deg(M(D’)) > 0. In fact, this can be checked after extending
scalars to R*& and then the claim follows from Proposition 4.1.5. By (4.3.4.1), it
implies that D is weakly admissible.

Now, assume that D is an isocrystal with weakly admissible effective Hodge-
Pink structure. By Corollary 4.2.2, we have the following “slope filtration” for
M(D) by p-stable saturated modules on A:

O=MoyCM;C---CM;=M(D)

Let s; be the unique slope for M;/M;_;1 and n; be the rank of M;/M;_1. Put
D; := D(M;). By extending scalars to R*® and applying the Dieudonné-Manin
classification (Theorem 4.1.2), one can see that deg(M (D)) = > s;n; and deg(M;) =
s1n1. The weak admissibility implies > s;n; = deg(M(D)) = tn(D) —tg(D) =0
and deg(M;) = tn(D1) —tg(D1) > 0, so s; > 0. But since s1 < s; for any i # 1,
we must have ¢ = 1 and s; = 0; i.e., M(D) is pure of slope 0. O

REMARK 4.3.5. Since H commutes with ®-products (in particular, with Tate
twists), we may immediately extend the above theorem, as follows: there exists
an equivalence of categories H from generalized ¢-modules over & as in §2.2.11 to
isocrystals with weakly admissible Hodge-Pink structures, which commutes with
all the natural operations, such as ®-products, internal homs, and duality.

4.3.6. Rank-1 example. Let D be a rank-1 isocrystal with weakly admissible
effective Hodge-Pink structure, and we put ﬁxo = OA z, @y D. We choose a
K o-basis e € D and write pp(c*e) = (arh)-e for some o € W* and h > 0. By
weak admissibility the Hodge-Pink structure is A = P(u)’hﬁmg.

In §3.1.4, we have seen that M(D) = A™"D C D[}], where D := Oa @,
D = Opa-e by choosing a % -basis e for D. We choose the following Oa-
basis € := A7"e € M(D) of M(D), so we have by (3.1.4.1) that prpy(c*e’) =

anl (%)h e’ = aP(u)"e', using our normalization P(0) = 7.

Clearly 90t := G-€’ is a p-stable G-lattice in M (D). By Proposition 4.3.3, such
a G-lattice 9 is unique up to isogeny. Therefore ﬂ(im[ﬂio]) = D where MM = Ge’
with pgn(c*e’) = (aP(u)")e’ and D is as above. Applying this to the case a = 1, we
obtain E(G(h)[%ﬁ]) = 1(h) where &(h) is the Tate object as defined in Definition
2.2.6 and is the Tate object 1(h) as defined in (2.3.2.1). Note that we used the
normalization P(0) = g for getting H(S(h)) = 1(h); otherwise, the formula would
involve some suitable “unramified twist” corresponding to P(0)/mg € W*.



CHAPTER 5

mo-adic G i-representation of finite 7P-height

Let Rep,,(Gx) denote the category of finitely generated (not necessarily free)
0p-modules with continuous linear G i-action, with the obvious notion of morphism.
We also let Repff:e(g k) (respectively, Repy'(G)) denote the full subcategory of
Rep,, (G k), whose objects have free (respectively, torsion) underlying og-modules.
We have obvious notions of ®-product, internal hom, and duality for this category.

In this section, we construct a contravariant functor T : Modg (¢) — Repf,r(fe(g
and show that it is fully faithful. The construction of 7§ uses Fontaine’s theory of
étale p-modules (or its variant for o9 = Fy[[mo]]). To show the full faithfulness, we
use equivalences of categories discussed in §3-§4. The essential image of T will be

the main object of study in the later part of our work.

5.1. Etale p-modules and my-adic representations of G i

Fontaine’s theory of étale g-moduless [Fon90, §A1.2] gives a classification of Z,-
lattice G i-representations via étale p-modules over og; in other words, an equiva-
lence of categories between Rep, (Gx) and Miod‘gfS (¢) when oy = Z,,. But in fact,
Fontaine’s argument carries over to prove the “same” equivalence of categories for
0o = Fy[[mo]]. In this subsection, we reproduce [Fon90, §A1.2] in a way that works
for both cases 09 = Z, and 09 = F,[[mo]]. In this subsection (§5.1), we do not
assume that K has a finite p-basis. This will come up later in §8.1.12.

5.1.1. More Rings. We first define some more rings we need. Recall that K =
k((u)) where k is a field of characteristic p > 0.
ogur  the maximal unramified extension (i.e., strict henselization) of og
Y the fraction field of ogur
ogur the mg-adic completion of ogur
EW  fraction field of Ogur

By the universal property of strict henselization, there exists a unique map
0 : 0gur — Ogur Over o : 0g — 0g which reduces to the gth power map on the
residue field K®°P. Since this o on ogur is an isometry for the valuation topology, it
continuously extends to o : ogw — o0gu . Using this o, all the rings above become
o-flat. R

If o9 = Fy[[mo]], we can write ogw = K3P[[mg]] and £ = K®°P((n)), and o
acts as the gth power on the coefficients of mp-adic expansions (i.e., on K*P) and
the identity on mq.

The natural action of G = Gal(E™/E) on ogu extends to ogw and EW via
isometry, and this action commutes with the Frobenius o (by the universal property
of the strict henselization). Also, we have (0gu )95 = 0g; this can be seen from
Krasner’s lemma (or by noting that Gx acts only on “coefficients” in the p-adic
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Teichmiiller expansions if oy = Zj,, or in the formal power series expansion via
ofur = K**P[[my]] if 0p = F,[fmol]).

5.1.2. Duality. The categories Rep, (Gx) and Mii () are equipped with ®-
products and internal homs which satisfy all the “natural” compatibilities. We also
have “duality” for these categories, but since we allowed torsion objects we need
to treat free objects and torsion objects separately. We define duality on free and
torsion objects in Rep, (Gx) as follows:

T Homy,, (T, 09), for T € Repf,roee(gK)
T }IOIDOU (T, Fo/Oo), for T € Repg?)r(g[(),

where 0y and Fy/og are given the trivial Gg-action. Even though Fy/0g is not
finitely generated (hence not an element of Rep, (Gx)), any op-linear map from a
torsion object T into Fy/o0q factors through some finite submodule T%Noo/oo C Fy/oo
for N > 0 depending on 7. So T* can always be written as son;)e internal hom,
whether T is torsion or free.

Similarly, we define duality on free and torsion objects in M‘Ztg (p):

Ao | Homo (Tyog),  for M € Mody™™(p)
Hom,,(T,E/og), for M € Mod‘;tg’tor(go),

where the p-module structures on og and £/0g are given by linearizing the o on og
and &, respectively. Again, even though £ /o¢ is not finitely generated, any og-linear
maps from any torsion object M into £/o¢ factor through some finite submodule
%05/05 C &/og for N > 0. So M* can be written as some internal hom, whether
M is torsion or free.

For the rest of this subsection, we will construct quasi-inverse equivalences
between Rep, (Gx) and Mﬁi (¢), which respects all the natural operations, such
as ®-products, internal homs, and duality.

5.1.3. For T' € Rep,,(GK ), we define
(5.1.3.1) De(T) := (0gw ®@,, T)9X,

where Gk acts on the both factors of T'®,, 0guw . Since o and the natural G k-
action on oguwr commute, the ®-product Frobenius structure ¢ : o* (ogur Rop T) —
Ogur ®o, T restricts to ¢ : 0*De(T) — Dg(T). The following lemma tells that
D¢(V) is in fact an étale ¢p-module over og.

LEMMA 5.1.4. For any T € Rep,,(GK), the natural map
(5.1.4.1) oguwr Qo De(T) — 0gur ®o, T
is a Gk -equivariant isomorphism of @-modules.

REMARK 5.1.5. Before we begin the proof, let us discuss formal consequences
of the isomorphism (5.1.4.1), together with the faithful flatness of ogur over og.
All the properties below can be checked after some faithfully flat scalar extension,
namely by applying ogw ®,, (-), and then one can use the isomorphism (5.1.4.1).

(1) Dg(T) is a finitely generated og-module, so it is an étale p-module. In
particular, we obtain a functor Dg : RepOO(gK) — Mioditg ().

(2) A 09[Gk]-module T is free of og-rank n (respectively, a finite torsion og-
module of length n) if and only if Dg(T') is so as an og-module
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(3) A complex () in Rep, (Gx) is exact if and only if Dg(x) is exact in
Mods! ().
(4) For any T,T" € Rep, (Gk), the natural map D¢(T) ®,. De(T') —
D¢ (T ®o, T") is a ¢p-compatible isomorphism.
(6) Forany T,T" € Rep,,(G k), the natural map D¢ (Hom,, (T',7")) — Hom,, (Dg(T), De(T"))
is a p-compatible isomorphism. In particular, trivially D¢(0g) = og (re-
spectively, with the natural G g-action and @-structure) and Dg(Fp/0g) =
E/og (or rather, Dy sends the direct system {%05/05} to {%00/00}),

we conclude that the natural map D¢ (T*) — (D¢ (T))" is a p-compatible
isomorphism.
Using the duality we can define a contravariant version of the functor Dz (-), which
is often more useful. But for this, we need to treat torsion and free cases separately:
(5.1.5.1)
Hom (T,E" Jogur), for T € Rep™ (Gk)
[)’k T) := D T* = UO[gK] ’ ~ ’ 0r%c
De(T) := De(T7) { Homy g, (T, 0gur ), for T' € Rep’ (GK).

0o
Since D, commutes with the duality by (5) above, we have D% (T) = (Dg(T))".
One can also formulate Lemma 5.1.4 using Dz (), and show the properties listed
above assuming that all 0[G i |-modules involved are either all finite free over og
or all finite torsion og-modules.

PRrROOF OF LEMMA 5.1.4. First, it can be seen that the map (5.1.4.1) is G-
equivariant and @-compatible, so we only need to show it is an isomorphism as
og-modules.

If 7, - T = 0, then the map (5.1.4.1) being an isomorphism basically follows
from classical Galois descent theory. If 7}’ - T = 0, then we use the induction on
N; consider the exact sequence 0 — Wév_lT - T — T/ﬂ'év_lT — 0, and since the
statement is true for the flanking terms, it is true for the middle term.

For the general case, we use the “dictionary” between og-modules M and projec-
tive systems { M /my M },, (Proposition 7.4.1). For any T € Rep, (G ), observe that

lim D¢ (T/mg5T) = De(T); in other words, the natural map (@n (0guw /78) ® T)gK —
n
lim | ((ogu/75) @ T)gK } is an isomorphism which can be seen directly by the ex-
plicit description of G g-action on lim (ogu/7g) @ T
Since we proved Lemma 5.1.4 for torsion representations, it follows from Re-
mark 5.1.5 that the functor D, is exact for torsion representations. So we have the
following right exact sequence for any integers n and N:

De(T/mNT) T8 Do(T/ap tNT) = De (T/x3T) — 0.

(One can check the exactness after applying ogw ®,, (-), and then use that the
natural map (5.1.4.1) is an isomorphism for torsion G g-representation, which we
have already proved.) In particular, each transition map induces an isomorphism
(0g/78) @ De(T /70 T) =5 Dg(T/myT). Moreover, we have already seen that
D (T/moT) is finite-dimensional over og/(m). Therefore by passing to the pro-
jective limit over N, we conclude that D(T') is finitely generated over og such
that the natural map (0g/7f) ®op De(T) — Dg(T/m3T) is an isomorphism. We
finally conclude the map (5.1.4.1) is an isomorphism by the “dictionary” between
ogur -modules M and projective systems {M /7 M},. (See Proposition 7.4.1.)
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The étale-ness can be checked after a faithfully flat scalar extension ogw ®,, (-),
and the target of the isomorphism (5.1.4.1) is clearly an étale p-module. (]

5.1.6. Next, we construct a functor T¢(-) : Mod‘f;tg(gp) — Rep,,(Gk), which

will be shown to be a quasi-inverse to the functor Ds. For any M € Moditg (p), we
let

(5161)  Te(M):= (05 ®op M)~ = {z € 08 @4, M| p(0"z) = x}.

The Gk-action on ogw ®,, M via the the first factor restricts to an action on
T (M) since the Frobenius map and G g-action commute.

As previously, we can use the duality to define a contravariant version of the
functor T¢ (M), for which we should treat torsion and free cases separately:
(5.1.6.2)

ur ét,tor
THM) = L) = { qgomeese (10 E7 o) or 1€ Mot 1)
Hom,, (M, o0gu ), for M € Mod; " (),

In fact, we will see below that T’ will also commute with the duality; i.e., there
exists a natural isomorphism T¢(M*) = (T¢(M))*. We leave it to readers to
formulate the next proposition (Proposition 5.1.7) using the contravariant functor
T and assuming that all étale p-modules involved are either all finite free over og

or all finite torsion og-modules.

PROPOSITION 5.1.7.
(1) For any M € Modi(gp) the natural map

(5.1.7.1) 0gur R Le(M) — 05w ®,, M

is a G -equivariant isomorphism of @-modules. In particular, T¢(M) is
finitely generated as an og-module, and M is free of og-rank n (respec-
tively, a finite torsion og-module of length n) if and only if T (M) is so
as an og-module.

(2) The functors Dg and T'g are quasi-inverse anti-equivalences between, Mii (¢)
and Rep, (Gk), which are evact and commute with ®-products, internal
homs, and duality. Moreover, D¢ and T'¢ restrict to quasi-inverse anti-
equivalences between mi‘;ﬁ“(g@) and Rep™(G k) (respectively, between

. %0
Modg"" () and Repg' (Gk))-

0o

The proposition for the case 0oy = Z, is proved in [Fon90, A, §1.2]. When
0o = Fy[[m0]], the proposition for objects killed by mg can be obtained from [Kat73,
Proposition 4.1.1].

ProOF. Using the same argument as before, one can show (1) implies (2),
aside from the quasi-inverse claim. In order to construct a natural isomorphism
Te o Dg = id, it is enough to show the image of the Gx-equivariant injective
map T < 0gu ®,, T is exactly (0gw ®,, T)?~!. Since this inclusion has an o0g-
linear section (as 09 — ogur does, via successive approximation) and the image
is contained in (0gw ®,, T)?~!, it is enough to show (0gu ®,, T)?=t = T as
abstract op-modules (i.e., forgetting their embeddings into 0 gw ®,, T'). By the
structure theorem for finitely generated modules over a principal ideal domain, we
are reduced to showing (ogw )¥=! = 0y and (ogur /(7rg))w=1 = 0g/(7d). The other
natural isomorphism DgoT ¢ = id can be obtained by applying (-)9% to the natural
isomorphism (5.1.7.1).
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Now, let us give a proof of (1). By the same argument as in the proof of
the Lemma 5.1.4, it is enough to handle the case when 7y - M = 0, which we

~

assume from now on. (For the limit argument, we have lim (M /7y M i

n

p=1
(linn M/ M ) by the og-linearity of ¢, and so the rest of the argument goes
unchanged.)

Let M be an étale g-module over K = og/(mp). We would like to show that

the natural map
K*P @p, Tg(M) — K™ @ M

is a G g-equivariant isomorphism of p-modules. This statement for ¢ = p is proved
in [Fon90, A, Proposition 1.2.6], which carries over for any ¢, as follows.

We will in fact prove the contravariant version of the statement, namely for
mo - M = 0, the natural map

(5.1.7.2) K5 @, TE(M) — K*P @ M* = Homg (M, K5P),

is a Gg-equivariant isomorphism of ¢-modules, where M* is the dual étale -
module in the sense of §5.1.2.

Define
Sym g (M)

Ay =
M tme = p(o*m)|Vm € M)’

which is clearly a finite étale algebra over K of rank ¢™*x M Observe that
Te(M) = Homyyg ) (Apr, K5°P). So by counting, we conclude that dimp, T¢ (M) =
rank M. (In fact, one can naturally give Spec A, a structure of group scheme with
0o/ (mp)-action in such a way that (Spec Ay )(K®P) = T:(M) is a G k-equivariant
isomorphism of 0g-modules. See §7.2 for more discussions.)

Now since the both sides of (5.1.7.2) have the same K®°P-dimension, it is enough
to show the injectivity. Assume myq,--- ,m, € Ts(M) are linearly independent over
F, but not over K*°P. Assume, furthermore, that r > 1 is the minimum cardinality
of a set with this property. We may assume >_._, ¢;m; = 0 for some ¢; € K5P
with ¢ = 1. By applying ¢, we also obtain Y ;_, ¢/m; = 0, so by subtracting
we get a K*P-linear dependence relation >\ _,(c¢! — ¢;)m; = 0 with fewer than
r elements. By our choice of r we get ¢! = ¢; for all i, which contradicts to the
F,-linear independence of {m,}. O

5.1.8. Contravariant Theory. It is often much more convenient to work with the
contravariant functors Tz and Dg. Tt is a formal consequence of Lemma 5.1.4 and
Proposition 5.1.7 that Tz and D are quasi-inverse exact anti-equivalences of cate-
gories between suitable source and target categories; commute with ®-products, in-
ternal homs, and duality; and satisfy various other properties as asserted in Lemma
5.1.4 and Proposition 5.1.7.

When working with these contravariant functors, one often needs the fact that
T¢ and Dp “commute” with the reduction mod 7. The following lemma shows
that this is indeed the case, but it is not completely trivial because the functors are
defined differently for torsion and finite free objects.

LEMMA 5.1.9. Let f: M’ — M be an “isogeny” of étale p-modules finite free
over og; i.e., f[ﬂ—lo] : MI[?lo] — M[%ﬂ] is an isomorphism. Then we have a natural

isomorphism Tg(coker f) = coker(Ts(f)), where Te(f) : Te(M) — Te(M') is the
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map induced from f. In particular, if M is an €étale p-module finite free over og
then we have a natural isomorphism (00/7y) ®oy Le(M) = Te((00/78) @0y M).

Similarly for any isogeny f : T' — T of og-lattice G -representations, we have
a natural isomorphism Dg (coker f) = coker(Dg(f)).

PrOOF. We view both M’ and M as submodules of M’ [ﬂ—lo] via the isomorphism
f [T%O], and replace f with the natural inclusion. We also view Tz (M) and Ts (M') as
submodules of Hom,,. ,(M’, £") via the natural inclusion ogwr < ™ := ogur [7%0]
Then T%(f) is the natural inclusion T (M) — Te(M'), whose cokernel is isomor-

phic to Hom,, (M/M',E"™ /ogur). The same argument also shows the claim for
Dg. O

5.1.10. We comment on the classifications of Fy-representation of Ggi. Let
Repg, (G ) be the category of finite-dimensional Fy-vector spaces with continuous
G k-action. For any (p,V) € Repp, (G ), there exists an G g-stable oq-lattice T' C
V. (This follows from the compactness of Gk.) In other words, the category
Repp, (G k) is equivalent to the isogeny category Rep, (G k) [7%0] = Repﬁrfe(gK) [7%0]
Therefore, the quasi-inverse equivalences of categories T and D, induce quasi-
. . . ét, fr ~ .
inverse equivalences ’of categories V¢ : Mod{" ee(go)[wio] — Repp, (Gx) and Dg :
Repp, (Gk) — Modii’free(go)[ﬂ—lo]. The same statement holds for the contravariant
versions, so we obtain quasi-inverse anti-equivalences of categories Vi and Dj.

5.2. Main theorem and G i-representations of finite P-height

Consider the functor Modg () — mﬁi’free(@) defined by scalar extension
M — 0 ®c M. In this subsection, we show that this functor is fully faithful
(Theorem 5.2.3). Since the target category has an anti-equivalence of categories
with Repi®(Gx) via T%, this implies the full faithfulness of the contra-variant

functor T : M — Te(og ®e M) from Modg(¢) to Repf,r:e(gK). This theorem
was first proved by Kisin [Kis06, Proposition 2.1.12] for oy = Z,, and our proof is
closed related to his. In the case of 0y = Fy[[mo]], it is known that Modg(¢) and
Mod,, () classify certain kind of mo-divisible groups over ox and K, respectively.
(See §7.3 for the precise statement and a proof.) Therefore, the full faithfulness of
Modg () — Mod,, () can be viewed as an equi-characteristic analogue of Tate’s

theorem [Tat67, §4.2].

5.2.1. For 9 € Modg (), we associate a 0g[G x]-module
Ts(M) :=T¢ (0g ®e M) = Home ,(M, 0z ),
free

which defines a contravariant exact functor T'g : Modg () — Rep,, (Gx) com-
patible with ®-products.

We need one more lemma for the proof of the main theorem. Compare with
[Kis06, Lemma 2.1.9].

LEMMA 5.2.2. Let f: 9 — 9V be a morphism in Modg(¢) such that og ® f :
0g s M — 0g @ M is an isomorphism. Then [ is an isomorphism.

PROOF. Since f is a morphism of free G-modules of same (finite) rank, it is an
isomorphism if its determinant is. Hence, we may assume that 2t and 9 are free
of rank 1. Since og ® f is an isomorphism in Mﬁ?free(¢) and og is the mp-adic
completion of G[%], it is enough to show that f is an isogeny — in other words,
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f is an isomorphism in Mode(tp)[ﬂ%]. For this claim, we use the equivalence of

categories H : Modg (go)[%] — HP%“’>O(<,0) (Theorem 4.3.4)*.

We set (D, A) := H(9M) and (D', A’) := H(9V'). Note that H(f) is a non-zero
morphism of isocrystals with weakly admissible Hodge-Pink structures. Since D
and D" are 1 dimensional, H(f) : D — D’ induces an isomorphism of isocrystals,
so ty(D) = tny(D’). Let h denote this common Newton number. By the weak
admissibility, we have h = tz (D) = ti(D’). Hence A = P(u)™"-(Oa 2, @1, D)
and A’ = P(u) ™" (Oa 2y @y D'), so H(f) : A — A’ is visibly an isomorphism in
H?D?()ago((p), which shows that f is an isogeny. O

Now we are ready to prove the main theorem. Compare with [Kis06, Proposi-
tion 2.1.12].

THEOREM 5.2.3. The functor Modg () — Moditg’free(ga) defined by M —
0 @ M is fully faithful. Equivalently, the contravariant functor T'g : Modg(¢) —
Repl®(Gr) is fully faithful.

PROOF. Let 9y be a finitely generated torsion-free (not necessarily free) &-
module equipped with a map wm, : 0"y — Py such that coker(pgn,) is killed
by P(u)" for some h. Then, we can “saturate” 9, to get another p-module NG,
which is finite free over & and contains My with coker pgpeae killed by P(u)".
Indeed, define MFP* := (9370[7%0]) N (0 @ M) with its evident p-structure, where
the intersection is taken inside £ ®g M. Both 0g @ Mo and 93?0[7%0] are torsion-
free, hence free over o¢ and G[ﬁ—lo], respectively. By the proof of Lemma 4.3.1, g2
is finite free over G and it recovers DJTO[T%U] and 0g ®g Mp. Lemma 4.3.1 also shows
that since coker pgy, is killed by P(u)", the same holds for coker Pomznt -

Now suppose that 9t and My are in Modg () and put M; := og @ M; for
i =1,2. Given a morphism f : M; — M in migﬁ“(w), we would like to show
that it restricts to 9; — M.

Let us first handle the case when M = My = M5 and f =id; i.e., M; (i = 1,2)
are @-stable G-lattices in M and we seek to prove My = M, if they are both of
finite P-height. Clearly 97t; + 9, defines a p-stable submodule of M of finite P-
height, and it is finitely presented over &, so the inclusion 9M; < (M + M3)%?* is
an equality by Lemma 5.2.2. Therefore I, = 91,.

Now we handle the general case. By replacing f by (1, f) : My — My @ My and
My by My ® Ms, we may assume that f is injective, so we can regard 9; (i = 1,2)
as (¢, &)-submodules of Ms. As in the special case treated above, (M; + My )%t €
Modg () is another ¢-stable G-lattice of Mo, so the inclusion My — (M + My )52¢
is an equality by Lemma 5.2.2. Therefore, I; C (g + Mo)%2t = M. O

COROLLARY 5.2.4. The contravariant functor Vg : Miod@(cp)[%o] — Repp, (Gk)
is fully faithful, and there exists a fully faithful exact functor Vi,p : HPR (@) —
Repp, (Gx) which commutes with @-products and such that we have a natural iso-
morphism Vg = Vi, p o H of functors Mode (¢)[=] — Repp, (Gx)-

T
PROOF. The first claim directly follows from the above theorem. In order to
prove the second claim, consider the following contravariant functor Vg o H! .
HP%“’>O(L,0) — Repp, (Gx) which commutes with ®-products (in particular, with

Hn fact, we only need the full faithfulness of the functor H : Modg (Lp)[ﬂ—lo] — HP‘;“’>O(<,0).
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Tate twists), where H ™' : HPY“Z(p) — Modg (@)[%] is a quasi-inverse of H

defined by H (D) = Dﬁ[ﬂ%] where sm[%} is the unique ¢-stable G[ﬂio]—lattice of
finite P-height in M(D). Now, we set Vi,»(D) = (Vs o H™")(D(N))) (—N) with
N big enough so that D(N) is effective. This definition is independent of N, and
the functor V73,p satisfies all the desired properties. O

LEMMA 5.2.5. A three-term complex D* : 0 — D' — D — D" — 0 of
isocrystals with weakly admissible Hodge-Pink structures is short exact if and only
if V3,p(D®) is short exact in Repp, (G ).

Similarly, a three-term complez M® : 0 — M — M — M’ — 0 in Mods(p)
is short exact if and only if T (9M®) is short ezact in Rept®(Gk).

00

PRrROOF. By Proposition 5.1.7(2) and &-flatness of og, Ts is an exact functor
(i.e., T takes a short exact sequence in Modg (¢) to a short exact sequence in
Repf,fje(g k)). Using the exactness assertion of Theorem 4.3.4, V3, is an exact
functor. So it suffices to prove the “if” assertions.

Now let us assume that V3,»(D*®) is short exact in Repp, (G ) and show that
D¢ is short exact. By assumption, we have dim_y», D = dim y», D’ 4+ dim_y, D"
since V3,p is rank-preserving. It immediately follows that D* is short exact for the
underlying isocrystals (without Hodge-Pink structures).

Let A’, A, and A” be the (weakly admissible) Hodge-Pink structures for D',
D, and D", respectively. It remains to show that the natural inclusions A’ —
(A = AN Oa ., [ﬁ] ®x, D' and A/A' — A"’ of Hodge-Pink structures
on D’ and D", respectively, are isomorphisms. This claim can be checked after
passing to the determinants. Let us first replace D’ with its determinant and put
W = tn(D'). By weak admissibility, A’ = P(u) " D, where D, = O, @1, D,
and (A’)st = P(u)*h;ﬁgo for some R, > I’ (since A’ C (A’)%**). On the other hand,
by weak admissibility of (D, A) we have hl, < ty(D’) = /. This shows that D*® is
left exact. Now we replace D" with its determinant and put h” := ¢t (D"). Since
both A/A’ and A” are weakly admissible by Proposition 2.3.8 and by assumption,

we obtain that A/A" — A" = ’P(u)_h”ﬁ;’O. This shows that D*® is exact.
Now let show the lemma for T'g. Assume that T&(91°) is a short exact se-

quence. It follows from Corollary 5.2.4 that we have V3,p (ﬂ(i)ﬁ' [7%0])) = T (M®) [7%0],

and that ﬂ(im'[ﬁ—lo]) is a short exact sequence in HP;’((J’%(@). By the exact-
ness assertions of Theorem 4.3.4, DT('[%O] is a short exact sequence, so 9M°® is left
exact. Furthermore, the natural map /9% — 9M” is an isomorphism since
the natural map Tg(9M”) — ker[Tg(M) — Tg(9)] is an isomorphism and
T is fully faithful (Theorem 5.2.3). Note that we have a natural isomorphism
Ts(M/M') = ker[T (M) — T (M)]. O

REMARK 5.2.6. Since the functor T'g commutes with ®-products (in particular,
with Tate twists), we may extend T'g to a functor on generalized p-modules over
S (see §2.2.11), and the theorem implies that this T is fully faithful. Unlike
Modg (), the category of generalized p-modules have duality and internal hom. It
is not hard to show that the functor I’y commutes with these operations.

5.2.7. From now on, we focus on the essential image of Tg : Modg(v) —
Repfree(g k). DBut this subcategory is not stable under the natural duality in

0o
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Repfij(g k), while any “good” class of representations should be stable under the
natural operations such as ®-product, duality, and internal hom. So we consider a
slightly larger full subcategory which is stable under all these operations.

As suggested in Remark 5.2.6, one possible solution is to consider the essential
image of generalized ¢-modules over & under T'g. This full subcategory has the
following alternative description. We put 0¢(r) := T's(&(r)) if » > 0 and oo(r) :=
(o(=r))" if r < 0. For any T € Rep,,(Gk), we put T(r) := T ®,, 0o(r). If
09 = Zjy, then G » acts on 0g(1) by the restriction of the p-adic cyclotomic character
to G, = Gk; and if 09 = F,[[mo]] then G acts on 0p(1) by the Lubin-Tate
character; i.e., the character obtained by the Lubin-Tate formal group (as is verified
in Example 7.3.7(3)).

DEFINITION 5.2.8. A op-lattice G -representation T' € Repﬁr:e(gl() is of finite
P-height if for some r € Z, there exists MM € Modg(¢) such that T'(r) = Tg ().
We say that T is of P-height < h if there exists 9 € Modg ()S" of P-height < h,
such that T = T'g ().

We say that V' € Repg (Gk) is of finite P-height if there exists a G -stable
0p-lattice T' C V' which is of finite P-height. Similarly, we say that V is of P-height
< h if there exists a G g-stable og-lattice T' C V' which is of P-height < h.

We let Repfroee’P(gK) and Rep}?0 (Gk) denote the full subcategories of Gx-

o
representations of finite P-height. We let Repl;r:e’gh(g x) and Replgf(g k) denote
the full subcategories of representations of P-height < h.

The full subcategories Repirocc’P (Gk) and Rep?0 (G ) are stable under ®-product,

duality, and internal hom of the ambient categories. But the P-height < h con-
dition is not stable under any of these operations. Note also that Repﬁo (GK) is
exactly the essential image of HP%"(¢) by Vip.

The following proposition says that for an Fy-representation of P-height < h,
any G g-stable og-lattice is of P-height < h. Compare with [Kis06, Lemma 2.1.15].

PROPOSITION 5.2.9. Let V = T (Dﬁ)[ﬂ%], and assume that MM is of P-height
< h. Then the map M — T (M) is a bijection between p-stable S-lattices M’ C
93?[%} which are of P-height < h and Gk -stable lattices T' C V.

Uy

PROOF. We need to produce, for a given G g-stable lattice T/ C V, a (p-stable
S-lattice M C im[ﬂio] which is of P-height < h. By Proposition 5.1.7, we have a
p-stable og-lattice M’ C £ @ M such that Te(M') =2 T’. Now, it follows from the
proof of Lemma 4.3.1 that there exists a common @-stable G-lattice M’ of both M’
and fm[ﬂ—lo], which is of P-height < h. O

We digress to study the case of P-heights < 0.

free

PROPOSITION 5.2.10. Any T € Rep,, (G ) is unramified if and only if there
exists an étale (¢, &)-module M such that T = T& (M) as Gk -representations. In
particular, any unramified og-lattice G i -representation is of P-height < h for any
h > 0.

This proposition can be thought of as an analogue of the fact that a p-adic
G v -representation V is crystalline of Hodge-Tate weight 0 if and only if V is
unramified. From this together with [Kis06, Proposition 2.1.5] one can also deduce
the proposition for the case 0og = Z,. (Note that G /Ix.. — Gx/Ix.)
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PROOF. First, assume that T € Repf,r(fe(g k) is unramified and we seek an
étale G-lattice in the étale p-module Dg(T) := Homg, g, (T, 0gu ). Since I
acts trivially on T, any o0o[Gx]-map [ : T — ogu factors through (oguw )/x =
(WSh[[u]][%})A ~ 0. Ry W, where (/\) denotes the mg-adic completion and Wsh
denotes the mp-adic completion of the strict henselization of W. (Recall that
W = Wi(k) if o9 = Zp, and W = k[[ng]] if 09 = F4[[mo]].) So we have a natu-
ral isomorphism of p-modules:

(5.2.10.1) Di(T) 2 0g®wU(T) < 0g @w U(T),
where U™(T) := Hom, g, (T, WSh) equipped with the p-structure induced from

the natural Frobenius endomorphism o : W*" — "2 We can deduce from the
first isomorphism in (5.2.10.1) that U*(T') is finitely generated over W since it is mo-
adically separated and complete, so we obtain the second isomorphism in (5.2.10.1).
Furthermore, it follows from (5.2.10.1) that U*(T) is an étale (¢, W)-module (using
that og is fully faithful over W). So M := & @y U*(T) is an étale (¢, S)-module,
and we have T' = T'& (90) by construction.

Now, let us show that Tg(9) is unramified if 9 is an étale (p, &)-module.
Consider an étale (¢, W)-module 2/udt where the p-structure is given by the
reduction @ of ¢ : * M — M modulo uM. We first show that the natural projection
M — P /uM has a unique g-compatible section, so it gives a natural isomorphism
M < SR (M/udM) of p-modules. The proof is analogous to Proposition 3.2.1 (but
easier). Let sp : M/uM — M be a section which is not necessarily ¢-compatible,
and consider
(5.2.10.2)
s=s0+ ) (¢ oo™ T sgog (T —plog™sgop™!) =« lim (¢ 00 's0 057

i>0

R

If the right side is well-defined, then it clearly satisfies s o ¢ = ¢ 0 0*s. Since s is
a section, the image of ¢ o 0*sg 0 ¢! — s is contained in u9. By induction we
obtain

(5.2.10.3) im(p o o* sy 0 D — o o*sy0 57 C u? M.

Therefore the right side of (5.2.10.2) converges (u-adically). The proof of uniqueness
is identical as in the proof of Proposition 3.2.1.

Now, let us consider T'g (93?)[7%0] = Hom y . (D, &™) where D := (im/uim)[ﬂ%o]
(Recall that ¢ = W[?lo]) We claim that any ¢-compatible map [ : D — &%
factors through Wsh [7%0] (This shows that Tg(9M) is unramified since Ix acts
trivially on ﬁ/\s”.) To show the claim, it is enough to show that any map [ : W*" @y,
D — &Y of (¢, W*"[<-])-modules factors through W*"[-1]. In the case op =

1
Fy[[mo]], we may further assume that the residue field £*P of Weh is algebraically
closed; if any ¢-compatible map k(7)) @, D — (k(u))™" (7o) factors through
k(o)) then any ¢-compatible map k%P (7)) ®.¢, D — K*°P((m)) factors through

k=P (o)), because k((mo)) N EW = W‘*h[ﬁ%] where the intersection is taken inside

(k((1) " (70). (Recall that W 2 k5P [[mg]] and £ =2 K*P((m).)

2The Frobenius endomorphism o : Wsh — Ws" can be obtained by restricting o : ogur —
ogur . By the universal property of strict henselization, ¢ is a unique endomorphism o : Ws" —
WP which extends o : W — W and reduces to the gth power map o : k%P — k5P modulo .
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Now, we rename WGh[ =] as Ao, Wweh|L =@, D as D, and Er as £ if og =
and we rename k(7)) as Ji/o, k(7o) ®, D as D, and (k((u )))bep(( 0) as & 1f
09 = Fy[[mo]]. By Dieudonné-Manin decomposition (Theorem 4.1.2), we can find
a # o-basis {e;} for D such that pp(c*e;) = e; for each i. For any @—compatible
map [ : D — &, I(e;) € € satisfies o(I(e;)) = l(e;) for each i (i.e., I(e;) € 0g[= -] for
each i), so clearly the image of [ lies in % . d

We record the following corollary of the proof. Define an 0¢[G i /Ix]-module
Ty (U) := (W @y U)¢=" and Ty, (U) := Ty (U*) for any finite free étale (o, W)-
module U; and (¢, W)-modules U(T) := (Wsh @y T)9% and U*(T) := U(T*) for
any unramified og-lattice G g-representation.

COROLLARY 5.2.11. The assignments Ty, and U define quasi-inverse rank-
preserving exact equivalences of categories between Repfree(g x/Ix) and the cate-
gory of finite free étale (@, W)-modules which respects ®-products, internal homs,
and duality. Furthermore, we have a natural isomorphism Dg(T) = 0o @w U(T)
of étale (¢, 0g)-modules for any T € Repfree(gK/IK) and a natural G i -equivariant
isomorphism Ty, (U*) 2 Ts(6 @w U) for any finite free étale (o, W)-module U.

5.2.12. Relation with Weakly Admissible Filtered Isocrystals. This section is
a continuation of §2.4; throughout this paragraph, we assume that og = Z, and we
identify Gx with G . In §2.4.3, we defined a functor res : MF(p)x — HPk(v).
We extend this functor to res : MF(p, N)xk — HPx(p) so that res(D) is weakly
admissible if and only if D is weakly admissible. We define this functor via the
rigid analytic technique we discussed in §3-§4. By theorem of Colmez-Fontaine
(Theorem 2.4.2) and Corollary 5.2.4, the natural functors Vi : MF(p, N)¥* —
Repg, (G.#) and Vip : HPE" (@) — Repg, (G.x..) are fully faithful with expected
essential images. We interpret the functor res in terms of the associated Galois
representations.

We have the following diagrams of functors which commute up to natural iso-
morphisms.

MF

— M
MF(p, N)52° == Moda (¢, Nv) HPY () =—= ModA—"(¢)
DM]—' D
J MM.?F j J M J
MF(p, N)5 —=Moda (¢ Nv) HPZ () =—= Mod, (¢)

The first commutative diagram was obtained by Kisin [Kis06, §1], and the second
commutative diagram was obtained from the results in §3-§4. The top row of the
first square restricts to equivalences of categories M]:(go)w%a’>o =~ Modx™ (¢, Ny; N =
0) and similarly for the bottom row.

Now, by passing to the ¢- or (, Ny)- vector bundles on A using the equiv-

. . >0
alences of categories, we can define the covariant functor res : MF(p, N)"7" —
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HPY"Z%() as the composition across the top in the following diagram which com-
mutes up to isomorphism:
(5.2.12.1)

MF

M
res : MF(p, N)7) ————= Mod (¢, Nv) —— Moda™’(¢)

o~ —_—

J L.

res : MF(ip, N)“92° —= > Modi= (¢, Ny) ——> Mod="(¢)

Mode (#)[1/p]

o

HPE (),

IR

HPR(p)

IR

where the functors in the middle in both rows are defined by forgetting the differ-
ential operator Ny, and 901 is defined in Corollary 2.4.7. The natural isomorphism
in the left in the second row was obtained by Kisin [Kis06, Theorem 1.3.8] (see
also Theorem 2.4.6 and the discussion that follows), and the natural isomorphism
in the right in the second row is obtained from Theorem 4.3.4. (In particular, for
any D € MF (o, N )io, res(D) is weakly admissible if and only if D is weakly ad-
missible.) Since each arrow commutes with ®-products (in particular, with Tate
twists), we can extend it to res : MF(p, N)» — HPx(¢). One can check with-
out difficulty that the restriction res to the objects with NV = 0 coincides with the
functor MF(p)x — HPx(p) that is defined in §2.4.3, by unwinding the construc-
tion of M™% (See the beginning of [Kis06, (1.2)] for the construction of M™% )
Furthermore, the functor res : MF ()% — HPR (p) is fully faithful by Kisin’s
theorem (stated in Corollary 2.4.7).

The functor res : MF(p,N)» — HPk(p) is exact and commutes with all
the natural operations, such as ®-products, internal homs, and duality. Also, res
preserves the Newton number ¢y and the Hodge number ¢g. (It is enough to check
on rank-1 objects, so N = 0 and the claim follows from §2.4.3.) Furthermore, for
D € MF(p,N)%* and for a collection v := {my, }wez of non-negative integers, D
is of Hodge type v if and only if res(D) is of Hodge-Pink type v. This can be seen
from [Kis06, Lemma 1.2.1].

Recall that we have the following anti-equivalences of categories: V3 : MF(p, N)% =
Repg, (Gor), Virs : MF(9)% = Repg*(Gr), and Vigp : HPR () = Repgy, (Gor.,).
(See Theorem 2.4.2 and comments to it for the statement and the bibliographic
note for the former, and Corollary 5.2.4 for the latter.) Thus res : MF(p, N)'% —
HPE(¢) induces a functor Rop&)(g ) — chgp (G ..), which is naturally iso-
morphic to the functor obtained by restricting the G x-action to G »__ by [Kis06,
Corollary 2.1.14]. Furthermore, this functor is fully faithful when restricted to the
full subcategory of crystalline representation. We summarize the discussion by the
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following diagram of functors which commutes up to isomorphism.

res

(5.2.12.2)  MF(p,N pra )
v Mode ~ | Vi
Vs
Repg’>o(g%) Repgf(g%x)
MF wa,}O( H,Pwa,ZO(so)
Vi | = MOdG > Vip

o

vy

RGPS;&)O(Q%/)(—) Repg:(g%’m )

5.2.13. Rank-1 examples: Tate objects. Consider the Tate object &(h) for some
h > 0 as defined in Definition 2.2.6; i.e., §(h) = &-e equipped with p(c*e) =
P(u)e. In the case 09 = F[[mo]], we will show later in §7.3.7 that T (&(h)) = x%
for any h > 0, where x .7 is the Lubin-Tate character. We now show an analogue
of this fact for the case 0g = Z,: identifying Gk with G asin §1.3.1.2, we have
T&(6(h)) = X?yc|g «.. forany h > 0, where Xcyc is the p-adic cyclotomic character.

Recall that x . = V% (1ar(h)) where 147 (h) is the Tate object in MF () k;
i.e., the (unique) weakly admissible filtered isocrystal with the underlying isocrystal
(A oe, p(oc*e) = ple). (By weak admissibility, the associated grading to the filtra-
tion is concentrated in degree h.) We have seen in §2.4.3 that res(1p2(h)) = 1(h)
where 1(h) is the Tate object in HPx(p) as defined in (2.3.2.1). Therefore we
have V2 (Amz(h))lg.,. = Vip(1(h)) by (5.2.12.2). On the other hand, we have
seen that E(G(h)[%]) = 1(h) in §4.3.6 so by definition of V3,» (Corollary 5.2.4) we
have V3,5(1(h) & Ig(@’(h))[%] This shows that the desired G __-isomorphism

T'(6(h) = xiyelgr., for any h > 0.






CHAPTER 6

Appendix I: Some non-archimedean functional analysis

The aim of this appendix is to prove Proposition 4.3.2. When oy = Z,,, Propo-
sition 4.3.2 is proved in [Ked04, Prop 6.5], and the same proof also works in the case
09 = Fy[[mo]]. We also review basic properties of the analytic rings Oa, R, etc.,
and the theory of Newton polygons which will be used in the proof of Proposition
4.3.2.

6.1. Rigid-analytic disks

In this subsection, we review basic properties of Oa and R, and give a precise
definition of R?'8.

DEFINITION 6.1.1. For each r € ¢%<°, we define the following multiplicative!

norm on 6[?0’ 1:

(6.1.1.1) 171l = ,max x {Jail r'} = max{|f(x)| }

where f(u) = ;5 _ o aiu’ € 6[?07 1] and the second maximum is taken among
x € C, such that |x| = 7.

By taking logarithm, we obtain the following valuation w- for 6[7%0]:

(61.1.2) wy(f) = minfo(a;) + 5 - i} = min{ o(f(2)) }
where v = —log, r and all the other notations are as above.

If f e 6[7%0], then by the maximum modulus principle || f]],. is the maximum
among |f(z)| for all € C_, which satisty |z| < r.

6.1.2. Closed disks and annuli. Let T, be the following affinoid J¢ ¢-algebra:

(6.1.2.1) Ter = {Z aiu’ € Ho[[u]], such that |a;|r" — 0 as i — oo},
i>0

(In the valuation language, the above condition translates to v(a;) + v-i — oo as
i — 00, where v = —log,r.) This condition is nothing but convergence on the
closed disk of radius 7 in C,. One can check without difficulty that T, is the
completion of G[-- -| with respect to the norm [| - ||,., and with this norm T'¢, becomes
an affiniod J#o- algebra Note that || -||,. is precisely the “sup norm” over the closed
disk of radius r (by the maximum modulus principle). We set A¢, = Sp (Tk,),
and call it the rigid-analytic closed disk of radius .

IThis is obviously submultiplicative, and can be seen to be multiplicative. See [Ked05b,
Lemma 2.1.7], for example.

71
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Let I := [ry,72] C (0,1) be a closed subinterval away from 0 and 1, with
endpoints in ¢@ (allowing r; = r3), and let Ty be the following affiniod .# o-algebra:
(6.1.2.2)

Tir ) = {Z a;u' € K ollu, E]]’ such that iiilinoo |a;| r; = 0 and zlggo la;| s = 0}.
i€z

One can check without difficulty that 77 is the completion of G[%, 7%0] with respect
to the following submultiplicative “sup norm”:

(6.1.2.3) > = max{la;| 11, |ai| r3} = max{|[fll,, , [IF1, }-
i>—N _—
By maximum modulus principle, this is same as the maximum of | f(z)| for z € C 4,
with |z| € [r1,r2], and with this norm 77 becomes an affiniod % ¢-algebra. We
define the rigid-analytic closed annulus Ay := Sp(Tr). (If r :=r1 = ro then we get
a rigid-analytic circle of radius r.)
To allow I := [0, 7], we often write Tjy ) := T, and Ap,) := Ag,. It is well
known that 77, for any closed subinterval I C [0, 1) with endpoints in ¢ U {0}, is
a principal ideal domain. We make a further remark on this later at §6.2.7.

6.1.3. Open disks, annuli and punctured disks. As before, the endpoints of any
subinterval I C [0,1) that we consider are always assumed to lie in ¢%<¢ U {0}. For
any subinterval I C [0,1), we define a rigid-analytic space A := UJEJ Ay with
{A;}je7 as an admissible affinoid chart, where J is a set of closed subintervals
J C I with endpoints in ¢%<¢ U {0}, such that Ujes J = I. Concretely, the set of
C.r, points of Ay is exactly {x € C, : |z| € I'}, and the structure sheaf Oa,
is obtained by “gluing” Oa,. We call A, := Ay, the rigid-analytic open disk
of radius r, and we denote by A := A_; the rigid-analytic open unit disk. We
write A = A(p,1) to denote the rigid-analytic punctured open unit disk. Note that
distinct choices of 7 yield the same rigid-analytic space [BGR84, 9.1]. In particular,
if I is already a closed interval, then the above construction yields the affinoid
variety Ay := Sp(Ty). If I = [0,r), then we may choose J := {[0,7'] : ' < r}
so we regard A, as a rising union of closed disks Ag,s for 0 < v’ < r. Similarly,
if 0 ¢ I, then we may choose a suitable J so that Aj is a rising union of closed
annuli. From now on, we always choose such 7.

For closed subintervals J' C J C [0, 1), we have the natural continuous inclusion
T; — Ty of affinoid .# g-algebras. Furthermore, if both .J and J’ contain 0, then
the inclusion has the dense image since Ty contain 6[;10] which is dense in 1.
The same holds if both J and J’ are away from 0, since T; contains 6[7%0, %] which
is dense in Tj.. So choosing J for A; as above, we obtain a projective system
{Ts}je7 such that each transition map is continuous with dense image?, which
can be thought of as the “Mittag-Leffler” condition for Banach modules. Now
applying the sheaf axioms, we obtain that the ring of global sections is I'(Oa,) =

@JEJ T (= jesT1), where the transition maps are as above. This is a Fréchet

[ . . _
This says that the rising union A; = Ujej
analogue of) “Stein exhaustion” relative to Oa, in the sense of [GRT79, IV.§1, Definition 6].

A 5, where J is as above, is a (non-archimedean
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space?® for the topology generated by the sup-norms on A for J € J. (Recall that
J is always countable.) It follows from the denseness of the image of each transition
map that the image of the natural map I'(Oa,) — T has a dense image.*

The rings of rigid analytic functions I'(Oa, ) naturally sits inside ¢ o[[u, 1]] as
a . o-subspace, and we have that f(u) € #o[[u, 1]] is an element of I'(Oa,) if
and only if f(z) converges for any « € C -, with |z| € I. so an element of I'(Oa,)
can be characterized by the absolute values of the coefficients of its (infinite-tailed)
Laurent expansion in u. We leave the precise formulation to interested readers.

Lastly, it is well-known that I'(Oa,) is a Bézout domain for any subinterval I.
It also follows that the Robba ring R (Definition 2.1.2) is a Bézout domain. We
make a further remark on this later at §6.2.7.

REMARK 6.1.4. As remarked earlier, I'(Oa_, ) contains 6[7%0] as a dense sub-
ring, so it can be constructed as the Fréchet completion of 6[7%0] for the sup-norms
|-, for 0 < r" < r. Similarly, I'(Oa, ) for 0 ¢ I can be constructed as the Fréchet
completion of G[%O, 1] for the sup-norms |- ||; on A, for J € J. This “purely
analytic” point of view also works when constructing such analytic rings as R*# (if
0o = Z,,) for which it is hard to give a precise geometric meaning. (If o9 = F,[[mo]],
then see §2.1.5 for a “geometric” interpretation of R*8. )

6.1.5. Coherent sheaves and vector bundles. For the definition of coherent
sheaves on A (or rather, coherent sheaves on any rigid-analytic space), we refer to
[BGR84, §9.4]. We say a coherent sheaf M on A (or rather, on any rigid-analytic
space) if M becomes a finite free module over some admissible covering.

For a coherent sheaf M on Aj, we can express the global sections of a co-
herent sheaf M on A; as the following projective limit I'(A;, M) = liLnJej M.
Furthermore, each transition map has a dense image since My = Ty @7, M
for Ay O Ay with Ty dense in Tj. (Thus the projective system M satisfies
the “Mittag-Leffler” condition for Banach modules.) So the global sections functor
M — T'(M) is an exact and fully faithful functor from the category of coher-
ent sheaves on Aj to the category of I'(Oa, )-modules and induces an equivalence
between vector bundles of rank n over Ay and (locally) free I'(Aj, Oa)-modules
of rank n.> A quasi-inverse from the essential image to the category of coherent
sheaves is given as follows: if M = I'(A;, M) for some coherent sheaf M then
associate the projective system {M ®r(0a,) Ty v b1 Tecovers M. See [Gru68,
§V] which gives a proof over an open polydisks (in particular, an open disk), but
the argument can be adapted to Aj. The upshot is that we can recover a coher-
ent sheave M from its global sections I'(M). From now on, we do not strictly
distinguish a coherent sheaf M from I'(M).

6.1.6. Remark on Frobenius morphism. We define (the standard) Frobenius
map o : Tjy p1) — Tjpa/a pn/q) OVEr O, Ao — Ko by o(u) = u?. (Recall that

3Concretely, this means that any sequence {f,} in (A7, OAa ;) converges if and only if {f,}
is Cauchy with respect to the norm || - ||, for each r € I N ¢@<o.

4This can be seen from the containment 6[%} Cc I'(Oa.,), and 6[%, %} C T'(Oa,) if
0¢l.

5The global section I'(M) for a coherent sheaf M may not be finitely generated modules. It
takes an extra work to show that if M is a vector bundle on Ay then I'(M) is finite locally free
over I'(Oa ;). See [Gru68, §V, Théoreme 1].
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q=p if og = Zy.) By passing to the inverse limit, we also get 0 : Oa, = Oa , -
where I/ ¢ [0,1) is the subinterval whose endpoints are qth root of the endpoints
of I. This construction actually gives endomorphisms o : Oa — Oa and o : O4 —
Oj-

Since o : T} ) — Tiy1/a p174) 18 DOt J o-linear but o -semilinear, we need
to take its linearization o*1{,.,; — T},1/4,1/4) t0 get a map on affinoid spaces
o Apisa e — 0 Ap ) over . Similarly, one gets the Frobenius map o :
A/ — 0*Ag by gluing these.

For a coherent sheaf M on Ay 1/ (or for its global sections), the Frobenius
structure, or the ¢-structure is a Oa ,,, -linear map ¢ : 0 (M[a,) = M|a

where o* (M|a,) :i= OAIUQ ®5,04, (Mla,)-

1/qa?

6.1.7. We define the following subalgebras of bounded (respectively, “integral”)

functions in Oa,, ,:

ObAd[T , = {f(w)€Oa,, : [f(@)]<C, forall z € A1) and for some C'}
Oﬂty P {f(u) € Oap If(z)| <1, forall z € Apq)}.
Clearly we have O%[r D= Oim 1)[ ]. It is useful that O‘nt ,, is a complete normed
W-algebra with respect to the norm |||, (or equlvalently, with respect to the
valuation w., where v = —log, r). Furthermore, the above rings are principal ideal
domains by [Ked05b, §2.6]. We make further comments on this later in §6.2.7.
If o9 = Fy[[m]], we have an interesting alternative description of OiAn'iM).

namely, we have an equality OR'

where Ak <, is a rigid-analytic closed disk of radius ' = ¢ /7 over K with co-

= Oa,. ., of k-subspaces of E[[u, mo, %, 7%0]],

ordinate mp. One can check that the sup-norm on Oa, _, is exactly |- ||i/7 on
Omt e The “additive” version of this claim is that the valuation corresponding to

the sup norm on Oa Ko<y 18 exactlyv %w,y(o), which we Wiﬂ verify. Take an element
f= ez 0’ = Yieq jen., cijw'm), where a; =3, cijmg € W and ¢;; € k. Then
we can check by hand that

mm {ord (Z Ciju ) (1/7)-j } = LIlrJu#nO {i+1/y)5}= min {i + (1/7)-ordy,(a;) },

where the term on the left end is the definition of the valuation on Oa 0,071 and

the the term on the right end is visibly l ( f). (In fact, the normalization of
this partial valuation used in [Ked05b, §2] is = wny(f)7 not w~(f).) Also, for such

[ € Oa jr1) the condition |f(z)] < 1 for all 7" < |z < 1 says |a;| pt < 1 for all
r < p <1 and i € Z, which forces |a;| <1 for all ¢ (i.e., a; € W).

6.1.8. More analytic rings. Roughly speaking, we repeat all the above con-
structions of analytic rings with K replaced by Cg. To provide intuition, we start
with the case when oy = F,[[mo]]. As pointed out in §2.1.5, we could carry out all
the previous constructions using the rigid-analytic open unit disk A over K with
coordinate my. Then we repeat the constructions of the analytic rings (such as R)
with Ag replaced by Ac,. In the case when oy = Z,, we should give a purely
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analytic construction due to the lack of the “open unit disk over Cx with coordi-
nate p,” working with the valuation ord,(:) on Cg induced from the normalized
valuation on K = k((u)).

If 0g = Z,, then set G2 := W (oc, ) and 0%® := W(Cg), where W () is the
ring of Witt vectors®. Let o be the Witt vector Frobenius map on &*# and oalg
Similarly if 09 = Fy[[mo]], then set G¥% := oc, [[mo]] and 0%® := C[[m]]. Let o be
the continuous “partlal g-Frobenius endomorphism,” i.e., o (7T 0) = m and o(a) = a9
for any o € Cg. Note that in both cases &8 /(7}) — o?}lg /(m8) is injective for all
n > 1. (In fact, it suffices to check the case n = 1, which is obvious )

We have a natural o-compatible embedding og — 0‘g which restricts to
S — &8, If 09 = Fy[[mo]] then it is clear. If og = Z, then the completed di-
rect limit of {0g = 0g¢ L ---} induces the system of p-power maps on k((u))
modulo p, or equivalently the tower of fields {k((u))? "}, so this completion is nat-
urally isomorphic to W (KP). We define the .# y-linear map og — oaglg using the
functoriality of the Witt vector ring construction. Furthermore, since o(u) = u?
the image of u in W (KPeT) is “p-divisible” (in the multiplicative sense) it is the
Teichmiiller lift of the image of its reduction in KP*f. Hence u € og maps to the
Teichmiiller lift [u] € 0% of u € Cg. This shows that & lands in 2. Using these
natural embeddings, we view &, G and og as subrings of ozlg.

For any a € Ck, we denote by [a] € o?g the Teichmiller lift if oy = Z,, and
the image of  under the natural inclusion Cr < 0%% if 09 = F,[[mo]]. (In both
cases [o] € (058)% if a # 0.) Any element f € odlg[w | can be uniquely expressed as

f= Zj>>7oo[aj]7ro, where a; € Cg, and one can directly check that f € G218 0}

if and only if all a; are in oc, (i.e., ord,(a;) > 0 for all j.); and f € 6a1g[ﬂo, ﬁ}
if and only if the ord, (c;)’s are bounded below.
Now let us extend the valuations w-(-) from &[+ -] to Gdlg[ [i]] for v € Qso
as follows:
(6.1.8.1) wy(f) == min{j + v - ordy(e;)},
J

where f =3, Oo[aj]ﬂg € 6alg[7%0, ﬁ] This a priori sub-multiplicative valuation
w, is in fact multiplicative, by [Ked05b, Lemma 2.1.7]. Note also that w,(o(f)) =
Way (f).

REMARK 6.1.9. To prove properties on w., such as the strict triangule inequality
and multiplicativity, the following “coordinate-free” description of w., can be useful,

especially when o9 = Z,. For f € Oalg[wo] and n € Z, we define
w(f;n) == min{i € Z|u"'f € &¥¢[1/mo] + 7o alg}

More concretely, if f = Zj>>7oo[aj}7ro, then w(f;n) = min;j<,{ord,(a;)} (which
could be infinite even if f # 0). Now, we can see that whenever w,(f) is defined,
we have w, (f) = min,{n+~v-w(f;n)}. In fact, if w,(f) = n+~y-ord, (o) for some
n, then we have w(f;n) = ord, (ay).

6Identifying K with the field of norms for J# /% as discussed in §1.3.1.2, we have an
isomorphism R = oc,, where R := lim o /(p). The readers who are familiar with the p-adic
xP—x

Hodge theory may recognize the ring G218 2 W (). See, for example, [Win83, §4.3] and [Fon94a].



76 6. APPENDIX I: SOME NON-ARCHIMEDEAN FUNCTIONAL ANALYSIS

As a corollary of this alternative definition of w,, we can check that w. re-
stricted to 6[%, 1] coincides with the previous definition of w, for 6[7%0, 1], which
is defined in (6.1.1.2).

6.1.10. More Robba rings. For a subinterval I C [0,1) with 0 € I, we define

(’)21% to be the Fréchet completion of &[] for w, with ¢~7 € I. Similarly for a
subinterval I C (0, 1), we define (’)aAlgI to be the Fréchet completion of Galg[%o, ﬁ}

for w, with ¢=7 € I. For any two subintervals I’ C I, we have a natural continuous
injective map Oﬁgl — (’)aAl%/, which has a dense image if the subintervals either both

contain 0 or are both away from 0. If I = [0,7], then OaAliT is complete for the

valuation w, where v := —log, 7. Similarly if I = [ry, 73], then (’)aAl% is complete for
the submultiplicative valuation w;(-) := min{w., (-), w,(-)}, where v; := —log, r;.

So if I is closed, then Oi’f is a Banach . p-algebra. We leave the verification to
readers.

One can directly check that the Frobenius endomorphism o : G*8[L 1

o Tl
Galg[ﬂ%,ﬁ], introduced in §6.1.8, continuously extends to a map o : Ozlgl —
Oigﬂ/q, where I/ [0,1) is the subinterval whose endpoints are gth root of
the endpoints of I.

For 0 <r <1 and v := —log, r, we put

ale ; aler 1
Oxebd E [a]7] € 038[ =], such that j + 7 - ord,(a;) — 00 as j — oo
[r,1) o

J>—00

OZI%T; : Z[aj]wg € 0¥8 such that j 4~ - ord, () — 0o as j — oo
Jj=0

lg,bd ._ 1 lg,int __ 17 _
For r = 0, we put 02%071) = Galg[ﬂ—o} and OaAg[OfIll) = G218, (Note that Galg[w—o] =
la OaAlg[fi and this conventi9n is consistent With S[+] = OY.) For any 0 <
r < 1, we have (’)i‘?;id) = C’)Zlfl?:[ﬂ—lo], and OZI%TI?; is complete for the valuation
w, where v = —log, 7. Also, o : (92% — OaAlgl/q restricts to the subalgebras of

I
bounded functions (respectively, integral functions).
Now, we are ready to define the Robba rings:

. al
R¥E .= lim (’)Zg
T) [r,1)
alg,bd . |; alg,bd
R = lim OA[M)
Opalg,b = lim Oalg,int
Ralg,bd = : A[T,l)

Just as RV, Ral&bd hag the discrete mo-adic valuation ordy, for which ognagea is
the valuation ring. In other words, for f = Zj>>7oo[aj]7rg, we define ord,,(f) as
the minimal j such that a; # 0. We leave to readers the verification that this is a
valuation. And precisely the same argument that shows that @pea is a discretely
valuation ring with a uniformizer p shows the same claim for ogaigsa. (See [dJ98,
§4.3] for more details.)
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Since the inclusion &[-, 1] «— &L, ﬁ} respects all w., (Remark 6.1.9),
we obtain a continuous embedding Oa, — Ozlgl and R — R, and similarly for
their bounded counterparts. It turns out that all of them are faithfully flat ring
extensions, by Proposition 6.2.8.

The Frobenius maps o : Oig — (’)aAlg
[r1) (rl/a,1)

o on each of R*8, Ra&:54 and opgassa. With this choice of o, these “Robba rings”
are o-rings over (S, 0).

The following table is for those who would like to compare this exposition with
[Ked05b, §2].
Notations in [Ked05b, §2] | T" | T'y/, Peon | Tani/y | Tan,con

int

Notations from this paper | o¢ OA[T , | Brea Oa,., | R

induce a Frobenius endomorphism

The superscript (-)*# has the same meaning in both sets of notations. Kedlaya
[Ked05b, §2] normalizes the additive valuation differently; he works with (1/v)w,
instead of ws.

6.2. Newton polygon

The Newton polygon for a rigid-analytic function is often useful in the study
of rigid-analytic functions. For example, the theory of Newton polygons play an
important role in Lazard’s work [Laz62], and in the proof of Proposition 4.3.2 which
will be seen in the next subsection. From now on, we will primarily work with w.
instead of || - ||,.; the graphs of piecewise linear functions are easier to handle than
those of piecewise exponential function.

Even though we introduce the theory only for subrings of OaAlgI, the original
paper [Ked05b, §2] handles more general analytic rings.

6.2.1. Newton polygon for a polynomial. In order to provide intuition for our
discussion, let us first discuss the following simple case, which will be generalized
later. Let f(u) =, ., aiu’ € H o[u] be a nonzero polynomial of degree d.

DEFINITION 6.2.1.1. The Newton polygon for f(u) is the lower convex hull of
the set of points (i,v(a;)), where v(-) = ordy,(:) is the normalized valuation on
A o. The slopes of f(u) are the negatives of the slopes of the (line segments of)
Newton polygon for f(u). For a slope v of f(u), we define the multiplicity of the
slope vy as the difference of the x-coordinates of the end points of the line segment
with slope —v in the Newton polygon. If v does not occur as a slope, then we define
the multiplicity for v to be zero.

This notion of slopes has nothing to do with the slope of a y-module introduced
in 4.1.4. Also, the Newton polygon here is not directly related to the Newton
polygon” for a p-module over R (which we do not define), or anything of this sort.

REMARK 6.2.1.2. Let {o;} be the set of zeroes of f(u) in a splitting field for
f(u) over o (or in Cx,). Then one can show that the set of slopes for f(u)
coincides with the set {ord.,(c;)}. The multiplicity for the slope s is exactly the
number of zeroes «; (counted with multiplicities) such that ord., (o) = s.

EXAMPLE 6.2.1.3.

"Hart] [Har10, Definition 1.5.5] calls it the Harder-Narasimhan polygon.
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(1) Let f(u) = (u—m0)% (u — 73) = ud + (—2m9 — m&)u? + (73 + 273 )u — m§.
Then the Newton polygon for f(u) is {(3,0), (1,2), (0,4)}. The slope 1
appears with multiplicity 2 and the slope 2 with multiplicity 1. (We get
the same result even in characteristic 2.)

(2) Let f(u) = uP =72 'u+mo. The Newton polygon for f(u)is {(p,0), (0,1)},
so the unique slope 1/p appears with multiplicity p in the Newton poly-
gon. It is also possible to see directly that all the zeroes of f(u) have
mo-order 1/p. For example, if a € C ¢, is a zero of f(u), then o+ i-my for
i € F), are also zeroes of f(u). In order for their product to have mg-order
1, a should satisfy ord., (o) = 1/p.

REMARK 6.2.1.4. Let f(u),g(u) € #o[u] be nonzero polynomials. Let NWy
(respectively, NWy) be the set of all the vertices in the Newton polygon for f(u)
(respectively, for g(u)). Then the following statements are immediate:

(1) The Newton polygon for f(u)+ g(u) “lies over” the lower convex hull of
NW;UNW,.

(2) It is possible to describe NWy, in terms of NW; and NW,. (We will
carry this out in more general setup later.) The set of slopes for f(u)-g(u)
is the union of the set of slopes for f(u) and the set of slopes for g(u), and
the multiplicities add up.

For v € Qso, we call f(u) € # o[u] pure of slope v if the Newton polygon for
f consists of one line segment with slope v. It follows that if f(u) is pure of slope
7, then the multiplicity for the slope v is necessarily equal to the degree of f(u).
Lazard [Laz62, §4, Théoréme 1] showed that if the base field is discretely valued
then any f € Oa, can be expressed as a convergent product f = gu®(] [ N P,), where
g€ (921 and P, is a polynomial pure of slope v with P,(0) = 1. (c.f. Weierstrass
factorization theorem for entire functions.) See §6.2.7 for further discussions.

6.2.2. Newton polygon for a rigid-analytic function. Fix a subinterval I C
[0,1), and let f = >, ;[a;lm € Oﬁgl, where o; € Cg. Assume always that f
is nonzero. Set I, :={y€R : ¢77 € I} C Rs.

DEFINITION. The Newton polygon NW; for a nonzero f € Oigl is the sub-
polygon of the lower convex hull of the set of points (ord,(c;), ), which consists
of all line segments whose slopes lie in —1,. Equivalently, NW} is the sub-polygon
of the lower convex hull of the points (w(f;n),n) with the same condition on the
slopes of line segments. The slopes of f are the negatives of the slopes of the line
segments of Newton polygon for f. (The slopes belong to I, by the definition of
the Newton polygon.) For a slope v of f, we define the multiplicity of the slope
~ as the difference of the z-coordinates of the end points of the line segment with
slope 7 of the Newton polygon. If v does not occur as a slope (for example, when
v ¢ I,), then we say that the multiplicity for v is zero.

For a nonzero rigid-analytic function f(u) € Oa,, we can give the following
equivalent definition of the Newton polygon: write f(u) = .., a;u’ where a; €
o, then NW; coincides with the sub-polygon of the lower convex hull of the points
(i,v(a;)) which consists of the line segments whose slopes lie in —1I,,. This polygon
is the same as the sub-polygon of the lower convex hull of the points (w(f;n),n)
with the same slope condition.
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REMARK 6.2.3.

(1) We can make a correspondence between mg-orders of the zeroes of f(u) €
Oa, in A; and the slopes of the Newton polygon for f(u), and can
interpret the multiplicity of a slope in terms of zeroes as in Remark 6.2.1.2.
We will make a precise statement in §6.2.7.

(2) Let f(u) €  glu] be a nonzero polynomial. Then the Newton polygon for
f(u) viewed as a section of Oa, (or an element of OaAlgI) can be obtained by
truncating the line segments of slope outside I, from the previous Newton
polygon for a polynomial f(u). The factors of f(u) which contribute to
the slopes outside I, have no zeroes in Az, and in fact are units in Oa, as
we will see later, so it makes sense to ignore the contribution from these
factors.

(3) If I C [0,1) is closed on the left (respectively, on the right), then the
Newton polygon for any f € (921% is bounded on the left (respectively,
on the right). In particular if I is closed, then any Newton polygons are
finite (i.e., any Newton polygons consist of finitely many vertices and line
segments). This follows from the explicit description of OaAl% in terms
of valuation of coefficients of the “Laurent expansion”. (We leave the
verification to readers.)

As a consequence, the zero locus of f € Oa, is “discrete” (so finite
if I is a closed subinterval). In fact, for any closed subinterval J C I
the Newton polygon for f viewed as an element in O4 , is finite, and we
use the correspondence between the zeroes of f in A; and the Newton
polygon for f € Oa, (as explained above in (1)) to conclude that the zero
locus of f in A is finite.

On the other hand, the Newton polygon does not have to be finite if
1 is not a closed interval. For example, the rigid-analytic function A € Oa,
defined in §2.1.3, has the following Newton polygon: {(0,0), (ge, —1), (ge+
q?e,—2),--- }, where e is the degree of the point xop € A cut out by P(u).
The set of slopes is {ﬁ}nezzo and the slope ﬁ appears with multiplicity
q"e. Furthermore, if A7 is a punctured open disk or an open annulus, then
one can also find an example such that the Newton polygon is unbounded
on both sides.

(4) The nonzero elements of the subrings O%[T

alg
OA[M)

as follows. Let f = Zjez[aj]ﬂé € OaAlg[r " where a; € Cgx. By (3), the
Newton polygon for f is always bounded on the left, and it is bounded
on the right if and only if the y-coordinates of the Newton polygon are
bounded below by some integer N, which means that a; = 0 for all
j <N (ie, f € o?g[ﬂ%]) so . Furthermore, if f is bounded, then the
y-coordinates of the lower right endpoint of the Newton polygon for f is
precisely the minimum among j such that a; # 0.

g,bd

al
C OA[M) and (’)Am) -

1)
are exactly those with finite Newton polygon. This can be seen

6.2.4. Newton polygons and the valuation w,. For f = Zjez[aj]wg € OaAlgI;

and for v € I, (i.e., ¢77 € I), we have defined the following valuation earlier in
(6.1.1.2)

w, () = min{j + 7-0rd, (a)}.
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We can also show that for f € O%®
j — Z£oo. For a nonzero f, we define,
N,(f) = max{ord,(a;) such that w,(f) =7+ v-ord,(a;) }
ny(f) := min{ord,(a;) such that w,(f) = j+ v-ordy(a;) }.

The following proposition is immediate.

as above, we have j + 7-ord,(a;) — oo as

PROPOSITION 6.2.5.

(1) Assume that N,(f) # ny(f). Then, N,(f) (respectively, n,(f)) is the
x-coordinate of the right end point (respectively, the left end point) of the
line segment with slope 7y in the Newton polygon for f. In particular, v is
a slope for f with multiplicity N~(f) — n,(f) > 0.

(2) Assume that Ny(f) = ny(f). Then the Newton polygon for f does not
contain any line segment of slope —v (i.e., v is not a slope for f), and
N, (f) = ny(f) is the x-coordinate of the vertex of the Newton polygon
whose adjacent line segments have one slope larger than —v and the other
slope smaller than —-y.

In either case, the multiplicity for v is No(f) — ny(f)

We sketch the idea of proof. For fixed v consider a family of lines l,, : y+~yx = w
where the parameter w is chosen so that [,, passes through some vertex of the
Newton polygon (ord,(c;), 7). Then the smallest value among those w occurs
exactly when the vertex (ord,(c;), j) that l,, passes through lies in the line segment
of slope —v of the Newton polygon if ~ is a slope for f, or when (ord,(c;), j) is the
vertex as described in (2) of the proposition if 7 is not a slope. Proposition 6.2.5
follows from this consideration.

PROPOSITION 6.2.6. Let f, f' € OZI% be non-zero elements and let us fix v € I,
(i.e., ¢V €1). Let N := Ny(f), N’ := N,(f") and n:=n,(f), n' :=ny(f'), and
let NWy (respectively, NWy/) be the set of vertices of the Newton polygon for f
(respectively, for f').

(1) The Newton polygon for f + f', if nonzero, “lies over” the lower convex
hull of NWyUNWy.
(2) We have Ny(f-f') = N+ N' and ny(f-f') = n+n'. Furthermore,
if (n,4n), (N, jn) are the vertices of NW; and (0, j,), (N', jn+) are the
vertices of NWy: as in Proposition 6.2.5, then (n + n',j, + jn), (N +
N',jn + jn') are the vertices of NWyyr as in Proposition 6.2.5.
In particular, the (a priori submultiplicative) valuation w, is multiplicative.

The proof is quite elementary. See [Ked05b, Lemma 2.1.7] for the proof in the
case 0g = Z,, which also works in the case 09 = Fy[[mo]].

As a corollary, we have the following interesting criterion for f € Oﬁ% to be a
unit in terms of its Newton polygon.

COROLLARY 6.2.6.1. The Newton polygon for f € (92% consists of a single
X
vertex if and only if f = [u]®-g for some ¢ € Q and g € ((’)aAlgI) . (f f € Oa,,
X
then ¢ is an integer.) Furthermore, if 0 ¢ I (so [u] € ((’)K%) ), then elements in

X
(Oi%) are exactly those whose Newton polygons consist of a single vertez.
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X

PROOF. Let f = [u]%g for some g € (OaAlgI) . By applying Proposition 6.2.6(2)
to g-g~' = 1, we know that the Newton polygon for g consists of a single vertex
(since the constant function 1 has this property.) And because the Newton polygon
for [u]® consists of a single vertex, we conclude that the product [u]®-g has the
Newton polygon which consists of a single vertex, by Proposition 6.2.6(2).

For the “if” direction, assume that the Newton polygon for f = Zjez[ozj]ﬂ'g
consists of a single point (¢,n). In particular, we have ord,(a,) = ¢, so a, # 0.
First, we reduce to the case when (¢,n) = (0,0), and ap = 1. If 0 ¢ I, we can do
this by multiplying f by ([c,]7%)~t. If 0 € I, then we show that [u]® divides f. If
there exists a; # 0 such that ¢o := ord,(e;,) < ¢, then the point (co, jo) appears in
the Newton polygon for f. But this contradicts to the assumption that the Newton
polygon for f is a single point (¢,n). Therefore, we may replace f by ([a,]7p) L f
in call cases.

Now, it is enough to show that if the Newton polygon for f is {(0,0)} and
ag = 1, then f is a unit. By assumptions and the proposition in (6.2.5), we have
wy(f—1) >0, so wy((f —1)%) — 00 as i — oo, for any v € I, NQ=¢. On the other
hand, Ozlgl is a Fréchet space for the valuations w, for v € I, N Qsg. Therefore,
the infinite sum »_,., (f — 1)? converges in OaAlgI, and we have (1+ (f —1))-

(ZieZ>o(f -1 =1 O

The following is a corollary to both the statement and the proof of Corollary
6.2.6.1, and will be used in the proof of Proposition 4.3.2.

COROLLARY 6.2.6.2. Let I C (0,1) be a subinterval (so we have u € Oy ).

Then, for any f(u) € Oy, there exists a unit g € (O% )< such that the Newton
polygon for g-f consists of a single vertex {(0,0)} and wy(g-f —1) > 0 for all vy € I,.

Proor. By Corollary 6.2.6.1, we know that the Newton polygon for f(u) =
> ez aiu’ consists of a single point, say {(j,j')}. Now take g(u) := (aju’)~'. Then
clearly the Newton polygon for g-f is {(0,0)}. And since the constant term for g- f
is 1, we have seen in the proof of Corollary 6.2.6.1 that w,(g-f — 1) > 0 for all
v € I, [

In fact, we will prove the GL,, version of this corollary by induction on n.
Hence, this corollary serves as the base case to initiate the induction.
We digress to record nice corollaries to Corollary 6.2.6.1.

COROLLARY 6.2.6.3. All the units of Oa,,,, and C’)aAliJ) are bounded for any
X X X
- — (bd lg _ lg,bd
0<r<1;ie., we have (’)Z[m) = (OA[M)) and ((’)Zg[’m)) = ((’)Zil)) . In
X X X

particular, we have O = (6[7%0}) , (OaAlg> = (Galg[ﬂ—loD , R* = (Rbd)X and
(Ralg) x — (Ralg,bd) x .

PROOF. Since OY% = 6[7%0] and OaAlg’bd = Galg[ﬂ%}, it is enough to prove the
first two equalities. One inclusion is obvious, so we prove (92“ 5 C ((’)bAd[r 1>)X. For

fe (’)Z[T b the Newton polygon for f(u) is a single point by Corollary 6.2.6.1,
in particular finite. But as remarked earlier (Remark 6.2.3(4)), it follows that
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fe O%[T " Since f~! also has the Newton polygon consisting of a single point as

well, we have f~1 € ObAd . The case of OaAlg is similar. (I
[r,1) [r,1)

6.2.7. Remarks on Bézout property. We record the following proposition which
gives an interpretation of slopes and multiplicities analogous to Remark 6.2.1.2 and
Remark 6.2.3(1). The statement can be regarded as a version of “Weierstrass
preparation”, and the proof as an analogue of “Weierstrass division algorithm” and
“approximate Euclid’s algorithm.” See [Laz62, §2,3] for a proof. We will not use
this proposition later.

PROPOSITION 6.2.7.1. [Laz62, §3, Proposition 2] Let f(u) € Oa,, and assume
that f(u) has a slope v with multiplicity d. Then there exists a polynomial Py(u) €
H olu] of degree d and pure of slope v which divides f(u). Furthermore, f(u)/P,(u)
does not have v as its slope, and Py (u) is unique up to scalar multiple (so it is unique

if we require P(0) =1).

If we write f(u) = Py(u)-g(u), then v is not a slope for g(u), by Proposition
6.2.6(2). Therefore, we can immediately deduce the following statement by induc-
tion on the number of slopes: if I C [0,1) is a closed subinterval (so the Newton
polygon is finite), then any f(u) € Oa, can be written as a product of a polynomial
and a unit in OZI. In particular, Oa, is a principal ideal domain if I is closed.
With more work, we can prove the following for any subinterval I C [0,1): any
f € Oa, can be expressed as a convergent product f = g-u”(l_[7 P,), where the
(possibly infinite) product is over all slopes v of f(u), P, is a polynomial pure of
slope v with P,(0) = 1, and g € Oy ,. Moreover, Oa, is a Bézout domain. (See
[Laz62, §4] for a proof. The key step is to prove the convergence of certain infinite
products, which can be handled if the base field is discretely valued.)

Recall that the ring OiA“t[H) is a complete with respect to |-||,.. A similar
argument which proves that OAI is a principal ideal domain when I is closed
shows that OiAnt[M) is a principal ideal domain. See [Ked05b, §2.6] for more details.
If 09 = Fy[[mo]], this is easier to prove due to the identity OiA“t[M) =0a, ., asa
1

subspace of k[[mq, u, 710’ +]] with the same ring structure, where Ax <, is the closed

disk over K = k((u)) with coordinate my of radius ' = ¢~'/1°8«™), To summarize,
we have the following proposition:

PROPOSITION 6.2.7.2.

(1) For a closed interval I C [0,1), the ring Oa, s a principal ideal do-
main.

(2) For any interval I C [0,1), the ring Oa, is a Bézout domain.

(8) The ring of bounded functions OiAn'Er is a principal ideal domain.

1)
We end this subsection by the following faithful flatness result.

PROPOSITION 6.2.8. The natural inclusions 6[7%0] — Oa and G¥8[ L] — Oi‘g

1

™0
are faithfully flat. The natural continuous maps Oa, — Oigl and R — R¥& are
faithfully flat.

PROOF. First of all, note that the source of any map in the statement is a
Bézout domain by Proposition 6.2.7.2. The flatness is clear since for modules over
a Bézout domain, flatness is equivalent to having no nonzero torsion. To see the
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faithful flatness, we first observe any non-unit element in the source cannot become a
unit in the target, which is clear from Corollaries 6.2.6.3 and 6.2.6.1. The following
claim asserts that this suffices to show the full faithfulness of ring extensions of
Bézout domains.

CLAIM. Let A be a Bézout domain and B a flat A-algebra. Then B is faithfully
flat over A if and only if any non-unit element a € A does not become to a unit in
B.

The “only if” direction is trivial. Now, assume that any non-unit element in
A does not become a unit in B, and show that any map of A-module M’ — M
is injective if and only if B ®4 M’ — B ®4 M is injective. For this, it is enough
to show that the composite (m') — M’ — M is injective for any m’ € M’, since
by flatness B ®4 (m’) — B ®4 M’ is injective. By replacing M’ with (m’) and M
with the image of (m’), it is enough to handle the case when both M’ and M are
generated by one element and the map M’ — M is surjective.

Now we can write M’ =2 A/J and M = A/I for (not necessarily finitely gener-
ated) ideals J C I of A. Since B®4 M’ — B ®4 M, we have JB = IB. We are
reduced to showing that J = I. Assume that J C I and choose an element = € I'\ J.
Then z = Y -, byy; for b; € B and y; € J. Let J' C A be the ideal generated by
{y1, "+ ,yn} and I’ C A the ideal generated by {y1, - ,yn,x}. Since A is a Bézout
domain, J' and I’ are principally generated. Let 4/ € J' and 2’ € I’ be principal
generators, respectively, and we have 2’|y’. Since J' C I’ by construction, y'/a’ is
a non-unit element in A. On the other hand, we have J'B = I’ B by construction,
which implies that 3/’ is a unit in B. This contradicts to our assumption that
any non-unit element in A does not become a unit in B. O

6.3. Proof of Proposition 4.3.2

Now we are ready to prove Proposition 4.3.2. For a subinterval I C [0,1) and
r € I\ {0}, we extend the norm |||, to n x n matrices A = (4;;) € Mat,(Oa,)
by [|A|l, := max; ;{||Ai||,}. Similarly, define the additive valuation w,(A) :=
min, j{w,(A;i;)}. This satisfies the strict triangular inequality and the submulti-
plicativity:

e wy(A+ B) > min{w,(A4),wy(B)} and the equality holds if w,(A) #
wy(B).

o w,(AB) > w,(A) + w, (B).

o If wy(A) > 0 then w,(det(A)) > 0. Similarly if w,(A —1d,) > 0, then
w(det(A) — 1) > 0. (Indeed, write A =1d,, +X for some X = (x;;) with
wy(zi;) > 0, and det A—1 can be written as a sum of terms only involving
ij.)

Now let us restate Proposition 4.3.2 as follows:

PROPOSITION 6.3.1 (Proposition 4.3.2 restated).

(1) For any A € GL,(R), there exists U € GL,(Oa) and V € GL,(R")
such that A=UV.

(2) If A € GLn(Oa,,,,) with 0 < r < 1 and if wy(A —1d,) > 0 for v =
—log, r, then there exist matrices U € GL,(Oa) and V' € GLn(ObAd[M))
such that A = UV. This pair U and V is can be chosen to satisfy the
following additional conditions:
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o U —1d,, involves only positive powers of uw and V involves no positive
powers of u.
o We have wy(U —1d,) > 0 and wy(V —1d,) > 0.
o Ve GLn(OiAnt[ryl)).
Such U and V are unique and also satisfy inequalities wy(U — Id,,) >
wy (A —1d,) and wy(V —1d,) > wy(A —1d,).
For the proof, we closely follow [Ked04, Prop 6.5]. The proof is roughly divided
into two steps:
Step 1: Reduce (1) to (2)
Step 2: Produce the unique matrices U and V in (2) by approximation.
The following lemma takes care of Step 1:

LEMMA 6.3.2. Fiz v € Qs0 and let r = q~7. Then for any A € GL,(Oa, ,,),
there exists an invertible matriz B € GLn((’)%[H)) such that wy(AB —1d,) > 0.
Furthermore, if wy(det(A) — 1) > 0, then we may choose B such that det(B) = 1.

To handle Step 1, first apply this lemma to A € GL,, (C’)A[M)), to obtain AB €
GL,(Oa,,.,,) with B € GLn(O%[M)) and w,(AB —1d,) > 0. Granting both the
lemma and Proposition 6.3.1 (2), one can apply Proposition 6.3.1 (2) to AB to
get a factorization AB = UV. This gives a factorization A = U-(VB™!) where
U € GL,(0Oa) and (VB~1) € GLn(ObAd[M)). Now, for any A € GL,,(R) there exists
some 7 € (0,1) such that A converges on A, ). Take this r and let v := — log, 7.
Then the above factorization A = U-(V B~1) proves Proposition 6.3.1 (1), so the
lemma completes Step 1.

REMARK. With little extra work, one can prove this lemma with v replaced
by any closed sub interval I, C Rso. Compare with [Ked05b, Lemma 2.7.1] and
[Ked04, Lemma 6.2]. We do not need this generalization.

PrOOF OF LEMMA 6.3.2. The case n = 1 is handled by Corollary 6.2.6.2. Also
from n = 1 case, we can find a unit g € (O%[M))X so that w,(g-det(A4) — 1) > 0.
Therefore by replacing A by A-diag(g,1,--- ;1), for example, we may and will
assume that w.(det(4) — 1) > 0. We will carry out the induction on n with this
extra hypothesis on the determinant. We assume by induction (with n > 1) that
for any A € GL,—1(Oa,,,,) such that w,(det(A) — 1) > 0, there exists a matrix
B e SLn,l(O%[m)) such that w,(AB —1d,) > 0.

Let us outline the strategy of the proof:

(1) For any A € GL,(Oa,,,,), find By € SLn(OZd[T_l)) such that the up-
per left (n — 1) x (n — 1)-minor of AB, satisfies the induction hypoth-
esis. The induction hypothesis produces B; € SLn(ObAd[T 1)) such that
[(ABoB1)ij — 0i5]| > 0 for 1 < 4,5 < n — 1, where 0;; is the Kronecker
delta.

(2) Find a series of elementary column operations so that n-th column and
n-th row satisfy the same inequality.

(1) Finding By and applying the induction hypothesis.

Let ¢; denote the ni-cofactor of A, so we have det(A) = Y7 | ¢;- Ay, and ¢; =
(A™1);, det(A). If we put a; := det(A) "' A,;, then we have .-, a;¢; = 1. In order
to get an idea for how to find By, let us assume that we have By € SLn(OlZ[T 1))
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such that the nn-cofactor ¢, of ABy satisfy w,(c,, —1) > 0 (so ¢, is necessarily a
unit by our criterion via Newton polygon: Corollary 6.2.6.1).
The cofactor ¢}, satisfies:

d, = (By'A Y, det(A)

n
n

= Z(Bo_l)m-(/rl)m det(A)

= 1+ Z ((By ni — )i

Let 8; := (By i € Obd . Then {5;} generates a unit ideal in (’)bd N since BO_1
is invertible. Conversely, 1f we can find {8;} which generates the ufllt ideal and
satisfies w-(8; — o) > —w(¢;) for all ¢, then we can find By that works; indeed,
since n > 1 and (’)bd . is a principal ideal domain (Proposition 6.2.7.2), one can

find an invertible matrlx By! e SLn(ObAd[T 1)) whose n-th row is (5;), and the above
calculation shows that this By works.
To find such {3;}, we first take 3] € OXI[T ,, such that wy (B — a;) > —w,(¢;)

for all 7. This is possible because ObAd[ C Oa,,,, is a dense subalgebra. But

1
{B!} may not generate the unit ideal, so )We modify (], as follows. Observe that
the elements {3/, + Wé}j are pairwise coprime (i.e., any two elements generate the
unit ideal) in ObAd[m). If j > 0 (namely, if j > —w,(¢;)), then we still have
wy (Bl + ) — an) > —w,(c;). Since Obd oy 158 principal ideal domain, the ideal
generated by {8, -+, 0/,_1} is principal, say generated by (. Since 8 cannot have
infinitely many prime factors (being an element in a principal ideal domain), we
conclude that there exists an integer j > 0 such that {3],---,3,_,, 0, + 7}
generates the unit ideal and the inequality w., (3], + T —an) > —wy(c;) holds. We
set (3, := [, + ) for the above choice of j, and §; := 3] for i # n.

To summarize, if we choose a matrix By ' € SL, ((’)bd 1)) whose n-th row is
(6:), then the upper left (n — 1) X (n — 1)-minor of ABO 'satisfies the induction
hypothesis. Then the induction hypothesis gives a By € SLn,l((’)%[M)) which
“works” for the upper left (n — 1) x (n — 1)-minor of ABy. Now, extend this matrix
to By € SLn(OlXi[m)) by setting (B1)nn = 1, (B1)in = (B1)ni = 0 for i # n and
the upper left (n — 1) x (n — 1)-minor of By to be equal to Bj. Then AByBj still
satisfies the following:

e our running hypothesis w. (det(AByB1) — 1) = w,(det(A) — 1) > 0, (be-
cause the determinant of By and B; are both 1)
® Wy ((ABoBl)ij — 6U) >0forl< i, <n—1.
Since it is enough to prove the statement for AByB;, we rename AByB; to be A.

Now that we have the inequalities wy (A;; — d;;) > 0 for 1 < 4,57 <n—1 (so
wy(A;;) >0 for 1 < 4,5 <mn—1), our next goal is to perform elementary column
operations on A (which correspond to multiplying A by elementary matrices on the
right) so that in the resulting matrix, the same inequalities hold for all ¢ and j.
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This process will look like Gaussian elimination, except that instead of eliminating
the off-diagonal terms in n-th row and column we make them close to 0. For this
reason we may call this process “approximate Gaussian elimination”.

(2) “Clearing” the nth column
We first “clear” off-diagonal entries from the nth column. Let A(®) := A and put
A+ = AW B here

(h) Omj j<norj=m=n
B mj = .
( Jmj {A%QL j=nand m<n

Concretely, we subtract ASJZ,{ times the mth column from the nth column for each
m =1,---,n— 1. (Note also that det A"+1) = det A"") = det A for any h > 0.)
Therefore we have:

h )
AP { Aéjﬁ; L) )
Ay =5 LAY A j=n
At each step, the minimum valuation min<;<y,— 1{w7( )} increases by at least
ming <; j<n—1{wy(A4;; — d;;)} which is positive and mdependent of h. To see this,

we just rewrite AZ(.ZH) for i < m:

n—1
h+1 h
m#i,n
= AP (65 — Ay) — Z (Aim — Sim)- AL,
m#i,n

and the claim is immediate from the last expression.
Since minlgign,l{wv(flgz))} increases at each step by at least some fixed pos-
itive number, we may choose h > 0 so that the following inequality holds:

(A(h)) >max{0 max {—w,y(AS;))}} (i=1,---,n—1)

1<j<n—1

(Recall that Ag;-) = A,;, so the right side is independent of h.) Therefore we have
w,y(Ag»l)) > 0 for all ¢ < n and all j; and w,y(AEZ)-Ag})) >0 forany 1 <i,j <n-—1.
Because det(A) = det(A(™), we still have the inequality w- (det(A™) — 1) > 0.
Furthermore, we also have wW(A,%) — 1) > 0. To see this, it follows from the
inequality w,y(A(h) A(h)) > 0 for 4,5 < n and OW(AE?)) = wy(4;;) for all i,j < n
that w, (Z#n §h)A ) > 0 where cgh) is the mj-cofactor of A™. But since

det(AM) = 32" ™A™ and w, (det(AM) —1) > 0, we get w, (c“” Al — 1) >

0. But Al(-;l) = A;; for i, < n, so by our initial arrangements for A we have
wv(c%h) —1)>0 (so wv(c; )) = 0). Since Al 1 = c;h)-(Aﬁl’;B -1+ (c%h) -1),

we deduce wV(AEj) 1) as claimed.
Let us list all (relevant) properties we have arranged for A to satisfy:
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e w,(det(AM) —1) > 0.
o w (AW —§;)>0if1<ij<n—lorifj=n.
. wW(AEZ)-AS;)) >0forany 1 <i,57<n-—1
(8) “Clearing” the off-diagonal entries in the nth row
Now that ASZ;B satisfies the desired inequality w,Y(AgiL) —1) > 0, we can “clear” the

)

remaining entries in the nth row. Starting from A" define AU+1) .= A(l)~B£l for

I > h, where
0i i<nori=j=n

B(l) i = *

(B2")is —ASJ)- i=nandj<n
Concretely, we subtract As]) times the nth column from the jth column for each
j=1-- ,n-1
4D AR —AQL AL j<n

) : A(l) ] =n

in
First, observe that for j < n, the valuation w.Y(Affj)) increases by at least w,y(Agil) -
1) which is a positive number independent of h. (Note that A%}L) = Ag,)“ so the

above statement is clear from the recursive formula.) Thus for [ > h, we have the
inequalities

1 .
w’Y(A'EzJ))>O (G=1--,n-1)

Now, we need to check that these column operations preserve the inequality w- (AZ(-? —
0i;) > 0 for 1 <i,5 <m—1, so it suffices that w,y(AEQ-AS;) >0forl1<i,j<n-—1
and all [ > h. In fact, we have w, (AEZ)‘A%};)) >0forl1<i,j<n—1,and AEZ) = AEQ
while wV(ASJ)) > wv(Ag;)) for I > h (since w, (1 — Agf%) =w, (1 — ASL};L)) > 0 for all
[ > h), hence the claim is clear.

To sum up, we have the inequality w., (AZ(-? — ;) > 0 for all 4 and j, in other
words w., (A" —1d,,) > 0. This finally concludes the proof of the lemma. O

We have reduced the Proposition 6.3.1 to proving the second part of its state-
ment.This follows from the lemma below, which roughly says that one can uniquely

factor a matrix A over A, ) into a “holomorphic part” U and a “polar part” V/,
with some “boundedness” condition if A is close enough to Id,:

LEMMA 6.3.3. Assume that A € Mat,(Oa,, ,,) satisfies w, (A —1d,) > ¢ for
some v := —log,r € Qx0, and ¢ > 0. Then there exists a unique pair of matrices
U = Idn+2 ez, Uit' € Matn(Oa) and V. = 3, Viu™ € Matn(OXt[M)),
where U;, V; € Mat,, (), such that A=UV, wy(U —1d,,) > 0 and w,(V —1d,) >
0. Moreover, these matrices U and V satisfy w,(U —1d,) > ¢ and w,(V —1d,) > c.

Since OiAnt[T , 2 complete normed algebra for the valuation w., it follows from
w~(det(V) — 1) > 0 that det(V) is invertible, so V' € GL, (OR* ).
()

REDUCTION OF PROPOSITION 6.3.1 (2) TO LEMMA 6.3.3. Assuming that A
is invertible in addition to all the hypotheses in the lemma, it is enough to show
that U and V given from the lemma are invertible. This statement only involves
the determinants of U and V', hence we are reduced to n = 1 case.
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Assume that A € OZ[T N satisfies w,(A — 1) > 0. Then by lemma, we obtain

. X
U € Oa with constant term 1 and V' € ((’)Kt[ 1)) in 14 w1 o[[u"?]] such that
A = UV. (This is not the end of the proof because we need U to be invertible
in Oa, not just in Oa,, ,,.) Since A1 also satisfies w, (A7 — 1) > 0 (because
wy(A(A™1 = 1)) > 0 and w,(A) = 0), we also have A™! = U’V’. Since V and V'
are invertible, we obtain U-U’ = (V-V')~1, which is an element of Oa ﬂOiAnt[r , =6
But U-U’ has the constant term 1, therefore is a unit in &. This shows U € O. O

PrOOF OF LEMMA 6.3.3. We first make the following observations:

(1) If f(u) € Oa,,,, has no nontrivial “principal part” (i.e., no nonzero terms
with negative powers of u) in its Laurent expansion, then f(u) can be
extended to a section of Oa.

(2) If the Laurent expansion of g(u) € Oa,,, has no terms with positive

0
on A 1y because g(+) has no negative powers of u so it extends to the

powers of u, then g(u) is automatically bounded; in fact, g(=) is bounded

closed disk A 1. Furthermore, if w,(g) > 0 where v = —log, r, then
g(u) € OF

1)

Now, let A be as in the statement of the lemma. It can be seen from the obser-
vations above that once we find the factorization A = UV for U,V € Mat,,(Oa, ,,)
where U = Id, + 37, Uju' and V = DicZsg Viu™" with w, (U —1d,,) > 0 and
wy(V —id,) > 0, then automatically U and V' belong to where they should: i.e.,
U € Mat,,(Oa) and V € Matn(OiAnt[r )

We first show the uniqueness. Assume that there exist two desired factoriza-
tions A = UV = U'V’. Since we required all these matrices to be “close” to Id,,
with respect to the valuation w, (i.e., wy(A —1d,) > 0, wy (U —1d,) > 0, etc.)
they become invertible over Oa, ;. (The inequalities forces w,(det(A4) —1) > 0,
etc., and that Oa, , is the completion of Ox, ,, with respect to w,.) So we have
(U)'U =V'V~=!in GL,(Oa,,,,)- But (U')"'U —1d,, has only terms with posi-
tive powers of u while V'V ! —1d,, has no terms with positive powers of u. This
can happen only when (U’)~1U =1d,, and V'V ~! =1d,, from the beginning.

Now we show the existence of such a factorization. We define a sequence of
invertible matrices {V(h)}h€Z>0 over Oigth N by the following recursion formula.

Let V(© :=1d,,. Given V") we set A(V")~1 = P(h) 1 (M) where HM consists
of terms with positive powers of u and P™ consists of terms with non-positive
powers of u. By the second observation made at the beginning of the proof, P ¢

Matn(OiA“t[r 1)) for all h > 0. Define V+1 .= PPV (M) and we need to show that

P™) lies in GLn((’)iAn‘EM)), hence in turn V*+1) is. Since (’)iA“t[M)

respect to w., it suffices to show w. (P™ —1d,) > 0.

Observe first that w, (A(V®)~! —1d,)) = min {w,(PM —1d,), w,(H")}
because we defined P") and H® by “chopping” the Laurent series for A(V("))~1,
So it is enough to show w, (A(V®)~1 —1d,) > c. If h = 0 then we have
w,(A-1d,,) > ¢ by assumption, so it follows that w., (P ~Id,,) > c and w, (H©) >
c. Now assume that we have w, (A(V(h))_1 — Idn) > ¢, hence wW(P(h) —1Id,) > ¢
and w,(H™) > c. In particular P is invertible and w., ((P™)~' —1d,) >

is complete with
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w., (Id,, —PM) + w, ((P™M)~1) > ¢. Now the claim for h + 1 follows since
AV 1d, = AV "L~ 1d,, = (A(VM)1-1d,,) (PM) "t (PM)) "1 —1d,,).
We now digress to prove the following stronger estimates:

CLAmM 6.3.3.1.
(1) wy, (H®+) — M) > (h 4 2)c
(2) w,(PM —1d,) > (h+1)c
We begin with the following observation:
(p(h+1) —1Id,) + g+ _ A(V(h+1))—1 ~1d,
= AW~ (Pt~ _1q,
— H(h)(P(h))*l
= H® 4+ g®(Pp")=1 —1d,).
Now observe that (P —1d,,) + (H*+D — gy = g ((pM)~1 —1d,,), and

that P+t —1d,, involves only negative powers of u and H+1) — H(") inyolves
only positive powers of u. Therefore, we have

min {wW(P(h“) —1d,,), w., (H"+D — H(h))} —w, (H(h) ((P(h))—1 - Idn)) .

Claim 6.3.3.1(2) for the case h = 0 is clear since by construction of P and
HO | we have min{w,(P©® — id,), w,(H®)} = w,(A —id,) > ¢. To prove
6.3.3.1(2), we proceed by induction on h. Assuming w.(P™ —1d,) > (h+1)c, we
have

min {wV(P(h“) —1d,,), w., (H"+D — H(h))} = w, (H“”)—&—wv ((P<h>)—1 - Idn> > c+(h+1)c

As a byproduct, we also get w.Y(H(h“) — HM) > (h + 2)c. This proves Claim
6.3.3.1.

Now we can conclude the proof of the lemma. It follows from Claim 6.3.3.1
that w., (V") —1d,) > ¢ for h > 1. (The case h = 1 is clear since V(1) = P(0). Now
use induction on i and VD —1d,, = (PM —1d,, )V + (V" —1d,,).) We have

also seen that OiA“t[T b is complete with respect to the valuation w.,, so the estimate

w,(PM™ —1d,) > (h + 1)c implies that P") — Id,, in Matn(OiA“t[r,l)) as h — oo.

The convergence of {V ("} in Matn(OiA“t[M)) follows from the estimate:

w, (VD) — vy > (VW)Y pap, (PP —1d,,) > (h+ 1)c

Let V' denote the limit. Then, V involves no positive powers of u and satisfies
w,(V —id,) > ¢ because all V(®) have these properties.

Furthermore H" = A(V")~1 — P(") converges to AV~! —1d,, as h — oo for
the topology generated by the valuation w.. So AV~! —1d,, only involves positive
powers of u and satisfies w,(AV~! —1Id,) > ¢; we can check these properties
by viewing the matrices as elements of Matn(OA[m]) which is the completion of
Mat,L(OA[M)) for the valuation w., and all H (M) have these properties. So U :=
AV ! and V satisfy all the desired properties. ([






CHAPTER 7

Appendix 1II: Effective local shtukas and mj-divisible
groups

Throughout this appendix, we put o9 := F,[[mo]]. Recall our setup in this
case: 0x = k[[u]] where k contains Fy and has a finite p-basis, and we fix a local
injection 09 — o0x which sends 7 to ug # 0 (and we put P := m®1 — 1®ug €
00<§>]Fq01< =~ &). One of the main purposes of this appendix is to show that in the
case of 0g := Fy[[m]], (¢, &)-modules of finite P-height naturally come up as the
semi-linear algebra structure that classifies a certain type of mp-divisible groups over
0k, namely mp-divisible groups of finite P-height (Definition 7.3). In fact, this clas-
sification works not just over ox but over any base (formal) scheme over Spf 0g, in
which case the relevant semi-linear algebra structures called “effective local shtukas”
were introduced and studied by Genestier-Lafforgue [GL] and Hartl [Har10, Har09).
See Theorem 7.3.2 for a more precise statement, and for now we content ourselves
with mentioning that the statement resembles contravariant Dieudonné theory for
Barsotti-Tate groups. This justifies viewing G k-representations of finite P-height
as equi-characteristic analogues of crystalline representations. This result was an-
nounced by Hartl [Har05], but since the proof was not available to the author, we
work out the proof here.

Convention. Let S be a scheme, and 91 a sheaf on S. By f € 9, we mean
f e (U, M) for some open U C S.

7.1. Local shtukas

Throughout the section, S is either a scheme over Specog or a formal scheme
over Spfog! and g : S — S is the absolute g-Frobenius endomorphism (i.e., og
induces identity on the underlying topological space and gth power map on the
structure sheaf). We let uy € T'(S, Og) denote the image of my under the structure
morphism oy — I'(S, Og). The examples to keep in mind are S = Spf ox, Specog,
and Spec K.

On Ogl[mo]] & Os®r,00, we use the partial Frobenius endomorphism o :=
os®oq : (95®qu0 — OS®Fq00. Concretely, for a section f = >, a;7h where
a; € T(U, Og) for some open U C S, we define o(f) := >, aln§. If S = Specoy or
S = Spec K, this recovers the natural 0 on G and o¢, respectively.

1n Hartl’s original definition, the base S is assumed to be a formal scheme over Spf 0g, in
which case our definition of local shtukas (Definition 7.1.1) will coincide with Hartl’s, thanks to
Proposition 7.1.9. But since it is convenient to include the case S = Spec K, we allow S to be any
scheme over Spec 0g.

91
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DEFINITION 7.1.1. A local shtuka of rank n over S is a pair (9, p) where M is a
sheaf of (topological) Os®r, 09 = Og|[m]]-modules together with a Og|[m]][

TF(J—UO}

linear map ¢ : o*M[—L—] = M[—L—] such that the following condition holds.

To—UQ T —Uo

o There exists a Zariski covering {U} of S such that 9|y is a free Oy [[mo]]-
module of rank n for each U. Equivalently, by Corollary 7.4.3, 91 is a
locally free Ogl[mg]]-module.

e There exists an integer N such that ¢(a59M) C (mo — ug) VM.

We call tko((r,)) P the rank of the shtuka 9.

A local shtuka 971 is called effective if one can take N = 0. In other words, an
effective local shtuka is nothing but a p-module of finite P-height which is locally
free over Og[[m]]. An effective local shtuka 90t is called étale (respectively, strict,
or of P-height < h) if ¢ is an isomorphism (respectively, if (mg — wug)-coker ¢ = 0,
or if (mg — ug)"-coker p = 0).

We let Sh, (S) denote the category of local shtukas over S with the obvious
notion of morphisms. Let ngf (9), &iZ(S), Sihf(f, and &ih denote the full sub-
categories of effective local shtukas, étale local shtukas, strict local shtukas, and
local shtukas of P-height < h, respectively.

EXAMPLE 7.1.2. If ug € T'(S, Og) is invertible, then any local shtuka over S is
étale. In particular, if K = k((u)) is a field extension of F (7)) via mo — ug, then
local shtukas over Spec K is precisely étale p-modules free over og = K{[mo]].

We can also see that effective local shtukas over o are precisely (¢, &)-modules
of finite P-height. (Recall that & = ox[[mg]].) More generally, local shtukas over
ok are precisely generalized (p,&)-modules as in §2.2.11. Then Theorem 5.2.3
asserts that the base change for local shtukas by 0y — K is fully faithful. This can
be generalized, by the argument given in [Tat67, §4.2], to the following statement:
for a connected normal noetherian F,[[ug]]-scheme S such that uy € I'(Og) is not
zero, associating the generic fiber defines a fully faithful functor from the category
of local shtukas over S to the category local shtukas over the function field of S.

EXAMPLE 7.1.3. Let C be a (geometrically integral) curve over some finite field
F of characteristic p. Pick a closed point P € C and let O¢ p be the completed
local ring at the place P. By choosing a uniformizer mo € O¢ p at P, we identify
Oc.p = F(P)[[no]], where F(P) is the residue field at P. Let S be a formal scheme
over Spf(O¢ p), and let up € I'(S,Og) be the image of my. (So wg is locally
topologically nilpotent.) Under this setting, local shtukas over S can arise from the
following sources:

“Localization” of a (global) “shtuka” over S: Let &, &’ be vector bundles
over C' Xy S, equipped with the following structure:

J

E—=&' g
A S
either (i) ¢ , or (ii)
oc*& &’ 5 o*&

where 0 = id¢ Xog is the partial ¢g-Frobenius and the following conditions
are satisfied.
e t and j are injective.
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e The support of cokert is exactly the graph I'; C C xg S of the
morphism o : S — Spf(O¢ p) — C, where the first map is the
structure morphism and the second is the natural map. (Compare
with Remark 1.3.4.)

e The support of coker j is the graph of some morphism oo : S — C
and is disjoint from the graph of o.

o The sheaves cokert and coker j are invertible? over their respective
supports.

This gives an example of a right shtuka over S in the case of (i) (respec-
tively, a left shtuka over S in the case of (ii)). Now let 1 := & be the com-
pletion of & at T',,, and view it as an Og|[mp]]-module via the isomorphism
Os|[mo]] = Ocxsr, = Os|[m — uol], defined by my +— ug + (70 — uo).
(This makes sense since S is a formal scheme over Spf(O¢ p) so ug is
locally topologically nilpotent.) Now set ¢ := j"lot : "M — M if &
is a right shtuka; and set ¢ : t o 57! if & is a left shtuka, respectively.
Observe that j becomes an isomorphism after completion because coker j
is supported disjointly from I',, and that coker ¢ = cokert is an invertible
sheaf on T',, which is cut out by mg — ug. So (9, ¢) is an effective local
shtuka over S.

mo-divisible group associated to a Drinfeld module: Let co € C' be a closed
point distinct from P, and let A be the coordinate ring for the affine
curve C \ {c0}. We let P also denote the maximal ideal of A which
corresponds to the closed point P € C. For a Drinfeld A-module £ over
S, one can associates “a mp-divisible group” G := li_n}l/.Z[P"]S. Since the

n
Verschiebung for L£[P"]g vanishes for each n, one has the “Dieudonné-
type” anti-equivalence

G~ Homs(G,Ga) = lim - om(L[P"]s, Ga) =: M.

n

(See Theorems 7.2.6 and 7.3.2 for the precise statement.) Under the Frobe-
nius structure pgn induced from the relative Frobenius on G, 9t becomes
a strict local shtuka. This example is worked out later in §7.3 with more
generality.

7.1.4. Formal properties. Let (9, ) and (9, ¢') be local shtukas over S.

(1) (Base Change) Let S’ L Shbea morphism of (formal) schemes over og.
We set f*IM := Og[[70]] ®-1(0s([m0]]) F'9M together with the induced
Frobenius structure f*¢ := Og/[[m]]® f !¢, which makes sense as below:

ok (FFIM) = f*(o,9m) L5 om.

Then the “pullback” (f*9M, f*¢) is again a local shtuka over S’. Moreover,
if 9 is effective, of P-height < h, strict, or étale, respectively, then so is
its pullback f*9.

2The example still works fine if we just assume cokert and coker j are locally free of finite
rank over their respective support, but the definition of Drinfeld’s shtuka [Dri87, §I] requires them
to be invertible.
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(2) The tensor product (M @e(ir M, @ ¢’) is again a local shtuka; ¢ ®¢’

makes sense as a Frobenius as shown below: o5 (MM ®@ M) — (c&M) @
(o) 222, m e M.

Let £5 be a local shtuka whose underlying module is Og|[m]]-e with
the “natural” choice of the Frobenius structure ¢, i.e., ¢(c*e) = e. Then
L is the “left and right identity” for ®-product.

(3) Internal hom is defined in local shtukas. We put 0N := S omoy [, (M, M),
and define a Frobenius structure oo : (05[] = N[—L-], as fol-
lows: po(f) :=¢' o fop teMNfor f € (U;«‘ﬂ)[ﬁ] viewed as a map
f: (agim)[miw] — (o—gsm’)[mi%]. One can directly check that (M, on)
is a local shtuka over S.

(4) One can define duality by M* := H# omog((x,)) (9N, £s) on Sh, ().

Now we define Tate objects and Tate twists.

DEFINITION 7.1.5. For any integer n, the Tate object £5(n) is a local shtuka
whose underlying sheaf is Og[[mg]] e, and the Frobenius structure is defined by
ote — (mg — up)"-e. For a local shtuka (9, ¢), the Tate twist M(n) by n is the
local shtuka DMM(n) := M @o[ir) £5(n) = (M, (10 — uo)™-0).

We record some immediate properties:

(1) For any positive integer n, we have £5(n) = £5(1)®™. For any integer n,
we have £g(—n) = £5(n)*, so we also have (9(n))* = M*(—n).

(2) For a local shtuka 90t over S, let N be an integer such that p(c*9) C
(mo — up) ~VOM. Then the Tate twist M(N) is an effective local shtuka.

(3) Any rank-1 local shtuka (9, ) over S is, Zariski-locally on S, a Tate
twist of a rank-1 étale shtuka. Indeed, by restricting to some Zariski-open
of S, we may assume that 9 is a free Og[[m]]-module of rank 1. Let us
take a basis e € T'(S,91). Then by definition, ¢(c*e) = a- (7w — ug)™ for
some « € I'(S, Og[[mo]]*) and n € Z.

7.1.6. Isogenies of local shtukas. A morphism of local shtukas f : 9t — 9 is
called an isogeny if f is injective and coker f is killed by some power of g, say by
7). Then, there exists g : 9’ — M such that fog =) and go f = 7})’; consider
the following commutative diagram

m —f> oM — coker f

v
7/
Trévl /g lwé\’ \LO
¥

m —5 M/ —= coker f.
Therefore, we can define isogeny categories Sh, (S5) [7%0], &0200 (S) [;—0], and &fﬂh(S) [ﬂio}
by formally inverting 7y in the morphisms.

7.1.7. Our definition of local shtukas (Definition 7.1.1) slightly differs from
Hartl’s original definition in [Har10, §2.1]: Hartl additionally required that the
quotient (mg — ug) “NIM/p(cEM) is locally free over S for any N > 0. We show
that this additional assumption is automatic if either ug € I'(S, Og) is locally topo-
logically nilpotent (i.e., S is a formal scheme over Spf o) or S is locally noetherian.
For this we first need the following lemma.
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LEMMA 7.1.8. Let S be a (formal) scheme over og which satisfies one of the
following assumptions: (1) S is locally noetherian; (2) uy € T'(S,Og) is locally
topologically nilpotent (i.e., S is a formal scheme over Spfog)); or (3) the natural
map Og — OS[U%)] injective (i.e., when ug is nowhere a zero divisor on S; for
example when S is integral). Then for any effective local shtuka I over S, the
Frobenius map pon : 05(I) — M is injective.

PrOOF. The claim is local in S — more precisely, the claim is local in the relative
formal spectrum Spf g Og[[m]] which shares the underlying topological space with
S. So we may assume S = Spec R for some o0g-algebra R, or S = Spf R for some
admissible 0g-algebra R [EGA, 0r, 7.1.2].

Let us consider the case (3) first. We may formulate the problem purely al-
gebraically using R-modules (i.e., working over Spec R, not Spf R). If the natural
map R — R[u%,] is injective, then the natural map 9 — R[u—lo}[[ﬁo]] ®Rlmo MM is
injective. So by Lemma 2.2.3.1, we are reduced to the case when ug is a unit in R.
Let us assume this. Then 7y — ug is a unit in R[[m]], so it follows that any local
shtuka over R is an étale p-module over R[[m]]; i.e., ¢ is an isomorphism.

Let us consider the other two cases. First, it is enough to handle the case when
S is a scheme; i.e., S = Spec R where R is either noetherian or such that uy € R is
nilpotent. In fact, if S = Spf R where R is an admissible 0g-algebra and {I,} is a
fundamental system of open ideals in R, then it is enough to verify the lemma for
R/1, for each a (by the left exactness of inverse limit). So we rename R/I, as R.

Second, we can even assume that R is local; indeed, once the lemma is known
when R is local, then since the natural map R[[mo]] — [[ (Rg[[mo]]) is injective (as
B varies over Spec R) we may apply Lemma 2.2.3.1.

To summarize, it is enough to consider the case when S = Spec R where R is
local and such that either (1) R is noetherian; or (2) up € R is nilpotent.

Now, we show that the natural map R[[mo]] — R[[mo]][=—,-] is injective; once
this is shown, it follows from the R[[mp]]-flatness of 91 that the natural map 9 —
sm[miuo] is injective, so we can use Lemma 2.2.3.1 to conclude the proof.

If up € R is invertible then mo—ug € R[[mo]] is invertible, so we may assume that
ug € mpr where mp is the maximal ideal of R. We want to show that if f € R|[[mo]]
satisfies (w9 — ug)-f = 0 then f = 0. Since R[[m]] injects into R[[ﬂ'o]][ﬂ—lo], we may
regard f as an element of R[[WOH[T}—U] in order to show f =0 in R[[m]].

If up € R is nilpotent then my — ug is a unit in R[?T()H%] (hence in R[[Wo]“%]),
since the infinite series 7%0(1 + 5+ (fr—g)2 +--+) is a finite sum and gives the inverse
of mg — uy.

Now, consider the remaining case where R is a noetherian local ring. The
assumption (mo — uo)-f = 0 implies that f = 22 f in R[[Wo]][ﬂ—lo], so we have f =

n n
(:—3) -f for any positive integer n. Therefore, f € [,5 (:—g) ~R[[7r0]][ﬂ—10] = {0},
by Krull’s intersection theorem.

PROPOSITION 7.1.9. Let S be a formal scheme over oy, and assume that either
(1) S is locally noetherian; or (2) ug € Og is locally topologically nilpotent (i.e.,
S is a formal scheme over Spfog). Let M be a local shtuka over S. Then for any
N > 0, the quotient (T — ug) NIM/(asM) is locally free over S. In particular,
if M is an effective local shtuka, then coker(p) := M/ p(c*IM) is locally free over
S.
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PROOF. Let N be a positive integer such that the N-fold Tate twist (V)
of 9 (Definition 7.1.5) is effective. Observe that (mg — ug) VI /p(cEIM) =
coker(pgn(ny)), so the first claim follows from the second claim. In order to show
the second claim, consider the following short exact sequence

0 — o™ (M) L2 M — coker(p) — 0,

which remains exact after the base change to arbitrary closed (formal) subscheme
of S, thanks to Lemma 7.1.8. Since the first two terms are flat over S, we can
deduce that the last term is flat over S, from [Bou89, Ch.I §2.5 Prop 4] or from an
argument using Tor;. The following exact sequence for h > 0 shows that coker(ip)
is finitely presented over S (and hence is locally free):

0 — @(a*M)/(mo — uo)" M — M/ (7o — uo)" M — coker(p) — 0.
O

ExAMPLE 7.1.10. The following example due to Urs Hartl shows that Lemma
7.1.8 is false without assumptions on the base S. Let R := k[[uo]][to, t1, - - ]/ (uoto, ti—
uotir1lt = 0,1,---). Let M := R[[mo]]-e equipped with op(c*e) = (mg — up)-e.
Then 90 is an effective local shtuka, but ¢y is not injective since (3=, t;75)-(c*e)
is in the kernel. The proof of Lemma 7.1.8 fails because mg — ug is not a regular
element in R[[mo]].

7.2. Classification of finite locally free group schemes with trivial Verschiebung

We digress to discuss the “Dieudonné-type” classification of finite locally free
commutative group schemes with trivial Verschiebung. This is the main technical
tool for the rest of this appendix. Most of the results in this subsection are also
proved in [SGA, 3, Exp VII,, §7], where statements differ from ours by Cartier
duality. The discussion of this subsection is also inspired by Abrashkin’s study of
Faltings’s strict modules [Abr06, §2], although we take a slightly different approach.

7.2.1. Preliminaries on group schemes. Let S be a scheme of characteristic p
and let o : S — S be the (absolute) p-Frobenius. Let G be a finite locally free group
scheme over S. Let Ag denote the push-forward of Og by the structure sheaf, and
Ja C Ag the augmentation ideal. Put 0*G := G x5, S and let Fg/s: G — oG
be the relative Frobenius map, which is a group homomorphism thanks to the
functorial properties of the Frobenius map.

In addition to this, there is a canonical S-group map Vg5 : 0*G — G (called
Verschiebung) which is functorial in G, commutes with base changes, and makes
the following diagram commute:

a [»] a

Fgys
14
Fa/s

0*G ——o*G
[p]
The Verschiebung map is defined in [SGA, 3, Exp VII,, 4.3], and in [SGA, 3, Exp
VIla, 4.3.3] it is shown that Vg s = (F¢y g (where (1)Y denotes Cartier dual).
We will later concentrate on finite locally free commutative group schemes with
vanishing Verschiebung.
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Now, we associate to a finite locally free® group scheme G a finitely presented
over Og, which will be endowed with a Frobenius structure ¢, as follows:

M (G) = %Omgp/s(G>Ga) ={fedAclpuc(f)=feol+1ef}

where pug : G Xxg G — G is the group multiplication map. The absolute Frobenius
endomorphism Fg, : G, — G, induces a og-semilinear endomorphism on 9" (G).
(The same map can be obtained from the absolute Frobenius Fg : G — G.) We
denote its linearization by ¢ : o*M*(G) — M (G).

7.2.2. p-Lie algebras. Our next goal is to show that the p-module 9*(G) is
isomorphic to the “p-Lie algebra” of the Cartier dual GV of G (where the p-operation
defines the ¢-structure). We digress to recall the definition of p-Lie algebras, and
later in in Lemma 7.2.3 we show that it are isomorphic to 9" (G) as a gp-module.

We write wgv = e*Qgv & ng/ﬂév for the “co-Lie algebra” of GV. We let
Zies(GV) denote the “Lie algebra” of GV; i.e., Lies(GY) := Pers(Agv, Agv | Iav) =
Homo,(wev,Og) where the isomorphism is given by the universal property of
Kahler differential.

The Lie algebra Zies(G") is naturally equipped with an og-semilinear endo-
morphism [ +— IP) for any | € Lies(GY), called the p-operation. We recall the
definition. For any [ € Zies(G"), consider the following Og-linear map:

(7.2.2.1) 1@ .— Agv kav (AGv)®p E@_I’_}OS,

where p&y : Agv — (Agv)®? is the p-fold comultiplication map. That 1) is an

Og-derivation is proved in [SGA, 3, Exp VII,, 6.2]. (This can also be deduced
from the proof of Lemma 7.2.3.) For any a € Og and | € Zieg(GY), we have
(al)®) = (aP)IP), so the p-operation defines a og-semilinear endomorphism on
ZLies(GY). We let ¢ : 05(Lies(GY)) — ZLies(GY) denote the linearlzation of the
p-operation. (Note also that Zies(GY) together with this p-operation defines a
commutative p-Lie algebra in the sense of [SGA, 3, Exp VII,, 5.2].)

LEMMA 7.2.3. We have a natural o-compatible isomorphism M* (G) = Lies(GY).

PRrROOF. Since Ag is finite locally free Og-module, we view a section | €
I'(U, Ag) = Homy (A% |u, Ou) over an open U C S as a Oy-linear map [ : A% |y —
Oy, where A%, = omg(Ag, Og) is the Og-linear dual of Ag. Note that AZ, to-
gether with the well-known Hopf algebra structure, is precisely Agv. The condition
for [ to be in T'(U,M"(G)) is exactly the Leibnitz rule: for any «, 8 € T'(U, Ag+),
the definition of M*(G) can be re-written as

Ha-B) =1((a®B)opc) = (ugl) (a®B) = (@1+101)(a® ) = l(a)-B+ a-l(B),
where the first equality follows from the definition of multiplication -8 = (¢ ® () o
1

Now, we show the claim on ¢ on I*(G). Viewing IM*(G) as a submodule of
Ag, we have ¢(c*l) = I? for any | € IM*(G), where the p-th power takes place
in Ag. This is exactly the linearization of the p-operation of the p-Lie algebra
Zies(GY), because for any « € I'(U, Ag+), we have

P(a) = (I%7)(ud) o) = 1P (),

3We always assume that the rank of a finite locally free module is constant, not just locally
constant.
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where 1(P) := (I®P) o u(c‘fa* is the p-operation as defined in (7.2.2.1). O

It follows from this alternative definition of 9" (G) that the formation of M*(G)
commutes with any base change: i.e., for any T' 7, S we have a natural isomorphism
M (Gr) < f*(PM*(G)). In particular, the Frobenius structure ¢ : o*IM*(G) —
M*(G), which was described earlier using Fg, /s : G4 — G, can also be obtained
from the relative Frobenius map Fg/s : G — 0*G by functoriality.

7.2.4. Now we will “reverse” the construction of 9*(G) from G. Let M be a
finite locally free Og-module (of constant rank) endowed with an Og-linear map
© : o*M — M. From this, we define a finite locally free group scheme G*(9M, ) =
Specg Ay as follows:

Sym 9
(p(c*m) —mP| m € M)’

(7.2.4.1) Agn =

with the comultiplication map p*(m) := m®1+1®@m for any m € 9. From the con-
struction we have a natural yp-compatible isomorphism (90, ) = IM* (G*(M, ¢)),
which is induced from the natural map 97 — Agy. Also, the construction of
G* (M, ) naturally commutes with any base change on S. By using a local Og-
basis of 9 we see that if 9 has Og-rank n then G*(9M, ) is finite locally free
with order p™, and 9 — Agy is a subbundle (i.e., an injection with image locally a
direct factor) with Agp/ I = Og & coker pon where Foy is the augmentation ideal
of .Agm

Moreover, the injective map 9t — Agy has a natural splitting (not just a local
splitting) which identifies 90t as a direct factor of Agy. We define this splitting locally
and show that the local splittings glue to a global splitting. Let us choose a local
basis e1, - - - , e, of M over some open U C S. Then {e}' ---eir} for 0 < i;, -+ i, <
p—1 form a Opy-basis of Ag|y. Let 9Ny denote the submodule of Ag generated by
ezf -o-eln with ig + -+ +1, > 1. Clearly Agn|y = Op & M|y &Ny, and this direct
sum decomposition is independent of the choice of local basis and commutes with
localization in S. So we obtain Agy = Og & M & N by gluing these local splittings.
In particular, we obtain a natural injective map IMM* — (Agn)* = Ag=(om,e)v Where
(-)* denotes the Og-linear dual.

Now, let us show that the Verschiebung for G* (9, ¢) vanishes. We can view
Spec(Sym 9) as a group scheme via the comultiplication map p*(m) := m@1l+1@m
for any m € M = Sym' M. Then G* (M, ¢) C Spec(Sym M) becomes a closed sub-
group scheme. But Spec(Sym M) is, locally on .S, isomorphic to the product of
rankg 9N copies of G, so the claim follows. In particular, G*(9, »)" has vanishing
relative Frobenius map.

In fact, much more is true: any finite locally free group scheme G over S with
vanishing Verschiebung is isomorphic to G*(9M, o) for some locally free Og-module
M and . To prove this, we need (the second part of) the following lemma.

LEMMA 7.2.5 ([SGA, 3, Exp VIIA, Thm7.2]). Let 9 be a finite locally free Og-
module, endowed with a Frobenius structure ¢ : c*9 — M. Put Gon := G* (M, p).
Then Goyn satisfies the following properties:
(1) ForanyT — S, we have a natural group isomorphism Gy (T) = Homrp (M1, Or),
where the p-structure on Op is induced (by p-th power map op : Op —

Or).
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(2) For any finite locally free commutative group scheme G over S, we have
a natural group isomorphism Homyy (G, Gon) = Homyg , (9, M*(G)).

ProOOF. We first give a proof of (2). Let us consider the following isomor-
phisms:

Homg, (G, Gox) = Hompops/os(Am, Ac)
>~ {]€Homg(M, Ag)| p&(l(m)) =1(m) @ 1 + 1@ 1(m), I(m)P = I(p(c*m)),Vm € M}

But the last term is precisely Homg, ., (90, 9*(G)); the first condition for [ means
that [(m) € M*(G) for any m € M, and the second means that [ : M — M*(G)
commutes with the ¢’s since by the proof of Lemma 7.2.3 @op-(g)(c*m’) = (m')P
for any m’ € 9" (G) (where the pth power is taken inside Ag).

The proof of (1) is quite similar but simpler, so we leave the it to readers. O

THEOREM 7.2.6.

(1) [SGA, 3, Exp VI, 7.4] The functors IM*(-) and G*() induce quasi-
inverse anti-equivalences of categories between the category of locally free
Og-modules M of rank n together with an Og-linear map ¢ : c*9I — M
and the category of finite locally free commutative group schemes of order
p" with vanishing Verschiebung (respectively, of order p™).

(2) JM*(+) and G*(-) are “exact” in the sense that they send a short exact
sequence in the source category to a short eract sequence in the target
category.

PROOF. Let G be a finite locally free group scheme over S with vanishing
Verschiebung. To prove (1) we need to prove that 9" (G) is locally free over Og,
and that we have functorial isomorphisms G = G* (9" (G)) and M = M* (G*(M)).
By definition, the Og-rank of 91 is n if and only if and the order of G is p™.
So it remains to show that 9t*(-) and G*(-) are quasi-inverse anti-equivalences of
categories.

For a p-module (M, ») which is locally free of rank n over Og, we put Goy :=
G* (M) = Spec Agy where Agy is the Og-bialgebra defined in (7.2.4.1). Let 9* :=
S omo, (M, Og) be the Og-linear dual of M. We start with the following claim.

CLAIM 7.2.6.1. There exists a natural isomorphism Ay, < Sym(IM*)/{a?| o €
M*) as augmented Og-algebras.

Observe that the natural projection #(g,,)v — f(Gw)v//me)v =~ M* natu-
rally splits, which follows from dualizing the natural splitting of the natural injection
M — Son. The image of M* in A(g,,)v by this natural splitting generates A(g,)v
as an Og-algebra, by Nakayama’s lemma. Furthermore, any a € #(¢,,)v satisfies
aP = 0 since the relative Frobenius map for Ggy is trivial. So we get a surjection
of Og-algebras from the right side onto the left side. Since both terms are locally
free of the same finite rank we have the claim.

From Claim 7.2.6.1, it follows that w(g,,)v = MM as Og-modules 50 W(Gy,)v is
locally free of rank n over Og (since M* is so). Furthermore, MM = IM* (G*(M)) as
Og-submodules of Agy, where ™ (G*(9M)) C Agy is the submodule of elements m
such that pi5. gn)(m) =1@m +m @1 (c.f. the proof of Lemma 7.2.3). In fact,
applying Claim 7.2.6.1, we obtain a natural isomorphism wg,,)v = 9* respecting
the surjections from %, v, and apply the natural isomorphism 9" ((Gon)") =
(WiGm)v)" = Zies((Gom)Y) (Lemma 7.2.3).
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Now, let us compare the p-structures on 9 and MM (G*(9M)). By construction
of Agn, we have pgn(c*m) = mP for any m € 9t where the pth power is taken inside
Apy. This coincides with the p-structure on M* (G*(M)) := H omg;,  (G* (M), Ga)
where the p-structure is induced from the (relative) Frobenius on G,. Therefore
we obtain a natural p-compatible isomorphism 9t = 9" (G*(9M)).

In order to prove the first part of the theorem, we proceed in two steps.

Step 1.: Let G be a finite locally free commutative group scheme with van-
ishing Verschiebung, such that wgv is locally free over Og. We put
M := M (Q) = (wgv)*. Then, there is a natural isomorphism G = Gyy.

Step 2.: If G be a finite locally free commutative group scheme with vanish-
ing Verschiebung, then wgv is locally free over Og.

We carry out Step 1. Since 9 = (wgv)* by Lemma 7.2.3, we have a Og-
linear isomorphism wgv = 9* by double duality. By Lemma 7.2.5(2), we have
Homygy, /S(G,Ggm) = Homg,, (9, M). Therefore, we have a group homomorphism
f + G — Ggn which corresponds to idgy. To show that this is an isomorphism, it
suffices to show that the Cartier dual f¥ : (Gon)¥ — GV is an isomorphism.

The map v /I3, — ﬂ(gm)v/f(%m)v induced by fV is exactly idgy- : I* —
IM* with the identification of the source and the target with 99t* as discussed above.
Therefore by Nakayama’s lemma, Agv — A(q,y,)v induced by fV is surjective. On
the other hand, since the relative Frobenius for GV is trivial by assumption, we have
a surjective map Ay, v = Sym(IM*) /(o = 0] o € M*) — Agv, which forces f
to be an isomorphism on structure sheaves over Og and hence an isomorphism.
Clearly, this construction is functorial, so we complete Step 1.

Now, we carry out Step 2.* We may assume that S = Spec R where R is a
local ring with residue field k. Applying what we have just proved, we obtain an
isomorphism Gy, =2 G* (MM (G)). On the other hand, we have the following natural
isomorphism IM*(Gy) = M*(G) @ k since J*(-) commutes with any base change.

Now consider a p-module (9, ¢’) which is finite free over R, such that there is a
surjective p-compatible map 9 — I (G) which reduces to an isomorphism MM’ Qg
k= 9" (G)®gk. By Lemma 7.2.5(2), the map MM’ — M*(G) corresponds to an S-
group map G — G*(9M', ¢’), which induces an isomorphism Gy — G*(9M', ')k at
the closed fiber. Hence by Nakayama’s lemma, we conclude that G = G* (9, ¢').
This completes Step 2 by the consequence of Claim 7.2.6.1 recorded above, hence
the proof of the first part of the theorem.

For the second part of the theorem, we need to prove that any short exact
sequence (*) : 1 — G1 — G2 — G3 — 1 induces a short exact sequence 9" (%) :
0 — M (G3) — WM (G2) — M (G1) — 0 and conversely. The exactness of (x)
(respectively, 9" (x)) is equivalent to the exactness of fibers at each s € S by the
fiberwise flatness criterion [EGA, IV3, (11.3.11)] Thus, we are immediately reduced
to the case when S = Spec k where k is a field.

Let n; be the k-rank of 9" (G;). Assuming (x) is exact, it is clear from the con-
struction that we have the left exactness of M" (x), since M*(G;) = H omy(way, k) =
Zies(GY). But since Og = k is a field, the equality no = n; + ng forces the exact-
ness of M*(*). The same numerology proves the converse. O

We record the following useful corollary:

4The idea for this argument is sketched in the footnote to the théoréme in [SGA, 3 Exp VIIz
7.4].
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COROLLARY 7.2.7. Let G be a finite locally free commutative group scheme with
trivial Verschiebung. Then naturally wg = coker(pam+(g)) as Os-modules.

PROOF. By the above theorem, we know that G = G* (91" (G)), and we have
an explicit description of the coordinate ring of the right side, namely (7.2.4.1). O

7.3. Effective local shtukas and 7(-divisible groups

Let S be either a scheme over Spec oy or a formal scheme over Spf 0y, and let
ug € I'(S, Og) be the image of 7y under the structure morphism 0g — I'(S, Og).
(An example to keep in mind is S = Specog.) In this subsection, we define a
special kind of ind-representable fppf-sheaves of og-modules (namely, mo-divisible
groups of “finite P-height”), which play the same® role in the equi-characteristic
setting as Barsotti-Tate groups do in the p-adic setting.

DEFINITION 7.3.1. Let G be an fppf-sheaf of 0g-modules over S. We say that
G is a mg-divisible group of finite P-height if the following conditions are satisfied.

(1) G is m§°-torsion; i.e., G =lim G[ng].

(2) G is mo-divisible; i.e., mp : G — G is an epimorphism. Granting (1) and
(2), the mo-divisibility is equivalent to the exactness of

(7.3.1.1)  (Pmn - 1 — G[rf'] — Grg™™ &,
where the first map is the natural inclusion. (For a proof, one can adapt
the argument presented in [Mes72, I, §2].)

(3) G1:= G[mo] is representable by a finite locally free group scheme. (Assum-
ing (2), this is equivalent to requiring that G,, := G[n{}] are representable
for all n > 1.)

(4) The Verschiebung map for G vanishes (or rather, the Verschiebung map
for G,, vanishes for all n > 1).

(5) The action of Fy on wg = lim we, via functoriality of the Os-module
structure on G is given by the “scalar multiplication” via the structure
morphism F, — I'(S, Og).

(6) There exists a constant h € Zsg, such that (mg — ug)" acts trivially on
wag ‘= linn wa,,

We say that G is of P-height < h if (mg — ug)"-wg = 0. A mo-divisible group
of P-height 0 or < 1 is called étale or strict, respectively. One can check that a
mo-divisible group G is étale if and only if all G[r{}] are étale, and is strict if and
only if 7wy acts via scalar multiplication by ug on wg.

Glry] — 1, Vn,m > 1,

The following theorem is the motivation for the above definition. This theorem
can be viewed as an analogue of contravariant Dieudonné theory for my-divisible
groups of finite P-height.

THEOREM 7.3.2. There exist quasi-inverse anti-equivalences of categories @’;0
and G between the category of mo-divisible groups of P-height < h over S and the
category of effective local shtukas of P-height < h over S. The functors M5~ and
G enjoy the following additional properties.

00

5While Barsotti-Tate groups over a p-adic integer ring only give rise to crystalline represen-
tations with Hodge-Tate weights in {0, 1}, mo-divisible groups of finite P-height over ox give rise
to “crystalline representations” of any non-negative “Hodge-Pink” weights.
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(1) The formation of M, —and G,  commute with any base change. More
precisely, for any mo-divisible groups G ;s of P-height < h and any S" — S,
we have a natural isomorphism M, (Gs) = M (G)s; and similarly for
G,

(2) Let (¥) : 0 = G — G — G" — 0 be a sequence of morphisms of m-
divisible groups of P-height < h. Then (x) is exact if and only if M, ()
is exact. A similar statement is true for Qﬁo.

(3) The rank of M (G) is n if and only if the order of G[mo] is of ¢™ (or
equivalently, the order of G[r}] is of ¢"™ for alli).

We prove the theorem later in §7.3.5-§7.3.6. After we prove the theorem,
we will usually suppress the subscript (-),, since 09 will be fixed throughout the
discussion. (In the proof we need to vary the coefficient ring 09, hence we specify
this in the notation.)

Assume that ug is a unit in I'(S, Og). The main example is S = Spec K. Then
it follows that mgp — ug is a unit in I'(S, Og[[mo]]), so all local shtukas over S are
étale. Combining this with Theorem 7.3.2, we obtain the following corollary.

COROLLARY 7.3.3. If ug is a unit in T'(S,Og), then any mo-divisible group of
finite P-height over S is étale.

Now, set S = Specog. Recall that effective local shtukas over oy are exactly
(¢, &)-modules of finite height, where & = o [[[7o]]. For any effective local shtuka
M over o, we shall show that the og-linear G x-representation Tg (9M) is isomor-
phic to the mg-adic “Tate module” of the associated mg-divisible group Q:O (om).
We first define the mg-adic Tate module Ty, (G) where G is a mp-divisible group of
finite P-height over ok, in a similar fashion as one defines the Tate module for a
Barsotti-Tate group:

(7.3.3.1) Ty, (G) = lim G, (K>P),

i

where the transition maps are [mg] : Gp+1 — G,. The following proposition essen-
tially follows from Lemma 7.2.5(1).

PROPOSITION 7.3.4. For each effective local shtuka 9T over o, there exists a
natural og-linear G i -equivariant isomorphism
Tr, (G5, (M) = T (M) = Home (M, 05 ),
where 0 gur = K5P[[mg]] is the mg-adic completion of the strict henselization of
og = Kl[mo]]. In particular, any og-lattice Gk -representation of P-height < h
comes from the mg-adic Tate module of some my-divisible group of P-height < h.

PrOOF. We have the following og-linear G g -equivariant maps, which commute
with the natural inclusions which define the direct system {G,, }n:

G (KP) 2 Homg . o (I (Gn), K5P) < Homg . jro]]. (D (G), £ J0gur)

<: HomoK[[ﬂDH,(p(ﬂ*(Gn): 05“r/(7rg))7

where 09 acts on Hom,, (9" (G,,), K°°P) through 9" (G,,). The first isomorphism
is from Lemma 7.2.5(1) and the second map ¢r is induced by the “trace map” tr :
S aimy tes >, a;. One can construct the inverse of ¢r as follows: for a given
f € Homy, »(MM*(G,,), K5P), define recursively a;(f;m) := f(mf 'm) — f(xym)
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for i = n,---,1, and check that (tr—1f)(m) := 31" | ai(f;m)m; " works. Now by
taking the projective limit, the proposition follows. ([

7.3.5. Proof of Theorem 7.3.2: the case ¢ = p. We first assume ¢ = p, and
we will use this case to handle general g. If ¢ = p, then the og-action on G[n{] is
determined by the action of 7y, and we do not have to worry about the action of
F, =T,.

Let G be an ind-group scheme which satisfies (1), (3) and (4) of Definition
7.3.1. We put G,, := G[n{]. Let us extend the construction of M*(G) to such
ind-group schemes G as follows:

(7.35.1) B (G) = Im " (G

where the transition maps are induced from the natural inclusions G,, — Gp41.
By the universal property of direct limit, we have a natural @-compatible iso-
morphism IN*(G) = omg, (G,G,), where the right side means the sheaf of
F,-linecar homomorphisms of fppf-sheaves. By functoriality, o9 = F,[[mo]] acts
on IM*(G), which makes it into a module over (’)s®ﬂrpoo ~ Ogl[mo]]. We define
o M (G) — M*(G) by taking the limit of ¢, : *IM*(G,,) — M*(G,,), where
o= og®oq : OS@F:» 09 — Os@mp 09. Alternatively, one can directly construct ¢ out
of the absolute Frobenius endomorphism Fg, : G, — G, just as we did in §7.2.1.

Applying I*(-) to the exact sequence (f)m,n for the mp-divisibility (i.e., the
sequence (7.3.1.1) in (2) of Definition 7.3.1) is equivalent to the following exact
sequence of Ogl[mp]]-modules with Frobenius structure ¢:

[75"]

(7.3.5.2) I (1) mn 0— M (Gr) — M (Gnym) = M (G,) — 0

for each m,n > 1, identifying MM*(G,,) with M (Gppm)/ (7). It is a standard
fact that having the exact sequences I (1), » is equivalent to the local freeness of
M*(G) over Og[[mo]], and the Ogl[mo]]-rank of M*(G) is precisely the Og-rank of
M*(G1). (See Proposition 7.4.2, for example.) To summarize, the mo-divisibility of
G is equivalent to the local freeness of MM*(G) over Og|[mo]].

For ind-group schemes G over S satisfying (1)-(4) of Definition 7.3.1, 901" (")
satisfies the following properties. First, 90t*(-) takes an exact sequence of such ind-
group schemes into an exact sequence of (¢, Og[[m]])-modules, since the projective
system {9 (G,,)} satisfies the Mittag-Leffler condition over open affines in S. Sec-
ond, the formation of P1*(-) commutes with the base change in the following sense.
For any map f:7T — S, we have a natural isomorphism

M (Gr) = lim M ((G)r) = lim f* (M (Gr)) = Or[[mo]] @f-104(me) £~ I (G),

where the last isomorphism uses that 91 is locally free of finite rank over Og|[mo]].
Recall that for local shtuka 9t over S and a map f : T — S, we defined in §7.1.4(1)
the pullback as f*0 := Or[[mo]] ® f-104(im) /M-
Now, Corollary 7.2.7 asserts that wg = lim coker(pm+(a,,)) = coker(pam=(q))-
So condition (6) of Definition 7.3.1 is equivalent to requiring that (my — ug)" an-
nihilates coker(pap-(q)); i.e., MM*(G) is an effective local shtuka. Observe that the
condition (5) of Definition 7.3.1 is automatic if ¢ = p. We put ﬂﬁ;p[[ﬂoﬂ = ™.
For any effective local shtuka M1, we define G (r,;;(9) as follows.
(7.3.53) G g () = lim G (/o).

n>1
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where the limit is taken as a fppf-sheaf of F),[[mo]]-modules with respect to transition
maps induced by the natural projections SJT/WSHSDT — M /7M. Observe that
G (M/mgM) — Gy, (mp) (M) 1s an isomorphism onto the g-torsion of the target.
By construction, Gg j,;(?) satisfies the conditions (1), (3), and (4) of Definition
7.3.1. The my-divisibility (i.e., the condition (2) of Definition 7.3.1) is satisfied
because we have the short exact sequence (7.3.5.2) by the Og[[mo]]-local freeness
(of finite rank) for 9, which is in turn equivalent to the short exact sequence
(7.3.1.1). The condition (6) of Definition 7.3.1 is satisfied thanks to Corollary
7.2.7. This shows that G (M) is a mo-divisible group of finite P-height. That
@Z‘O and Q}p[[m” are quasi-inverse and satisfy all the desired properties follows

from Theorem 7.2.6. This completes the proof of Theorem 7.3.2 for the case ¢ = p.

7.3.6. Proof of Theorem 7.3.2: the case ¢ = p". Put ¢ = p". Let 0 : S — S
be the absolute Frobenius and o4 := ¢" the absolute ¢g-Frobenius. Let G be a mg-
divisible group of P-height < h with the action of 0g = Fy[[m]]. We can restrict the
action of 0g to F,[[mo]] to view G as a my-divisible group of P-height < h with the
action of Fp[[mo]], so by the discussion of §7.3.5 we obtain an effective local shtuka
M = M (17, (G) with Fp[[mo]]-coefficients equipped with an action of Fy which
commutes with ¢ and mp-action. So we have the isotypic decomposition

m= P m,,,

i€Z/rT

where y; := ng, and xo : F* — T'(5,O0g)* is obtained by restricting the structure
morphism F;, — T'(S, Og). (The isotypic components for other characters y : F* —
I'(S,0s)* vanish since the F-action on 91 is given by X0|F; 2

The natural p-Frobenius structure @on on 91 restricts to pon; : o*(9M,,) —
M., for each i. So the g-Frobenius map (o) := ((¢"~1)*pan 0 -+ 0 0*an © pan)
oM — M restricts to pg : of(My,) — My,, which gives a g-Frobenius structure
on M,,. We put D, (G) := (My,, ©q)-

Recall that wg = coker(pon), where wg = e’(‘;Qg/S is the co-Lie algebra for G.
So the condition (5) of Definition 7.3.1 implies that pop; : (M) — My,
jective unless i+1 = 0 mod 7, and that coker(pam) = coker [¢q : 05 (My,) — My, ]
This shows that M, (G) is an effective local shtuka with og-coefficients. The ex-
actness and base change assertions of the theorem (i.e., the claims (1) and (2) of
Theorem 7.3.2) follow because the isotypic decomposition behaves well under base
change and exact sequences.

In order to show that 9t; is an anti-equivalence of categories, we need the
following claim.

Cramm A. The map pom; = o*(OM,,) — M
0 mod 7.

is sur-

xiz: 18 bijective unless i +1 =

This claim implies the rank assertion of the theorem (i.e., claim (3) of Theorem
7.3.2). In order to prove Claim A, we can assume S is local. Since we already
showed that @gp ; is a surjective map between finite locally free Og[[mo]]-modules
unless ¢+ 1 = 0 mod r, it is enough to show the source and the target have the same
rank. But this immediately follows because mo — ug is not nilpotent in Og|[mo]] and
apm[miuo] : (o) [min] — E)JI[WOLJO] is an isomorphism, so o ;| is an
isomorphism.

770*7140]
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CLAM B. One can recover M := Mg 1. 11(G) with its Fy-action from M5 (G) =
(M, 0q) functorially and uniquely up to unique isomorphism.

Combining this claim with the theorem for the case ¢ = p, it follows that @:0
is an anti-equivalence of categories.

To prove Claim B, first observe that by Claim A, (¢an)? : (0?)*9 — M induces
an F-equivariant isomorphism

(0i>*m><o = My,
for each 0 < i < 7. Let us put M, := o' (W (G)) and M := @y M. We define
a p-Frobenius structure pon/ : "M — M’ by idoy;, o™ NG =M, — MG, for
i+1#rand @, : 0" M _; = oM, — N, where ¢, is the g-Frobenius structure
on My := M (G). One can directly see that I and M’ are naturally isomorphic
as p-modules. This proves Claim B.

For any effective local shtuka 91, (i.e., a finite locally free Og[[mo]]-module
equipped with a g-Frobenius structure ¢, : o9, — M) let us define Gy (9M,)
as follows. Following the recipe in Claim B, one obtains an effective local shtuka
M with F,[[mo]]-coefficients equipped with an Fg-action which is compatible with
the p-Frobenius structure pgn : 0,9 — 9. Therefore, by functoriality F, acts on
the 7o-divisible group G (i,;j(M) (which a priori comes equipped with Fy[[mo]]-
action). Clearly, the F4-action and mg-action commute, so 0oy = F,[[mo]] acts on
GF, (ro)) (P), and this action satisfies the condition (5) of Definition 7.3.1. In other
words, G (1, (M) is a mo-divisible group of finite height with og-coefficients. We
let G (9M) denote this mo-divisible group. Claims A and B, together with the case
q = p proved in §7.3.5, show that M7 and G} are quasi-inverses and satisfy all
the desired properties. This completes the proof of Theorem 7.3.2. O

7.3.7. Examples of my-divisible groups of finite P-height. At first glance, the
definition of my-divisible groups of finite P-height involves many technical conditions
such as having trivial Verschiebung. But the examples below show that strict mo-
divisible groups (i.e., mp-divisible groups of P-height < 1) occur quite naturally. One
may regard the non-strict ones as a generalization to higher Hodge-Pink weights.

mo-divisible group associated to a Drinfeld module:: let Spec A = C'\ {oo},
where C' is a smooth projective geometrically connected curve over some
finite field of characteristic p. Fix a closed point P € Spec A (also view P
as a maximal ideal of A) and choose a local parameter my at P. Let S be
a scheme over A p, and L/g a Drinfeld A-module®. Then the “m-divisible
group” G := hi>nn L[P"] associated to L is a strict mg-divisible group.

Strict formal F[[m]]-module:: Let S be a og-scheme on which ug (i.e., the
image of 7 in I'(S, Og)) is locally nilpotent (or more generally, a formal
scheme over Spfog). Let G /g be a formal Lie group’, equipped with an
action of 0g. It follows from the Cartier theory that a formal Lie group
which is killed by p always has trivial Verschiebung [Gen96, Ch.I, Prop
2.1.1]. If we further assume that my — ug acts trivially on wg, then G

6For the definition, see Drinfeld’s original article [Dri74] or Deligne-Huseméller [DHS7].
7i.e.7 a formally smooth, ind-infinitesimal group with tangent space finitely generated over
Og. See [Mes72, II, (1.1)].
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is automatically m5°-torsion by the argument similar to [Mes72, Ch.II,
Lemma 4.2] or [Tat67, (2.4) Lemma 0]. So if G is a formal Lie group
with og-action, then G is a strict mp-divisible group if and only if G is
mo-divisible and o0y acts on wg via “scalar multiplication” through the
structure morphism oy — I'(S, Og).

Lubin-Tate formal group:: Now, we define the “Lubin-Tate formal group”
LT g which corresponds to the local shtuka £¢(1) via the anti-equivalence
in Theorem 7.3.2. (See Definition 7.1.5 for the definition of £g(1).) This
computation is also done in Hartl’s dictionary [Har09, §3.4].

Let LT g be (@; > Spfgq Og[[X]] as a formal Lie group, equipped
with mg-action given by [mo]*X = uwoX + X?. Clearly, LT g is a strict
mo-divisible group. Now we compute M (LT) = S omy, (LT ,G,). The
right side is a rank-1 free module over &ndr, (@;) ~ Og{{7}}, where
TE End]}rq((é;) is defined by 7*(X) = X% and 7-a = a4-7 for a € Og.
Also, o acts on M, (LT) via the natural action of (ug +7) € &ndy, (@;),
and ¢ : o} (M7 (LT)) — M (LT) is given by @(oim) = 7m = (mg—ug)m
for any m € 9 (LT). This shows that D, (LT) = L£s(1).

Now we work over S = Spec o and let 0¢(1) := Ty, (L7 ) be the rank-
1 lattice representation of G given by the “Lubin-Tate character”. Then
we have TE (Lo, (1)) = T (LT) =: 00(1) by Proposition 7.3.4, hence the
notation £, (1).

Motivated by the example, we make the following definition:

DEFINITION 7.3.8. We define LT?’L for a non-negative integer h to be the -
divisible group which corresponds to the Tate object £5(h) via the anti-equivalence
in Theorem 7.3.2

For S = Specok, we have Ty (LT®") =2 T& (Lo (h)) = T(Lo,(1))8" =
Tro (LT)®" =2 04(h) by Proposition 7.3.4, hence the notation.

7.3.9. Duality. We now define a duality operation for local shtukas of P-height
< h for any h > 0, or equivalently for my-divisible groups of P-height < h.

DEFINITION 7.3.9.1. For an effective local shtuka 991 of P-height < h, the
Faltings dual of P-height h is the effective local shtuka 9V := 9*(h) of P-height
< h.

For a my-divisible group G of P-height < h, the Fultings dual of P-height < h
is the mp-divisible group GV which corresponds to 9" (G)Y via the anti-equivalence
in Theorem 7.3.2.

One can check that Faltings dual is an exact anti-equivalence of categories
which commutes with any base change and satisfies all the usual axioms for a good
duality theory. The Faltings duality depends on the choice of the P-height bound
h, though we do not specify this in the notation.

7.3.10. Lubin-Tate type m(-divisible group of P-height < h. Note that the
constant étale mp-divisible group Fy/0g and LT®" are each other’s Faltings dual
(of P-height < h). Thus, by working on geometric fibers we get:

LEMMA 7.3.10.1. Let G be a my-divisible group of P-height < h. Then the
following are equivalent.
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(1) The geometric fiber Gs at each geometric point § of S is isomorphic to
(LTEM®™ for some n.
(2) The Faltings dual of P-height < h for G is étale.

We call a my-divisible group G is of Lubin-Tate type of P-height h if G satisfies
the equivalent conditions of the lemma. Lubin-Tate type mo-divisible groups of P-
height h play the same role, in the equal characteristic arithmetic, as Barsotti-Tate
groups of multiplicative type do in the mixed characteristic arithmetic.

7.4. Appendix: Some commutative algebra over an adic ring

In this subsection, we state some standard facts about commutative algebra
over an adic ring, which are used in this appendix (and elsewhere). Readers may
skip this subsection and use this as the “reference sheet” for the standard facts
when they are used.

Let A be an “a-adic ring”, in other words, A = mn A/a™ for some finitely
generated ideal a C A. The example to keep in mind is A = R[[t]] for any ring R
and a = tA.

PROPOSITION 7.4.1. [GD71, Prop 7.2.10]® The functors 9 — {9M/a"}, and
{M,}n — llnn M, are quasi-inverse equivalences of categories between the category
of finitely generated A-modules and the category of projective systems {9, }n>1
where each M, is an A/a™-module, My is a finitely generated A/a-module and

each transition map induces My, 1 ® A/a™ = M,,. Moreover, M is locally free of
finite A-rank if and only if each M/a™ is locally free of finite A/a™-rank.

Now, we specialize to the case when A = R[[t]] endowed with the t-adic topol-
ogy. In this case, we have a simpler criterion for the local freeness over R|[[t]].

PROPOSITION 7.4.2. Let MM be a finitely generated R|[[t]]-module (or more gen-
erally, t-adically separated and complete topological R[[t]]-module). Then I is finite
locally free over R|[t]] if and only if M has no nontrivial t-torsion and M/t is
finite locally free over R = R][t]]/(t).

SKETCH OF THE PROOF. The “only if” direction is obvious, so we sketch the
“if” direction. The t-adic separatedness and completeness assumption implies by
successive approximation? that 9/t"9 is finitely generated over R[[t]]/(t") for
each n, so in turn it implies that 90t is finitely generated over R[[t]].

Since there is no nontrivial ¢-torsion, we have the short exact sequences

0 — M/ L5 /et — /eI — 0,
for each m,n > 1. Then it follows from the local flatness criterion'® that 90t/t"N is
a flat R[[t]]/(t")-module for each n. This implies our claim by Proposition 7.4.1. O

We record the following interesting consequence, which roughly says that any
finite locally free R[[t]]-module can be trivialized by “localizing” R.

8This proposition is also stated in [EGA, I, Prop 7.2.9], except the local freeness assertion.
But local freeness can be read off from [EGA, I, Cor 7.2.10], because locally free modules of finite
rank are exactly finitely generated projective modules.

9or by “Nakayama’s lemma” for nilpotent ideals

10gee, for example, [Mat86, Thm 22.3], especially the equivalence of (1) and (4’). Since the
ideal (¢t) C R[[t]]/(t™) is nilpotent, we can apply the local flatness criterion without requiring R
be noetherian.
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COROLLARY 7.4.3. Let 9 be finite locally free over R|[[t]]. Then there exists a
(finite) Zariski-open covering {R[1/f]} of R such that M (R[1/f])[[t] s free over
(R[1/ D[] for each f.

PRrROOF. Take an open covering {R[1/f]} which trivializes 9t/t90t. This cov-
ering works, by successive approximation and the proof of the previous proposi-
tion. ([

The following statement and the proof are taken from [Gen96, Lemma 2.2.8].

LEMMA 7.4.4. Let M be a locally free R][t]]-module of rank r. Let M’ C 9N be
an R[[t]]-submodule which satisfies the following properties:
(1) There exists an integer N such that tN9T C 9 C M.
(2) The quotient M /M’ is locally free over R.
Then MM is finite locally free as an R[[t]]-module.

PRrOOF. Note that I /tNOM = ker[M/tNM — M/IM'] where M/tVM —
IM/M' is a surjection between finite locally free R-modules, so 9 /tVIN is finite lo-
cally free as an R-module. Hence 9 is R[[¢]]-finite since Mt is. Thus by Proposition
7.4.2, to show that 9 is finite locally free over R|[[t]] it is necessary and sufficient
to show that 9 has no nontrivial ¢-torsion and that 9 /t9 is locally free as an
R-module. But being a submodule of 90t, MM’ is torsionfree, so it remains to show
the local freeness of 9 /t90.

For any integer n > N, we have the following short exact sequence.

(%) 0 — M /t"IM — M/t"M — M/M — 0

Since M /M’ is locally free (so projective) over R, this exact sequence is split and
R’ ®g (*) remains exact for any R-algebra R’. In particular, 9 /t"9 is finite
locally free over R for any n > N.

Now, we have the following short exact sequence.

(xx) 0 — /N L oo’ /eN I — o /e — 0

The exactness follows from the injectivity of 9t/tN 9 5 M/t and the ex-
actness of (). Similarly, R’ Qg (*x) remains exact for any R-algebra R’, using
the exactness of R’ ®p (%) . This implies, by standard facts about flatness'!, that
MM/t is flat over R. It is clear from the exact sequence (xx) that 9 /t9N is
finitely presented over R. O

The following lemma is a “partial converse” to the previous lemma.

LEMMA 7.4.5. Let M and M’ be locally free R][[t]]-modules of the same finite
constant rank. Assume that we have R|[[t]]-linear map f : I — M such that the
image of f contains tN9M for some integer N. Then coker(f) is locally free over R.

PRrOOF. Note first that f is necessarily injective, since f[%] is surjective and
hence an isomorphism. Similarly, for any ideal I C R, the reduction (f mod I) :
M /IM — M/IM is injective.

Now, consider the following short exact sequence.

(1) OHE)JT'LSDTHCOker(f)HO

Hgee, for example, [Bou89, Ch.I §2.5 Prop 4].
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The R-flatness of coker(f) follows because (1) mod tV is short exact and for any
ideal I C R containing ¢, the right exact sequence (1) mod I is left exact. (Recall
that any R’-module M’ is flat provided Tor?/(I ,M’) =0 for all ideals I of R.) Fur-
thermore, coker(f) is finitely presented over R, thanks to the right exact sequence
(1) mod (V). O






Part 2

Torsion Galois Representations



In Part II, we introduce certain Frobenius modules which give rise to torsion
G ik -representations, and we prove various properties that will be needed later in
the study of deformations.



CHAPTER 8

Torsion G i-representations of P-height < A

In this section, we introduce “torsion (¢, &)-modules” of P-height < h, which
play a central role for the rest of this work. For the purpose of studying defor-
mation theory in §11, it is useful to consider torsion (¢, &)-modules with various
“coeflicients,” which will be made precise and studied in §8.2.

8.1. Torsion p-modules and torsion G i-representation of P-height < h

We begin with defining a torsion (¢, &)-module of finite P-height. One can
immediately verify that a (@, &)-module obtained as a cokernel of an isogeny in
Modg () satisfies the following definition. (In fact, we will also prove its converse
in Proposition 8.1.4.)

DEFINITION 8.1.1. A (¢, &)-module 9 is called a torsion (p, &)-module of

finite P-height if the following conditions are satisfied.

(1) There exists an integer N such that Y9t = 0.

(2) As a G-module, M is of projective dimension < 1.

(3) There exists an integer h > 0 such that P(u)"-coker(pgy) = 0.
We say that such 9 is of P-height < h if P(u)"-coker(pgn) = 0. We let (Mod /&)
denote the category of torsion ¢-modules over & of finite P-height, and (Mod /&)S"
the full subcategory of (Mod /&) whose objects are of P-height < h. We let
(ModFI/6) denote the full subcategory of (Mod /&) whose objects are isomor-
phic to @,(6/7('&) as S-modules’, and (ModFI /&)<" the full subcategory of
(ModF1 /&) whose objects are of P-height < h.

In the case 09 = Z,, basic properties of torsion (¢, &)-module of P-height < 1
are studied in [Kis09b, §1.1], and this is easily adapted to the equi-characteristic
case, as we now show.

In Definition 8.1.1, the condition on the projective dimension can be “simpli-
fied” as follows.

PROPOSITION 8.1.2. Let MM be a finitely generated G-module such that ' M =
0 for some N. Then the following are equivalent.

(1) As a &-module, M is of projective dimension < 1. (So we allow M =
0.)

(2) There exists one element o € mg \ m9-S such that M has no nonzero
a-torsion.

(8) For any element a € mg \ mo- &, M has no nonzero a-torsion. In
particular, MM has no nonzero u-torsion and P(u)-torsion.

IThe notation (ModFI /&) stands for “Modules & Facteurs Invariants.”

113
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For the case 09 = F[[mo]] (so & = ox[[mo]]), M is of projective dimension < 1 as
a &-module if and only if M is finite free over ok .

PRrROOF. The last claim for the case 09 = F,[[mo]] follows from the equivalence
between (1) and (3) (using o = w). The implication (3)=-(2) is trivial, and the
equivalence (2)<(1) is just the theorem of Auslander-Buchsbaum [Mat86, Thm
19.1]. In order to show (1)=(3), assume that 9t has nonzero a-torsion for some
a € mg \ mp-G. Then there exists an element z € 9t whose annihilator is exactly
mg, since (mp, @)& is an mg-primary ideal. Then we have a short exact sequence

0——=6/mg %Em%m/(x)ﬁo

Since the projective dimension of & /mg is exactly 2 and the projective dimension of
M/ (z) is at most 2 (by the homological criterion of regularity and the fact that & is
a regular local ring of dimension 2), we conclude that 91 is of projective dimension
2. O

Next, we show that any 9t € (Mod /&)S" can be written as a cokernel of some
isogeny f: My — My in Mods(¢)S". We first need the following lemma.

LEMMA 8.1.3. For M € (Mod /&), the Frobenius structure ¢ : o*90 — M is
injective.

PROOF. By Proposition 8.1.2, the natural map MM — M[L] = op ®g M is
injective. Now apply Lemma 2.2.3.1 for R = & and R’ = og, keeping in mind that
0e ®g M is an étale p-module. [l

PROPOSITION 8.1.4. For M € (Mod /&)S", there exist My, My € Mod g (¢)S"
and an isogeny [ : My — My, such that M = coker(f) as a @-module.

SKETCH OF PROOF. In the case 09 = Z,, this proposition is exactly [Kis06,
Proposition 2.3.4] which can be adapted to the case 0g = Fy[[mo]]. We sketch the
proof.

It is enough to find My € Modg(p) and a surjective map My — M of -
modules. In fact, the kernel 9%, of this map is automatically free over & since the
projective dimension of 90 is < 1, and we have P(u)"-coker(¢m,) = 0 thanks to
the injectivity of pgn and the snake lemma. The construction of 9y is identical to
the one given in the proof of [Kis06, Prop 2.3.4]. O

8.1.5. From now on, we write (ModFI /og)® to denote torsion étale p-modules
over 0¢, which used to be denoted as M‘é g’tor(go). From §5.1, we have quasi-inverse
anti-equivalences of categories Di and T between (ModFI /og)® and Repy (G ).

Since the scalar extension 0g ®g (+) induces a functor (Mod /&) — (ModFI /og )¢,
we can define a functor T§ : (Mod /&) — Repy (Gk) by Ts(M) = Ti(0s ®s
M) = Home,, (M, E™ /ogur) for M € (Mod /G). Note also that M — 0g ®s M =
OM[1] is injective by Proposition 8.1.4(3). The functor Tg(-) may not be fully
faithful on torsion objects.

To define T§ for M € (Mod /&)S", we can use a “smaller” ring than £ /ogur
with “integral” structure. We first introduce more rings:

G&"  the integral closure of & inside ogur .

&Y the closure of G C ogur under the mg-adic topology.
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The endomorphism o : 0gur — 0gur restricts to flat endomorphisms of & and
&Y. The Galois group Gk acts by isometries (with respect to the mg-adic norm)
and commute with o.

LEMMA 8.1.6. For M € (Mod /&), the natural map
Homg (9, 6" [1/m] /&™) — Home o, (M, EY Jogur) =: T5 (M),

which is induced by the natural inclusion of the second argument, is an G i -isomorphism.
For 9 € Modg (), the natural map

Home (9, &) < Home o (9M, 0gur ) =: T (M),
which is induced by the natural inclusion of the second argument, is a G i -isomorphism.

PrOOF. The statement for 9 € Modg(p) follows from the statement for
M /oM, thanks to Lemma 5.1.9. Therefore it is enough to prove the lemma for
M € (Mod /6). If o := Z,, then this follows from [Fon90, §B. Propositions 1.8.3].
We give a proof when o9 = F,[[mo]], 50 05w = K5P[[70]] and & 2 0 geen[[m]].

For any f € Homg ,(9M,E™ /ogur), the image f(M) is finitely generated over
G and is stable under o : E"/ogw — E" /ogur. Now, consider an element « :=
Yo anro_i € &Y /ogur where a; € K*P. If not all of a; are in of=ep, then the
S-span of {07(a)};>0 cannot be finitely generated over &. Therefore, in order to
have o € f(9M), all a; must lie in 0gsep. This shows that « € 6‘”[;10]/6‘”. O

Now we can make the following definition:

DEFINITION 8.1.7. Let M € (ModFI /og)®. By a G-lattice of P-height < h
in M we mean a ¢-stable G-submodule 9 C M such that M € (Mod /&)< and
0 Qs M = M.

We say that T' € Repyo' (G k) is of P-height < h if there exists M € (Mod /&)<"
of P-height < h such that T = Tg (M), or equivalently, if Di(T) admits a &-
lattice of P-height < h. We say that T € Repg(;r(g;() is of finite P-height if for

some 7, h € Z, the Tate twist T(r) is of P-height < h. We let Rept®™” (G ) and

0o
Repﬁ?}r’Ql(g k) denote the categories of torsion representations of finite P-height

and of P-height < h, respectively.

By Proposition 8.1.4, a torsion G k-representation 7' is of finite P-height if and
only if T is isomorphic to the cokernel of some isogeny 17 — T of 0p-lattice G k-
representations of finite P-height, and T is of P-height < h if and only if one can
find such Ty and T7 which are of P-height < h.

Unlike the case of free étale p-modules (c.f. Theorem 5.2.3), G-lattices of P-
height < h in M € (ModFI /og)® do not have to be unique. See §9.3 for more
discussion. We will see later that if for T' € Repgr:e(g;(), T/m{T is of P-height < h
for all n > 1, then D*(T) has a (necessarily unique) G-lattice of P-height < h, so T'
is of P-height < h in the sense of Definition 5.2.8. (The converse is trivial.) This is
not entirely trivial since the G-lattice in Definition 8.1.7 (applied to D*(T'/73T))
is not unique, and this is proved in Proposition 9.2.6.

Consider M € (ModFTI /og)¢. In order for a p-stable G-submodule 9t ¢ M
to be a G-lattice of P-height < h, 9 has to be of projective dimension < 1 as
a &-module, in addition to the condition P(u)" coker(p|m) = 0. But in fact, the
projective dimension condition is satisfied thanks to Proposition 8.1.2; because 90t
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is a submodule of M which has no nontrivial u-torsion (so the same is true for 901).
So we obtain the following lemma.

LEMMA 8.1.8. Let M be a finitely generated torsion og-module and M C M

be a finitely generated G-submodule. Then M is of projective dimension < 1 as a
S-module.

REMARK 8.1.9. A striking result is that once we formulate a deformation prob-
lem for G i-representations of P-height < h, the tangent space of the deformation
functor is finite-dimensional if k is finite. This allows us to prove the existence of
the universal deformation ring for G k-representations of P-height < h (Theorem
11.1.2), similar to the classical theorem by Mazur for absolute Galois groups for a
finite extension of Q or Q, [Maz89, Maz97]. Note that without the P-height < h
condition, the deformation functor has an infinite-dimensional tangent space even
when k is finite, so there is no (complete noetherian) universal deformation ring.
See §11.7.1.

Let 09 = Fy[[mo]]. We saw in §7.3 that there exists a “Dieudonné-type” anti-
equivalence of categories between Modg () and certain kinds of my-divisible groups
over ox. Under this anti-equivalence, the functor T'g was interpreted as associating
the “Tate module”. (See Theorem 7.3.2 and Proposition 7.3.4.) For this reason, the
representations of finite P-height can be viewed as an equi-characteristic analogue
of crystalline representation.

We digress to study the case of P-heights < 0.

tor

PROPOSITION 8.1.10. Any T' € Rep,, (Gx) is unramified if and only if there
exists a wi°-torsion étale (¢, &)-module M of projective dimension < 1 such that
T =T&(M) as G -representations. In particular, any unramified og-torsion G -
representation is of P-height < h for any h > 0.

PRrROOF. We first show that for any n§°-torsion étale (¢, &)-module M, T (9N)
is unramified. Choose a “minimal” finite free &-module 9y equipped with an &-
linear surjection My — 9N (i.e., the surjection induces a k-isomorphism My /me My —
M/magM). Since M is of projective dimension < 1, My := ker[My — M] is also
finite free over &. Choose any lift ¢y : 0™y — My of ¢ : ™I — M, and by
Nakayama’s lemma g is an isomorphism. This makes 21; into an étale (p, &)-
module. By Lemma 5.1.9 we have Tg(9M) = Ts (M) /Ts(Mo), and the right side
is unramified by Proposition 5.2.10.

Now, assume that 7' € Repy”' (Gx) is unramified and we seek an étale &-
lattice in the étale p-module Dg(T) := Homg, g, (T, E" /ogur). The idea of the
proof is similar to the case when T is an unramified og-lattice G g -representation
(Proposition 5.2.10). Since Ik acts trivially on T, any 0g[Gx]-map ! : T — E" /ogur
factors through (€% /ogur )% =2 0g @y (Frac Wsh /Wsh), where W*" denotes the
strict henselization of W. (Recall that W = W(k) if o9 = Z,, and W = k[[m]] if
0o = Fy[[m0]].) So we have a natural isomorphism of ¢-modules:

(8.1.10.1) Dg(T) = og @w U (T),

where U*(T) := Hom,, g | (T, Frac W*" /W*") equipped with the @-structure in-
duced from the natural Frobenius endomorphism o : Frac W*" /Wsh — Frac Wsh /W sh 2

2The Frobenius endomorphism o : Frac Wk jWsh — Frac Wk /WS can be obtained by
restricting o : £/0gur — £/o0gur. Equivalently, one can obtain o from the universal property of
strict henselization.
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Since o¢ is faithfully flat over W, we can deduce from (8.1.10.1) that U*(T) is
(finitely generated over W and) a wi°-torsion étale (p,W)-module. So M :=
S @w U*(T) is a wi°-torsion étale (¢, &)-module, and we have T = Tg(9M) by
construction. 0

We record the following corollary of the proof, which will be used later in
the proof of Proposition 11.4.2. Let us define an 0¢[Gx/Ix]-module Ty, (U) :=
(Wsh @uw U)?=1 and T3, (U) := Homy,, (U, Frac W*" /W*h) for any finite torsion
étale (p, W)-module U; and (p, W)-modules U(T) := (W*" @y, T)9% and U*(T) :=
Hom,,(g . /1) (T, Frac W*" /W*") for any unramified m§°-torsion G x-representation

COROLLARY 8.1.11. The assignments Ty, and U define quasi-inverse length-
preserving exact equivalences of categories between Repg‘;r(gK/IK) and the category
of finite torsion étale (p, W)-modules which respects ®-products, internal homs,
and duality. Furthermore, we have a natural isomorphism Dg(T) = 0. @w U(T)
of étale (p,0¢)-modules for any T € Repf,‘(’)r(gK/IK) and a natural G i -equivariant

isomorphism Ty, (U*) =2 Ts(6 @w U) for any finite torsion étale (v, W)-module
U, where U* := Homw (U, # o /W) is the dual torsion étale (o, W)-module.

8.1.12. We now show that the notion of P-height < h for og-torsion Gx-
representations is insensitive to unramified extension of K (i.e., it only depends
on the action of Ix). We first set up some notations. Let K o k5P ((u)) denote
the completed maximal unramified extention of K. For any complete “unramified”
extension K’ := k'((u)) of K (with k" perfect if o9 = 7Z,), we let &g and og,,
denote rings defined in a similar way to & and og with K and k replaced with K’
and k. We also define endomorphisms o : &g — & and 0 : 0g,, — 0g,., in a
similar way we defined o on & and og. So (8g,0) and (og,.,,0) become o-rings
over (6,0).

In the case 09 = F,[[mo]], we do not necessarily assume that K’ has a finite p-
basis, since we want to allow K’ = K" and this does not have a finite p-basis unless
k is perfect. Note that the theory of étale g-modules (as discussed in §5.1 does not
use the assumption of having a finite p-basis, and the definitions of (Mod /& r/)S"
and I*GK/ make sense as defined without assuming that K’ has a finite p-basis. We
say a 0g-torsion representation T of Ix = G~ _is of P-height < h if there exists

Kur

M- € (Mod /&, )S" such that T = T* (Ms,,) as G

Kur 1 s pur Kur-representatlons.

ProOPOSITION 8.1.13. An og-torsion G g -representation T is of P-height < h
in the sense of Definition 8.1.7 if and only if its restriction to Ik is of P-height
< h in the above sense.

ProOOF. The “only if” direction is trivial; if ' = T'g (9M) as G x-representations
for some 9t € (Mod /&)S", then we have a natural isomorphism 7' = T (64.®s
M) as Ir-representations and clearly &, ®e 9 € (Mod ISP

To show the “if” direction, we assume that T € Rep

to T M~
— ;{\ur ( Kur

M := D¢(T) denote the étale (p,o0g)-module corresponding to T, and we have
a natural isomorphism (wtf(m)[%] > 0g. ®,, M of étale p-modules. Let M :=
Kur

oF(Gk) is isomorphic

) as an Ig-representation for some M=, € (Mod /&, )S". Let
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Kur7
submodule of M = zm[%] and has no non-zero infinitely u-divisible element, 90 is
finitely generated over &. Clearly, we have M[1] = M and M € (Mod /&)S". O

M N 9=, where the intersection is taken inside og. ®,, M. Since M is a &-
ur

The following theorem serves as a motivation for introducing torsion p-modules
and G g-representations of finite P-height.

THEOREM 8.1.14 (Kisin [Kis06]). Let o9 = Z,, and follows the notations as
introduced in §1.3.1.2.

(1) Let T be a torsion G -representation which can be obtained as a cokernel
of an isogeny of Galois-stable lattices in semi-stable representations with
Hodge-Tate weights in [0,h]. Then T as a representation of G »_ = Gk
is of P-height < h.

(2) (Breuil-Kisin classification of finite flat group schemes) If p > 2, then
there exists an anti-equivalence of categories G* from (Mod /&)S! to the
category of finite flat group schemes of p-power order over 0 . Further-
more, for M € (Mod /&)St we have a Gy -equivariant isomorphism
G™(M)(A) = Ts(M).

(3) [Bre02, Theorem 3.4.3] Ifp > 2, then “restricting the Gy -action to G 7
defines an equivalence of categories from the category of finite flat G -
representations (i.e., torsion G -representations which are obtained from
the generic fibers of finite flat group schemes over 0 ) to the category of
torsion G _ -representations of P-height < 1.

PRrROOF. The claim (1) follows from Proposition 8.1.4 and the fact that any Ga-
lois stable lattice in a semi-stable representation with Hodge-Tate weights in [0, h]
is automatically of P-height < h as a representation of G »_ = Gk (Proposition
2.4.9 and Theorem 2.4.10).

The claim (2) follows from Proposition 8.1.4, Kisin’s classification of Barsotti-
Tate group (Theorem 2.4.11(1)), and Raynaud’s theorem [BBM82, Theorem 3.1.1]
which asserts that any finite flat group scheme over 0 5 can be written as the kernel
of an isogeny of Barsotti-Tate groups over o .

The essential surjectivity of the claim (3) follows from the second statement
of the theorem. We sketch the proof of the full faithfulness, which can be found
in [Bre02, Theorem 3.4.3]. Let Ty,T% be finite flat G -representations and let
f 11 — 15 be a G x_ -equivariant map. Taking the anti-equivalence of categories
D%, we obtain a map v : My — M; of torsion étale p-modules, and we can find
some G-lattices of P-height < 1, say 9; C M;, such that v takes My into ;.
(Compare with §9.2.3.) By the claim (2) of the theorem, 7 corresponds to a map
of finite flat group scheme models for 77 and T5, so f is G y-equivariant. (|

Theorem 8.1.14(2) was originally conjectured by Breuil in [Bre98] for all primes
p including p = 2, and he proved the special case when p > 2 and the finite flat
group schemes killed by p. The case p > 2 (i.e., Theorem 8.1.14(2)) was proved by
Kisin [Kis06, (2.3)]. For p = 2, Kisin [Kis09a] proved the classification of connected
finite flat group schemes using his classification of connected Barsotti-Tate groups.
(Under the contravariant correspondences, the connectedness of finite flat group
schemes corresponds to the condition that pgy is “topologically nilpotent.”)

REMARK 8.1.15. For the case og = Z,, one can think of (Mod /&)S" as a
“higher-weight analogue” of finite flat group schemes. Torsion étale ¢-modules can
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be thought of as an “analogue” of the generic fibers, and G-lattices of P-height
< h plays a role analogous to finite flat group scheme models or prolongations of
a generic fiber. This point of view is supported by the Breuil-Kisin classification
of finite flat group schemes for the case h = 1. On the other hand, torsion (p, &)-
modules of finite P-height only give rise to G »__ -representations, and for A > 1
it seems to be hard to handle the gap between torsion semi-stable (or crystalline)
G v-representations and their restrictions to G » __ .

8.1.16. -nilpotent objects. A torsion p-module M € (Mod /&)S" is called -
nilpotent if " (o*M) C mg-M for all sufficiently large r, or equivalently, if for any
x € M the sequence " (c*"x) converges to 0 for the mg-adic topology as r — oo.
Note that this is the same as the u-adic topology on 9.

The notion of y-nilpotentness for such 9t is “well-behaved” under subobjects,
quotients, extensions, direct sums and tensor products. More precisely, for a short
exact sequence 0 — MM’ — M — M — 0 of torsion p-modules, if two of them are
-nilpotent then so is the third. If torsion ¢-modules 9 and M’ are p-nilpotent,
then so are their tensor product M Qg M’ and direct sum I @ M.

8.1.17. Analogue of connected-étale sequence. For 9t € (Mod /&)S" we define
the maximal étale submodule M C M as follows:

o0
(8.1.17.1) M = () " (0" M).

r=1
By the theorem of Auslander-Buchsbaum, ¢ is of projective dimension < 1 as a
G-module; we have seen that 99 has no non-trivial u-torsion, so the same is true
for M (using Lemma 8.1.3). Therefore, M € (Mod /&)S". Clearly, M is an
étale p-module which contains all étale submodules of 9, and any ¢-compatible
map f: 9 — N in (Mod /&)S" takes ME into N.

We now show that the quotient 90t/9 also lies in (Mod /&)S". Then we can
say that D/9M is a maximal g-nilpotent quotient of M. The issue is to show
that sm/imét is of projective dimension < 1 as a G-module. By the theorem of
Auslander-Buchsbaum, it is enough to show that 9t/9t* has no nonzero u-torsion.

Since ¢ : o*M — M is an isomorphism, we obtain a surjective map @ :
o (9N JuIME) — IME /udM® between modules of the same finite length, hence @
is an isomorphism. In particular, x € u-9M¢ if and only if ¢"(c*"z) € u-IME.

Now, let y € MM be such that uy € M. Since the sequence ¢ (o*" (uy))
converges to 0 in M as r — oo, the same is true in M by the Artin-Rees lemma.
So there exists an r such that " (0*"(uy)) is a u-multiple of some element in 97,
hence y € ME. This shows that /M € (Mod /&)S".

Let us summarize what we have proved:

PROPOSITION 8.1.18. For any M € (Mod /&)S", we have a short evact se-
quence in (Mod /&)Sh

(8.1.18.1) 0 — M — M — M/M* — 0,

where MM is mazimal among étale submodules of M, and IM/M is mazimal
among p-nilpotent quotients of M. The sequence (8.1.18.1) is functorial in M in
the sense that any map f : MM — N in (Mod /&)S" takes M into M (hence
induces MM — N/N ). We call this evact sequence connected-étale sequence

for 9.
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We record the following facts.

(1) Clearly, 9 € (Mod /&)S" is étale if and only if M = M, and M is
@-nilpotent if and only if ¢ = 0.

(2) If 0g = Fy[[mo]], then the connected-étale sequence for 9 exactly corre-
sponds to the connected-étale sequence for G* ().

(3) If 09 = Z,, and h = 1, then we have the anti-equivalence of categories G*
from (Mod /&)S! to the category of finite flat group schemes of p-power
order over o , by the Breuil-Kisin classification (Theorem 8.1.14(2)). Un-
der this correspondence, M € (Mod /&)S! is étale if and only if G*(IN)
is étale, and 9 is -nilpotent if and only if G*(9M) is connected. Further-
more, for any M € (Mod /&)S!, one obtains the connected-étale sequence
for G*(9M) by applying G* to the connected-étale sequence for M (which
justifies the name).

8.2. p-modules with coefficients

For an og-algebra A, we introduce a class of p-modules “with A-coefficients,”
which will play an important role in deformation theory in §11. Whenever possible
we avoid restricting our choice of A to complete local noetherian 0gp-algebras, since
they actually occur in the arguments.

8.2.1. Let A be a continuous a-adic 0g-algebra (i.e., a C A contains some power
of mp and A = lim A/a"). Two main examples which arise later are discrete 0o-
algebras where g is nilpotent and complete noetherian local og-algebras (in which
case a = my). We often do not specify a if there is no risk of confusion.

Let (A, a) be as above. For any op-algebra R, we set R4 :=lim (A/a" @, R).
If A is a discrete og-algebra where 7y is nilpotent, then Ry = A ®,, R. If A is
a complete noetherian local og-algebra, then R4 = lim (A/m’ ®o, R). For any
o-ring (R,oR) over (0g,id), we A-linearly extend og to R4. In particular, if op
is finite flat, then so is op,. This is the case when R = & and R = og. (In the
case 0g = IFy[[mo]] we use the assumption that the residue field & of ox has a finite
p-basis.)

We let (ModFI /G)ih denote the category of p-modules of P-height < h which
are finite locally free® over & 4. Similarly, we let (ModFI /og)é denote the cat-
egory of étale p-modules which are finite locally free over og 4. If A = 0y then
(ModFI /&) is just Mod s (¢)S" and (ModFI Jog)St is just Mii’ﬁee(gp), because
G,y = 6 and o0g 4, = 0g. If #(A) < oo (ie., if A is a finite artinian og-algebra),
then an object of (ModFI /G)jh can be regarded, by forgetting A-action, as an
object of (ModFI /&)S". But coefficient rings A that are not artinian do appear in
the later arguments (see §11.1.5).

Let (A,a) and (B,b) be continuous adic ogp-algebras. Consider a continuous
oo-map A — B. Then, for M4 € (ModFI /6)§h, the “completed” scalar extension
BN = @n (B/b" @4 9M4) = 65 ®s, M4, together with the Frobenius
structure defined by B-linearly extending ygn ,, is an object of (ModFI / G)Eh. This
defines the “change-of-coefficients” functors (ModFT / G)f‘h — (ModFT/ G)Eh , and
similarly one can define (ModFI /og)% — (ModFI /og)%.

3A locally free module is always assumed to be of constant rank.
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The following result can be obtained from Proposition 7.4.2: for a continuous a-
adic op-algebra A, the functors My — {A/a" @M}, and {IM,,},, — h;nn IM,, are

quasi-inverse equivalences of categories between (ModFI / G)flh and the category of

projective systems {9, }, such that 9, € (ModFI /G)i?an and A/a"™ ®4/qnt1

M, 1 — M, for each n. We often apply this result when (A4,a) = (4,m4) is a
complete noetherian local o0g-algebra.

The scalar extension 0 ®a(-) = 0g, 4®e , (+) induces the functor (ModFI /G)Eh —
(ModFT /og)é. We can immediately see that for any M4 € (ModFI /6)§h, the
Frobenius map @on , is injective, since we have a ¢-compatible injective map M4 —
0g @ Ma.

DEFINITION 8.2.2. Let A be a continuous a-adic 0g-algebra, and consider M €
(ModF1 /og)%. By a & a-lattice of P-height < h in M, we mean a p-stable & 4-
submodule 9t C M such that 9 € (ModFI /G)Eh and og ®c M =M.

Beware that for A = F,[e]/(e?) there is an example of M4 € (ModFI /og)%
which does not admit any & 4-lattice of P-height < h, whereas there exists a &-
lattice of P-height < h in M4 viewed as a torsion étale ¢-module in the sense of
Definition 8.1.7. See Remark 11.1.7 for the example.

PROPOSITION 8.2.3. Let A be a continuous a-adic 0g-algebra. For any Ma €
(ModFI /G)flh, the cokernel of pam, is a flat A-module. If the residue field k =
ox /(u) is finite then coker(pm,) = Ma/o(c*M4) and p(c*Ma)/P(u)" M are

finite projective A-modules.

PrOOF. We showed that pop , is injective for any coefficient ring A. Therefore,
the exact sequence

0— 0" My 24 My — coker(oom,) — 0
stays short exact after applying A/ ®4 (-) for any ideal I C A. Hence, the first
claim follows from standard facts about flatness (e.g. by [Bou89, Ch.I §2.5 Prop
4], or by an argument using Tor{.) If k = ox /(u) is finite then & 4/P(u)" is finite
free over A, so coker(pgn , ) is finite and projective over A, and hence the following
short exact sequence of A-modules splits.

0— gp(a*ﬁﬁA)/’P(u)hSﬁA — SJTA/P(u)himA — coker(pgm ,) — 0.
O

8.2.4. Etale p-modules with A-coefficients and A[G r]-modules. Assume #(A) <
co. For Ta € Repi*®(Gx) (which can be viewed as a torsion G g-representation
by forgetting the A-action), we let D¢ 4(Ta) denote Dg(Ta) viewed as an étale
(¢, 0¢._4)-module. Similarly, for M4 € (ModFI /og)% (which can be viewed as a tor-
sion étale (¢, 0g)-module by forgetting the A-action), we write Tz 4(Ma) to denote
T¢(My) viewed as an A[G k]-module. From the definition it is clear that D¢ 4 and
T¢ 4 are exact and commute with ®@-products, internal homs, and duality. (Note
that for M4 € (ModFI /og)%, we have a natural isomorphism Hom,, , (M, 0g,4) =
Hom,, (My4,E/og) of étale (¢, 0g a)-modules, where the og a-module of the right
side is induced from M. A similar statement holds for Ty € Rep™®®(Gx).) Fur-
thermore, one can directly check that D¢ 4 and T¢ 4 commutes with “change of
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coefficients” for any finite A-algebra B; i.e., for T4 € Rep'i®®(G ), we have a natural
isomorphism Dg 4(T4) ®a B = D¢ (T4 ®4 B), and similarly for Te p-

We now show that D¢ 4 and Ié7 4 are quasi-inverse equivalence of categories
between Rep’i*®(Gx) and (ModFT /og)é. The only non-trivial part is to show that
D¢ 4(T4) is free over og 4 for Ty € Repi*®(Gx), and Te o(Ma) is free over A
for My € (ModFI /og)%. We will only prove og a-freeness for Dg 4(T4), and A-
freeness of T'¢ 4 (Ma) can be proved by essentially the same argument. It is enough
to handle the case when A is local (with #(A) < o). By applying the local flatness
criterion to the free A-module T4, one obtains an G g-equivariant isomorphism
gr* A ®a/m, (Ta/maTa) = gr* T4, where we give my-adic filtrations on A and
T4. By applying D¢ to this isomorphism, we obtain the similar isomorphism for
D¢ (Ta) with m0¢ a-adic filtration. Since og 4/m, is a product of fields, the local
flatness criterion gives the og _4-flatness of Q&A(TA).

We define the contravariant version of functors by composing with suitable dual-
ity; more precisely, D¢ 4(—) := Hom,g,)(—, 0eu) and Tg 4(—) = Hom,, , o(—,0gur).
Clearly, D¢ 4 and Tz 4 are exact quasi-inverse anti-equivalence of categories be-
tween Rep5(Gr) and (ModFT /og)é, which commutes with @-products, internal
homs, duality, and “change of coefficients” for any finite A-algebra B. (Note that
duality commutes with “change of coefficients.”)

Let A be a complete local noetherian op-algebra with finite residue field (so
that #(A/m") < oo for each n). Using that Dg¢ ajmn and Tg 4 /qn commute with
“change of coefficients” for finite morphism, we define D¢ 4(T4) := lim | D¢ ajmn (Ta®a
Ajm%) and Te 4(Ma) :=lim T g/mn (Ma @4 A/m7) for Ta € Repi*(Gx) and
M, € (ModFI /og)é, where the transition maps are induced from the natural pro-
jection A/m”! — A/m’; and we similarly define Dj 4 and T% ,.* We similarly
define D¢ 4(Ta) and T 4(Ma).

By essentially the same “limit argument” as in the proofs of Lemma 5.1.4

and Proposition 5.1.7, we can show that Dg 4 and Tz 4 induce exact quasi-inverse

equivalences of categories between Rep’3(G ) and (ModF1 /og)¢ which commutes

with ®-products, internal homs, duality, and “change of coefficients” for any A-
algebra B with #(B/mp) < oo; and a similar statement holds for D¢ 4 and Tz 4.
We leave the details to readers.

One can repeat the above discussion for U and Ty, instead of Dg and T'¢ (us-
ing Corollary 8.1.11 instead of Proposition 5.1.7) and obtain quasi-inverse equiva-
lences of categories between Rep’i®® (G /Ix) and the category of finite free étale
(0, W®,,A)-modules (where A is a complete local noetherian og-algebra with fi-
nite residue field) which commutes with ®-products, internal homs, duality, and
“change of coefficients” for any A-algebra B with #(B/mp) < co. We leave the
details to readers.

8.2.5. y-nilpotent objects. We generalized the notion of p-nilpotent torsion -
modules to (ModFI /&)$" where A is as in §8.2.1. Namely, M4 € (ModFI/&)5"
is p-nilpotent if for any sufficiently large integer N, the image @™ (oV'91,) is
contained in mg- M4 (ie., ¢ is topologically nilpotent for mg-adic topology on

4A1ternative1y, one may imitate the construction in §5.1, using o/g\urA = liﬂn(A/mZ Rog

ogur ).
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Ma). If #(A) < oo, then M4 € (ModFI /&)$" is p-nilpotent if and only if 94 is
¢-nilpotent viewed as an object of (Mod /&)S" in the sense of §8.1.16.
Here we record some immediate formal properties.

(1) For a short exact sequence 0 — My — M4 — M’} — 0in (ModFI /G)f‘h,
if two of them are w-nilpotent, then so is the third.

(2) If M4, M, € (ModFI /G)f‘h are both ¢-nilpotent, so are My ®s, M/,
and M4 B Dﬁ’A

(3) (change of coefficients) Let (A, a) — (B, b) be a continuous map of adic 0¢-
algebras (where a or b can be trivial), and consider M4 € (ModFI /6)§h.
If 9 4 is p-nilpotent, then the “change of coefficients” B4 M 4 := @n(B/b”(@A
M4) is also @-nilpotent. In particular, if A is complete local noether-
ian og-algebra, then M, € (ModFI/&)$" is ¢-nilpotent if and only if
A/m’; ®4 My is g-nilpotent for each n.

8.2.6. Analogue of connected-étale sequence. For M € (Mod /G)S" we have
discussed the maximal étale submodule 9 and the maximal @-nilpotent quo-
tient MMIP = /I of M, which are in (Mod /&)S". Now consider M4 €
(ModFT /G)flh for #(A) < co. Viewing M4 as an object in (Mod /&)S", we ob-
tain a short exact sequence

(8.2.6.1) 0— M — My — M -0

where IS and srngﬂp are objects in (Mod /&)S". By functoriality of connected-
étale sequences (Proposition 8.1.18), the ¢-compatible A-action on M4 induces
p-compatible A-actions on zmjt and im;‘f‘p. We will show later in Proposition
8.2.7 that M4 and zmr};lp are finite locally free & 4-modules, so they are objects
in (ModFI /&)$". (This is not a priori clear.)

Consider a finite A-algebra B (in particular, #(B) < o). Let Mp := 65 Qs ,
M 4 for M4 € (ModFI /6)§h. Let us grant that MM and smjf‘P are finite locally free
over & 4, so objects in (ModFI / G)Eh. By functoriality of connected-étale sequences
in (Mod /&)S" (Proposition 8.1.18), we obtain the following commutative diagram
with exact rows:

(8262) 0——Gp I m‘i;“ —Mp ~Gp Qe merp 0

Lo

0 mé Mp o 0.

Note that G5 ®e , MY and G5 e, E)ﬁzﬂp are clearly étale and (p-nilpotent objects
in (Mod /&)S", respectively, since they have no non-zero u-torsion. By diagram
chasing, the vertical arrow in the right end is surjective, but DJTHBHP is the “biggest”
quotient among ¢-nilpotent quotients of M p. Therefore, the natural map Gp e ,
zmj“p — zmglp is an isomorphism, so the natural map &5 ®g, MG — M is an
isomorphism. This shows that the formation of connected-étale sequence (8.2.6.1)
commutes with finite scalar extension.
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Now, let A be a complete local noetherian og-algebra with finite residue field.
Using the connected-étale sequence for M, := M4 ®4 A/m’; and the scalar exten-

sion A/m’\tt — A/m’} for n > 1, we obtain an exact sequence of (¢, G 4)-modules:

(8.2.6.3) 0— MY — My —MYP 0,

where ¢ = lim_(90,,)¢ and MG'P = lim_(9M,,)"'P. If #(A) < oo then the exact
«—n —n
sequence (8.2.6.3) recovers the connected-étale sequence for 9t 4 viewed as an object
in (Mod /&)S" as in (8.2.6.1).
The next proposition shows that 9% and smj“p are finite locally free G 4-
modules (so they are objects in (ModFT / G)Eh) and satisfy various natural prop-
erties.

PROPOSITION 8.2.7. Let A be a complete local noetherian og-algebra with fi-
nite residue field. For My € (ModFI/G)f\h, ME and M4 /MG are finite lo-
cally free & 4-modules. Furthermore, the exact sequence (8.2.6.3) is functorial in
M4 and respects any scalar extension under any local (therefore continuous) map
A — B of complete local noetherian og-algebras with finite residue fields (i.e., we
have B&AME = (B&4Ma)® as a submodule of B&aMa, where B&a(—) =
lim B/mp @4 (=) denotes the “completed” scalar extension).

This proposition will later be generalized for some o0g-algebras A that are not
complete local noetherian. See Proposition 11.4.2 for the precise statement.

PRrROOF. By §8.2.6, the proposition follows if we show that imfj;lp is finite free
over G4 (in which case MY is forced to be finite free over G4). On the other
hand, since &4 = (W ®,, A)[[u]], Proposition 7.4.2 asserts that 95 is finite free
over G4 if and only if 94" has no nonzero u-torsion and I /udMY'™® is finite
free over S4/(u). But mn‘lp € (Mod /&)<" implies that 95 has no nonzero
u-torsion by Proposition 8.1.2, so it suffices to show that srrtjﬂp / usz;flp is finite free
over G 4/(u).

Con51der My = Ma/uMM 4 viewed as a (p—module via ©p = (,ngA mod u, and
put DJTA = ﬂr 1P ("9 4) and zmi{lp = S)JTA/E)JTA Clearly smA is an étale
submodule of 9 4 which contains all étale subobjects of M 4. We say a (¢, S 4/ (u ))

=T

module (N4, P) is p-nilpotent if B" is the zero map for any r > 1. Clearly E)JTA

is @-nilpotent and any @-nilpotent quotient of 914 factors through Dﬁi‘llp.

In the proof of Proposition 8.1.18, we showed that 9 /udné C sm‘if, SO we
have a natural surjectlve map 5P /ug® smm P But since MY /udy™ is -
mlpotent and M7 4 A " is “maximal” among p-nilpotent quotients of M 4, smmlp Ju zm“’“’
and 90, A P are the same quotients of M 4.

It is left to show that ﬁzﬂp is finite free over G4/(u). Let F := A/my and
consider the (¢, Sr/(u))-module ﬁ:ﬂp ®4 F. Since Gr/(u) = k @, F is a product
of fields and o : Gy — Sy permutes the orthogonal 1demp0tents SUIA ®Ra Fi
finite free over Gp/(u). Now consider the natural map EI)TA QaF — (Mo ®a F)et.
(Note that @ : 0*M 4 — M4 is A-linear.) So we have a natural map ﬁiﬂp ®@aF —
(M4 @4 F)"P which is surjective by a diagram chasing similar to (8.2.6.2). Since
ﬁzﬂp ®4F is @-nilpotent and (M 4 ® 4 F)™IP is maximal among @-nilpotent quotient
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oiﬁA ®a F, the natural maps ﬁrjlp QAF — My ®24 F)n“p and ﬁit Q4 F —
(M4 ®4 F)¢ are isomorphisms. It follows from Nakayama’s lemma and length
consideration that 5 " is finite free over &4/ (u). O

8.3. Duality

For any h > 0, we define a duality theory for Modg ()S", (Mod /&)S", and
(ModFI /G)jh for a continuous adic 0g-algebra A as in §8.2.1. For 0 = Z,,, this du-
ality for (Mod /&)<S! is induced from the Cartier duality of finite flat group schemes
by the Breuil-Kisin classification, and similarly the duality for Modg()S! is in-
duced from the duality of Barsotti-Tate groups by the Breuil-Kisin classification.
For oy = F[[m]], our duality coincides with the Faltings duality of P-height h from
§7.3.9.

8.3.1. mp-Verschiebung of P-height h. We consider 91 in in one of the following
categories: Modg ()S", (Mod /&)S" and (ModFI /G)jh for a continuous adic 0¢-
algebra A as in §8.2.1. Recall that 9t has no nonzero P (u)"-torsion®, and the image
of o contains P (u)"9M by assumption. Now one will show below that there exists
a unique map Vj : MM — o*IM which makes the following diagram commute.

(8.3.1.1) LA CL—— o (M)
m e o m

We first give a formula for V3, : 9 — o§(M), as follows:
Vi(m) = ¢~ (P(u)"m) for m € M.

This formula is well-defined since ¢ is injective by Corollary 2.2.3.2 and Lemma
8.1.3. Clearly, V}, is the unique map which satisfies the commutative diagram on
the right. To see that V), satisfies the other commutative diagram, it is enough to
check ¢ o Vi 09 = poP(u)?idyon since ¢ is injective. But both sides are equal to

The (unique) &-linear map V3, : M — o5(M) which satisfies the commutative
diagrams (8.3.1.1) is called mg-Verschiebung of P-height h. When oy = Z, and
h =1, see [Kis09a, §1] for the relation between V; and the Verschiebung map of
Dieudonné crystals.

DEFINITION 8.3.2. Let 9t be an object in one of the following categories:
Modg(¢)Sh, (Mod /&)Sh, and (ModFI /6)§h for a continuous adic og-algebra A
as in §8.2.1. We define another p-module 9V, as follows.

e The underlying module for MMV is 9*, where
Home (M, &[1]/6), if M e (Mod /&)<"

™o

M =< Home, (M, S), if MM € (ModF1/&)5"
Home (M, &), if M € Modg () S".

5This is clear for M € Mod (¢)S", and for M € (Mod /&)S™ this follows from Proposition
8.1.2. For IM € (ModFI/G)jh, we are reduced to showing that P(u) is &4-regular, but the
natural map &4 — og 4 is injective and P(u) is a unit in og 4.
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o We set popv = (V3)* : o*(IM*) = (o*M)* — IM*, where V}, is the mo-
Verschiebung of P-height h which is defined above in §8.3.1. Alterna-
tively, we can construct @opv as follows. Consider @y : (a*i)ﬁ)[%] =

m[ﬁ], and we view [ € o*(91*) as a functional on o*M. Now we define

panv (1) := Lo (P(u)"-pgq ) € (M*)[1/P(u)],
which actually defines an element in 21* since M is of P-height < h.

This p-module MY is called the dual of P-height h for M. This duality 9V depends
on h, even though we do not specify this in the notation.

It is straightforward that the duality of P-height < h for (ModFI/ G)Eh com-
mutes with the change of coefficients. If A is a finite artinian o0g-algebra, then this
duality for (ModFI /G)flh and (Mod /&)S" are compatible.

The following lemma, whose proof is immediate, may provide a motivation for
the definition.

LEMMA 8.3.3. Let M be an object in one of the following categories: Modg (o)Sh,
(Mod /&)S", and (ModFI /G)Eh for a continuous adic 0g-algebra A as in §8.2.1.
Then we have a natural @-compatible isomorphism og @ MY = (0g @ M)*(h),
where the right side is the Tate twist of the natural duality for (free or torsion) étale
p-modules.

For a torsion or free étale p-module over og, we put M"Y := M*(h) where M*
is the natural duality, and call MY the dual of P-height h.

Although the duality of P-height h is defined separately for Modgs(¢) and
(Mod /&)S", they are compatible in the following sense.

LEMMA 8.3.4. For M € Modg ()", there exists a natural isomorphism I =
lim (9M/7g9M)Y, where (M/7gIM)Y is the dual as (Mod /&)S".  Furthermore,

for any isogeny I EIN Modg(¢)Sh, there exists a natural isomorphism
coker(fY) = (coker f)V, where f¥ : MY — (M')V is the dual isogeny and (coker f)V
is the dual for (Mod /&)Sh,

PrOOF. The first claim is clear from the definition. The second claim can
be seen by viewing both 9* and (9')* as submodules of Homg(im',G[%D]) x
Homg(Dﬁ,G[%]). (c.f. Lemma 5.1.9) O

8.3.5. Lubin-Tate type p-modules and maximal Lubin-Tate quotients. Let 9t
be an object in one of the following categories: Modg(¢)S", (Mod /&)S", and
(ModFI /&)S" for a continuous adic 0g-algebra A as in §8.2.1. Then M is called
of Lubin-Tate type of P-height h if the following (obviously) equivalent conditions
are satisfied.

e The mp-Verschiebung of P-height h for MM is an isomorphism.

e The dual MY is étale (where (-)¥ denotes the duality of P-height h).
The notion of Lubin-Tate type p-modules of P-height h clearly depends on the
choice of h.

Assume that 9t is an object of one of the following categories: Modg ()
(Mod /&)S" and (ModFI /&)$" where A is a complete local noetherian 0g-algebra
with finite residue field. From Propositions 8.1.18 and 8.2.7, there exists an maximal
étale subobject (V) C MY. By passing to the duality of P-height h, we see that

<h
)
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IMET = (MV¢4)Y is a quotient of M which is maximal among quotients which are
of Lubin-Tate type of P-height h. We call 47 the mazimal Lubin-Tate quotient
(of P-height h). Since the formation of both the maximal étale submodule and the
duality of P-height h commute with the change of coefficients, the formation of
maximal Lubin-Tate quotient also commutes with the change of coefficients.

Later in Proposition 11.4.2, we show the existence of the maximal étale sub-
object for more general p-modules 9 € (ModFI/ G)flh than the case when A is
complete local noetherian. Our discussion of maximal Lubin-Tate quotient carries
over word-by-word in that case as well.

8.3.6. Unipotent p-modules of P-height < h. Let 9t be an object in one of
Modg(¢)S", (Mod /&)S", and (ModFI /G)Eh for a continuous adic o0g-algebra A
as in §8.2.1. We say I € (ModFI /G)f\h is unipotent of P-height < h if the
following (obviously) equivalent conditions are satisfied.

(1) The mo-Verschiebung of P-height h for 9 is topologically nilpotent. In
other words, for any sufficiently large NV, the composite VhN =gN-1" (Vi)o
00" (Vi) o Vi : M — oV O has the image in mg- (o™ M).
(2) MY is p-nilpotent, where (-)V denotes the duality of P-height h.
(3) (Under the extra assumption that A is a complete local noetherian og-
algebra with finite residue field if 9 € (ModFI/ 6)§h) The maximal
Lubin-Tate quotient MM~7 for M is trivial.

The conditions (1) and (2) are equivalent to the condition (3) whenever maximal
Lubin-Tate quotients are well-defined. (See Proposition 11.4.2 for more general case
when maximal Lubin-Tate quotients are well-defined.) The notion of unipotent -
module (of P-height < h) clearly depends on the choice of h.

We emphasize that for a unipotent p-module MM € (Mod/&)S" or M €
Modg(p)S", it is not true that the associated G g-representation T (90) is unipo-
tent (i.e., an extension of trivial representations).

REMARK 8.3.7 (Formal Properties). Here we record some immediate formal
properties.

(1) Consider a short exact sequence 0 — 9’ — M — M” — 01in Modg (¢)S",

(Mod /&)Sh, or (ModFI /G)flh. If two of them are of Lubin-Tate type
of P-height < h (respectively, unipotent of P-height < h), then so is the
third.

(2) Let 9t and M’ are objects in Mod g ()S", (Mod /&)S", or (ModFI /G)ih.
If both 9t and 9 are of Lubin-Tate type of P-height < h (respectively,
unipotent of P-height < h), then so are their tensor product M@ M’ and
direct sum 9 & M.

(3) (change of coefficients) Let (A,a) — (B,b) be a continuous map of adic
op-algebras (where a and/or b is allowed to be trivial), and let M, €
(ModF1I /G)Eh. If M4 is of Lubin-Tate type of P-height < h (respec-
tively, unipotent of P-height < h), then so is the “change of coefficients”
BRI 4 = linn (B/b"®4 M 4). Furthermore, if A is complete local noe-

therian op-algebra with finite residue field, then M4 € (ModFI /G)jh is
of Lubin-Tate type of P-height < h (respectively, unipotent of P-height
< h) if and only if A/m’ ®4 M4 is so for each n.
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REMARK 8.3.8. We explain where the names “Lubin-Tate type” and “unipo-
tent” come from. In the case oo = Fy[[mo]], 9 € Modg(¢) is of Lubin-Tate type of
P-height h if and only if the corresponding m-divisible group G*(9M) is of Lubin-
Tate type of P-height h (i.e., G*(9M) ®y, 0w is isomorphic to a product of copies
of LT®M).

For the case 0 = Z, with p > 2, a p-module M € Modg(¢)S! is of Lubin-Tate
type of P-height < 1 (respectively, unipotent of P-height < 1) if and only if the cor-
responding Barsotti-Tate group G*(9) is multiplicative (respectively, unipotent).
Similarly, M € (Mod /&)S! is of Lubin-Tate type of P-height < 1 (respectively,
unipotent of P-height < 1) if and only if the corresponding finite flat group scheme
G (M) is multiplicative (respectively, unipotent). A finite locally free group scheme
G is called multiplicative if the Cartier dual of G is étale; and G is called unipotent
if the Cartier dual of G is connected.

REMARK 8.3.9. Kisin [Kis09a] works with the covariant correspondence be-
tween (Mod /&)S! and the category of finite flat group schemes of p-power order,
by post-composing the Cartier duality to the contravariant correspondence G*, and
similarly for Barsotti-Tate groups. Under the covariant correspondence, unipotent
torsion p-modules correspond to connected finite flat group schemes, and simi-
larly for formal (i.e., connected) Barsotti-Tate groups. So in [Kis09a], unipotent
p-modules are called “formal” or “connected.”



CHAPTER 9

“Raynaud’s theory” for torsion p-modules

In this section, we develop the analogue of Raynaud’s theory [Ray74] for torsion
p-modules. If og = Z,,, p > 2, and the P-height is < 1, then the discussions of this
section ezactly recovers Raynaud’s theory for finite flat group schemes over o0 by
the Breuil-Kisin classification [Kis06, Theorem 2.3.5].

9.1. Classification of rank-1 objects in (ModFI /6)]§h

Fix a finite extension F/F, and put ¢? := #(F). (Recall that ¢ = p if 09 =
Z,.) We view F as an op-algebra such that moF = 0. In this subsection, we give
a classification of rank-1 objects in (ModFI /G)I?h if k& contains F. Just as in
Raynaud’s theory for group schemes of type (p, - - -, p), this classification is used to
analyze the semisimplification of the inertia action on torsion G g-representation of
P-height < h, later in §9.4. Compare with [Ray74, §1].

9.1.1. We fix an embedding F — k. Let xo : F* = pga_(0x) C k* C o)
be the character which is obtained by restricting the fixed inclusion F — k. Put
Xi = ng, for ¢ € Z/dZ, which plays the same role as the fundamental characters
in Raynaud’s theory [Ray74, §1.1]. In fact, x; are all the characters which can
extend to a field embedding F — k, and different choices of the fixed embedding
F < k result in a cyclic permutation of the labeling of x;. (This can be seen from
XilF, = Xolr, and ng = x; for i € Z/dZ.)

Choose M € (Mod /&)S" equipped with a -compatible F-action. (In par-
ticular my-9t = 0, so automatically M € (ModFI /&)S".) Consider the following
isotypic decomposition of 91 for the F-action:

m= P m,
i€Z/dZ
where F acts on 9; via the character x;. Clearly, ¢ restricts to o*9M; — 9, 11.
It follows that to give an M € (ModFI/G)?h is equivalent to give {M;, 0 }icz/4z,
where each 9, is finite free over &/(my) = 0k, and the image of each §; : *M; —
9,1 contains u"-M; 1. (Observe that P(u) = u® mod (mp), if 09 = Z,; and
P(u) = —ug mod my where ord, (ug) = e, if 09 = Fy[[m]].) From this, we obtain
the following lemma.

LEMMA 9.1.2. For MM € (Mod /&)S" equipped with a p-compatible F-action we
have M € (ModFI /6)§h. In other words, M is finite free over Gr = o @, F.

PROOF. It is enough to prove that 9; for each i € Z/dZ is of the same 0x-
rank. But since 901 is of P-height < h we have u®®*-0; 1 C 6;(M;) C M;41, and J;
is injective for any ¢ because ¢ is. ([
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Let us further assume that 91 is of Gp-rank 1, so each IM; is free of ox-rank-1.
By choosing a basis e; € 9M; for each i, we may view the maps J; as elements in o
such that ord,(d;) < he. Given {¢;| ord,(0;) < he}icz/qz, we can reconstruct 90,
as follows. Put 91 := EBiGZ/dZ 0k -€;, and pop(c*e;) := d;€;41. For a € F*, we put
[a)e; := xi(a)-e;.

If we choose a different set of bases, say a;e; € 9M; where a; € o, then §; is
replaced by a; _:1 d;a. In particular, ord,(d;) is independent of the choice of bases.
Note also that for given {¢;} and {4/} such that ord, (d;) = ord, (d}) for each i, the
solutions «; of the equations 8, = +11 ;o lie in some unramified extension of 0.
To summarize, we have proved the following:

PrOPOSITION 9.1.3. Assume that F can embed into k. Then the assignment
M +— {0i}iczsaz defines a bijection between the isomorphism classes of rank-1 ob-
jects in (ModFI /6)?" and equivalence classes of {0;] ord,(0;) < he}icz/qz under
the equivalence relation {0;} ~ {a;_lléiaf} for a; € oj. If, furthermore, ok is
strictly henselian, then the assignment M — {n; = ordy(d;)}icz/az defines a bijec-
tion onto the families of r integers 0 < n; < he.

We may improve our choice of 9; as follows. By modifying the basis, we can
arrange to have §; = u™ for all i # d — 1. Now write dg_1 := afu"4-!, where
a € k*, and f = 1 mod u. If we replace ey with fey and modify the rest of the
basis so that §; = u™ for all i # d — 1 (i.e., replace e; with 39 e; for all i € Z/dZ),
then §4_1 is replaced with &6qd*1u”d—1. By repeating this process, we may assume
that 8 = 1. For the similar reason, & is unique up to (kx)qd’l—multiples.

For each (a,n), where a € kx/(lfx)qd_1 and n = {ng, -+ ,ng-1} with n; €
[0, he], we define M4 1), as follows.
Sﬁ(&ﬁ) = @ 0K-€;
i€Z/dT
p(o*e;) = ueipq, fi#xd-—1
oo eq—1) = au"iteg

[a]e; xo(a)? -e;, Va €F.

We have proved the following

COROLLARY 9.1.4. Assume that F can embed into k with xo : F — k such an
embedding. Then for any M € (ModFI /G);h of &p-rank 1, there exists a € k*
unique up to (kx)qdfl—multiple and uniquen = {ng,--- ,ng—1} with n; € [0, he]|,
such that M = Mg 1)-

9.1.5. Duality, étale and Lubin-Tate type objects. Let 9 € (ModFI /6)]§h
be of &p-rank 1, which corresponds to {d;}icz/az under the bijection given in
Proposition 9.1.3. In other words, I = @iez/dz ok -€e; with p(c*e;) = de;q1. It
is straightforward to verify the following claims:

Duality: The dual 9" of P-height < h corresponds to {(P(u)" mod ) /0;}icz)az-

(
Etale/Lubin-Tate type: 9 is étale if and only if ord, (d;) = 0 for all 4; 91 is
of Lubin-Tate type of P-height h if and only if ord, (d;) = he for all i.
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9.2. G-lattices of P-height < h
<

In this subsection, we study &-lattices of P-height < h in a fixed M € (ModFI /og)%t.
We also introduce an operation which plays a role similar to schematic closure of
the generic fiber of a finite flat group scheme over o . As an application, we
show that T € Repﬁrje(gK) is isomorphic to Tg(9M) for some M € Modg (p) if
and only if for each n > 0 there exists M,, € (Mod /&)S" killed by 7% such that
T/myT = Tg(My,) in Reper (Gx). Based on the analogy discussed in Remark

8.1.15, this can be thought of as an analogue of [Ray74, §2].

9.2.1. Analogue of schematic closure. Choose M, M’ € (ModFI /og)% = Mii’tor(w)
and a @-compatible og-linear surjective map f : M — M'. Let M € (Mod /&)Sh
be such that M = o ®s M. We obtain a ¢-compatible G-linear surjective map
flon = M — f(9N) which recovers f by extending scalars to og (i.e., after inverting u,
as 9 and f(IM) are killed by some power of 7). Furthermore, f(9M) € (Mod /&)<"
by Lemma 8.1.8, so f(9M) C M’ is a G-lattice of P-height < h (Definition 8.1.7).
Also, we have that ker(f) € (ModFI /og)® and ker(f|on) C ker(f) is a &-lattice of
P-height < h. Using the analogy with finite flat group schemes discussed in Remark
8.1.15, the y-compatible surjection floyn : 9 — f(9M) plays the role of schematic
closure of a closed subgroup scheme of the generic fiber.

We record an immediate consequence for G i-representations of P-height < h.
Recall that Reptir’gh(g k) denotes the category of torsion og-representations of G g

0

with P-height < h.

tor,<h

PROPOSITION 9.2.2. The category Rep,,

products, subobjects, and quotients.

(Gxk) is closed under finite direct

PrROOF. The direct product aspect is obvious. Let T = T'g(9M) for some
M € (Mod /&)S", and set M := 0g ®¢ MM = DE(T). Any Gx-stable submodule
T’ C T corresponds to a ¢-compatible surjection f : M — M’ where M’ := De(T").
Then f(9M) C M’ is a G-lattice of P-height < h by the discussions at §9.2.1, so
T’ is of P-height < h. Similarly, Dg(T/T") = ker(f), and ker(f|m) C ker(f) is a
G-lattice of P-module < h. Thus, T/T" is of P-height < h. O

9.2.3. Partial ordering on G-lattices of P-height < h. We fix an étale ¢ module
M € (ModFI /og)®. For any two &-lattices MMy, My C M of P-height < h, there
exists a G-lattice 9 C M of P-height < h that contains both — for example,
M = My + My does the job. Similarly, there exists a S-lattice M C M of P-
height < h that is contained in both — for example, M’ := MWy N My does the job.
Therefore, one can define a partial ordering by inclusion on the set of G-lattices of
P-height < h in M.

LEMMA 9.2.4. Suppose that M € (ModFI /og)¢* has a G-lattice of P-height
< h. Then there exist a (mazimal) S-lattice MT of P-height < h which contains
any S-lattice of P-height < h, and a (minimal) S-lattice M~ of P-height < h
which is contained in any G-lattice of P-height < h. In particular, there are only
finitely many G-lattices of P-height < h in a fized M € (ModFI /og)¢t.

PRrOOF. The last claim follows from the existence of 9T and 91—, because
the set of G-lattice of P-height < h for M injects into the set of G-submodules
of M /M~, which is of finite length since MT[L] = M = M~[L]. In order to
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prove the lemma, it is enough to show the existence of the maximal element, by
the duality of P-height h.

Let MM C M be a &-lattice of P-height < h. We first assume that either
09 = IFy[[mo]] or that p-M = 0 if 09 = Z,. In those cases, we can view 91 as a finite
free 0 g-module. Consider the following algebras
(9.2.4.1)
Ay = Sym g M

(mi —@(c*m):m e M)’

Sym, . M
(m4 — p(o*m) : m € M)’

and  Agy :=

Clearly, Aps is an étale K-algebra, and Agy is finite flat over ox with Ao ®,
K = Ap. (Note that 9 is u-torsionfree, so is finite free over ox.) If MM > M
is another &-lattice of P-height < h, then Agy is finite over Agy and we have
Aoy ®o, K = Apr. But the integral closure of Agy in Aps is finite over Agy since
Ay is étalet, so the set of G-lattices of P-height < h is bounded above. This proves
the lemma when oy = F,[[m]], as well as when py = Z,, and p-M = 0.

Now, assume that og = Z,. It is enough to show that for any two &-lattices
M C M C M of P-height < h, the length of D' /M has an upper bound that only
depends on M. We reduce to the settled case when p-M = 0, as follows. Consider
the following commutative diagram with exact rows.

(9.2.4.2) 0 Smfa] T Sm/i’f?[p] —0
0 —— M [p] —> o ——> N /9 [p] — 0,

where MM[p|] denotes the submodule of 9 that is killed by p. By the snake lemma,

we get a short exact sequence

Wp] o' 9 /M[p]
_ —_— s ———

mpl  m Mm/Mp]

By repeating this process for the S-lattices /M [p] C W' /M [p| inside of M /M [p]

(see §9.2.1) and using the additivity of length on short exact sequences, we reduce
the lemma to the case when p-M = 0. But this case is already handled. (I

(9.2.4.3) 0— — 0.

REMARK 9.2.5. Consider M € (ModFI /og)¢* and a &-lattice M C M of P-
height < h. Assume that either oy = Fy[[m]] or pM = 0, and let Agy and A be as
in (9.2.4.1). We can define comultiplications on Agy and Ay by m — m@1+1®@m
for any m € 9t and m € M, respectively. Let Ggn := Spec Agy and Gy := Spec Ay
denote the corresponding finite flat group schemes over ox and K, respectively. (If
q = p then we have Goy = G* (M) and Gy = G* (M), where G*(+) is as defined in
§7.2.4.)

Note that Ggy is a prolongation of G, and the assignment 9t ~» Ggy preserves
the natural partial orderings; i.e., if 9T and M’ are two G-lattices of P-height < h in
M, then 9 C M if and only if there exists a map Goyps — Ggn which prolongs the
identity map on the generic fiber Gps. (See [Ray74, Definition 2.2.1].) Therefore,
Lemma 9.2.4 for the case when either oy = F,[[mg]] or p-M = 0 can be deduced from

LSince Ajy is étale, the “generic trace pairing” Ay @ x Ayr — K is perfect. The integral
closure of Agy is therefore contained in the o -linear dual of Agy embedded in Ay via the “generic
trace pairing”, and this is a finite Agy-module.
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the existence of maximal and minimal prolongations of a finite flat group scheme
[Ray74, Corollaire 2.2.3].

We digress to record the following interesting fact. For any o € og consider
[a]* : Asm — Agn and [a]* : Ay — Ay induced from m — «-m for any m € M
and m € M, respectively. This defines og-actions on Ggy and Gy, respectively.
(This is also true when oy = Z, and p-M = 0. In particular, it follows that the
group schemes Gop and G are killed by p.) Therefore Gy (K5P) = Gon(K5P) is
naturally an og-torsion G g-representation. By an argument similar to the proof of
Proposition 7.3.4, we can show that there exists a natural ogp-linear G g-equivariant
isomorphism G (K%P) 2 T:(M), and so Gon (K5P) = T (M).

PROPOSITION 9.2.6. Let M be an étale p-module which is free over og, and
suppose that M, = M/njM has a S-lattice M(n) C M, of P-height < h, for
each n. Then M has a &-lattice M of P-height < h. Furthermore, the G-lattice of
P-height < h is unique.

This proposition shows that a ogp-lattice G i-representation T is of P-height
< h (Definition 5.2.8) if and only if T'/n{T is of P-height < h (Definition 8.1.7) for
all n > 1.

PRrROOF. The proof will be quite similar to [Ray74, Proposition 2.3.1], working
with S-lattices of P-height < h and the analogue of schematic closures (from §9.2.1)
in place of finite flat group scheme models and schematic closures. The uniqueness
of M follows from Theorem 5.2.3, so we only need to show the existence. We
proceed in several steps.

9.2.6.1. For each n, we may modify M(n) so that the natural projection pr,, : M,, —
M, _1 restricts to M(n) — M(n —1). (We do not require this to be surjective.)

We recursively modify 9 (n) with n increasing. Suppose that the claim is true
for each j < n and we look for a &-lattice M(n) C M, of P-height < h such that
pr,, restricts to M(n) — M(n — 1).

By the duality of P-height < h, we obtain pr,, : MY_; — M,/. Consider the
“graph morphism” pry ®id : M) _; ® M,y — M,/, and we let 9 be the image of
M(n — 1)V @ M(n)Y by this morphism. Then M C M,/ is a S-lattice of P-height
< h (containing M(n)") and pr, induces M(n—1)" — N. Now take M(n) := NV.
9.2.6.2. For i < n, let M(n); C M; be the image of M(n) under the natural
projection M,, — M;. Clearly, pr; : M; — M;_; restricts to MM(n); — M(n);—1
for all i < n. We put ﬁgn) = ker[M(n); — M(n);—1] for 1 < i < n, which is
viewed as a submodule of M; via ﬁﬁ”) C ker[pr; : M; - M;_1] = M; (where the
isomorphism uses multiplication by ﬂé_l). Then ﬁﬁ” is a G-lattice of P-height
g h for Ml.

Now, M(n+1) — M(n) from the previous step produces a map ﬁg"“) — ﬁﬁ”)
for all n > 4, and this becomes the identity map on M; after tensoring with og.
So for each fixed ¢, we obtained a decreasing sequence {ﬁﬁ")}@i of G-lattices of
P-height for M;. By Lemma 9.2.4, there is a minimal element IM; := ﬁﬁ"") in the

sequence, so we have an equality ﬁl(-n) =M, for alln = ng for some ng = no(i) > i.
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9.2.6.3. We claim that the sequence {9M;}; of &-lattices of P-height < h in M is
increasing, so there exists an integer ig such that the equality M;, = 9M; holds for
any 1 = 1ig-

By the previous step and Lemma 9.2.4, it is enough to show that with n fixed
(and arbitrarily large), the sequence {ﬁin)}ign is increasing in i. In fact, the mg-

multiplication map induces an injective map M;_1 < M;, hence M(n);—_1 — M(n);

—(n)

for each ¢ < n. This induces a map ﬁf@l — M, ~ on G-submodules which becomes

the identity map on M; after tensoring with og. The claim follows.

9.2.6.4. We are ready to conclude the proof. We may assume 79 = 1 by replacing
M(n) with ker [M(n + ig) — M(n +i0)s, | (Recall that M(n + ig);, is the image
of M(n + ip) under the natural projection M, y;, — M;,.) So the previous step
implies that the map induced by mo-multiplication ﬁfﬁl — ﬁﬁ”) is an isomorphism
for all ¢ and for n > 0. (More precisely, n > ng = ng(i) will be enough, where
ng, depending on i, is as in §9.2.6.2.) We deduce that for fixed i and for n > 0
depending on i, we have the following diagram with the horizontal sequence short
exact:

(TT) M(n)iv1

0—— im(n)l —_— fm(n)iﬂ —_— EDT(n)l —0.

Indeed, the content is that the inclusion M(n), = zmgn’ - smﬁi)l = ker[M(n);4y1 —
M(n);] is an equality for n > 0 (depending on i), and this is a consequence of
having ﬁj C M; the same for all j.

Now, for each n, let 91, be the minimal element of the decreasing sequence

Mn) DMn+1), D DMn+7r),D---.

Since 9 is torsion-free over &/(my) = Fy[[u]], it is free, and then by induction
we infer that each 9, is free over &/(7f) with 9,11 /72,1 — IM,,. And from
the diagram ({1), we obtain the following diagram with the horizontal sequence
short exact:

Mt
o
0 mj mti-i,-j oM 0.
Hence M = @n M, is a G-lattice of P-height < h in M. O

We record the following interesting application of Proposition 9.2.6, which is
analogous to the fact that a p-adic G -representation is crystalline (respectively,
semi-stable) if and only if its I x-restriction is so. We use the same notations as in
§8.1.12. We say that an ogp-lattice representation T of I'x = G- is of P-height < h

Kur
if there exists a finite free (¢, &, )-module M= . such that T 2 Tg . (M,,) as

Rur) Rer ~
Ic-representations and coker(ggy. ) is annihilated by P(u)”.
ur

~
Kur

PROPOSITION 9.2.7. An og-lattice G i -representation T is of P-height < h in
the sense of Definition 5.2.8 if and only if its restriction to Ik is of P-height < h
in the above sense.
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PROOF. As in the proof of Proposition 8.1.13, the “only if” direction is trivial.
Now, assume that the restriction to Ix of T € Repi‘fe(g;() is of P-height < h.
Clearly, the restriction to Ix of T/7yT is of P-height < h for each n > 1 in the
sense of §8.1.12. By Proposition 9.2.6, it is enough to show that T/#}T is of
P-height < h as an op-torsion G g-representation, which follows from Proposition

8.1.13. 0

9.3. The case of small & and small ramification

In this subsection, we show that if he < g — 1 then the scalar extension functor
(Mod /&)S" — (ModFI /og)¢ is fully faithful. The proof uses the classification of
rank-1 objects in (ModFI /G)Ifh, proved in Proposition 9.1.3. For finite flat group
schemes, the corresponding theory is discussed in [Ray74, §3.3].

9.3.1. Let T € Repz‘;r(gK) be a semi-simple torsion G g-representation, where
Gk acts by p: Gxg — Aut,, (T). This forces mo-T = 0. Under this assumption, we
claim that T is tame; i.e., the wild inertia group I acts trivially on T". In fact,
one may assume 1 is simple. Since the cardinality of any I}2-orbit is some power
of p and the zero element is fixed by I}, the G x-submodule T'% is non-trivial so
it equals T' by simplicity.

Now, we temporarily assume that ox is strictly henselian so that Gx = Ik
where [ is the inertia group for K. Assume that T is simple. Then, the commutant
Endp, (7,)(T) is a finite-dimensional division algebra over F,, so it is a finite field
extension of F,. We put F := Endp,(;,)(T), and view T" as an F-vector space via
the natural action of its commutant. Since I; is commutative, the image p(I;) is
contained in the commutant. Therefore, by simplicity T is a 1-dimensional F-vector
space and the I-action on T is given by a (tame) character p : Ix — I, — F*.

To summarize, we have proved the following well-known proposition.

ProprosiTION 9.3.1.1. If T be a semi-simple torsion G g -representation, then
T is tame. If the residue field k of K is separably closed and T is simple, then there
exists a finite extension F/F,, which makes T a 1-dimensional F-representation of
Ok =Ik.

We stop assuming that k is separably closed. Let T be an F-representation
of P-height < h, and M := D¢ (T). Though it is not true in general that the
p-compatible F-action on M preserves any G-lattice 91 C M of P-height < h,
it is possible to find some G-lattices of P-height < h with this property, namely
MT and M~ from Lemma 9.2.4. Indeed, any automorphism of M restricts to an
automorphism of its maximal &-lattice M of P-height < h, and the same is true
for 91~ by duality of P-height h. Furthermore, by Lemma 9.1.2, any torsion -
module with a p-compatible F-action is in (ModFI/ 6)§h. We have proved the
following proposition.

PROPOSITION 9.3.1.2. Consider M € (ModFI /og)$ which has a S-lattice of
P-height < h. Then there exists a Sg-lattice of P-height < h(e.g., the mazimal and
minimal S-lattice MT and M~ of P-height < h).

The upshot of this discussion is that when ok is strictly henselian (i.e., k is sepa-
rably closed), for any torsion representation T" of P-height < h, each Jordan-Hélder
constituent of T' comes from some rank-1 object in (ModFI/ G)I?h for some finite
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F/F, (depending on the Jordan-Hélder constituent). This is one of the motivations
for our classification of rank-1 objects in (ModFI/ 6)I§h .

9.3.2. Gp-lattices of P-height < h. Assume that there exists an F,-embedding
F — k and fix it. Consider an étale p-module M € (ModFI /og)E® of og p-rank
1 that admits a &-lattice of P-height < h. We study its maximal and minimal
G-lattices of P-height < h, using their p-compatible F-action (Proposition 9.3.1.2)
and our classification result (Proposition 9.1.3).

Let I, 9 C M be Gy-lattices of P-height < h. We choose an og-basis {e;}
for M and {e}} for P, coming from the isotypic decomposition for F-action. Then
we have pop(c*e;) = d;€;41 and pop/(0*€}) = d;€;, | for some d;,6; € o of u-order
< he. (See Proposition 9.1.3.)

By assumption, we have 9 ®,,. K = M Q,,. K = M, and by the choice of the
bases we have €, = a;e; for some «; € K*. Since o = pan[1] = oo/ [2], we get
the following compatibility condition.

(9.3.2.1) 8 = a; )y -6iaf

If 9V C M (e.g., M =M+ or M = M™) then a; € o for all 5. Assume that we
are in this case.

We give a criterion for 9% to be maximal, in terms of {ord, (d;)}. We proceed
in the following steps.

9.3.2.2. Step (1). If M is not maximal, then ord,(8;) > g — 1 for some i. In
particular, if he < g — 1 then there exists at most one S-lattice of P-height < h in
M.

The second claim follows from the first since ord, (8) < he. To show the first
claim, we may assume that 9 2 90 (taking 9 = M™), so we have o; ¢ oy for
some i. Choose iy € Z/dZ so that ord,(a;,) > 1 is maximal among ord,(ca;). So
by (9.3.2.1), we know that ord,(d; ) > ¢ — 1.

9.3.2.3. Step (2). Assume that for some 4, we have ord,(a;) > ord,(a;+1) (so
necessarily, d > 1). For such i, we have ord,(d}) > ¢ by (9.3.2.1). In particular,
this case can occur only when he > g. Conversely, starting with 9t such that there
exists an 49 with ord,(d; ) > ¢, one may take o, = v and a; = 1 for i # ip. Then
dip = u™90; , 0j—1 = ud; 4 and &; = 0; for i # ig,ip — 1 give the solution to
the equations (9.3.2.1), hence another Gy-lattice 9 C M of P-height < h which
contains 9.

9.3.2.4. Step (3). For any Sg-lattice M’ C M of P-height < h, there exists a Sp-
lattice M C M of P-height which contains M’ and satisfies that ord,(5;) < ¢ —1
for all .

If d = 1 then we may take ay := u® where ¢ := L%(fi)j so that §; = u=c@=1g
has the u-order (strictly) less than ¢ — 1. So we may assume that d > 1 and
ord,(dj,) > g for some ip. As in Step (2), we may take a;, = u and a; = 1 for
i # io. Furthermore, one can check that }7; 747 0i < 22ie7/470;- If ordu(0;) = g
for some ¢ then we apply this process to I (instead of 9’). This terminates after
finitely many times because at each time the positive integer ., Jdz. 0; decreases,
and the resulting Gg-lattice M of P-height < h in M satisfies that ord, (d;) < g—1
for all 4.
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9.3.2.5. Step (4). Take 9 := 9M*. By the previous step, we may assume ord,, (d;) <
q — 1, for all 4, in which case all a; have the same valuation. Now, assume that
the valuation of «; is positive. Then by (9.3.2.1), this can only happen when
ord,(a;) = 1, ord,(d;) = ¢ — 1, and ord,(d;) = 0, for all ¢. In other words, I is
étale as a p-module.

In the special case when he = ¢ — 1, the equalities ord,(d;) = ¢ — 1 mean
that 9 is of Lubin-Tate type of P-height h. In fact, ord,(d)) = ¢ —1 = he =
ord, (P(u)" mod mp); see §9.1.5.

We now state the following proposition. Compare with [Ray74, Proposition
3.3.2].

PROPOSITION 9.3.3. Consider M € (ModF1 Jog)&" of og p-rank 1. Assume that
M admits a G-lattice of P-height < h. Let 9 be a Gr-lattice of P-height < h in
M.

(1) Consider a decomposition M := @Z/dz Ok € with p(o*e;) = 0;€i41.
Then M is mazimal among Gg-lattices of P-height < h in M if and only
if ord, (6;) < q—1 for all i and this inequality is strict for some i.

(2) If he < q—1 then M admits at most one S-lattice of P-height < h, which
is always an Gg-lattice.

(3) Assume that he = q—1. Then either M has a unique S-lattice of P-height
< h, or M has exactly two S-lattices of P-height < h where one of them
is étale and the other is of Lubin-Tate type of P-height h. In either case,
any S-lattice of P-height < h in M is also a Gp-lattice.

PROOF. It remains to establish (3). Under the assumptions of (3), it follows
from Steps (1) — (4) above that if M does not have a unique &-lattice of P-height
< h then MM™T is étale and M~ is of Lubin-Tate type, where 9™ and 9~ are the
maximal and the minimal &-lattices of P-height < h. So it remains to show that
if M is étale and 9 is a S-lattice of P-height < h for M with 9 C M+ (but
M € (Mod /&)S" may not a priori be a Gp-lattice in M), then it is of Lubin-Tate
type. (Then the inclusion 2 O 9t~ has to be an equality.) Note that this claim
does not follow from Steps (2) and (4) because we do not know whether 9 is a
Gr-lattice of P-height < h in M.

It follows from the assumption that 9 is p-nilpotent (i.e., M = 0) since M
is not étale and is simple in (Mod /&)S". (See Proposition 8.1.18.) It suffices to
show 901 is of Lubin-Tate type after the scalar extension by ox — 03¢, where 03 is
the completion of the maximal unramified extension of 0, since duality commutes
with such scalar extension (and the étale and p-nilpotent properties are insensitive
to such scalar extension). Thus, the proposition is reduced to showing the following
claim:

CLAIM. Assume that he = q — 1 and k is separably closed. Assume that M is
étale and M is p-nilpotent. Then M is of Lubin-Tate type of P-height h.

First observe that Gx = I acts trivially on T¢ (M) = T's(9M1). Consider the
following finite flat group scheme G+ := Spec Agn+ over oy, as follows:
Sym, . 9+
(m? — pgp+(o*m) : m € M+)’

(9.3.3.1) Agps =

where co-multiplication and co-action of 0y are induced from m — m®1+1®@m
and m — a-m for any m € MM and « € 0g. Since MT is étale (i.e., Ppor 1S an
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isomorphism), we can easily check that G is finite étale over ox (with an action
of F). Furthermore since oy is strictly henselian, G* is isomorphic to a constant
étale group scheme F over ox.

From this, one can find a &/(mg)-basis {e;} for the étale p-module M* such
that ¢(c*e;) = e; for all i. We can see this as follows. Since G is a constant
group scheme, G = I acts trivially on G (K®°P) which is isomorphic to T (M)
as noted in Remark 9.2.5. By choosing an Fg-isomorphism Tz (M) = Fg (which is
G k-equivariant by giving the trivial G g-action on the right), we obtain an og /(mg)-
basis {e;} for M such that p(c*e;) = e; for all i. Clearly &/(m)-span of {e;} is a
p-stable étale G-lattice of M, so it has to equal 9T.

Now, consider a @p-compatible projection f; : M — K -e; for each i. Since
M C [1, fi(M), it is enough to show that f;(9M) is of Lubin-Tate type of P-height
h for each i; if we show this then [[, f;(907) is the minimal G-lattice 91~ of P-height
< hin M as G-lattices in M (being of Lubin-Tate type of P-height < h), so the
inclusion M C [, fi(M) = MM~ should be an equality. By replacing I with f;(9N),
we may assume F =, (i.e., M is of ox-rank 1). Then we clearly see that 9, being
p-nilpotent, has to be of Lubin-Tate type of P-height h. (]

COROLLARY 9.3.4. Assume that he < g — 1. Then for any torsion étale p-
module M € (ModFI /og)®, there exists at most one &-lattice of P-height < h.

ProoF. We need to show that for any two S&-lattices 9, M’ C M of P-height
< h, an inclusion 9t C 9 implies equality. This can be checked after a faithfully
flat scalar extension, so we may assume that the residue field is separably closed. By
considering Jordan-Hoélder series and using §9.2.1, one can reduce the claim to the
case when M is simple. Then by Proposition 9.3.1.1 and the previous proposition,
we are done. O

COROLLARY 9.3.5. Assume that he < q—1. For M, M’ € (Mod /&)S", we put
M = 0g @ M and M’ := 0g @ M. We view M and M’ as submodules of M
and M.

(1) Any p-compatible morphism fx : M — M’ restricts to f : 9% — M. In
other words, the scalar extension functor M ~» M is fully faithful.

(2) For any @-compatible morphism f : 9 — M’ in (Mod /&)S", ker(f) and
coker(f) are also objects of (Mod /&)S". In other words, (Mod /&)S" is
an abelian category.

(3) Let ExtS"(ON,0') be the group of extensions in (Mod /&)<, and let
Ext® (M, M) be the group of extensions in (ModFI /og)®. The natural
homomorphism ExtS" (900, ) — ExtSt (M, M) is injective.

0K

PRrROOF. Put C := coker(fk) and I :=im(fx). Let € C C be the image of I’
under the natural projection M’ — M’'/f(M) = C, and let J C I be the image of
M under M — fx (M) = I. Then by §9.2.1 both J and ker[9" — €] are G-lattices
of P-height < h in I = ker[M’ — (], where the isomorphism is induced by fx.
So by Corollary 9.3.4, we have the isomorphism J = ker[9" — €] which extends
the isomorphism I = ker[M’ —» C]. Now define f : I — 90 as follows:

fi9M— 35 ker[ I — €] — 9.
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Clearly, this morphism f extends fx, and ker(f) = ker[9 — J] and coker(f) = €
are objects in (Mod /&)Sh. This proves (1) and (2). Finally, (3) is a formal
consequence of (1). O

9.4. Torsion Galois representations

In this subsection, we describe the G k-action associated to a rank-1 objects
in (ModFI/ 6)[§h. We can use this result to analyze the semisimplification of the
inertia action on torsion G g-representation of P-height < h. For finite flat group
schemes, the corresponding theory is discussed in [Ray74, §3.4].

9.4.1. Kummer theory. We assume that the residue field k¥ contains IF := Fa.
This assumption is satisfied for all d if K is strictly henselian.

Pick an element § € K* and let K((ié) /K be the Galois extension generated by
the Toots of X'~1 — §. Pick a root 0q € Ky) to this polynomial. Then we get a
continuous homomorphism

(9.4.1.1) O Gr = g (K); €00 = L vy e G,

which is independent of the choice of dg4.
Following §9.1.1, we let xq : F;d = pga—1(k) = pga_1(K) be a character

which extends to an Fg,-morphism of fields F« — k, and we put x; = Xgi. Using
the inverse isomorphism x 1 (not the inverse character), we obtain a character
wy) = Xgl ) §U(l§) G — qud. If we have used Xi_l, instead of Xgl, then we obtain
(i)
The formation of wg;) is compatible with finite extension of K, as 55(15) is. For
(68" _ @) &)
= Wq Wq

any 0,0’ € K*, one can directly check that w, . By construction,

w((f) factors through the quotient Gal(K ((;5) /K), so w((f) is unramified if and only if
§€og.

We put wy := w((iu), and &4 = f((iu). A priori, the character wg depend on the
choice of uniformizer v € ox, but wq|r, does not; more generally, one can check
that w§6)|1K = (wq)°" @)1 . We call wy|r, a fundamental character of level d.

The formation of fundamental characters does not necessarily commute with
finite extension of K (especially, ramified ones) because the construction involves a
uniformizer u, but we have wy, k|1, = (wd/K/)e(K,/K)hK, for any finite extension
K'/K.

9.4.2. 1-dimensional F-representations of P-height < h. Choose & € k*/ (k:x)qd_1
and n = {ng, -+ ,nq—1} with n; € [0, he], and let M := M5,y (Corollary 9.1.4).
We put §; := u™ if i # d—1 and 641 := au™4-1 so that we have po(c*e;) = d;e;41.

We would like to compute T (90) = Homy,, (9, K*°P). Giving an element
[ € T&(9M) is equivalent to giving I(e;) = z; € K™P for each ¢ € Z/dZ, such that
z] = §;x;11. In turn, it is equivalent to giving an element zop € K™P such that
xgd — bx0, where 6 := [[*20(6,)9""" = au™ with n := Y70 g1~ So by
identifying | € Tg(9M) with xo = I(eg) € K*P, we will view Tg () as an Fy-
submodule of K*°P. Under this identification, the natural F-action translates to
[a] : o — xo(a)-zo for a € F*, and the Gx-action is via the natural action on
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K*®°P_ That is, for v € G, we have y-2¢g = {(15) (7)-2zo. This proves the first part of
the following proposition.

PROPOSITION 9.4.3.
(1) The Gx-action on the 1-dimensional F-vector space Tg(M(a,n)) is given

by the character w((f), where § := au™ and n = Zg;ol n;q? =% In par-

ticular, I acts on T (M) by the character (wq)™.

(2) In the case og = Zy, the F-valued 1 -character (w1)®|1,, __ is the mod-p
cyclotomic character restricted to Iy . In the case og = Fy[[mo]], the
F-valued I -character (w1)€|1, is the mod-my Lubin-Tate character re-
stricted to Ik .

PROOF. It remains to prove the second part of the proposition. The computa-
tion in §9.4.2 shows that G acts on T'g(Sp, (1)) via wip(u)). In the case 0g = Z,,
it follows from §5.2.13 that w” ™) is the G ¢ _-restriction to the mod p cyclotomic

(P(u))

character. In the case 0 = Fy[[m]], it follows from §7.3.7 that w; is the mod

7o Lubin-Tate character. On the other hand, since ord, (P(u) mod my) = e we have
e P(u

w1, :w§ ( ))|IK' ([

The following theorem gives a classification of F*-valued G i-characters of P-
height < h.

THEOREM 9.4.4. Assume that F embeds into k, and let ¢ be a F* -valued charac-
ter on G . Then ) is of P-height < h (Definition 8.1.7) if and only if |1, = (wa)™,
where n = Z?;()l n;q?1=% for some 0 < n; < he for each i € Z/dZ. Equivalently,
1 is of P-height < h if and only if ¢ = wé‘s), where § = au™ for some & € k™ and
n as above.

PROOF. The “only if” direction is just Proposition 9.4.3(1). For the “if” di-
rection, we first observe that (wg)™ makes sense as a character of Gx. So if
Y| = (wq)™, then we can write ¥ = Y™ (wy)", where ¥* is an unramified
character. Since any unramified og-torsion G -representation is of P-height < 0
(Proposition 8.1.10) it follows from Corollary 9.1.4 and Proposition 9.4.3(1) that
there exists a € k*, well-defined up to (kx)qd_l—multiple, such that " = w((ia).
Therefore by Proposition 9.4.3(1), we have ¢ = wéaun) = T's(Man)), where
n={ng, - ,Ng_1} O

REMARK 9.4.5. Using Proposition 9.3.3, one can improve the numerical condi-
tion in the statement as follows. an F*-valued character v is of P-height < h if and
only if ¥|r, = (wq)™, where n = Z?:_Ol n;g?=17" for some 0 < n; < min{he,q — 1}
for each i € Z/dZ, and not all n; are g — 1.

If k is finite, then we can remove the condition that F embeds in k& by using
local class field theory, and obtain the following result. Let Fy be the maximal
subfield of F that embeds in k, and put g% := #(Fy). Then a character ¢ on G is
of P-height < h if and only if 9|7, = (wg,)™ where n = Z?igl n;q%~1=% for some
n; € [0, he] for each i € Z/dyZ. The “only if” direction is by Proposition 9.4.3(1)
and local class field theory, and the “if” direction follows from Proposition 8.1.13.
(Alternatively, note that ¢ is of P-height < h if and only if +|g,, is so for some
finite unramified extension K’/K by Proposition 8.1.10).
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9.4.6. Relation with torsion crystalline representations. For this paragraph, we
assume that 09 = Z,,, (so ¢ = p). We have a norm-field isomorphism G »_ = Gx
as explained in §1.3.1.2, and we assume that F embeds in k£ and fix an embedding
xo : F — k. We start with the following observation.

LEMMA 9.4.7. The restriction of the G x -action to G » . defines an equivalence
of categories from the category of mod p semi-simple representations of G » to the
category of mod p semi-simple representations of G . Moreover, any irreducible
mod p representation peo of G, uniquely extends to a Gy -representation p which
is mecessarily irreducible.

PrOOF. By Proposition 9.3.1.1 any semi-simple mod p representation ps, of
G, is tame, and similarly, any semi-simple mod p representation p of G is
tame. On the other hand, % /¢ is linearly disjoint from any tame extension, so
we have I'y, -G . = G.x. In particular, we have p(G ) = p(G.»). The lemma
follows. O

It follows from the lemma above that the character ¢ = w((ié) from Theorem
9.4.4 can be extended to an F*-valued character of G . In fact, we can easily find
a candidate for it. Recall that § = au™ where @ € £* and n = Z?;Ol nypd=17
for some 0 < n; < he for each i € Z/dZ. Now, we put § := [a]n7" € ¢, where
[@] denotes the Teichmiiller lift and 7 is the fixed uniformizer for .#  such that

P(m) = 0. We define an F*-valued character wég) on G in the similar way that

we defined w((f), but we use the (p? — 1)th root of § € %, instead of that of §. More
precisely:

9471) Wy

fy.gl/(pdfl) . 1 7.51/(17(171)
51/ (p?=1) 0 51/(p?—1)

) eF*, VyeGy.

Let us first show that w((f) I = wl(f) under the norm-field isomorphism G » =

Gk. Recall from §1.3.2 that we have a natural embedding of ox = k[[u]] with
its image in R := lim 07/(p) under the natural embedding which sends u to

7 = {7 mod p},>0 and @ € k to {[@® "] mod p}n>o. Identifying ox with its
image in R, we have § = {[a? "]7(™ mod p},>0 € M. Now, choose a root d of
X9'=1 — § in R; or equivalently, choose a root Jc(ln) € 05 of Xa'-1 - [a?” "7 (™) for
each n > 0 so that (6(*+1)? = §("). We can directly see that for any v € G»_ we
have

047.2) @7 ()00 =780 = {@ ()7 "0 modp} = wi(7)-ba,

where the first equality is by definition of wgs) as in (9.4.1.1), the second equality is

obtained from computing G __-action on (5U(ln), and the last equality follows since

~

we embed F in R via @ — {[a? "] mod p}. (Here, we identify F* = ji,a_,(057) =
ppa—1 (M), where the isomorphisms are induced from the fixed embedding xo : F —

Furthermore, we can see that w® can be obtained as the cokernel of some
isogeny of lattice crystalline representations with Hodge-Tate weights in [0, h]. In-

deed, wy) is the product of h characters which come from the generic fibers of some
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finite flat group schemes over o0 %, by partitioning each n; into the sum of h integers
between 0 and e and applying Raynaud’s theorem [Ray74, §3.4]. We have proved
the following proposition.

PRrROPOSITION 9.4.8. IfF embeds into k, then any F*-valued character that is
obtained as a Gy -stable quotient of a lattice crystalline representation with Hodge-
Tate weights in [0, h] can be written as wc(ld) for some 6 = [a]7™, where a € k* and
n= Zf:_ol nip? 1= for some 0 < n; < he for each i € Z/dZ. This character wl(f)
is the unique G x -character whose G -restriction is w((f) =Ts(M@Gn))-

REMARK 9.4.9. By taking § = u and § = , the computation (9.4.7.2) also
shows that wy| Ipo lw, — ]F;d is the I __-restriction of a fundamental character
of level d for I .

REMARK 9.4.10. For p > 2, it is not difficult to compute the Breuil module
corresponding to M4,,) € (ModFI /6)?1, so we can recovers the above results in
[Sav08, §2]. Furthermore, one can extend the results using torsion ¢-modules with
“tame descent datum” and obtain the higher-weight generalization of [Sav08, §3].



Part 3

Galois deformation theory for G



A striking result that will be proved in Part III is the existence of universal
deformation rings and universal framed deformation rings for G i-representations of
P-height < h (Theorem 11.1.2) when the residue field k of o is finite. This result
is surprising since the usual ‘unrestricted’ G g-deformation functor has infinite-
dimensional tangent space (see §11.7.1) due to bad p-cohomological properties of
K = k(u)), so there is no ‘unrestricted’ universal G g-deformation ring in the
category of complete local noetherian rings. In the p-adic setting these G »_ -
deformation rings of P-height < h admit natural maps to crystalline and semi-
stable deformation rings with Hodge-Tate weights in [0, k], defined by “restricting
G w-action to G »_ . Using this, we provide a proof of Kisin’s connected compo-
nent analysis of certain flat deformation rings which does not use the Breuil-Kisin
classification of finite flat group schemes. (This is done in §11.6 and §12.)

Since we work with “deformation groupoids” instead of deformation functors,
we include the following section to give basic definitions and prove various properties
we need.



CHAPTER 10

Appendix III: Categories co-fibered in groupoids

The purpose of this section is to present the basic definitions and set up the
notations. We mostly follow [Kis09b, §A]. More detailed discussion can be found
in [Vis05, §3], [SGA, 1, Exp VI] and the open source algebraic stack project [Sta,

§4].

10.1. Basic definitions

Let & and .# be categories and let II = Ilz,¢ : # — & be a functor. For
an object A € Ob(&), we define the fiber of % over A as the subcategory % (A)
of .7 such that Ob (F(A4)) = {{ € Ob(F) : II(§) = A} (here, we do mean the
equality TI(§) = A, not T1(£) = A), and arrows £ — 7 in % (A) are the arrows in F
which are mapped to id4 via II. We say an object £ € Ob(F) is over A € Ob(&)
it TI(¢) = A; e, if £ € Ob(F(A)). For objects £ € Ob(#(A)) and n € Ob(F#(B))
and a morphism f : A — B, we say a morphism « : £ — n covers f : A — B if
M(a) =

The following definition is from §10 and (5.1) of [SGA, 1, Exp VI], which is
weaker than [Vis05, Def 3.1].

DEFINITION 10.1.1. Consider £ € Ob(.#(A)) and n € Ob(F#(B)), for A,B €
Ob(&). Let f : A — B be a morphism of &. Then a morphism «, which covers f,
is called co-cartesian for I if for any n € Ob(.% (B)) and any morphism o' : £ — 7/
with II(a’) = f, there exists a unique morphism 3 : n — 7’ such that o/ = foa. If
IT is understood, we say that f is co-cartesian.

n
B

T

77/ ;||

DEFINITION 10.1.2. We say that .7 is a category co-fibered in groupoids over &
(or a groupoid over &, or &-groupoid) if the following conditions are satisfied.

(G1) Every morphism in .%# is co-cartesian
(G2) (FEzistence of enough co-cartesian lifts) For any £ € Ob(F#(A)) and
a morphism f : A — B be a morphism of &, there exists a co-cartesian

145
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morphism « : £ — 1 which covers f.

§- >
.
I |
v
AT)B

Let .# be an &-groupoid and let .#’ be a subcategory of .%. We say that .#' is an
& -subgroupoid if F' has enough co-cartesian lifts.

As a trivial example, the identity functor idg : & — & is an &-groupoid.

Under the condition (G2), the condition (G1) holds if and only if all the fibers
Z (A) are groupoids [Vis05, Prop 3.22] — hence the terminology. In applications,
the base category & is a certain category of rings (with extra structures) and the
condition (G2) says that for any £ over A and f: A — B, we can always “extend
scalars” to obtain 7.

A functor II : # — & is a category co-fibered in groupoids if and only if
II° : #° — &° is a category “fibered in groupoids,” in the sense of [Vis05, (3.1.1)].
The results for categories fibered in groupoids also apply to categories co-fibered in
groupoids by changing the direction of arrows.

REMARK 10.1.3. Let % be an &-groupoid. Then any morphism « : £ — 7 in
F satisfies the following strong co-cartesian property:
Let f:=1I(a) : A— B and g : B — C be morphisms in &. For
any ¢ € Ob(.Z(C)) and a morphism v : £ — ¢ over g o f, there
exists a unique morphism 5 : 7 — ¢ over g such that v = o «.

Y
s
~
o RE

4>77

Q=<——"

i

5 B

S <—

In fact, by the existence of enough co-cartesian lifts (Definition 10.1.2(G2)), there
exists a co-cartesian morphism 3’ :  — ¢’ over g. Since any morphism in .% are
co-cartesian, v : £ — ¢ and ' o« : £ — (' are co-cartesian over g o f. So by the
definition of co-cartesian morphism, we have a unique isomorphism & : { = ¢’ over
idc such that 6 oy = 3’ o a. Now take 8 := 6! o #, and the uniqueness is clear
from the construction

As a consequence, we can prove that if II : F — & is an &-groupoid and
Il' : ' — % be an F-groupoid, then I' o II : ¥’ — & is an &-groupoid. The
existence of enough co-cartesian lifts is automatic, but to show that all morphisms
in .#' are co-cartesian for II' o IT we need the strong co-cartesian property, which
will be left to readers.

REMARK 10.1.4. The notion of &-groupoid can be viewed as a generalization
of covariant functor & — (Sets) in the following sense: a covariant functor F' :
& — (Sets) associates to each A € Ob(&) a set F(A), but an &-groupoid &
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“associates'” to each A € Ob(&) a groupoid .% (A). For an &-groupoid ., we may
associate a covariant functor |.%| : & — (Sets) which assigns to A € Ob(&’) the set
|7 (A)| of isomorphism classes in .% (A4). To rephrase, an &-groupoid % retains the
isomorphisms between objects over A while the associated functor |.%#| does not.

We can view a covariant functor & — (Sets) as a &-groupoid with some special
property, which is discussed in §10.2.1.

Now, we define “maps” between &-groupoids. The fact that fibers % (A) are
groupoids, not just sets, introduces many technical complications.

DEFINITION 10.1.5. For two groupoids IT: .% — & and I : .% — &, a functor
® . F — F'is called an 1-morphism over & if ® “preserves the base”?. In other
words, we have an equality of functors IT = II’ o ¥, not just an isomorphism.

For two 1-morphisms &, ¥ : .% = %’ we say that a natural transformation
Y1 ® — WU is a 2-morphism over & if 1 is base preserving. In other words, for
any £ € Ob(F(A)), the arrow ¢ : ®(§) — ¥(&) is a morphism in .#'(A); ie.,
IT'(¢p¢) = ida. Any 2-morphism is automatically an isomorphism and the inverse
™1 U — & is forced to be a 2-morphism. To emphasize this, we often call it a
2-isomorphism. We define a groupoid s omg(.%,.%') with l-morphisms & — %’
over & as objects and 2-isomorphisms as morphisms.

We say that a l-morphism ® : % — %’ is an I-isomorphism if there exists
another 1-morphism ¥ : .#’ — .% such that we have 2-isomorphisms ¥ o ® = id »
and ® o W = idg/. We say that U is quasi-inverse of ®.

Any 1-morphism ® : # — F#' over & induces a functor ®(A) : F(A) — F'(A)
on fibers for each A € Ob(&’). The following proposition gives a useful fiber-criterion
for a 1-morphism to be fully faithful or 1-isomorphism. The proof can be found in
Prop 3.36 and Lemma 3.37 of [Vis05].

ProPOSITION 10.1.6. A I-morphism ® : & — F' over & is a 1-isomorphism
(respectively, fully faithful as a functor) if and only if ®(A) is an equivalence of
categories (respectively, fully faithful) for each A € Ob(&).

The equality of 1-morphisms is often too restrictive; it is more natural to allow
2-isomorphisms in place of equality. For example, we often need to consider 2-
commutative diagrams (instead of commutative diagrams) of 1-morphisms, which
means a diagram of 1-morphisms with a fized 2-isomorphism® for each two paths
with the same source and target (in a “compatible” manner if there are more than
two different paths with the same source and target?). This often makes the precise
statements more complicated than the actual contents are.

We define 2-fiber product following [Sta, Def 2.2.7], which is different from the
fiber product (or 1-fiber product) of categories as defined in [SGA, 1, Exp VI, §3]
which requires the diagram below (10.1.7.3) to commute for a unique ®.

More precisely, this means the following. By choosing a preferred “co-cartesian lift” for
each £ € Ob(#(A)) under A — B, (which is called a cleavage [Vis05, Definition 3.9]), one gets a
so-called “pseudo-functor” A — % (A) from & to the “category” of groupoids. We will not work
with pseudo-functors. For more discussion on pseudo-functors, see [Vis05, 3.1.2].

°In general, a “1-morphism” of co-fibered categories is also required to be co-cartesian, which
means that it sends a co-cartesian morphism to a co-cartesian morphism. Any 1-morphism between
categories co-fibered in groupoids is automatically cartesian.

3We always fix a 2-isomorphism between each pair of paths in a 2-commutative diagram,
even though the 2-isomorphisms will be omitted from the notations.

4We will not be precise on this, but the diagram (10.1.7.3) is an example of this.
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DEeFINITION 10.1.7. Let #, %1 and %5 be &-groupoids, and let ®; : F#; — F
for i = 1,2 be l-morphisms over &. Then by 2-fiber product, we mean an &-
groupoid #; X g Z, equipped with l-morphisms pr; : % X Fo — Z;, and a
2-isomorphism w : ®; o pr; — @, o pry, which satisfies the following “2-universal
property.”

(F1) For any &-groupoid ¢, 1-morphisms ¥; : 4 — %; for i = 1,2, and 2-

isomorphism 1) : ®; o ¥; = ®y 0 Uy, there exist a 1-morphism ¥ : ¥ —
F1 X 7 Fo and 2-isomorphisms ¢; : ¥; — pr, oW for i = 1,2, which makes
the following diagram commute.

(10.1.7.1) ol — B0,

®; opry ol T D5 o pry oW
Here, “®; 0 ¢;”: ®; 0 ¥; — @, o pr; oV is the 2-isomorphism induced from
the 2-isomorphism ¢;, etc.

(F2) For any (¥, ¢1,¢2) and (V', ¢}, ¢5) which satisfies (F1), there exists a
unique 2-isomorphism 6 : ¥ =5 W’ which makes the following diagrams
commute for ¢ = 1, 2.

¢

(10.1.7.2) U, — > pr, oW
“pr, o0
PN

pr; o’

The fiber product .%; X & %> is unique up to l-isomorphism, which is unique up to
unique 2-isomorphism that makes the diagram (10.1.7.2) commute.

Roughly speaking, (F1) says that for each (¢4, %, ¥,%) as in (F1), we have
a l-morphism ¥ which makes the diagram below 2-commute in every possible way
and in every possible sense, and (F2) says that such a ¥ is unique up to unique 2-
isomorphism which respects all the 2-isomorphisms between any two compositions
of 1-morphisms with the same source and target.

(10.1.7.3) %
AN Uy
\ AN

\\ 9\ Xy,gb;)ga
\

{ l iqn

Fo

10.1.8. The 2-fiber product .#; X & %5 always exists and provided by the fol-
lowing explicit construction:
(1) An object over A € Ob(&) is a triple (&1, &2, &) where §; € Ob(#;(A)) for
i=1,2and a: ®(&) = $y(&) is a morphism in .F (A).
(2) A morphism (&1, &2, @) — (1,72, B) is a pair (v; 1 §& — 1i)i=1,2 such that
Bo®i(mn) = P2(12) 0.
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(3) The functors pr; is (§1,&2,) — & and (v1,72) — ;. We define the
2-isomorphism w : @1 o pr; = ®y 0 pry by wie, ¢.0) = Q-

REMARK 10.1.9. We record an immediate property of 2-fiber product. If ®; :
F1 — F is a 1-morphism which makes %7 an .%-groupoid (for example, if F# = &),
then pry : %1 Xg P2 — o is an Fe-groupoid. The proof uses the strong co-
cartesian property (Remark 10.1.3). Combining this with the last paragraph of

Remark 10.1.3, the functor %1 X & %5 RN Fo I gisa groupoid over &.

It is also useful to note that if ® is fully faithful (respectively, 1-isomorphism)
then so is pr;. Indeed, for two objects (1,82, @), (1,12, 8) of F1 Xz F5 and a
morphism v; : & — 7y in %, we can always find a unique morphism v = (y1,72) :
(&1,&2, ) — (m1,192, 8), so that pry(vy) = v1, as follows: considering the following
diagram

Py (€1) —— Pa(&2)

|
<1>1('Yl)l | Bo®y(vy1)oa™ !
\

Dy (m) 4;> ®3(n2)

and using the full faithfulness of ®5, we let 75 : & — 12 be the unique morphism
in Z, such that ®5(v2) = B0 ®1(y1) o a~t. If, furthermore, @5 is essentially
surjective, then so is pry: for any & € Ob(%#1(A)), we may find & € Ob(F,(A))
and a : ®1(&;) = Po(&r) in F(A), so we have pry (&1, &, a) = &.

REMARK 10.1.10. Consider two functors |.#1 x # Z3| and |.Z1| x| #||F2| on &.
We have a natural transformation

(10.1.10.1) \F1 %z Fo| = | Fa] X2 | F2l; (&, 6, a)] = ([G], [&2)),

which is seen to be surjective. But this natural transformation does not have to be
an isomorphism, that is to say, the formation of 2-fiber product does not commute
with the passage to the associated functor. This is why we work with “deformation
groupoids,” rather than deformation functors. This is observed by [Kis09b, (A.6)].

Here is an example when the natural transformation (10.1.10.1) is not an iso-
morphism. We start with a non-trivial group G, and we will construct a “uni-
versal G-torsor” over a fixed category & as follows. Define a category &/G by
Ob(&/G) = Ob(&) and Homg,G(A, B) = Home(A, B) x G, and define a func-
tor llg,q : /G — & by the identity map on objects and the natural projection
Homg (A, B) x G - Homg (A, B) on morphisms. Clearly &/G is an &-groupoid.
Viewing & as an &-groupoid via the identity functor, we have a l-morphism
® : & — &/G defined by the identity map on objects and ®(f : A — B) = (f,eq)
on morphisms. Then both functors |&| and |&/G| maps any object A € & to an
one-element set {A}, and |®| is the “identity natural transform” between these
functors. So |&] X|£/¢| |€] map any object A € & to an one-element set {A}.

Now, let us work out the 2-fiber product & x ¢, &. Using §10.1.8, objects
of a fiber (& X/ &)(A) are of the form (A, A, ), where « is any element of G
and all the morphisms in (& x¢,g &)(A) are identity morphisms. In other words,
the groupoid (& xg/q &)(A) is a set, and is in bijection with G. In particular
the natural transformation ’é’ Xe/q £’| =& Xe/q & — || X18/¢) |€] cannot be
an isomorphism because (& x¢,g &)(A) = G and |&|(A4) X|5/q)4) |€] (A) is an
one-element set.
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Lastly, we remark that if either ®; or ® is fully faithful as a functor, then the
natural transformation |7 x z F2| — |F1| x| #| |#2| is in fact isomorphism. This
can be read off from the discussion in Remark 10.1.9.

We define one more operation which will be needed soon.

DEFINITION 10.1.11. Let & — & be any functor, which may not define a
category co-fibered over &. For an &-groupoid II : .% — &, we define a category
Fg as follows: objects are pairs (£, A’) where £ € Ob(.%) and A’ € Ob(&”) map to
the same object in & (not just isomorphic ones), and morphisms (¢, A’) — (n, B')
are pairs (¢ — n, A’ — B’) which map to the same morphism in &. In [SGA, 1,
Exp VI, §3], this category is called the fiber product and denoted by # x ¢ &”, but
this is not the 2-fiber product even if &' happens to be co-fibered over &.

There are natural “projection functors” Fg — F and Fe — &', and it is
straightforward to check that the second projection makes .Fg an &’-groupoid.
(This is stated, without proof, in [SGA, 1, Exp VI, Prop 6.6].) We call this &”-
groupoid the base change of % over &'.

In the special case when &’ is a subcategory (respectively, a full subcategory),
one can show that %/ can be viewed as a subcategory of % (respectively, a full
subcategory of %) by the first projection. In this case, we often write Z | instead
of Zg:, and call it the restriction of . over &”.

REMARK 10.1.12. We end this subsection with a remark on “aesthetics.” By
choosing a cleavage [Vis05, Def 3.9], in other words a preferred cartesian lift for
each arrow in &, we can associate to an &-groupoid II : % — & a “pseudo-functor”
A — F(A) from & to a “category” of groupoids. This is called a pseudo-functor
because the equalities in the axioms of functor are replaced by isomorphisms. The
notions of pseudo-functor on & and groupoids over & with (a fixed) cleavage are
equivalent.® See Prop 3.11 and §3.1.3 in [Vis05].

This pseudo-functor description of &-groupoids may appeal as more satisfactory
one. For example to define a pseudo-functor, one just have to define a fiber .% (A)
for each A € Ob(&) and specify how they “pull back.” On the other hand, unless
an &-groupoid .7 is co-fibered in sets §10.2.1 or split [Vis05, Def 3.12], there is no
canonical or preferred choice of cleavage on .#. So we do not choose a cleavage,
unless it does not sacrifice concreteness.

10.2. The 2-Yoneda lemma and representibility

The goal of this subsection is to define representability for an &-groupoid. We
first explain how to view a functor & — (Sets) as an &-groupoid, and identify the
class of &-groupoids which come from functors. Then we may define the repre-
sentability of an &-groupoid using the representability of a functor.

For the purpose of completeness, we state without proof the 2-Yoneda lemma,
which plays the same role for &-groupoids as Yoneda lemma does for functors.
Roughly speaking, the 2-Yoneda lemma says that an object A € Ob(&) can be
viewed as an &-groupoid. Even though it is not technically necessary to discuss
2-Yoneda lemma®, it offers conceptual clarification.

5By the axiom of choice, any &-groupoid has a cleavage.
61t is possible to define the representablilty of a functor without stating the Yoneda lemma.
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10.2.1. Functors and categories co-fibered in sets. We view a set as a groupoid”
where all morphisms are identities. We say a groupoid Il : & — & is co-fibered in
sets if the fiber .Z#(A) for each A € Ob(&) is a set. This is equivalent to requiring
that for each £ € Ob(%#(A)) and f : A — B, there exists only one (co-cartesian)
arrow £ — n over f. See [Vis05, Prop 3.25] for the proof.

It is not hard to check that if II : # — & is co-fibered in sets, then the
assignment A +— .F(A) defines a functor F' : & — (Sets). In fact, the converse is
also true. Namely, for a given functor F' : & — (Sets), we can construct a category
IT: # — & co-fibered in sets with .# (A) = F(A) for each A € Ob(&"). We give the
construction without proof. Define a category .#, so that an object is a pair (£, A)
where £ € F(A) and a morphism (£, A) — (n, B) is an arrow f : A — B in & such
that F'(f) : F(A) — F(B) takes ¢ into n. By forgetting £, we obtain &% — & which
is co-fibered in sets.

From now, we often use the same letter F' to denote the category co-fibered
in sets which corresponds to a functor F' : & — (Sets). Note the groupoid
A omg(F, F’) of 1-morphisms of categories co-fibered in sets is a set. For any
l-morphism ¢ : F — F’ of categories co-fibered in sets over &, one obtains a
natural transformations of functors F' — F’ by putting ¥4 : F(A) — F'(A) for
each A € Ob(&). Conversely, for given functors F, F’ : & — (Sets) and a natural
transformation 1 : F — F’, one obtains a 1-morphism F' — F’ over & by putting

(64) = (Wa(©),4) and [(&,4) L (0. B)] = [a(©), 4) L (ws(n), B)], where
f: (& A) — (n,B) means the morphism defined by f: A — B. Therefore, we con-
clude that the notions of category co-fibered in sets and functor are interchangeable,
and the set s omg(F, F') of 1-morphisms is naturally in bijection with the set of
natural transformations F' — F’ of functors.

For each &-groupoid .#, we have associated a functor |.%| (Remark 10.1.4). We
denote by the same notation |%| the category co-fibered in sets which corresponds
to the functor |.#|. Then we obtain a 1-morphism .# — |.%#| by associating to each
object & the “isomorphism class” of £ over TI(E).

10.2.2. Categories co-fibered in equivalence relations. The notion of category
co-fibered in sets is not stable under 1-isomorphisms. In this section, we identify
the class of &-groupoids which are 1-isomorphic to categories co-fibered in sets.

We say a groupoid € is an equivalence relation® if there exists at most one
morphism between any two objects of ¥. A groupoid % is an equivalence relation
if and only if the natural functor € — |%|, which associates to £ € Ob(%€) the iso-
morphism class of £, is an equivalence of categories. In other words, an equivalence
relation is a groupoid which is equivalent to a set (viewed as a groupoid).

We say an &-groupoid % is co-fibered in equivalence of categories if for each A €
Ob(&), the fiber .% (A) is an equivalence relation. To rephrase, for any objects £, n €
Ob(%#) and a morphism f : TI(§) — TI(n) in &, there exists a unique morphism
& — nover f. It follows from Proposition 10.1.6 that an &-groupoid % is co-
fibered in equivalence relations if and only if the natural 1-morphism &% — |Z|

"We always assume that the objects of a groupoid form a set.

8For an equivalence relation ¢, we obtain an “equivalence relation” on Ob(%) in the usual
sense: €& ~ n for £&,n € Ob(¥) if and only if Home(&,n) is non-empty. Conversely, for an
“equivalence relation” R C X X X, we can construct an equivalence relation ¢ with Ob(sC) = X,
and for &, € X, set Home (§,7n) = {*} if and only if & ~ .
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is a l-isomorphism. In other words, an &-groupoid % is co-fibered in equivalence
relations if and only if it is 1-isomorphic to a category co-fibered in sets over &.

Now to each A € Ob(&), we associate a category (&/A) co-fibered in sets over
£.

DEFINITION 10.2.3. Let A € Ob(&). We denote by (&/A) the category co-
fibered in sets which correspond to the functor Homg(A, —) : & — (Sets). Explic-
itly, (€ /A) can be described as follows.

(1) An object is an arrow f: A — Bin &.
(2) A morphism « : (A EiN B;)— (A ELN Bs) is an arrow « : By — Bj such
that aco f1 = fo.
(3) The functor II4 : (6/A) — & is defined by forgetting the morphism from
A. In other words, IT4(A — B) = B and 114 [(A —B)) % (A— B2)] =
[B1 = Bs).
Forany f : A — A, we have a natural transformation Homg (A, —) =°f, Homg (A, —)
by pre-composing f. We let (&/f) : (§/A) — (&/A’) denote the correspond-
ing 1-morphism. Explicitly, (£/f) : (A — B) — (A’ ER B) on objects
(A — B) € Ob(&/A).
The Yoneda lemma and the discussion in §10.2.1 implies that the morphisms
A — B in & and the 1-morphisms (&/B) — (&/A) are in bijection. In fact, we
have the following stronger version of the “Yoneda lemma” for &-groupoids.

Let .# be an &-groupoid. Define a functor evy : omg((&/A), F) — F(A)
by “evaluating” at the universal object id4 € Ob(&/A). More precisely,

(1) For any l-morphism ® : (&/A) — F, we define evs(®) := P(idy) €
Ob(.Z (A)) by evaluating at the “universal object” (A Ma, A) € Ob(&/A).
(2) For two 1-morphisms ®,®’ : (£/A) — .F and a 2-isomorphism ¢ : & —
@', we put evs(y) = 1iq,, which is a morphism in .7 (A).
PROPOSITION 10.2.4 (2-Yoneda lemma). The functorevs : 7 omg((£/A), F) —
F(A) is an equivalence of categories.

If .% is co-fibered in sets then 2-Yoneda lemma recovers the usual Yoneda lemma
for functors.

SKETCH OF THE PROOF. We indicate the idea how to construct a quasi-inverse
of evy. For any object £ € Ob(.#(A)), we can define a 1-morphism ®¢ : (6/A) — F
so that ®,(ida) = &, as follows. For any (A ER B) € Ob(&/A), take a co-cartesian
lift £ — n over f and put ®¢(A ER B)y=n.If(A ER B) L (A EiR B’) is a morphism
in (£/A), then the strong co-cartesian property (Remark 10.1.3) gives a morphism

D (A ER B) — ®:(A EiR B’) over g, which we take as U¢(g). One can check that
®; is well-defined and that & — ¢ gives a quasi-inverse to eva. [

Before we define the notion of representability for &-groupoids, we record the
following useful fact. Let IT : .# — & be a groupoid, and let & € Ob(%#(A)) for
A € Ob(&). We may define a groupoid (% /€) over .%, and by Remark 10.1.3,
(Z7/)8) — F Leisa groupoid over &. On the other hand, the functor II induces
a l-morphism II|4 : (F/€) — (&/A) over & in an obvious manner. The functors
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(F/&) Ha, (£/A) — & and (F)E) — F L & are identical, hence give the
identical &-groupoid structure on (Z /§).

The following lemma is just a re-phrasing of the strong co-cartesian property
(Remark 10.1.3).

LEMMA 10.2.5. The 1-morphism |a : (F/E) — (&/A) over & is always a
1-isomorphism.

DEFINITION / PROPOSITION 10.2.6. An &-groupoid % is called representable if
the following equivalent properties hold.

(R1) For some A € Ob(&), there exists an 1-isomorphism @ : (§/A) = Z.
In this case, we say that A represents .7, and the object £ := ®(id,y) €
Ob(.Z(A)) is called the universal object.

(R2) For some ¢ € Ob(.%), there exists an 1-isomorphism ® : (F/¢) = Z
over &. In this case, we say that A := IIz,¢(§) € Ob(&) represents .7,
and the object ¢ is called the the universal object.

Furthermore, the objects A and £ which satisfy one of (R1) and (R2), if exist,
satisfy the other. The representing object A € Ob(&’) is unique up to canonical
isomorphism in &, and the universal object £ is unique up to canonical isomorphism

in %.

PROOF. The uniqueness aspect of the statement follows from 2-Yoneda lemma,
like in the case of functors, and the rest of the claims follow from Lemma 10.2.5. [

Recall that the &-groupoid (&/A) co-fibered in sets corresponds to the repre-
sentable functor Homg (A, —), therefore this notion, especially (R1), recovers the
usual representability for functors if .% is co-fibered in sets. Also (R2) (or Lemma
10.2.5) says that for some object £ € Ob(&), the &-groupoid (F/€) is repre-
sentable.

Even if .% is representable, it does not have to be co-fibered in sets over & but
is necessarily co-fibered in equivalence categories. Conversely, the &-groupoid . is
representable if and only if the functor || is representable and # is co-fibered in
equivalence relations.

DEFINITION 10.2.7.

(1) A l-morphism @ : F’' — . over & is called relatively representable® if for
each £ € Ob(.F), the 2-fiber product #/ := (F /€) Xz ¢ #', which is an
&-groupoid by Remarks 10.1.9, is representable over &.

(2) Assume that & is a subcategory of the category of rings. Then ® is called
formally smooth if the associated natural transformation |®| : |F'| — | Z|
is formally smooth.

For a property P of objects of &, we say a representable &-groupoid % has
the property P if the representing object A € Ob(&’) does. Similarly for a property
P of morphisms in &, we say a relatively representable 1-morphism ® : .%’ — %
has the property P if the morphism in & that represents ®¢ := pry : F{ — (F/£)
has the property P. (By assumption, both .7} and (/) are representable over

9If .F and .#’ are co-fibered in sets and @ is fully faithful as a functor (i.e., if ® is a monomor-
phism of functors |#'| — |Z]|), then this definition of relative representability coincides with
seemingly more popular one, e.g. [Maz97, §19], by Schlessinger’s criterion.
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&.) On the other hand, we define formal smoothness for any 1-morphism ®, not
necessarily relatively representable.

One can check, from §10.1.8 and the definitions, that relative representability
and formal smoothness stable under “2-categorical base change.” More precisely,
we have

PRrROPOSITION 10.2.8. Assume that we have the following “2-cocartesian dia-
gram”

g’ g
9/4@>32"

in other words, the natural 1-morphism 4’ — F' X 9, induced from the above

diagram by 2-categorical universal property, is a 1-isomorphism. Then the following
hold.

(1) If @ is formally smooth, then so is ®’.

(2) If ® is relatively representable, then so is ®'. Furthermore, if x € Ob(4(A))
maps to & € Ob(F(A)) by the I-morphism &G — F, then the 1-morphism
g — ﬂé’ of (&/A)-groupoids induced by the 2-categorical universal prop-
erty is a 1-isomorphism, so the representing objects of both (& /A)-groupoids
are isomorphic.

10.3. Deformation and framed deformation groupoids

We now define groupoids whose objects correspond to “deformations” or “framed
deformations” of a residual G i-representation. They are groupoids over the fol-
lowing “base categories” & = AR, , AR, , Aug,, Aug,, which will now be defined.

10.3.1. Base categories. Let 0 be a local domain that is a finite extension of ¢¢
with residue field F, and put F' := Frac(o). Let AR, be the category of artin local
o-algebras A whose residue field is F (via the natural map). Similarly, let Q/ID\‘io be
the category of complete local noetherian o-algebras with residue field F.

We often need to consider “deformations” over a ring which is not a complete
local noetherian ring, so we introduce the category 2lug, of pairs (A4, I) where A is
an o-algebra such that 7y is nilpotent in A, and I C A is an ideal containing m, A
such that IV = 0 for some N. Morphisms (A, I) — (B, J) in ug, are o-algebra
maps A — B which send I into J. Using the fully faithful functor AR, — Aug,,
A — (A,my), we regard AR, as a full subcategory of Aug,. Any o/m,-algebra
A can be viewed as an object in ug, by setting I = {0}. Also, A := (o/m)[{]
together with I := m,-A defines an object in 2Aug, that is not artinian with non-zero
I. In many cases, the nilpotent ideal I does not play an important role and can be
replaced by bigger nilpotent ideal, for/e\xample the nilradical of A if A is noetherian.

We may also define a category dug, of pairs (A, ) where A is an topological
o-algebra which is an admissible ring (so necessarily 7y is topologically nilpotent),
and I is an ideal which contains m, A and such that I/m}A C A/m7 A is nilpotent
for each n. Morphisms (A, I) — (B, J) are continuous o-maps which send I into J.
We have a fully faithful functor AR, — QTu\go, A (A,my) , so we regard AR, as

a full subcategory of Q/h;go. We will not use this category very often.
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10.3.2. Deformation groupoid. Let TF be a finite-dimensional F-vector space
and let pp : Gx — GL(TF) be a continuous homomorphism. We define the category
Dy, of deformations of pg, and the functor 1I : &,, — AM, which makes Z,, a
groupoid over AR, , as follows. An object over A € AR, is (pa,Ta,ta), where Ty is
a finite free A-module with a continuous A-linear action of G by pa, and t4 : T =
Ta ®4 (A/my) is a Gi-equivariant isomorphism over the natural isomorphism
F = A/my. Given a morphism f : A — B in AR,, we define a morphism
a:(pa,Ta,ea) — (plg, Th,tz) over f to be an equivalence class of G g-equivariant
morphism T4 — Tp over f which respects t4 and t/z; i.e., & makes the following
diagram commute:

(10.3.2.1) Thy R4 A/mA —>T Xp B/mB)

\/

where @ is induced by «, and two morphisms « and o’ are equivalent if one is
a (1 + mp)-multiple of the other. Since any morphism over id4 is necessarily an
isomorphism by Nakayama’s lemma, the the category Z,.(A) of objects over A and
morphisms over id4 is a groupoid for any A € AR,. Furthermore, if Endg, (pr) =
F, then for any deformation ps we have Endg, (pa) = A by Nakayama’s lemma
applied to A — Endg, (pa). So the groupoid Z,,(A) is an equivalence relation for
any A € AR, when Endg, (por) = F.

One can check that the assignments (pa,Ta,t4) — A and a — [ define a
functor II : 9,, — AR,, and the fiber over A € AR, is exactly Z,,(A). By the
universal property of tensor products, giving a morphism « in Z,, is equivalent to
giving a morphism Ty ®4 ¢ A’ = T, in Z,,(A’). This shows that any morphism
in 9, is co-cartesian, hence 2,, is a groupoid over 2AR,.

We may repeat this construction by AR, replaced with 9/157%0 and requiring p4
to be continuous for the profinite topology on G and the m4-adic topology on
Aut4(T4), obtaining a groupoid I : @pF — Q/li)\‘{o such that we have an “equality”
Dpe = Apﬂmmo of ANR,-groupoids. Later in §10.4.1, we give a general recipe to
extend a groupoid over AR, to a groupoid over Q/(E?%o via “projective limit”, which
recovers %,, when applied to Z,,.

Now, we define another groupoid II : .@m — 2ug, which “extends” Il : Z,,, —
N, as follows. An object over (A,I) € Aug, is (pa,Ta,ta,1)), where Ty is a
free A-module with a continuous action of Gx by pa (for the discrete topology on
A), and va ) 2 Tr — Ta ®4 (A/I) is a G-equivariant morphism over F — A/I
which induces an isomorphism Ty @ (A/I) — Ta @4 (A/I). A morphisms « :
(pa,Ta,va,n) — (ij,T]’g,LzB,J)) over f: (A,I) — (B,J) is an equivalence class
of G k-equivariant morphisms o : T4 — Tp over f which respect (4, 1) and L%B’J);
i.e., a makes the following diagram commute:

(10.3.2.2) Ta®a (A)]) —2— T @5 (B/J)
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where @ is induced from «. We say such a; and ag are equivalent if they are
(1 4 J)-multiples of each other.

For A € AR,, we have an “equality” of categories Z,,(A) = épF(A,mA),
therefore “equality” of AM,-groupoids Z,, = NPF\ngO. Later in §10.4.4, we give a
general recipe to extend a groupoid over 2R, to a groupoid over Aug, via a “direct
limit,” recovering épF when applied to Z,,.

10.3.3. Framed deformation groupoid. Let Ty and pr be as above, and we
fix a framing fp : F* = Tp. We define the category 7, (= 2, ;) of framed
deformations of pr, and the functor II° : 27} — AM, which makes 7} a groupoid
over AR,. (The groupoid @EF will depend on the choice of framing Gr, but we do
not specify this in the notation unless necessary.) Objects over A € AR, are tuples
(pa,Ta,t,B4) where (pa,Ta,t) is an object in Z,,(A), and B4 : AP" = Ty is a
framing which lifts Bp via t4; i.e., 54 makes the following diagram commute.

A
(10.3.3.1) (Afmq)en 22 ey (Afma)
NT :TLA
bn =
F BrF Tr

Given a morphism f : A — A’ in AR,, we define a morphism a : (pa, Ta,ta,Ba) —
(P'ars Ty tar, B40) over f to be a Gg-equivariant A-morphism T4 — T, which
respects all the structures in the sense that we have the following commutative
diagram in addition to (10.3.2.1).

By
(10.3.3.2) (49" ——— T,
Sl
AP —— Ty

Ga

Now, we can repeat the previous discussion to obtain groupoids II7 : 9& —
AR,, 117 : @; — AR, and 17 : épﬂ — RAug,. For (A,I) € RAug,, an object
(pa,Ta,ia,Ba) € @EF(A,I) additionally satisfies the following commutative dia-
gram.

(10.3.3.3) (a/nen —2E80 1y 4 (A7)
T |-
dn =

F BrF Tr

The 1-morphism @EF — 9, defined by “forgetting the framing” is formally
smooth in the sense of Definition 10.2.7(2). Furthermore, it makes 2, into a

ﬁ(n)—tomor over 9,,, where P/Cil(n) is a functor ﬁ(n) A PTG\L(n,A) =
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{g € PGL(n,A)| gmodmy = Id,} on 2AR, (or the corresponding category co-
fibered in sets)'®. More precisely, we have an 1-isomorphism

E: PGL(n) xaug, 75 > 9% xg,, 9

defined by Z(ga, (P4, Ta, 4, 84)) = ((pa, T, ta, Ba), (pa, Ta, LAﬂAO(QAZ)*l)a idr, )
for each g4 € PGL(n, A), where ga € GL(n,A) is a lift of ga. This 1-morphism
does not depend on the choice of lift g4 up to 2-isomorphism, since for any a €
1+m, we have an isomorphism ((pa, Ta, ta, B34), (pa, Ta,ta, Bao(aga)™t),idr, ) =
((pa,Ta,ta,B4),(pa,Ta,ta,Ba0(ga)"t),aidr, ~idz,). One can directly check
that this 1-morphism is actually an 1-isomorphism.

As a consequence, the l-morphism @EN — 9,, is relatively representable,

namely for any { € Z,,(A), the groupoid .@Em is representable by P/G\L(n) 4. The

same properties hold for the deformation groupoids over Q/lS?ig and Aug,. We define
PGL(n) : (A, I) — {g € PGL(n, A)| g mod I =1d,} on RAug,

10.4. 2-categorical limits

In this subsection, we give a general recipe to extend a groupoid over 2R,
to a groupoid over 2R, via a 2-projective limit (respectively, to a groupoid over
2Aug, via a 2-direct limit). For the AR,-groupoids Z,, and 9 > we have already

constructed @pw, @pr and @EF, @Em, respectively, which are 1-isomorphic to the
groupoids we obtain by the general recipe below. But the general recipe is needed
when we work with subgroupoids of Z,,, and @;’F which can be naturally described
only over AR,, for example the full subcategory of deformations of P-height < h,
which is introduced in Definition 11.1.1.

For concreteness, we work with the restrictive choice of base categories which
will come up in the application, but our definitions of 2-projective and direct lim-
its can generalize to arbitrary base categories. We do not attempt to “explain”
our definition, and refer to [SGA, 4, Exp VI, §6] for more general and complete
discussions. Since [SGA, 4, Exp VI] works with fibered categories, not co-fibered
categories, we often have to change the directions of arrows to translate the results
for co-fibered categories.

10.4.1. 2-projective limits. Recall that any functor on AR, can be uniquely
extended to a functor on 9/15)\‘ig by taking a projective limit. For a groupoid over
ANR,, the same idea works, except that the definition of projective limit is more
technlcal Roughly speaklng, to a AR, group01d ZF, we associate the 919‘1‘. -groupoid
7 so that the fiber .7 (A) over A € Q(ERU is the category of projective systems of
objects in (A/mA) We refer to [SGA, 4, Exp VI, (6.10)] for interested readers.

For A € 919‘{0, let Q[%A be the category where the objects are the o-algebras
A/’ for n > 0 and the morphisms A/m’ — A/m’j are the natural projections.
Let ¢4 be a groupoid over Q&Rf . For example, given a groupoid .# over AR, let
94 =7 |ngx be the sub-category of % whose objects and morphisms are over those

101 other words, P/G\L(n) is a formal completion of the linear algebraic group PGL(n), along
the identity section.
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of AR, Then we define a 2-projective limit of 4 as follows:
(10.4.1.1) hmg(A/mA) H omam, (AR, D),

where 7 omgm, (-,-) is the category of base-preserving'! functors. “Evaluating
at A/m7” gives a functor lim ¢(A/m}) — ¢(A/m7) for each n, and we have a
canonical 1-morphism Qli)%f x lim | Y (A/m’;) — ¢ of groupoids over Qli)‘{f . In fact,
this 1-morphism is universal among 1-morphisms 919%;4 x C — ¢ for any category
C.

The groupoid lim ¢ (A/m",) has the following explicit description. The objects
are projective systems {&,| &, € 9(A/m’;)}, and morphisms {£,} — {n,} are
collections {&, — 7y, }r» of morphisms in ¢ which are compatible with the transition
maps, i.e., make the following diagram commute:

£n+1 —TIn+1

N

£7L In

If A is artin local with (m4)™ = 0, then the functor {{,} — &,, defines an equiv-
alence of categories lim &(A/m%) — ¢(A). We can check that

(10.4.1.2) lim & (A/m})

n

= lim [ (A/m}).

n

In particular, for a category G co-fibered in sets (i.e. a functor), the 2-projective
limit lim = G(A/m’) is equivalent to the set-theoretic projective limit of the G(A/ mﬁ)

Now, let .# be a group01d over AR, . We now define a groupoid .% 7 over 2[9%0,
as follows. For any A € AR,, we set 3?( ) = lim #(A/m}). To a morphism

f+:A— Bin 2[9‘{0, we can naturally associate a functor f : Qli)%f — QLER?. For
two objects £ € Ob(j\(A)) and n € Ob(gé\(B))7 a morphism o : & — n over f
is a natural transformation £ — no f. (We view & and 7 as functors into .# via
£ AR — Flama — F and 1 : ARE — Flame — F.) More concretely,
a morphism {&,} — {n.} over f is a collection {&, — n,} of morphisms over

A/m — B/m},, which are compatible with the transition maps.

This 919% -groupoid Z extends Z; 1.e., we have a 1-isomorphism . |Ql§){ = 7.
(This amounts to the fact that the natural “projection functor” lim .7 (A/m ) —
Z (A) is an equivalence of categories for each A € AR, .) Conversely, let .%’ be a
Q/li)\‘io-groupoid. We choose a cleavage (Remark 10.1.12) so that for any A — A/m’;,
we obtain a functor #'(A) — F#'(A/m%). Then we obtain a 1-morphism E : %’ —
mo of Q/lf)\%o—groupoids with cleavage, as follows: for each A € Q/(S)\%U, we define
a functor 24 : F'(A) — lim | F'(A/m7) by sending & t0 {4/mn, according to the
choice of cleavage.

e view Ql‘ﬁ;q as a category over 219R, via the natural inclusion functor. Base-preserving
functors are defined in Definition 10.1.5, and morphisms of base-preserving functors are also
required to be base-preserving in the sense of Definition 10.1.5. If ¢ were a general co-fibered
category, then we need to require that any functor in J#omgn, (2[9‘{34, %) sends any arrow in Ql‘ﬁf
to a cartesian arrow, but this is automatic since # is a groupoid over 2R, .
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DEFINITION 10.4.2. Let .%’ be an Q/li)\‘ig—groupoid. We say that the formation
of F' commutes with 2-projective limits if for some choice of cleavage (equivalently,
for any choice of cleavage) on .#’, the l-morphism Z : .F' — F'|gn, is a 1-
isomorphism.

Here is an example. Let 7 = 9, and F° = 2, and we already defined AR,-
groupoids Z,, and @;’F in §10.3. We show that their formation commute with 2-
projective limit. We first choose a cleavage so that Z,,.(A) — Z,,(A/m") is given by
T +— T/m", T, and similarly for @SF Let .7 and .Z7 be the AR, -groupoids obtained
by the 2-projective limits construction discussed above. Then, that = : @pw = F
and E" : @EF . ZP are l-isomorphisms follows from Proposition 7.4.1.

DEFINITION 10.4.3. We say that an R,-groupoid .% is pro-representable if F
is representable.

10.4.4. 2-direct limits. In this section, we explain how to extend # = %,,, or
F = @;‘F over the bigger category Aug, by using a 2-direct limit.

For (A,I) € ug,, we form a category AR of pairs (4, ja : A — A),
where A" € AR, and j4 : A’ — A maps my into I. We require that morphisms
respect the injective map j4.. We will often view A’ as a o-subalgebra of A via ja-,
and will not mention j4. explicitly. For two objects A’ and A” in mmff‘*f )| we can
find another object S[A’ ®, A”] which contains A" and A” as a o-subalgebra of A.
In other words, the category Q[ERL(,A’I ) is filtered.'?

To motivate the construction, consider a AR,-groupoid .# which is repre-
sentable by R € Q/lf)\‘io. Then for a noetherian o-algebra A where 7y is nilpotent,
consider the set of continuous o-maps Hom, (R, A). Since by continuity any R — A
factors through some A’ € Ql%gA’I) where I C A is the nilradical, we have a natural
bijection

Hom, (R, A) = lim  Hom,(R, A") =lim 7 (A")
Aream(tD A

For an arbitrary 2R,-groupoid %, it will be natural to define .% (A, I) as the direct
limit of .7 (A’) over A’ € ARAD . But since .7 (A’) does not have to be equivalent
to a set, we need to clarify what we mean by the “direct limit.” Roughly speaking,
to a AR,-groupoid &, we will associate the Aug, -groupoid 7 so that the fiber
j:(A, I) over (A,I) € Aug, is the category of direct systems of objects in .7 (A’)
for A’ € AR,
Let ¢ be a groupoid over QliRE,A’I). For example, we may take & := F|, .an
for some groupoid .% over AR, as before. Define the 2-direct limit li—H}A’emmgAv” Eg(A/)
as the category obtained from ¢ by “formally inverting” all the co-cartesian mor-
phisms, hence all morphisms, in ¢. Since Ql%gA’I) is filtered, the category @A'emm(’“’” G(A)

is a “localization” of ¢ in the following sense. The set of objects is exactly Ob(¥),

121f the base category is not filtered then the 2-direct limit can be counter-intuitive. For a
more precise statement, see [SGA, 4, Exp VI, Exercice 6.8(1)].
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and the morphisms are equivalence classes of the following diagrams:

(10441) §A' ’I]B/

NP

’)73// y

where a and 8 are morphisms in ¢. We write the above morphism as 37! o a,
and the equivalence relation is generated by 371 oa ~ (y 0 3)~1 o (yoa) for any
morphism v : ng» — np» in 4. To rephrase, the set of morphisms can be written
as follows:

(10442) Homli-rglg(gA/’T]B/) = h_H)l HOmg({A/7nB//).
ngr €Ob(Z /np)

This gives a well-defined category (in particular, the composition of morphisms
is well-defined) since Qlin,A’I ) is filtered and there are enough co-cartesian lifts in
¢ (Definition 10.1.2(2)). See [SGA, 4, Exp VI, Prop 6.5] for more details, up to
reversing the directions of arrows.

The natural inclusion define a functor ¢ — lim a.n Z(A"). We denote the

—SA’EARS

image of £ € Ob(¥) under this functor by {¢}. For A € 2R, and a groupoid ¢ over

ARA™A) the natural inclusion ¢(A) — lim ,, _oorcama) (A') is an equivalence of

categories since A € Qli)%‘(,A’mA) is the final object. In general, the 2-direct limit is
equivalent to the “category of direct systems” by associating to each €4/ € Ob(¥)
a direct system which has &4/ in the A’-slot.'® From this, we can check that

(10.4.4.3) lim ¢(A)|= lim |9](A).
— —
Aream{t Arean{t D

In particular, for a category G co-fibered in sets (i.e. a functor), the 2-direct limit

lim AreamAD G(A’) is equivalent to the set-theoretic direct limit of G(A’) over

A e 2{9%5;“7”. For more discussion of 2-direct limit, see [SGA, 4, Exp VI, §6],
especially Proposition 6.2 and the discussion which follows. -
Now, we can extend any 2R,-groupoid .# to a groupoid .# over 2ug, by

declaring .# (A, I) := @A'emmf{“’” F (A" for (A, I) € Aug,. A morphism {€a} —
{np'} over f: (A, I) — (B,J) is defined in a similar fashion to (10.4.4.1). More
precisely, we consider B” € QlD‘igB’J) so that f(A’) ¢ B” and B’ C B” as o-
subalgebras of B. Then, a morphism {£4/} — {np/} over f means an equivalence

class of diagrams of the following form:
(10.4.4.4) Ear np
S
nB

where « is over f|a : A’ — B”, and (3 is over the inclusion B’ — B’ of o-
subalgebras of B. We write this morphism as 37! o & and the equivalence relation
is generated by 371 oa ~ (yo B3)"to (yoa) for any v : ngr — npm over the

I3The essential surjectivity is clear and the full faithfulness follows from (10.4.4.2).
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inclusion B” < B’ of o-subalgebras of B. To rephrase, the set Hom ({4}, {n5'})
of morphisms over f : (A,I) — (B, J) can be written as follows:

Homy¢({€a}, {np'}) == lim Homy,, (§ar,np7).
B/CB"”

It can be checked that . is an 2ug, -groupoid.*

This 2lug,-groupoid .Z extends .Z; i.e., we have a 1-isomorphism .# — Z |ym, .
(This amounts to the fact that the natural “inclusion functor” .7 (4) — li_rr)lA,emmgA,mA) F(A)
is an equivalence of categories for each A € AR,.) Conversely, let .Z’ be a Aug,-

groupoid. We choose a cleavage so that for any A’ € QlD‘igA’I), we obtain a functor

F'(A") — F'(A,I). Then we obtain a l-morphism Z : F'|gqn, — F' of Aug,-
groupoids with cleavage, as follows: for each (A,I) € 2lug,, we define a functor
E(4,1) : lim , F'(A") — F'(A, ) by sending {{} to {(a,1), according to the choice
of cleavage.

DEFINITION 10.4.5. Let %’ be an 2lug,-groupoid. We say that the formation of
F' commutes with 2-direct limits if for some choice of cleavage (equivalently, for any

choice of cleavage) on .#’, the 1-morphism Z : F#/|gqm, — %’ is a l-isomorphism.

10.4.6. For # = 9,, and Z#° = Z, we already defined 2ug,-groupoids épw

and épﬂ in §10.3. Let .% and .Z° be the 2lug,-groupoids obtained by the 2-direct
limit construction discussed above. In this section, we show that the formatio/ll of

@W and ég}; commutes with 2-direct limits, which provides 1-isomorphism .# ~

Dy and F2 = 95

The choice of cleavage is induced from the “choice'®” of tensor product T4 ® 4/ A
among its isomorphism class. We make such a choice, and define 1-morphisms
=7 — .@pF and 27 : " — @Eﬁ, according to the choice of cleavage.

Showing that Z and =" are l-isomorphisms is equivalent to showing that
E(A,I) and E7(A,I) are equivalences of categories for each (A,I) € Aug,. We
carry out the proof as follows:

10.4.6.1. E(A,I) and Z°(A, I) are faithful. This is clear since Tar < Ta.

10.4.6.2. Z=(A,I) and Z°(A,I) are essentially surjective. Let AT be the preimage
of F under the natural projection A — A/I, so AT is local with nilpotent maximal
ideal INA™. We first remark that each of p4, T4, t4 and B34 “descends” to A™, since
each of them descends over F modulo I by definition. Now, by the compactness of
Gk and general properties of finitely presented modules and morphisms between
them, we can find a finitely generated (hence finite artin local) o-subalgebra A’ of
AT over which each of pa, T4, ta and B4 descends. But any such A’ is an object
of AR,

M1t we view the 2-direct limit as a category of direct systems instead of a localization, and
define 7 accordingly, then the set of morphisms {4/} — {np/} of direct systems over f is
lim ., limp, o, Homy (€arr,mprr), but all the transition maps of the projective system are
bijections, hence the notion of morphisms coincides.

1E’Technically7 tensor product is defined only up to unique isomorphism, not as a single object.
“Choosing” a tensor product corresponds to choosing a cleavage for the category of modules co-

fibered over the category of rings.
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10.4.6.3. E(A,I) and ED(A,I) are full Let Ty = Ty Q4 A and Ty = T Qp
B where T4 and Tp are free modules over A’ € AR and B’ € ARPD),
respectively. We assume that Ta @4/ (A’ /mu) 2 Tp Qp (B /mp) = Tr, Ta @4

As before let AT and BT be the preimages of F under the natural projection
A — A/I and B — B/J, respectively. By the assumption, any morphism « :
Ty — Tg descends to a morphism a : T4+ — Tg+. Hence, by general properties
of morphisms between finitely generated modules, there exists A” € lef;“*f ) and
B" e Qli)‘igB’J) such that the morphism ot descends to some o' : Ty — Tgo.

Now, assume that a has come from a morphism in @,,F or in @;’F. This essen-
tially means that T4 and Tp carry some extra structures such as pa, pp, ta, LB,
(or additionally G4 and fp), and « satisfies some diagrams such as (10.3.2.2) (or
additionally (10.3.3.2)). Then, by enlarging A” and B” by adding finitely many
generators, we may ensure that o’ is a morphism in 2, or @p , which concludes
the proof.

10.4.7. Properties of 7 and Z. The following claims follow from our discussion
of 2-categorical limits and Proposition 10.1.6. We skip the details and leave them
to readers.

The construction of Z (respectively, & ) is “2-functorial” in the following sense.
Any 1- morphlsm b ,9’ " — F' of AR,-groupoids naturally extends to a 1- morphism
d:F = F of Qliﬁo groupoids (respectively, to a 1-morphism d:F — F
of 2Aug,-groupoids), and any 2-isomorphism ¢ : ® < &’ between l-morphisms
D, 9 . F — %' naturally extends to a 2-isomorphism 1Z Ay Y (respectively,
to a 2-isomorphism @Z ey Y ). Note if ® is a natural inclusion of an AR,-
subgroupoid (respectively, fully faithful, 1-isomorphism, formally smooth), then
the same property holds for ® and ®.

The formation of .Z and .7 commute with 2-fiber products in the following
sense: for AR, group01ds ﬁl, Z5 and 7, the natural 1-morphisms Jl/x;Jg —

Jl X Aﬁg and 91 X g Fy — ,?1 X ~92 are 1-isomorphisms, where the 1-morphisms
are obtalned by applying the “2- umversal property of 2-fiber products” to (pry, pry, @)
and (pry, pry, w). That these 1-morphisms are 1-isomorphisms can be checked fiber-
wise, which can be done using the explicit description of 2-fiber products stated in
§10.1.8. See Definition 10.1.7 for the “2-universal property” and the notations used
here.

Motivated by this discussion, we make the following definition.'6

DEFINITION 10.4.8. Let .Z’ and 4’ be AR,- groupoids, whose formation com-
mutes with 2-projective limits. Set .Z : ﬁ’\g‘mn and ¥ = 9'|gm,, and fix 1-
1bom0rphlsm5 E7 . F' ' Z and Z¢ 0 9 S G, We say that a l-morphism

: F — 9 over Ql‘)‘ig commutes with 2-projective limits if there exists a 1-
morphism U :.Z — & such that ¥ o U/ 2 U 0 =7,

Let .#" and ¢’ be 2lug,-groupoids, whose formation commute with 2-direct
limits. Set .7 := .F'|an, and 4 := 4'|gmx, , and fix 1-isomorphisms Z7 : F = g
and 27 : 4 = &', We say that a l-morphism ¥’ : F' — ¢’ over Aug, commutes

16The author is not sure whether the following terminologies are standard.
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with 2-direct limits if there exists a 1-morphism ¥ : . — ¢ such that ¥/ 0 27 =~
=Y 0 V.

For example, the “forgetting the framing” functor @EF — @pF or @E}F — épw
commutes with 2-projective or direct limits, respectively.

The following statement is a paraphrase of the discussion on 2-fiber products
above: if both ¥, : ;‘: — Z commute with 2-projective limits, then the 2-fiber
product j\l X2 % can be recovered from its restriction to AR,-groupoid, and

similarly if both ¥, : % — Z commute with 2-direct limits, then the 2-fiber
product #; X 5 F5 can be recovered from its restriction to 2AR,-groupoid. Also
it follows as a consequence that the natural projections j‘\l X 5 5‘; — 5“: and and
% X 5 % — % commute with 2-projective and direct limits, respectively.

The upshot is that the study of the groupoid ¢ and 1-morphisms ¥ over ‘2/19\% or
Aug, as above essentially reduces to that of the AR,-groupoid . and 1-morphism

®. Finally, we remark that the formation of any groupoids over Q/lgio/t\hat we con-
sider commute with 2-projective limits, and all the 1-morphisms over AR, commute
with 2-projective limits. On the other hand, a 2lug -groupoid whose formation does
not commute with 2-direct limits naturally arises in the study of deformations; see
§11.1.5 for such an example.






CHAPTER 11

Deformations for G i -representations of P-height < h

Throughout the section, we assume that the residue field k of ox is finite. This
assumption is needed for the existence of universal deformation rings and universal
framed deformation rings for G i-representations of P-height < h (Theorem 11.1.2,
which is proved in §11.7). This theorem is not obvious at all, since the usual
‘unrestricted’ G g-deformation functor has infinite-dimensional tangent space (see
§11.7.1), so there is no ‘unrestricted’ universal G g-deformation ring in the category
of complete local noetherian rings. We study the local structure of the generic fibers
of these deformation rings via suitable analogues of Kisin’s techniques for analyzing
potentially semi-stable deformation rings [Kis08, §3]. This is done in §11.3.

From the definition of G g-representations of P-height < h, Kisin’s idea [Kis09b,
§2] of “resolving flat deformation rings” works for G -deformation rings of P-height
< h (§11.1), and we can even perform Kisin’s connected component analysis when
h =1 under a suitable separability assumption (§11.5). As an application, we give
another proof of Kisin’s connected component analysis of the generic fiber of certain
flat deformation rings (Theorem 11.6.1) using G -deformation rings instead of
the Breuil-Kisin classification of finite flat group schemes. We also point out that
the 2-adic case of the theorem is handled in a more uniform manner this way.

We keep the notations from §10.3, with the following exception. For a groupoid
F over AR, , we use the same letter & to denote the extension of .# to a groupoid
over Q/li)\‘{o or QAug,. This is denoted by .# or .# in §10.

11.1. Deformations and S 4-lattice of P-height < h

In this subsection, we define groupoids of deformations (respectively, framed
deformations) of P-height < h, and construct “moduli of G-lattices of P-height
< h” over deformation groupoids, which can be thought of as “resolutions.” This
was inspired by Kisin’s resolution of flat deformation rings [Kis09b, §2.1].

Let pr be a G-representation over F, which is of P-height < h (Definition
8.1.7). That is to say, there exists My € (ModFI /&)S" such that T (M) = pr
as a F[G|-module. (See Lemma 9.1.2.) We often use §9.2.1 without comment.

DEFINITION 11.1.1. For A € AR,, we say that a deformation (pa,Ta,t) €
Dpe(A) is of P-height < hif (pa, Ta) is of P-height < h as a torsion G x-representation
(Definition 8.1.7). We let :@pﬁh C 9, denote the full subcategory whose objects
are of P-height < h. We say a framed deformation (pa,Ta,t,B4) € .@p‘:‘F is of P-
height < h, if (pa,Ta) is of P-height < h as a torsion G g-representation. We let
@pﬂjgh C quw denote the full subcategory whose objects are of P-height < h.

We can apply the discussion in §10.4.1 and §10.4.4 to extend Qpih and @'p:'w’gh to
Q/li)\%o—groupoids and 2lug,-groupoids, respectively, and use §10.4.7 to extend all the
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relevant 1-morphisms over Q/li)\‘{a and 20ug,, respectively. In particular, by §10.4.7
we can view @;h and @E{F’gh as subgroupoids of ,, and @E{F over 2R, and 2Aug,,

respectively. Also, ngh can be written as the 2-fiber product @pﬁh X9, @;’F,

whether we view them as groupoids over 2R,, Q/lf)\‘{m or Aug,.

For A € AR,, a deformation (pa;Ta,t) € Dpe(A) is called of P-height < h if
(pa,Ta, 1) lies in (the essential image of) 7, <"(A). Concretely, this means that
Ty ® A/m” is of P-height < h as a torsion Gy-representation (Definition 8.1.7)
for all n > 1. For (A,I) € Aug,, a deformation (pa,Ta,t) € Dy (A, I) is called of
P-height < h if (pa, Ta,¢) lies in (the essential image of) 2, <"(A, I). Concretely,
this means that there exists A’ € Aug{™? and a A’-deformation (pas,Tas,t) of
P-height < h such that T4 = Tar ®ar A as (A, I)-deformations of pp. We similarly
define framed deformations of P-height < h with coefficients in Q/li)\%o and 2Aug,.

Having defined the 2AR,-groupoids @;h and @;’gh, it is natural to ask if these
groupoids or the associated functors are pro-representable. As remarked in §11.7.1
below, the tangent spaces |Z,,| (Fle]) and |9§F (Fle]) are not finite-dimensional
over I, hence we cannot expect to have ‘unrestricted’ universal deformation rings
and universal framed deformation rings. Later in (11.7), we will prove the following
theorem, which asserts that we have finiteness of the tangent space via imposing
the deformation condition of being of P-height < h.

THEOREM 11.1.2. Assume that the residue field k is finite. Then the functor
|.@[§Fh| always has o hull. If Endg, (pr) = F then the AR, -groupoid _@Fih is repre-
sentable. The functor ‘@i’gh’ is representable with no assumption on pgp. Further-
more, the natural inclusions @fﬁh — Dy and @p':’jjgh — 9&‘ of 9/19\{0 -groupoids are

relatively representable by surjective maps in AR, .

11.1.3. Topological convention. Let R and A be o0g-algebras. We set the fol-
lowing convention for the meaning of R4:

(1) If o is nilpotent in a discrete og-algebra A, for example if A € AR, or
(A, I) € Aug, for some I C A, then we set Rg := A ®,, R. For example,
G4 = A®00 G and 0g.A = A®00 og.

(2) If Ais a complete local noetherian og-algebra, then we set R4 :=lim (A/m)®,,
R. For example, &4 := lim (A4/m’}) ®o, & and og 4 := lim (A/m%) @,
O¢g.

(3) If A is a finite Fy-algebra, then choose a finite flat 0g-subalgebra A° € A
with A = A°[-L] and set R4 := Rao[5-]. For example, &4 := & 40[-]
and og 4 = Og’Ao[ﬂ%}. Note that R4 is independent of the choice of
A°; for any finite flat og-subalgebra A°" C A containing A°, we have
Rjor & Rjo ®ap0 A" (using A°-finiteness of A°’). Furthermore, for any
finite A-algebra B, we have Rg = R4 ® 4 B.

11.14. For T4 € Reps*™ (G ) with A € AR, we define D§"(T4) = Dy (Ta(—h)).
By the discussion in §8.2.4 Qggh is an exact equivalence of categories Repiee(g K) —

(ModFT /og)é which commutes with ®-products, internal homs, duality, and change
of coefficients for A — B in 2AR,.
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Let A be an 0g-module with 7Y-A = 0 for some N (e.g. (A,I) € Aug, for some
I C A). For Ty € Repi®(G k), we define

(11.1.4.1) DsM(Ty) == (TA(—h) @4 (0gur )A) o

Note that there exists a finite og-subalgebra A’ C A and Ta € Rep’®®(G ) with
Ta = Ta ®a A (because Gk has a finite image in Aut4(7'4)). In this case, it easily
follows that Q;};‘(TA) &~ Q?h(TA/) ®o, 4 0g,4- This shows that QE}A(TA) is an
étale p-module which is finite free with og 4-rank equal to rank 4 (7). Furthermore,
QéhA is exact and commutes with change of coefficients for any og-map A — B,
which essentially reduces to the case when #(A) < oo handled in §8.2.4.

The following is the reason for taking the Tate twist in the definition of Q?h.
Choose M € Modg(¢)Sh, and let T := Tg(M). Then D, (T) does not have
any G-lattice of P-height < h unless T is unramified. On the other hand, we have
Ds™M(T) = 0g@g (M), where MY is the dual of P-height h. From now on, we work
with Q;h instead of the contravariant functor D, to associate an étale p-module
to a G i-representation.

Now, let (pr,Tr) be an F-representation of P-height < h, and let My :=
Q;h(TF). Applying the functor Q?h to a deformation (pa,Ta,ta) of prp over
Ae Q/IS)\%D, we obtain My = Q;h(TA), together with a p-compatible isomorphism
Mp 5 My ®4 A/my obtained from ¢ 4. This motivates the following definition of
the Q/li)\‘{a—groupoid Dt -

e An object in Py, (A) for A € AR, is a pair (Ma,ta) where My €
(ModFT /og)%, and 14 : My = Ma ®4 (A/my) is a @-compatible iso-
morphism.

e A morphism (Ma,t4) — (Mp,tp) over f: A — B is an equivalence class
of p-compatible maps a: M4 — Mp over f, such that tp = @ot4 where
a: My (A/my) — Mp ®@p (B/mp) is induced by «. Two such maps
are equivalent if one is a (1 + mp)-multiple of the other. By Nakayama’s
lemma, « induces an isomorphism My ®,, , 0g,B = Mp.

Observe that the formation of %y, commutes with 2-projective limits (Definition
10.4.2). By construction, we have a 1-isomorphism Q;h : Dpe = D, of groupoids
over AR,, which commutes with the 2-projective limits (Definition 10.4.8).

The following Aug,-groupoid extends the AR,-groupoid Py, via 2-direct lim-
its, hence we denote this 2Aug,-groupoid by the same notation Z,.

e Anobject over (A, 1) € QAug, is a pair (Ma,14), where M4 € (ModFI /og)%;
i.e., an étale p-module which is free over og 4, and 14 : My — Ma®4(A/I)
is a @-compatible map which induces an isomorphism My ®@p (A/I) =
Ma®a (A/I).

e A morphism (My,ta,5)) — (Mp,vp,5) over f: (A1) — (B,J) is an
equivalence class of p-compatible maps a : My — Mp over f such that
yB,J) = @oLa, ) Where @ : Ma®a(A/I) — Mp®p(B/J) is induced by a.
Two such maps are equivalent if one is a (1 + mpg)-multiple of the other.
By Nakayama’s lemma for nilpotent ideals, a induces an isomorphism
My Qog 4 0¢,B = Mp.
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e The assignment = : {(Mar,t)} — (Mar @4/ A, 1) defines a 1-isomorphism,

(Drgelam,) — P where the left side is constructed in §10.4.4 and the
right side is defined above.

We still need to prove that E is a 1-isomorphism. Since essentially the same argu-
ment given in §10.4.6 works, we only sketch the proof. Having v(4 1), any object
or a morphism of the above 2Aug,-groupoid always descends over og 4+, where AT
is the preimage of F under A — A/I. So it descends over some finitely generated
og-subalgebra of og 4+, which is necessarily of the form og 4/ for some A’ € QLERSA’I ),

The formula (11.1.4.1) defines a 1-morphism th t Dy — D, over Aug, since
Q?h commutes with change of coefficients for any map (A,I) — (B, J) in Aug,.
In fact, this 1-morphism commutes with 2-direct limits (Definition 10.4.8), which
follows from the natural morphism Q?h(TA/) Q4 A — Q?h(TA/ ®4+ A) being an
isomorphism for any A’ € QI%(UA’I). Since the 1-morphism Q?h is a l-isomorphism
over 2AR,, its extension Q?h over 2lug, is also a I-isomorphism, by the discussion
in §10.4.7.

11.1.5. & 4-lattices of P-height < h. Let A be either in 9/15{ or in Aug,. Con-
sider M4 € (ModFI /og) and let M4 C M4 be a G 4-lattice of P-height < h (Def-
inition 8.2.2). For any A — B, the scalar extension Sp ®g, M4 C 0g B ®og 4 Ma
is a G p-lattice of P-height < h. Therefore, we can define a groupoid, whose fiber
over A is the category of & 4g-lattices of P-height < h.

More precisely, we define a Aug,-groupoid QéflMF, as follows. Objects in
@éﬁ%(A,I) are pairs (M4, ¢a,1)) where M4 € (ModFI /6)§h and ¢(4,7) : Mp —
(M4 ®e, 0g,.4) @4 (A/I) is a p-compatible map which induces an isomorphism
Mr ®p (A/I) = (M4 e, 0e.4) @a (A/I). A morphism is an equivalence class of
p-compatible maps which respect ¢(4 1), where two maps are equivalent if one is a
(1 + I)-multiple of the other. We warn that the formation of the dug,-groupoid
.@é@w does not commute with 2-direct limits, since M4 ®4 (A/I) is not required
to be “constant.” -

We extend @éz\@ (rather, its restriction to 2AR,) to a AR,-groupoid by 2-
projective limits. More concretely, objects in @é@WF(A) can be viewed as pairs
(M 4,ta) where My € (MOdFI/G)jh and 14 : My — (M4 s, 057,4) ®a (A/my)
is a (-compatible og p-linear isomorphism. A morphism is an equivalence class
(under multiplication by (1 +my4) of @-compatible maps which respect ¢4.

We define a 1-morphism T : .@é}ﬁw — D over 919‘{ and 2ug, by (Ma,t) —
(Ma, ), where My := M4 Qs , 0g,.4. We also have a 1-morphism T T\h @é@% -
s over AR, defined by (Ma,¢) — (T 4(MY), D"y (1)) If A € AR,, then we

have My ®e , 05,4 = D;h(l* (9Y)); i.e., we have a 2-isomorphism Q?hozéh ~ 7
over Q/[D\‘iu. All the 1-morphisms which appear in this paper will commute with 2-
projective limits.

The following proposition shows that we can extend Iéh to a 1-morphism over
2ug,. The discussion in §10.4.7 does not apply because the formation of the ug,-
groupoid -@é,}ﬁwh« does not commute with 2-direct limits. Compare with [Kis09b,

Proposition (2.1.3)].
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PROPOSITION 11.1.6. There exists a 1-morphism Iéh : éfﬁw — Qéh over

Aug, which recovers the 1-morphism Iéh over AR, and makes the following dia-
gram 2-commute:

D
<h =€
@p\r .@M]F
Tsh TT
S
<h
QG,MF

Observe that this 2-commutative diagram determines Iéh uniquely up to 2-
isomorphism since the horizontal 1-morphism Q?h is fully faithful.

PROOF. Let (Ma,1) € 8", (A, 1) and set My := My @, 0g,4(= Ma[L]).
By the definition of _@é@w we have an isomorphism t(4 1) @ My — (M4 Rs,
0g,4)®4 (A/T), so M4 descends to a finite free étale (¢, 0g a+)-module M4+ where
AT is the preimage of F under the natural projection A - A/I. By the standard
limit argument, there exists a A’ € Qlugf,A’I) such that My := M4y Res, 0g,4(=
Ma[L]) descends to a finite free étale (o, 0g 4+)-module Ma:. For A” € Aug{AD
containing A’, we may repeat this process to obtain a finite étale (¢, 0g 4 )-module
M » and we have a natural yp-compatible isomorphism Mar = My ®,, ,, 0g, a7
because both sides map onto same og 4-submodule of M4+ under the natural
maps. Now we set Iéh(SﬁA,L) = (Le(Ma(—h)) ®ar A, t), which is clearly an
(A, I-deformation of pr and independent of the choice of A’ € Qlugf,A’I ). Tt remains
to show that Iéh’(i)ﬁA, t) is of P-height < h as an (A, I')-deformation of pp.

We set My := My NMy C My, Since My is a S-submodule of finitely
generated og-module M4, with no nonzero infinitely u-divisible element, 9 4. is
finitely generated over &. Clearly 914/ is ¢-stable submodule of M4, such that
Mo Qs , 0,4 = EDTA/[%] = My N EDTA[%] = My/. By construction, u is /-
regular, hence M 4+ is of projective dimension 1 as a G-module. To see that the
cokernel of ¢ on M 4 is annihilated by P(u)", we use the following (-compatible
right exact sequence

OﬁmA’_’MA’@mA (a7b):§_aMA7

together with the injectivity of ¢ and the snake lemma. This shows that 94 €
(Mod /&)S", Therefore, T¢(Ma:(—h)) is of P-height < h as an og-torsion G-
representation, so Iéh (Ma, i) :=Te(Ma(—h)) ®a A is of P-height < h, by defi-
nition. (We cannot conclude that M4, € (ModFI / G)E/h, because we cannot show
M4+ is a projective & 4,-module.) O

REMARK 11.1.7. It follows from Corollary 9.3.5 that if he < ¢ — 1 then Iéh :

@éﬁm — :@pﬁh is a I-isomorphism. But the assumption that he < g—1 is essential®

11t sounds plausible to, but has not been verified by, the author that in the case of he = ¢—1,
if we restrict _@é hMF and @pi.h to the full subcategories, whose non-zero subobjects or quotients
are either never étale or never Lubin-Tate type, then Zéh induces a 1-isomorphism between these
full subcategories.
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because otherwise Iéh may not even be fully faithful. In fact, if he > ¢ — 1, then
we have TS"(94) = TS (M4 (h)) for any M4 € (ModFI /&)

If he > g — 1 then zéh may not be essentially surjective.? When he > ¢
we now give an example (with A € AR,) of a deformation T4 of P-height < h
which cannot have any & 4-lattice of P-height < h. Assume that he > g and let
(pr, T) be the trivial 1-dimensional representation, so My := Q?h(TF) = ogp(h).
Take a deformation which corresponds, under Q§h7 to Mgq = (0g5)-€ with
p(c*e) = (P(u)" + Le)e. Then, My = Sp-e ® Gp-(1ce) is a Gp-lattice of P-
height < h, so the deformation is of P-height < h, but there is no Gp-lattice of
P-height < h in Mg[q. (One way to see this is by directly computing the “p-matrix”
for any og pjq-basis €' of Mgy, and show that it cannot divide P(u).)

11.1.8. For (R, J) € RAug,, we write Aug g ;) = (Aug,/(R,J)) which is defined
in Definition 10.2.3. Concretely, the objects of 2ug g ;) are pairs (A, 1), where A
is an R-algebra and I C A is a nilpotent ideal such that J-A C I.

For (R, J) € QAug,, any R-scheme X can be viewed as a functor X : 2lugg ;) —
(Sets) defined by (A, I) — Hompg(Spec 4, X), hence as an ugp, 5 -groupoid which
is co-fibered in sets. We use the same letter X to denote this 2ug g, s)-groupoid.
We say an dug g j-groupoid .7 is representable by an R-scheme X, if we have
a l-isomorphism X — .#.> We say that a l-morphism .#' — . over Rlug, is
relatively representable by morphisms of scheme if for any £ € # (A, I), the 2-fiber
product ﬂg’ is representable by a scheme X, over A. We say that #' — % is is
relatively representable by projective morphisms if X¢ is projective over A for any
€€ Ob(F(A,I)) and (A,I) € Aug,.

We now show that the 1-morphism Iéh : @é,};\/fm — @;h is relatively repre-
sentable by projective morphisms in the above sense. In other words, we will show
that the 2Aug g ;-groupoid

<h < <h
(11.1.8.1) DS = (D51 /) X g5t Dy

for an object £ € @pﬁh(}h J) can be represented by a projective R-scheme. We first
observe that it is enough to handle the case when R € AR,. Indeed, since any & over
(R,J) € Aug, “descends” to g over some R’ € QL%ER’J), the Qli)%gR’J)—groupoid
Qé};\/{m can be represented by X¢,, @pr R if @é,hMF,gR/ can be represented by an
R'-scheme X¢_,. From now on, we will assume that £ is an object over R € 2R,.
Using the explicit description of 2-fiber products §10.1.8, objects in Qész’E(A, I)

for (A,I) € Augy are of form (MA,L,Q EQr A —Nﬂzéh(SﬁA)). Observe that

the Augp-groupoid .@é@wpg is co-fibered in equivalence relations; this is because
(@fmh /€) is co-fibered in equivalence relations over Augp and the natural map
Mo — 0g ®s My is injective, so for any for any objects (My, ¢, ), (M, /., a’) €
Qé}ﬁwm (A,I) there can be at most one morphism f : M4 — D', which respects

2The author does not know if this bound he < q — 1 is sharp for the essential surjectivity of
<h
rs".
3If we can extend the groupoids over the category of o-schemes S equipped with a nilpotent
quasi-coherent sheaf of ideal .# C Og which contains m, -Og, then this notion recovers usual
relative representability.
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the isomorphisms « and /. Now we may replace the 2dugg-groupoid by the associ-

, and replace each fiber category with its set of isomorphism

ated functor Qéfﬁw ¢

classes.

Let M := Q?h(g) be the étale p-module corresponding to £. (See §11.1.4 for
the definition of Q;h.) Viewing M 4 as a & 4-lattice of P-height < hin M®r A, the
@éhMF,g(Aa I)| for (A,I) € 2ugy can be identified with the set of & 4-lattices
of P-height < h for Me ®p A, where M = Dg"(€).

For any ogp-scheme X, we set Sx := 6 ®,, Ox and og x = 0g ®,, Ox. We
say a p-stable Gx-lattice Mx in a finite free étale (¢, 0g x)-module Mx is of P-
height < h if coker on, is annihilated by P(u)". The following proposition asserts

set

that the 1-morphism Iéh : @é@w — @éh is relatively representable by projective
morphisms.

PROPOSITION 11.1.9. Assume that the residue field k of K is finite, and choose
¢ e @pih(R) for some R € AR,. Then there exists a projective R-scheme g%fgh
and a &, ,<n-lattice ﬂfh C Mg ®@r Oy <n of P-height < h with the following

¢ g
property: @?h defines a 1-isomorphism g%fh = @é}?\/fm,& such that for any
(A, 1) € Augp, an A-point n € g%’?h(A) is mapped to n*(@?h) € QSZMF,&(A, I).
Any two pairs %@Ql,ﬂgh are related by a unique isomorphism. Moreover,
13 3
the projective scheme GR" enjoys the following further properties:
3
(1) Let & — &' be a morphism in @éh over a morphism R — R' in AR,.
Then there exists a unique isomorphism YZS" @r R =5 GRS", which
q Y4 ¢ &
pulls back @;h to @?h ®gr R’ inside of (M Qr Og%?L) Qr R.
2) YRS" is equipped with a canonical very ample line bundle, whose forma-
( ¢ quipp y amp ;
tion commutes with the base change described in (1).

We call the G, ,<n-lattice E)ﬁ?h C Oy gp<r ®oy Mg the universal G-lattice of
g ¢
P-height < h for €.

IDEA OF PROOF. Since the proof is almost the same as that of [Kis09b, Propo-
sition 2.1.7], we only indicate the idea. Let us first observe that for any (A,I) €

gé%w,g(Ava'A)‘ s ‘-@é,};\h,&(AvI) is bijective.
Indeed, any My € ’@g}wﬁ g(A,I)‘ satisfies

ugp, the natural injective map

My ®r (A/mp-A) = (Mg ®r R/mg) Qr (A/mp-A) ZMA[1/u] @4 (A/mg-A),
and this means that M4 € lgé,};\/lm,s(A’mR'A)"
Now, let G4 = (W ®,, A)[[u]] be the u-adic completion of &4, where W :=
W (k) is the usual Witt vector ring if o9 = Z,,, and W := k[[mo]] if 0 = Fy[[mo]]. We
write M := My ®s, &4 where My := M¢ ®r A. By the main result of [BL95],
the association M4 ~» M4 ®s, G4 induces a natural bijection between the set of
finite projective & z-lattices M4 in M4 and the set of finite projective & 4-lattices

M4 in M 4. Note that the latter is precisely the set of A-points of an ind-projective
scheme over R: namely, the affine grassmanian for (Resw/UU GLd) ®,, 12, where d
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is the og gp-rank of M¢. (See [Fal03, p42] for the definition of affine grassmanians.)
It also follows that ¢ps, restricts to 94 and the cokernel M a/onr, (0*M4) is

—_ ~

annihilated by P(u)" if and only if the corresponding conditions hold for M4 C Ma,

so the functor

Qéiﬁw 5‘ can be represented by a closed ind-subscheme of the affine

grassmanian for (ResW/UO GLd) ®oo R. The argument in [Kis09b, Proposition 2.1.7]
(with e replaced by he and p by ¢) shows that it is a projective R-scheme. We call
this R-scheme g%?’l. (From the discussion in the paragraph right above, it follows
that the “universal nilpotent coherent ideal” is mg-O,, %gg})

To construct the universal lattice @?h of P-height < h, we first cover %%’?h by
affine open subschemes {Spec A;}. By the construction of %%§h, each open affine
subscheme Spec A; carries the & 4,-lattice 9; of P-height < h which corresponds
to the natural inclusion Spec A; — %%?h, and one can show that the I; glue to
give %?h which satisfies the properties claimed in the statement. Had we defined
all the groupoids over the category of schemes X equipped with a nilpotent ideal
sheaf .# containing m,-Ox, then @?h would be the universal object. (This follows
from the construction of ¥%, and 9, over Spec A; — %%’?h, as explained in the
proof of [Kis09b, Proposition 2.1.7].)

To show that the formation commutes with base change, we observe that
@éﬁ%’g, = (g5"/¢) X (@5 /¢) Qé}}wm, so the same holds for the associated func-
tors (because all the groupoids involved are fibered in equivalence relations). For
the existence and construction of the canonical very ample line bundle, see [Fal03,
pp.42-43]. O

11.1.10. We extend the proposition to allow R € @o, because ultimately we
would like to set R to be Rgfh or Rfmh if such a deformation ring exists.

For R € 52/15%0, let Augp be the category whose objects are (A, I) where A is an
R-algebra and I C A is a nilpotent ideal such that mg-A C I. Note that a formal
scheme X over Spf R gives rise to a category co-fibered in sets over 2lugp, so we may
extend the notion of representability and relative representability allowing formal
schemes, in the similar manner to §11.1.8.

For a fixed £ € @éh(R), we can define an Augp-groupoid @é’hMm so that
the fiber QS?MF@(A,I) is the set of &a-lattices of P-height < h in Mg Qg A,
where M, = Q§h(§). One way to define Qéfj\h,g is by declaring @CEZVIM(A?I) =
@n (géf&F,gn (A, I)) = é,}j\/ly,ﬁno (A, I), where &, := {@rR/m’, with n an integer
such that I™ = 0.

By Proposition 11.1.9, we obtain a projective R/m%-scheme g%ih and a uni-
versal G-lattice @?h C M, ®pr o O < for each n, which is compatible with the

" ETI

base change under R/m% — R/ml; ' On the other hand, we have a natural iso-

, by (10.4.1.2). Therefore it follows that the

. <h . <h
morphism ‘9@ M 5‘ ~ @n ‘@g M £,

functor .@é hME ¢| (hence the groupoid .@é hME ¢) can be represented by the projective

/\gh . <h . /<\h . <h
formal R-scheme 9%, :=lim %%’g , and the & ~ <.-lattice 9)?5\ := lim Uﬁg\
—n G, —n=n
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satisfies the universal property similar to the one stated in Proposition 11.1.9. Fur-
thermore, since each %%’ih is equipped with a (very) ample line bundle which is
compatible with the direct system it follows from Grothendieck’s formal existence

<h
theorem that the formal scheme 54%5 comes from a projective scheme %@gh over

Spec R (which is unique up to unique isomorphism). Also, using the formal exis-

——<h

tence theorem for coherent sheaves on the projective formal scheme Y%, ©,,6&

over Gr = GQAQOOR, the “formal universal lattice” @?h comes from a Gg%gh-
€

lattice @?h with the universal property similar to the one stated in Proposition
——<h o
11.1.9. Here, nggh = 6 ®,, Oy y<n and note that YZ, ®,,6 is the mg-adic
s ,

< R0, O.

Let us assume furthermore that Endg, (pr) = F, in which case @pﬁh is pro-
representable (Theorem 11.1.2). Let Rpﬁh € AR, be the universal deformation
ring and &univ € @fwh(wah) be the universal object. Then the natural projection

: @é};wmum = é@w is a 1-isomorphism, so @é}}w is representable by a
prOJectlve R<h scheme YZ<" .= gﬁgh We put MS" .= sm<h

To summarize, we have shown that Prop051t10n 11.1.9 holds true even if we
allow £ to be over R € ‘219‘{0. More precisely, we obtain the following corollary:

completion of %%’

COROLLARY 11.1.11. Assume that the residue field k of K is finite, and let & €
.@pﬁh(R) for some R € UAR,. Then there exists a projective R-scheme %ﬁih and a

S, p<n-lattice @?h C M¢®@Rr Oy yp<n of P-height < h, with the following property:
¢ 3

ﬁ?h defines a 1-isomorphism %%’fh = 9513\4}? ¢» such that for any (A, 1) € Augp,

an A-point n € g.@?%/l) is mapped to n*(ﬂ?h) € .@g wpe(A D). Any two pairs

(fﬁ%"gh h) are related by a unique isomorphism, and the formation of this pair

commutes wzth the base change in the sense of Proposition 11.1.9(1), but working

in AR, instead of AR, .

IfEndg,. (pr) = F, then we have the following 2-commutative diagram of 2Aug, -
groupoids*:

@ p<h ——— Spec (Rfrh)

-

<h pr
@gvMﬂ"7§univ — (@pgnvh/guniv)

Przl’l’ lu
<h
Ts

Sh <h
s 25"

<n-lattice W\h In other

where the upper left vertical arrow is induced by the GC,%\

words, (;};VI is representable by a projective Rpih-scheme GRS together with

the “universal object” MS". Any two pairs (%%<h7ﬂ<h') are related by a unique
isomorphism.

4We identified schemes and the corresponding 2Aug,-groupoids.
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We call @?h as in Corollary 11.1.11 the universal G-lattice of P-height < h
for &, and IMS" the universal S-lattice of P-height < h.

11.1.12. In general, a universal deformation ring R;Fh of P-height < h may
not exist. Therefore we often work with the universal framed deformation ring
RDSh of P-height < h. Let &5, € Z,0S"(RD:S") be a universal framed defor-
mation of P-height < h, and we denote the image of £, under the “forgetful
1—morphism”@p']jj<h — 9;’7' by the same notation &J,;,. Furthermore, the natural
I-morphism (Z5"/€70,,) — 25" is formally smooth.

univ

We put 927" .= GRS and MM = MS . This auxiliary space

ul ul
Eaniv aniv

G#7<" plays an important role in the study of the generic fiber R,?fh ®,o F.

11.2. Generic fibers of deformation rings

In the previous subsection, we have constructed projective morphisms ¢ B
Spec(RﬁFh) and 97" <" — Spec(REjzgh). In this subsection, we show that ¥2<"®,
F — Spec(RS" ®, F) and GR" <" @, F — Spec(R;S" @, F) are isomorphisms
(Proposition 11.2.6). This reduces the study of the generic fiber of deformation
rings to the study of GR<" and 9% S" whose points have an interpretation in
terms of G-lattices of P-height < h. Using this, we show that REF" ®, F and
R;‘_;‘F’gh ®, F are formally smooth over F' (Corollary 11.2.10).

As a first step, we need to give an interpretation of an A-point (4 : Spec A —
g%fh for an R ®, F-algebra A which is finite over F', which is done in Lemma
11.2.4. For this, we need a notion of & 4-lattice of P-height < h where A is a finite
F-algebra; this will be introduced in §11.2.3.

11.2.1. Asa motivation, we give an interpretation of the completions of R‘p:'F’gh(&,
F and Rpih ®, F at a maximal ideal, below in Proposition 11.2.2.

Let E be a finite extension of F', and let 2A0Rg denote the category of artin
local E-algebras with residue field isomorphic to E. We put F/' := og/mg and
pr = pr Qr F'. We fix a deformation n := (p,,T5) € “@pif?'(oE) and a framed
deformation n" € @p‘:‘F’,gh. We put ng :=“n ®, E” and n% =“n" @, E.” We let
@fEh C 9y, denote the AR g-groupoid of deformations of ng which are of P-height
< h as Fy-representations of G in a similar way to §10.3.2 and Definition 11.1.1.
We also let Z,:S" C 2 denote the AR p-groupoid of framed deformations of 7
which are of P-height < h as Fy-representations of G in a similar way to §10.3.2
and Definition 11.1.1. For simplicity, we often suppress the superscript (-)7 and let
ng denote either framed or unframed “FE-deformation” of pp.

PROPOSITION 11.2.2. The framed deformation functor }.@E}fﬂ of P-height < h

~

is prorepresentable by (REﬁh),TE and the universal object is fEniV@JREF,sh (REF’gh)nE ,
where (RY:S"), denotes the completion of (RD:S") ®, E with respect to the kernel
of ne : (Ry;S") @, E - E.

If R;Fh exists, then the deformation functor @,fEh of P-height < h is prorepre-
sentable by (REF’L);E and the universal object is guniv®R§]Fh, (REFh),TE , where (REFh);E
genotes the completion of (R5!")®,E with respect to the kernel of ng : (RS @, E —
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PROOF. We only give a proof for the framed deformation part of the proposi-
tion, since the deformation part is essentially the same but easier.

For A € AR E, consider an o-map (4 : Rm’gh — A which reduces to ng modulo
ma. Clearly, (% (&0,:,) is a framed deformatlon of N5 (&mniv)- On the other hand,
Ca is factored by (4o : Rm’gh — A° for some finite o-subalgebra A° C A with
AO[ﬂlO} A, and (%o ( unlv) is of P-height < h as an op-lattice representation by
Proposition 9.2.6. It follows that % ( is of P-height < h as an Fy-lattice
representation.

It is left to show that any framed deformation (4 of 7} (€5, ) can be obtained as
a pull back of &, under a unique map R;S" — A. Let At be the preimage of o
under the natural projection A — E. By definition of ng, the framed deformation
Ca descends to {4+ over AT, so also to (40 over some finite o-subalgebra A° C A
with AO[%] = A. By Proposition 2.4.9, {40 is of P-height < h as an og-lattice
representation, so it corresponds to a unique o-map Rgfh — A°. By composing it
with the natural inclusion A° < A, we obtain the desired map Rf'f'fh — A as well

Uan)

as its uniqueness since the map RJ>S" — A is independent of the choice of A°. [

11.2.3. For a finite algebra A over F := Frac(o), we let Int(A) denote the set of
finite o-subalgebras A° C A with A°[-L ~] = A. Since 7 is not a zero-divisor in A° €
Int(A), we have the notion of i 1sogenles for (ModFI /G)Ao and (ModFT /og)%,, and
the isogeny categories (ModFI /G)Ao [ﬂ—o} and (ModFI /og)% o[ﬂ—o} are well-defined,
just as in §2.2.7 and §7.1.6. We often denote the isogeny class containing 91 40 as
E)J?Au[—] and similarly for objects in (ModFI /og)%. [ -]

Let (ModF1 /6)<h be the category of p-modules E)JIA over G 4 such that My =
E)J?Au[—] for some M40 € (ModFI /6)§ff where A° € Int(A). We similarly define
(ModFT /og)é. For example, if A = Fy, then (ModFI /G)FO is exactly Modg (¢ )<h[ﬂi0],
not Modg,, (¢ )Sh. (Here, Gp, = G[WO].)

For M4 € (ModFI /og)%, a ¢-stable & 4-submodule My C My is called a
G a-lattice of P-height < h if 0g 4 @, Ma = Ma and Ma € (ModFI/&)5".

LEMMA 11.2.4. Fiz & € Z5"(R) with R € AR, and put M, = Q;h(é“). For
any R-algebra A which is finite over F : Frac(o), the set of A-points %%"?h(A) =

Hom g (Spec A,%%?h) 1s naturally in bijection with the set of & a-lattices of P-
height < h in Ms @r A.

PRrOOF. Let M4 be a & 4-lattice of P-height < h in Mg @z A. Then by
definition, there exists A° € Int(A) and M40 C W4 such that Mo ®40 A = Dy
and M40 € (ModFI/ 6)<h. We may enlarge A° so that the structure morphism
R — A factors through A°. Therefore, M 4 corresponds to an R-map (4 : Spec A —

Spec A° Cao %@@’ where (40 is the unique A°-point that corresponds to 9 40.
This A-point (4 doeb not depend on the choice of A° or M 4.

It remains to show that any R-map (4 : Spec A — %%?h comes from a & 4-
lattice M4 C M @R A of P-height < h. We first handle the case when A = E where
E is a finite extension of F'. Let p¢ denote the deformation over R which corresponds
to €. Since the structure morphism R — F factors through o (which follows from
[dJ95, Lemma 7.1.9]), we obtain an o g-representation p¢ ® pog which is of P-height
< h as an og-lattice representation. In other words, the étale p-module M ®r op
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admits a &-lattice M, , of P-height < h equipped with a (p-compatible og-action.
By Lemma 11.2.5 below, we have M,, € (ModFI /&)s so My := E)JTUE[%O] is an
G g-lattice of P-height < h in My ®g F.

For the general case, it is enough to handle the case when A is local. Let
E := A/m4 be the residue field of A, and let ng : Spec E < Spec A La, %%fh
be the underlying E-point. By the previous discussion for the case A = E, the
FE-point ng is factored by an og-point 7 : Specog — g%?’l, 80 (4 is factored by
Ca+ :Spec AT — %%?h where At is the preimage of o by the natural projection

A — E. But since AT hi>nAve1nt(A) A° we see that {4+ is factored by an

R-map (40 : Spec A° — g%§h for some R-subalgebra A° € Int(A). Now, let
Mao C Me @r A° denote the & go-lattice of P-height < h which corresponds to
Cao, and put M4 := M40 ® 40 A. Clearly, the A-point (4 comes from N 4. O

LEMMA 11.2.5. Let M, ,, be a (¢, S)-module of P-height < h equipped with a -
compatible action of o . Then M, is finite free over S,,, so M,,, € (ModFI /G)gb

PROOF. First observe that (i) &,, = (W ®,,0r)[[u]]; (ii) W®,, 0 is a product
of discrete valuation rings; and (iii) the (¢-)Frobenius® endomorphism oy transi-
tively permutes the primitive idempotents of W ®,, 0. It follows that 9, /ud, ,
is finite free over W ®,, 0 since it is mo-torsion free and is an étale p-module. The
&, ,-freeness of M, follows from Proposition 7.4.2. O

Now, we are ready to prove the following proposition.

PROPOSITION 11.2.6. Let R € 9R,. For any & € @;h(R), the o-morphism
%%fh ®o F' — Spec(R ®, F) induced by the structure morphism for %%?L s an
isomorphism.

PRrROOF. Recall that the proper o-morphism g%fh ®o F — Spec(R®, F) is an
isomorphism if and only if it is an étale monomorphism. (A morphism X — Y of
schemes is called a monomorphism if it induces a monomorphism on the functors
of points, or equivalently by [EGA, I, Proposition 5.3.8], if the diagonal map ¥ —
Y Xx Y is an isomorphism.) Note that R ®, F' is a noetherian Jacobson ring by
[Mat86, pp.247 Lemma 1], so g%?’L@)OF is a noetherian Jacobson scheme by [EGA,

IV3, Corollaire (10.4.7)]. So in order to check that g%fh ®o F — Spec(R®, F) is

an étale monomorphism, it is enough to show that %%?h(A) — (SpecR)(A) is a
bijection for any finite F-algebra A.

Let A be a finite local F-algebra. We have (Spec R)(A) = li_n)leelnt(A) (Spec R)(A°)
by [dJ95, Lemma 7.1.9]. Furthermore, we have %%‘?h(A) = li_n)lAnelnt(A) %%fh(/lo),

which can be seen as follows. First, if A = E is a field, then we have %%ih(E) =
%%’?h(o ) by the valuative criterion for properness. Now, if A is finite artin lo-

cal F-algebra with residue field F, then g%?h(A) = ge%’?h(A*‘) where AT is the
preimage of oz under the natural projection A — E. Since AT = li_n)leelnt(A) A°,
we have the claim. The case of general finite F-algebra A is immediate.

5Recall that q=pif oo = Zp.
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It immediately follows from Theorem 5.2.3 that %%‘?h(A") — (Spec R)(A?) is
injective for any finite free o-algebra A°, hence %%’?h(A) — (Spec R)(A) is injective
for any finite F-algebra A. Now we show that this is also surjective for any finite
F-algebra A. Let A € 2R for some finite extension E/F and pick an A-point

(a:R— A Weletng: R LEN N A/m = E be the E-point of Spec R on which
Ca is supported. Choose a finite free og-subalgebra A° C A with A = A"[%] and
an o-map (' : R — A° with C’[ﬂ%] = Ca. (Such ¢’ always exists for some A°, as
discussed at the beginning of the proof.) Since £ ® g A° is of P-height < h, there
exists a unique G-lattice M40 of P-height < h for Mao := Mg ®r A° which is
equipped with a ¢-compatible A°-action. (As before, we put Mg := Q;h €)).

Let 90, be the image of M4 under the natural surjection Myo — M, :=
Mpo ® 40 0, and we put M, := SDT(,E[%U] N M, , where the intersection is taken
inside M, E[?lo] = M,,. Then M, is finite free over & by the first paragraph of
the proof of Theorem 5.2.3, hence is finite free over G,,, by Lemma 11.2.5.

By Lemma 11.2.7 below, M 4 := fon[%] is free over G 4. Now, we choose a
S, ,-basis {e1,-- ,e,} for M, and lift it to a & 4-basis {&;, - ,&,} for M 4. We
choose B° C A which contains (4(R) C A so that all the coefficients of won , (c%€;)
are contained in &pgo.. Let M pgo be the free & pgo-submodule of M4 spanned by
{e1, - ,en}. Clearly Mp. C M, is p-stable and meO[%U] = My. Thus, Mpo €
(ModFI /G)Ef This shows that Mpo is a (unique) &po-lattice of P-height < h
in the étale (¢, 0g go)-module which corresponds to the map R — B¢ that factors
(s : R — A. In other words, Mp. corresponds to a B°-point of %%fh, so My

corresponds to an A-point of %%’?h which maps to {4 € (Spec R)(A).
Now, it is left to show the following lemma, which is exactly [Kis08, Lemma
1.6.1] if 09 = Z,. O

LEMMA 11.2.7. Let A be a finite Fy-algebra and let My be a finitely generated
& a-module which is flat over G[ﬂio] and equipped with a map @ : c* M4 — My
whose cokernel is annihilated by P(u)". Suppose that M := M4 ®G[%] E is finite
free over £4. Then M 4 is a finite projective & 4-module.

PRrROOF. The following proof is a lengthy way to say that the proof in [Kis08,
Lemma 1.6.1] also works if 09 = Fy[[m]]. We prove the lemma by showing that
the first nonzero Fitting ideal I for My (i.e., the nth Fitting ideal, where n is the
Ea-rank of My) is equal to S 4. (See [Eis95, §20.2] for Fitting ideals.)

Let U C Spec@i[ﬂ%] denote the largest open subscheme over which 94 is G 4-
flat, and let Z be its (reduced) complement. Since A is Fy-finite and 94 ®6[%] &
is free over £4 by assumption, Z is cut out by some non-zero g € G[ﬂio]

The isomorphism (U*?mA)[ﬁ] = ﬁﬁA[ﬁu)] implies that g € (o(g)P(u)) and
a(g) € (g-P(u)). Assume that g is not a unit, so there exists * € K with |z| < 1
with g(z) = 0. Let « and y be such that |z| < 1 and |y| < 1 are smallest and
largest among the nonzero roots of g, if any exist. Then all the nonzero roots of
(g) have absolute values between |z|'/? and |y|"/?, which are strictly bigger than
|z| and |y|, respectively. Clearly x is a common root of g and o(g)-P(u). But since
o(g) cannot have a root with absolute value |z|, x is a root of P(u). Similarly,

|1/q

a root w of o(g) with |w| = |y is also a root of ¢g-P(u), but g cannot have a
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root with absolute value |y|1/q. Hence w is a root of P(u). But all roots of P(u)
have same absolute value (being a &*-multiple of an Eisenstein polynomial), so
|z] = |w| = |y|1/q > |y|, which is a contradiction. This shows that g is either a unit
or a unit multiple of a power of u.

In terms of Fitting ideals, we have shown that u’ € I for some i > 0. Therefore,
in order to show that I is a unit ideal, it is enough to show this after taking u-adic
completion. Let I C &4 = #[[u]]la be the u-adic completion, so I = (u') for
some i > 0. Then o extends continuously on J#¢[[u]] 4, and the u-adic completion

T

310" — M, is an isomorphism since P(u) € (o[[u]]a)*. Since the formation
of Fitting ideals commutes with scalar extension [Eis95, Corollary 20.5], it follows
that o(I)-#o[[u]]a = I. This rules out I = (u') with i > 0. O

The following corollary is a re-interpretation of Proposition 11.2.6 using the

interpretation of F-finite points of %%’? ®o F' (Lemma 11.2.4).

COROLLARY 11.2.8. Let A be a finite Fy-algebra, and let pa be an A-representation
of G which is of P-height < h as an Fy-representation. Then there exists a unique
M4 € (ModFI /G)Eh such that Iéh(imA) 4.

PrOOF. The uniqueness of such 9,4 is a consequence of full faithfulness of the
functor Iéh : Modg (go)gh[ﬂio] — Repp, (Gx) (Theorem 5.2.3), so it suffices to show
the existence. We may assume that A is also local, and let £ denote its residue
field. We put ¥/ := og/mpg and F}/F, the unramified extension corresponding to
the residue field extension F'/F,. By choosing a G k-stable og-lattice of p4 ®4 E
and reducing it modulo mg, we obtain a residual representation pp := pr Qp F'.
By essentially the same argument as the proof of Proposition 11.2.2; there exists
a finite opé—subalgebra A° C A and a Gg-stable A°-lattice pao in pa. Note that
A= A°®,, Fj. Let € € @;h(AO) be the deformation corresponding to pa.. By
Proposition 11.2.6 we have an isomorphism %%éh ®o, F) = Spec A. By Lemma
11.2.4 this A-point of %@?h ®o, F{ corresponds to a unique & 4-lattice of P-height
< h, which we have been seeking. ]

THEOREM 11.2.9. Assume that k is finite. For any n € Q;h(oE) for a finite
extension E over F, the functor ’@fEh‘ on AREg is formally smooth.

PROOF. Let A € AR g with a nilpotent ideal I C A. We put A := A/I € ANRE.
For ¢ € ‘Q,Iih (A)], we want to find ¢ € ‘@f;(Aﬂ which reduces to ¢ modulo I. By
Corollary 11.2.8, there exists 9 € (ModFI /G)Eh such that ¢ = Iéh(ﬁﬁz). So it
suffices to show that there exists M4 € (ModFI /6)§h such that 94 ®4 A = M.

We first choose a finite flat og-subalgebra A° C A such that A"[Wio] = A
and I"[ﬂ—lo] = I where I° := I N A°. So we have A = (AO/IO)[%O}, and we put
A° := A°/I° and view it as a subring of A. By enlarging A° if necessary, we can
assume that there exists M-z € (ModFI /6)% such that imp[%o] = M4. By
Proposition 8.2.3, w4 = coker(gogmfo) is finite free over A°. Let wao be a finite

free A°-module equipped with wo ® 40 A° = wos, and let M40 be a finite free
S g0-module equipped with Mg @ 40 A° = M—>. We can choose a S a0 /P (u)"-
linear surjective map M40 /P (u)"Ma0o — wao which lifts the natural projection
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M—/P(u)" M7 — wss. Therefore, we obtain the following diagram with exact
rows:

(11.2.9.1) 00— MNyo M a0 WAe 0
OHJ*&’RF SUIF Wiae 0,

WaﬁA—o
where M40 is the kernel of Mo — Mo /P(u)*Mae — wao. Since wao is flat
over A°, the top row stays short exact after applying (-) ®40 A%, s0 Mo @40
Ao = o*Mis (ie., the left vertical arrow in (11.2.9.1) is surjective). Therefore,
we obtain a surjective map 7 : 0*90 40 — M40 which factors the natural projection
"Moo — 0" Mz Now, we define pon ., : "M a0 5 MNao — Myo. Clearly OM 40
lifts pom_, and we have coker(pom,,) = wao which is annihilated by P(u). So

My = S)JTAO[%] is in (ModFI /G)Eh and lifts M. (In fact, it also follows that

70" Ma0 — Myo is an isomorphism by the injectivity of pgn ., (Corollary 2.2.3.2),
but we do not need this in the proof.) (]

Now we are ready to show the formal smoothness of the generic fiber of defor-
mation rings of P-height < h, as a corollary of Theorem 11.2.9.

COROLLARY 11.2.10. Assume that k is finite. Let & € Z5"(R) be such that
the natural 1-morphism (.@ﬁh/ﬁ) — @;h of AR, -groupoids is formally smooth.
Then R[%] is formally smooth over F. In particular, the F-algebras Rgﬁgh[%]
and Rﬁh[%] (if it exists) are formally smooth over F.

PROOF. The second claim of the corollary follows from the first claim by taking
€ =&, and € = &uiy- To obtain the first claim, first note that a noetherian
Jacobson F-algebra A (e.g., A = R[ﬁ—lo] for some complete local noetherian o-
algebra R) is formally smooth over F' if and only if its completion at each maximal
ideal is geometrically regular, by [EGA, Oy, Théoréeme (20.5.8), Corollaires (22.6.5),
(22.6.6)]. So it suffices to show that for any E-point ng : R — E where E/F is some
finite extension, the completion Ry, of R®,E with respect toker[ng®FE : R®,E —
E] is formally smooth over E. We use the same notation ng to denote ng ® E,
and consider the 1-morphism Spf R;, — %, over UARg defined as follows: a
(continuous) E-map (4 : R, — Awith A € AR g issent to {QrA € Dy, (A) where

A is viewed as an R-algebra via R — R, 4, A. Now using a similar argument

to the proof of Proposition 11.2.2, one can show that the formal smoothness of the
1-morphism (@;h /&) — @pﬁh implies the formal smoothness of the 1-morphism
Spf Ry, — Py, over ARE. The corollary then follows from Theorem 11.2.9. O

11.2.11. Motivation: Relation with crystalline and semi-stable deformation
rings. One can generalize Proposition 11.2.6 as follows. We may also consider

<h
ITs

the composition Qéfﬁwr — @;h — 9, of 1-morphisms, where the latter is the
natural inclusion. By Theorem 11.1.2, or rather Proposition 11.7.3, this inclusion
@pﬁh — 9,, is relatively representable by surjective maps of rings. For any & €
Dy (R), let RS" be the universal quotient of R which represents (Z5")e, and let £S"
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be the universal object® of (Z5")¢. Then the 1-morphism QéflMF — 9, is relatively

representable; ‘@éz\/h{ is representable by a projective morphism %%’gihh — Spec R

which factors through the closed subscheme Spec RS". By Proposition 11.2.6, this
projective morphism induces an isomorphism %%’éhh ®o F — Spec(RS" @, F). In
the case 0y = Z,, this proves [Kis08, Proposition 1.6.4(2)]. Note that RS" may not
equal the schematic image of %%éhh in Spec R.

Now, we assume that oy = Z,. We fix an F-representation p of G, and put
Poo = Plg wo - Welet R‘p;' be the universal framed deformation ring, and let £ denote
the restriction to G »__ of the universal framed deformation. Applying Theorem
11.1.2, or rather Proposition 11.7.3, we obtain the universal quotient Rg’gh of Rf'?,

over which £ becomes of P-height < h. So we obtain a map res : RISM Rg’gh,

Poc
where the source is the universal framed deformation ring of P-height < h. From
now on, we put RLSh = go’fh, and often suppress the subscript 5 on G-

deformation rings. (For example, we put R := Rj.)

Let Rcmrfh and th’gh be the universal quotients of R” whose artinian local
points correspond to framed deformations that are torsion crystalline and torsion
semi-stable, respectively, with Hodge-Tate weights in [0, h]. These quotients a priori

factor through Rg’gh. Furthermore, Liu [Liu07] shows that for any finite extension
E/Q,, an E-point z : R — E factors through the quotient RISt or Rst’gh if

Cris
and only if the the corresponding E-representation V. is crystalline or semi-stable
with Hodge-Tate weights in [0, k], respectively.” We call them crystalline and semi-
stable framed deformation rings with Hodge-Tate weights in [0, h], respectively. The
generic fibers Rfrfh[%] and Ri’gh[%} coincide with the crystalline and semi-stable
quotients of R” [%] constructed by Kisin [Kis08].

The point is that “restricting to G »__ = G ” defines the natural maps res
RLSh — RS and res™ : RLSh — RD'S". Even though the map res™ is quite
mysterious in general (let alone res®), we give some applications later on of the
maps res® and res®* in the study of crystalline and semi-stable frame deformation
rings. See §11.4.17 and §11.6.

All the discussions above work for the universal deformation rings if both R;
and RS = R?:i exist. The author does not know whether Endg , (p) = F guar-
antees Endg . (pe) = F (although he suspects that this may not be true). But
we record the following cases where we do have the full faithfulness of restrictions
to G, on residual representations:

cris .

(1) If p is absolutely irreducible, then it is necessarily tame. Since the inclu-
sion G » . — G induces an isomorphism after quotienting out the wild
inertia groups, we obtain that Endg , (poo) = F when Endg . (p) = F.

(2) Under the following assumption, we have the full faithfulness of the restric-
tion to G for mod p crystalline representations: either % is absolutely
unramified, p > 2, and h < p — 1 [Bre99b]; or h = 1 and p > 2 (or any
more general assumption for which one can prove the classification of finite
flat group schemes over 0, [Bre02, Theorem 3.4.3]).

6In a more down-to earth manner, RS is the biggest quotient of R such that the pull-back
of &€ becomes P-height < h, and €SP is the pull-back of & over RS,
"This result is also valid when p=2.
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11.3. Local structure of the generic fiber of deformation ring

The aim of this subsection is to compute the dimension of Rth ®, F and
R, Sh®@, F at a closed point of a given “Hodge-Pink type” (Corollary 11.3.11). We
also show that fixing a “Hodge-Pink type” cuts out an equi-dimensional union of
connected components when J¢ = 6[7%0]/(73(15)) is separable over ¢ g (i.e., P(u) is
a 6*-multiple of a separable Eisenstein polynomial). See Proposition 11.3.7 for a
precise statement. Note that the separability condition is automatic if 09 = Zp, but
not automatic when oy = F,[[mo]]. In the case 09 = Fy[[m]], note that K = k((u))
is separable over k((uo)) if and only if Z /¢ ¢ is so, since &/(mg — ug) = 0. = 0k
via u — u. Even though G = Gk for any finite purely inseparable extension
K'/K, the notions of G g-representations of P-height < h and G k/-representations
of P-height < h are not the same because the construction of & and the choice
of P(u) are not the same for K and K’. So we cannot replace K by its maximal
separable subextension Ky C K over k((ug)), so the assumption that K/k((uo)) is
separable seems to give a genuine restriction.®

Our technique is analogous to Kisin’s technique for studying the local structure
of potentially semi-stable deformation rings [Kis08, §3|, with the difference that we
work with weakly admissible Hodge-Pink structures while Kisin works with weakly
admissible filtered (¢, N)-modules. This permits us to allow the case oy = Fy[[m]]
too, as we shall do.

By Theorem 4.3.4, we have an equivalence of categories H : Modg(¢)[=] =

o

HPY"Z%(p) which restricts to H : Modg (p)S"[7] = HP}"(Q’[O’}L](@), where the
target category is the full subcategory of objects with all Hodge-Pink weights in
[0,h]. We now generalize this to allow A-coefficients, where A is any finite Fp-
algebra.

Let A be a finite Fy-algebra. We first make the following definition which is

satisfied by objects of the form (D4, Aa) := H(M4) for M4 € (ModFI /6)§h:

DEFINITION 11.3.1. An A-isocrystal is étale ¢p-module D4 which is free over
(Ho)a =K oQp, A. For afree (J o) a-module D4, we set (Da)zy = Oa 2o @ty
D,4. An A-Hodge-Pink structure for a finite free (o) 4-module D4 is a (Oa 4, ) a-
lattice Ay C (Da)zy [ﬁ], which is a direct factor as an A-module (i.e., for h > 0,
the cokernel P(u)~"(Da)7, /A4 is a projective A-module”). The A-Hodge-Pink
structure Ay is effective if A4 contains the standard lattice (Da)z, . We define
Hodge-Pink weights and multiplicities for A-Hodge-Pink structure A4 as Hodge-
Pink weights and multiplicities for A4 as Hodge-Pink structure (via forgetting
A-action).

We say that an A-isocrystal with A-Hodge-Pink structure is weakly admissible if
it is weakly admissible as a Fy-isocrystal with Fy-Hodge-Pink structure (i.e., if it is
weakly admissible after forgetting A-action). In other words, the weak admissibility
is checked for all the subobjects or quotients which do not necessarily respect the
A-module structure.

8The author does not have an example of a G -representation of P-height < h which is not
P-height < h as a Gk -representation.

9For M4 € (ModFI /G)EH7 (Da,Aa) =H(M,) satisfies this condition thanks to Proposition
8.2.3.
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For any map A — B of finite Fp-algebras, we have a natural definition of
“change of coefficients” for A-isocrystals with A-Hodge-Pink structure, namely
(Da,Aa) — (Dy ®4 B,As ®4 B). Note that the natural map Ay ®4 B —
(DB) 2 [ﬁ] is injective since the natural inclusion Ay — (Da)o, [ﬁ] splits
as an A-module by definition. The functor H commutes with the change of coeffi-
cients.

We generalize Theorem 4.3.4 to allow A-coefficients as follows, where A is a
finite Fp-algebra.

LEMMA 11.3.2. The functor H induces an equivalence of categories from (ModFI /6)§h
onto the category of A-isocrystals with weakly admissible A-Hodge-Pink structure
whose Hodge-Pink weights are in [0, h).

PRrOOF. The full faithfulness follows from Theorem 4.3.4, and by Corollary
11.2.8 the essential surjectivity of H follows if we show that V3,5(Da,A4) is free
over A, where V3, is defined in Corollary 5.2.4. We put V4 := V5, 5(Da,A4), and
may assume that A is local. First, we have Vi ®4 A/ma = V3p(Dajmyr Aajma)s
so its A/m4-dimension equals rank s ), Da. On the other hand, observe that
dimp, Va = (rank(%O)A DA)~(dimp0 A), which forces V4 to be free with rank 4 V4 =
rank sy, Da. (Indeed, by Nakayama’s lemma there exists a A-linear surjection
A®" V4 with n = rank (g o) . (D 4) and both sides have the same Fy-dimension.)

|

REMARK 11.3.3. In fact, Theorem 11.2.9 can be proved more easily using
Lemma 11.3.2, namely from the fact that affine grassmannian is formally smooth
and that weak admissibility lifts under the infinitesimal thickening of coefficient
rings. (The last assertion follows from applying Proposition 2.3.8 to the short
exact sequence (11.3.10.1) below.)

By Corollary 11.2.10, the noetherian rings Rﬁh[%] and Rgfh[ﬂ%] are formally
smooth over F' (and in particular, geometrically regular). In order to compute their
dimensions we introduce an invariant which picks out an equi-dimensional union
of connected components, generalizing the Hodge-Pink type defined in §2.2.9. The

dimension will be expressed in terms of the corresponding “Hodge-Pink type.”

11.3.4. Hodge-Pink type with coefficients. We seek to define a “Hodge-Pink
type” for M4 € (ModFI /6)§h, with A € ANRp and E/F, finite (or rather, for
the A-isocrystal H(9t4) with A-Hodge-Pink type). Consider a finite free (%) a-
module Dy (where (£ o) := # ¢ ®p, A) and an A-Hodge-Pink structure A4 for
D, (Definition 11.3.1). Let ﬁA,IO = OAwo,A Dwg)a Da (Where OA pga =
OA 2, ®F, A). Motivated by the discussion about Hodge-Pink types in §2.2.9 and
§2.3.3, we make the following definition.

DEFINITION 11.3.4.1. For a finite extension E/Fy, an E-Hodge-Pink type v is a
pair (n, AY) where n is a positive integer and AY, is a & g-quotient of (& /(P (u)"))®".
For a finite E-algebra A, an A-Hodge-Pink structure A4 for a finite free (%) a-
module Dy is of E-Hodge-Pink type v (or simply, Hodge-Pink type v) if D4 is of
(#¢) a-rank n and there is an &4 /(P (u)")-isomorphism A% @z A = As/(D)7, .
(Note that &4 /(P(u)") = OA 4.4 /(P(u)").) For M4 € (ModFI /&)5" with A a
finite E-algebra, we say that 9,4 is of E-Hodge-Pink type v = (n, A‘é) (or simply
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of Hodge-Pink type v if there is no risk of confusion), if H(94) is of E-Hodge-
Pink type v; or equivalently by §3.2.6, if 94 is of &4-rank n and there is an
G 4 /P(u)"-isomorphism A%, @5 A = coker o, .

We define the Hodge-Pink type for objects in 9§Eh, as follows: the Hodge-Pink
type for £4 € .@fEh(A) is the Hodge-Pink type for the unique & 4-lattice M, of
P-height < h for M¢ ®@r A, where M, := Q?h(f). (The existence of My, is proved
in Corollary 11.2.8.)

Hodge-Pink type with coefficients behaves well under change of coefficients in
the following sense. Let M4 € (ModFI /6)§h for a finite E-algebra A, and assume
that 94 is of E-Hodge-Pink type v = (n,A}). Then for any finite A-algebra A’,
My @4 A’ is of E-Hodge-Pink type v. Also for any finite extension E’'/FE and an
E'-algebra A, M4 € (ModFI/&)S" is of E-Hodge-Pink type v := (n,A},) if and
only if My is of E'-Hodge-Pink type v/ := (n, Ay, ®p E’). Using these, we will
often replace E with a suitable finite extension of F in applications.

It is not a priori clear if any A-Hodge-Pink structure with A € AR g has an E-
Hodge-Pink type. But when 2" /¢ is separable, the following equivalent definition
of E-Hodge-Pink type can be used to show that any A-Hodge-Pink structure has
an F-Hodge-Pink type.

Consider a finite free (£ ¢) a-module D 4 and an A-Hodge-Pink structure A 4 for
D 4. If all the Hodge-Pink weights for A4 are in [0, 4] (i.e., ﬁA,mO CAsCPu) "
D 4.4, ) then by definition A4 /D4 4, and (P(u) "D 4 ,,)/A4 are finite projective A-
modules. As in §2.3.3, we can associate decreasing separated exhaustive filtrations
Fil*(Da 4,) of Dazy by (OA 2, ) a-submodules, and Fil*(Da ) of Da g by JH a-
submodules, respectively, as follows:

(Daeo) N (P(u)”-Aa) C Dagy
Fﬂw(ﬁAJ;U) c 61473:0
(P(4)Dayy) NFil¥(Day,) Pu)Das,

Fil1(B.4.2)
Fil(l1344:8) =

EDAJg, for w € Z,

where all the intersections are taken inside YSAJO [ﬁ] Note that if we forget the
A-action and view Fil*(Dy4 ») as a filtration by % -subspaces, then Fil*(D4 x)
coincides with the filtration (2.4.3.1) or its analogue for the case 0g = F,[[mo]].
One can also construct Fil* (D 4 ) from Ay = AA/YSAJO, as follows: since the
submodule AA[P(u)”] € Aa of elements killed by P(u)™ is the image of P(u)~*-

Fil* (D4 4,) under the natural projection, we have an % 4-isomorphism

(11.3.4.4) Fil" (D) & W

for each w, where the isomorphism is induced from multiplication by P(u)®*. Now,
for any E-Hodge-Pink type (n,A},) we define Fil¥ := A%[P(u)®]/A%L[P(u)*~'] C
Dg . It is clear from the isomorphism (11.3.4.4) that if an A-Hodge-Pink struc-
ture A 4 is of E-Hodge-Pink type v then there exists a % 4-isomorphism Fil*' (D4 ) =
Fily @ pA. We will show later in Lemma 11.3.5 that the converse is also true if
H | H o is separable.
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For M4 € (ModFI /&)$", the filtration Fil*(Da ) for (Da,Aa) := H(9M )
can be expressed in terms of 94, as follows:

(11.3.4.5)
Fil" (D ) = im (o, ) NP (u)*”-DMa im(pm,)

. ~ —DA,.)i/7 for w € Z.
(P(u)-im(pom,)) VP (u)”-Ma — Pu)-im(pom,)
LEMMA 11.3.5. Assume that & | # o is separable.
(1) For a finite E-algebra A, an A-Hodge-Pink structure Ay for Dy := Dp®g
A is of E-Hodge-Pink type v if and only if there is an JZ s-isomorphism
Fil"(Da,») = (Fily) ®g A for all w, where Fil*(D 4 ) is as defined in
(11.3.4.3).

(2) For a finite Fy-algebra A, the grading gr'’(Da, x) = % asso-
ciated to an A-Hodge-Pink type A4 is a finite projective £ s-module for
any w € Z. In particular, Fi1''(Da ) is a finite projective % 4-module
for any w € Z.

(3) If A is finite radicial E-algebra (e.g. A € ARE), then any A-Hodge-Pink
type Aa has an E-Hodge-Pink type.

When ¢ /% o is separable, we often let v denote the corresponding filtration
Fily which is equivalent information by Lemma 11.3.5(1).

Lemma 11.3.5(2) is false (even when A is a field) if J¢" is not separable over
K. See Remark 11.3.6 for an example. But the A-Hodge-Pink structure in this
counterexample cannot appear as a weakly admissible A-Hodge-Pink structure.
The author does not know whether Lemma 11.3.5 holds for any weakly admissible
E-Hodge-Pink structure without assuming that J# /¢ is separable.

PROOF. The “only if” direction of (1) is already discussed; see the discussion
below (11.3.4.4). To show the “if” direction of (1), we may assume that A is a
finite local E-algebra. Let E’ C A be a subfield containing F which makes A a
radicial E’-algebra. (For example, we may take E’ to be the maximal separable
subextension of A/mA over E.) To prove the lemma, we may replace E by E’
and v := (n,A%) by v/ := (n,A}%), so we are reduced to the case when A is finite
radicial E-algebra. (The point of this step is that for any finite extension E” of E,
A®g E" is local.)

Since /4 ¢ and ¢ o/ Fy are separable it follows that # /Fy is separable, so
we have an isomorphism % ®@p, E = @, E; for some finite separable extensions
E;/E equipped with a fixed Fy-embedding J# < F;. Also we have a unique J# o-
isomorphism Oa ,, = #[[P(u)]] (using separability of ¢ /%), so we have an
isomorphism OQA 4,5 = D, Ei[[P(u)]].

Cramm 11.3.5.1. For a finite radicial E-algebra A, any O A z.a /(P(u)h)-

quotient Ay of ((’)273507,4/(73(11)’1))@” which is projective as an A-module can be
written as follows:

(11.3.5.2) A= P @ ( (B © A))[f;( )H)mw’i.

We choose mq ; > 0 for each i so that we have szo May,i = N.

i w=0,-

To show Claim 11.3.5.1, it is enough to show that A, is projective over J# 4
(which is E-isomorphic to @, E; ® g A). Since 2/ Fy is separable J# 4 is an étale
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A-algebra. So £ 4 ®4 (A/m4) is a product of finite separable extensions of A/muy,
hence any # 4 ®4 (A/my4)-module is projective. Now by local flatness criterion
(especially, [Mat86, Theorem 22.3(4)]), a finitely generated ¢ 4-module is % 4-
flat if and only if it is A-flat. But by assumption A4 is A-flat, so we proved Claim
11.3.5.1.

Now let us deduce (2), (3), and the “if” direction from Claim 11.3.5.1. First,
observe that A4 in Claim 11.3.5.1 is isomorphic to Ap ®p A where

X E‘H?(U)H)m“”i
Ap = —_— .
" @w:@ ( (P(u)®)
This shows (3). To show (2), we may assume that A is local and radicial over some
finite extension E/Fy (e.g. by taking E to be the maximal separable subextension
of A/m4 over Fp). Then any A-Hodge-Pink type A4, Ay = AA/YSAJO satisfies the
assumption of Claim 11.3.5.1 by definition. Using the isomorphism (11.3.4.4), we
obtain for any w € Z

(11.3.5.3) gt (Dax) = @ (E; @5 A,

which is visibly projective over J# 4. The “if” direction of (1) also follows because
for any A-Hodge-Pink type A4 (with A a finite radicial E-algebra), Aa/Da g, is
uniquely determined by non-negative integers {muy ;}w,; up to isomorphism, but
{Muy,i}w, is determined by gr*(Da, ) as in (11.3.5.3). O

REMARK 11.3.6. Consider K := F,((u)) with up = u? (so P(u) = mp — ug =
mo — uP). In particular, the image 7y of u in 0, = Fy[[mo,u]]/(mo — uP) is a
uniformizer satisfying 7¥,, = my. We take E := Fy[ng]/(mo — 7h) so we have
H g = A rpl/(mg — ) & A g/ (wx — 7p)P.

Consider Dg := (A )g-e = E-e and set Dg 4, := (Oa 5, )e-e. (Note that
H o= Fp, so (A 9)g = E.) Consider the following E-Hodge-Pink type:

p—1
Ap = Z(u —mg)¥(mo — uP) Y Dy g
w=0
Clearly Ag is of height < p — 1, and one can that the associated filtration is
Fil"(Dg ) = (rx —7E)”-Dg x for w € [0,p — 1] which is not free over .

It is impossible to give Dg an E-isocrystal structure which makes Ag weakly
admissible; any E-isocrystal structure is pure of some slope w since D is of () g-
rank 1, but this forces any weakly admissible Hodge-Pink structure to be of the
from ’P(u)_wﬁE’mo.

PROPOSITION 11.3.7. Assume that J is separable over . Let £ € :@pih(R)

for some R € Q/li)\‘io. Then, for any E-Hodge-Pink type v with E a finite extension
over F = Frac(0),'0 there exists a (possibly empty) union of connected components
GAHE C gﬂfh ®o F = Spec Rg (where R := R®, E), with the property that for
any finite E-algebra A, an A-point (4 € %%’fh(/l) is of E-Hodge-Pink type v if
and only if Ca is supported in %%z

100ne can allow E /Fo which does not necessarily contain F', as follows. Pick a finite extension
E' of E which contains F, and replace v by v/ := {Fil{ g E'}.
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PROOF. Recall that we have a Ggggfh—lattice ﬂfh of height < h in M¢ ®g

Og%? which is “universal” in the sense of Corollary 11.1.11, where 6%@5@ =

G ®a, (’)(j%?h. We view @?% = @?h ®, F as a 6 ®,, Rg-lattice of P-height < h

in M¢ ®, I via the structure morphism %%’?h ®o E = Spec Rg. Now, set

(11.3.7.1)

(0" M) NP (u)” - MG Ry
Plu)- (o ML) N P(u)?- el Plu)- M
(Compare the left side with (11.3.4.5).)

Let g%g C Spec Rg be a set of primes p C Rp such that there exists an
H @, (Rg)p-isomorphism

(11.3.7.2) Filg ¢ p ®rg (RE)p = Fily @p(REg)p.

Clearly, %%g is an open subspace of Spec Rg. We will now show that {4%’%’ is a
union of connected components of Spec Rg and has the desired property for E-finite
points.

We first show that Filqé,é,E is finite projective over % ®p, Rp.' Tt suffices to
show that Filg ¢ p ®r, (RE)y is finite projective over %" ®r, (Rg), for all maximal
ideals p C Rg. Let E' := Rg/p, and let v/ be the E’-Hodge-Pink type for the & g/-
lattice @?% ®pry, Re/p of P-height < h (which corresponds to the closed point
p € Spec Rp < %%’ggh ®, E). Choose a maximal ideal p’ C Rpr = R®, E’ over p.
By applying Lemma 11.3.5 to the &y, /,/n-lattice ﬂ?% ®rp Re/p’" of P-height
< h, we obtain an & ®p, (Rg)y -isomorphism

Filg ¢ & Orp (Rer )y = Fil) @/ (R )y

Filg ¢ g := forw=0,1,--- , h.

for all w. Since Filg ¢ p ®r,(RE), is finitely generated over £ ®p, (Rp)p, it is
finite projective by faithful flatness of # ®p, (Rg/)y over X ®@p, (Rg)p.

Since both Filg ; x and Fily ® g Rg are projective £ ®p, Rp-modules, there
exists a (possibly empty) union of connected components U C Spec(# ®F, Rg)
over which the ranks of both modules coincide (since the rank of a projective A-
module is a locally constant function on Spec A). Clearly, p lies in 97 if and only
if the fiber Spec(#” ®p, RE/p) over p is contained in U. Thus, 9%y is precisely
the union of all the connected components whose preimages in Spec(# ®p, Rg)
liein U.

It is clear from the definition of 4% that for any A-point (4 € 9% (A) with
A finite over E, the & 4-lattice ng(%?%) of P-height < h in M¢ ®p¢, A is of
E-Hodge-Pink type v. Now, let us show that for any 4 € (%%’?h ®o F)(A) with A
finite over E, if (@?%) is of E-Hodge-Pink type v then (4 factors through 4% .
We may assume that A is local, and let p be the closed point of g%§h®o E on which

Ca is supported. By the assumption on (4, the &g, /,-lattice ﬂ?% ®pry Re/p of P-
height < h is of E-Hodge-Pink type v, so Filg ¢ p ®r, (RE)p and Fil§ ®@g(RE), are
projective # ®p, (Rg)p-modules with same (locally constant) 2 ® g, (Rg)p-ranks;
i.e., they are isomorphic as % ®p, (Rg),-modules. Thus, p € Z;. O

HFor a different proof, one can adopt the proof of Lemma 11.3.5 as in [Kis08, Lemma 2.6.1].
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11.3.8. By Proposition 11.2.6, the structure morphism fﬁ%?h@oF — Spec(R®,
F') is an isomorphism, where £ is over R. Let RY be the direct factor of R®, F' such
that the isomorphism induces %%’g = Spec R¥. If Endg,. (pr) = F (so £ = &uniy
exists over R := Rfrh)7 then we write R} to denote RV. We similarly define REF"’
using € = £ ;.- The rest of this subsection is devoted to computing the dimensions
of F-algebras R} and REW"’ for fixed Hodge-Pink type v. Since we already know
that are geometrically regular F-algebras, it is enough to compute the dimension
of the tangent space at each closed point, which can be done after increasing F' so
that the closed point becomes an F-rational point and passing to the completed
local ring.

Fix an E-Hodge-Pink type v and a deformation n € Ql,gwh(oE) such that ng is of
E-Hodge-Pink type v. We fix a framing (,, for n to obtain a framed deformation
n” = (n, ﬂoE) €Ds 'S'(0g). As mentioned in Proposition 11.2.2, the tangent space
|@D’<h| ) is exactly the Zariski tangent space of RD v ®, E at the E-point 1%,
and mmlarly if Endg, (pr) = I then the tangent space ’@;Eh (Ele]) is exactly the
Zariski tangent space of R} ®, E at the E-point ng. Note also that even if |@,§Eh
is not representable, the Zar1sk1 tangent space |9§Eh| (E[€]) makes sense as a finite-
dimensional E-vector space since ‘.@,ﬁﬂ satisfies Schlessinger’s criteria (H1)—(H3)
by §11.7.1 and Theorem 11.7.2.

Let Ad(ng) be the (natural) G x-representation on Endg(V;;). In particular, we
have (Ad(nE))gK = Endg, (ng). Then we can see that |Z, D’gh} (Ele]) is a torsor

over {@<h| [€]) under the natural tranitive action of Ad(nE)/ (Ad(nE))gK7 which
can be seen as follows: for a fixed deformation ngjq € Z5!(E[e]), any two lift of the
framing (i.e., the ordered basis) for ng are related by the action of id +e-Ad(ng),
and two lifts of the framing define isomorphic objects in Z,:<"(Ele]) if and only if
they are related by the action of id +6'(Ad(77E))gK. So we obtain

(11.3.8.1)

@Eé<h| (Ele]) = dimpg |.@§Eh (Ele]) + dimg Ad(ng) — dimg (Ad(nE))gK

dim E

Therefore, it is enough to compute the dimension of the tangent space |@$Eh‘ (Ele]).
Thanks to Corollary 11.2.8 and Lemma 11.3.2; this can be done by studying (first-
order) deformations of (weakly admissible) Hodge-Pink structures with coefficients.

11.3.9. The following discussion is an analogue of Kisin’s technique [Kis08, §3]
for studying deformations of weakly admissible filtered isocrystals with coefficients.
Let (Dg,Ag) be a weakly admissible E-Hodge-Pink structure of E-Hodge-Pink
type v. We write (Ad(Dg),Ad(Ag)) := Endg(Dg, Ag), where the right side is
the internal hom of weakly admissible Hodge-Pink structures in the sense of §2.3.2.
(If V¥p(DE,AE) = ng then we have Viip(Ad(Dg),Ad(Ag)) = Ad(ng).) The
Hodge-Pink type Ad(Ag) is not effective if there are distinct Hodge-Pink weights
for Ag. R

Let Ad(PEgg,) == Oaz, ®ux, Ad(DE) denote the standard lattice. Recall
from §2.3.3 that we also have defined a filtration Filiy, ) on the standard lattice

Ad(ﬁE’mo). The zeroth filtration FilOAd(AE) is Ad(Ag) ﬂAd(ﬁE,IO), where the inter-
section is taken inside Ad(ﬁE@O)[ﬁ], and can be interpreted as a submodule of

endomorphisms on ﬁETO which take Ag into itself when extended to ﬁE@O [ﬁ]
In particular, the image of an endomorphism f € Ad(Dg) via the natural inclusion
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7:Ad(Dg) — Ad(ﬁvao) lies in Filgd(AE) if and only if f respects E-Hodge-Pink
structure Ag. Now we define the following 2-term complex:

Ad(Dg 4,)
Fil}ga,)

We denote by H!(Dg, Ag) the ith cohomology of the complex C*(Dg, Ag).

We discuss how this complex can be used to study the infinitesimal liftings of
weakly admissible Hodge-Pink structures with coefficients. Let A € AR, and let
I C A be an ideal with ms-I = 0. Put A := A/I € ARE. We fix a weakly admis-
sible A-Hodge-Pink structure (D 3, A ;) which lifts (Dg, Ag). By Theorem 11.2.9,
we already know that there exists a (weakly admissible) A-Hodge-Pink structures
which lifts (Dg,A3). So we would like to obtain the set of equivalence classes
of such lifts, where two lifts (D4, A4) and (D’y,A’,) are equivalent if there is an
isomorphism (D4, A4) — (D’y, A'y) which reduces to the identity map modulo I.

C*(Dp, Ap) == |Ad(Dg) “=%7 Ad(Dp) &

ProrosITION 11.3.10. The set of equivalence classes of weakly admissible A-
lifts of (D 4, A 5) is a principal homogeneous space under the action of H*(Dg, Ap)® g
I. For any fized such A-lift (Da, A4a), the group of infinitesimal automorphisms is
isomorphic to H'(Dg, Ag) ®p I.

It is natural to expect that there exists a functorial construction of the “ob-
struction class” in H?(Dg, Ag) ®g I for the liftability. But the second cohomology
is trivial, which is consistent with Theorem 11.2.9.

PROOF. The claim about the infinitesimal automorphisms is immediate, so we
concentrate on the other claim.

Let (D4,A4) be an isocrystal with Hodge-Pink structure with A-coefficients
such that (Da,Ax) ®4 A = (Dz,A5). Then (Da,A4) is automatically weakly
admissible since we have the following short exact sequence

(11.3.10.1) 0— (Dp,Ap)@p I — (Da,An) — (Dg,Az) — 0,

where the flanking terms are weakly admissible. Being an extension of weakly ad-
missible Hodge-Pink structures, (D4, A4) is weakly admissible, thanks to Propo-
sition 2.3.8. Therefore, we are reduced to showing that the set of A-lifts (D4, Aa)
of (D3, A7) as isocrystals with Hodge-Pink structures with coefficients (without a
priori imposing the weak admissibility) is a torsor under H'(Dg, Ag) ®F 1.

Let ¢ : 0*D 4 — D4 be the Frobenius structure for the A-isocrystal (D 4, A 7).
Fixing the underlying ¢ ® , A-module for the A-isocrystal D4 that lifts D z, the
set of A-lifts of (D, p,Az) is a set of (p,A4) up to some equivalence relation,
where ¢ : 0*Da — D4 is an isomorphism which reduces to ¢ modulo I, and
Ay C(Da)g, is an an (O; 4, ) a-lattice which reduces to A; C (D)5, modulo I.

We fix an A-lift (D4, p, Aa). For any other lift ¢’ of @, we can always find vp €
Ad(Dg)®g I such that ¢’ = (id +vyp) o, since p@4 A = o' @4 A = p. Conversely,
given any vp € Ad(Dg)®gI, we obtain another lift ¢’ := (id +vp)¢. For any other
lift A’y of Az, choose an automorphism of (D4)z, [ﬁ] which takes A4 onto Ay,
and reduces to the identity modulo I. In fact, since (D4, A4) and (D4, A’y) should
have the same E-Hodge-Pink type, it follows that this automorphism restricts to

an automorphism id +yxp : (Da)z, — (Da)z, , where yp € Ad (ﬁEmO) ®p 1.

Conversely, given any vyyp € Ad (ﬁEwo) ®g I, we can find Ay := (id +ypp)(Aa),



11.3. LOCAL STRUCTURE OF THE GENERIC FIBER OF DEFORMATION RING 189

which clearly lifts A; = Ay ®a4 A. As remarked above, A’y = A4 if and only if
YHP € Fll?\d(AA)

To summarize, Ad(Dg) ® (Ad(ﬁEw)/ FilOAd(AE)>, which is a degree-1 term of
C*(Dg,Ag), acts transitively on the set of equivalence classes of A-lifts. We now
seek a condition for (yp,ypp) for which the A-lifts (Da,p,Aa) and (Da, ', A))
are equivalent, where ¢’ := (id+7yp)p and Ay = (id+yxp)(Aa). Assume that
there exists 3 € Ad(Dg) ®g I such that the A-linear map id +3 : D4 — D4 which
respects @-structures (¢ and ¢') and A-Hodge-Pink structures (A4 and A’y). In
other words, we have

¢’ = (id +B)opo(id =™ B) = p+(8 — w0 (o7B) 0 ™" )op = Y+(B—paa(py) (775))ow,
(i.e., vp = B — Yad(py)(0*B)) and yp = 3(3) (by considering the A-Hodge-Pink
structure). In other words, (Da, ¢, A4) and (D4, ¢’, A'y) are equivalent if and only
if (vp,y#p) € S(id —@ad(py); ), which is the “coboundary condition.” |

We apply the the previous proposition to the following special case. Let A =
Ele] and I = e- A, so necessarily we have (D z,A;) = (Dg,Ag). By the previous
proposition, the set of E[e]-deformations of (Dg, Ag), which has a natural E-vector
space structure, is naturally E-isomorphic to H!(Dg, Ag). (We can directly check
that the H!(Dg, Ag)-action on the E-vector space of E[e]-deformations is E- linear )

We use this result to compute the dimension of the tangent space ‘9\ ‘ e])-
Choose (Dg, Ag) so that ng = V}»(Dg,Ag). By Corollary 11.2.8, Lemma 11.3.2
and the discussion immediately above, we have a natural E-linear isomorphism
HY(Dg,Ag) = ’@,ﬁﬁ (Ele]). One can compute the E-dimension of H!(Dg,Ag),
using the well-known trick that the “Euler characteristic” is equal to the alternating
sum of dimensions of the terms of the complex:

dimp H'(Dp,Ap) = dimgH’(Dg,Ag)+ dimg %

= dimE (Ad(an)gK) + dimE (Ad(DE7mO)) y

FllAd(AE)
where the second equality follows from Corollary 5.2.4. Using the equation (11.3.8.1),
we have the following corollary which is the main goal of this subsection.

COROLLARY 11.3.11. There exists a natural E-linear isomorphism H'(Dg, Ag) —
’9<h . Any connected component of Spec RS <h[WO] which contains a closed
point correspondmg to (Dg,Ag) of E-Hodge- Pmk type v is of dimension

dim (R, )—d2—|—d1m % .
- llAd(AE)

If Endg, (pr) = F, then any connected component of Spec REFh[ﬂ%} which contains
a closed point corresponding to (Dg,Ag) of E-Hodge-Pink type v is of dimension

o , Ad(Dg.,
dim (Rpm) =1+ dimg <m> .
E

If furthermore J | K o is separable (e.g. when og =Z,), then the formally smooth
F-algebras RD Y and R}, (if it exists) are equi-dimensional.
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PROOF. It remains to show that equi-dimensionality assertion; namely that
dimpg (Ad(ﬁEwo)/FilOAd(AE)) only depends on the fixed E-Hodge-Pink type v.
Consider A-Hodge-Pink structures A4 and A’y of P-height < h for a rank-d free
(A o) a-module D4 (with A finite over Fy) such that there exists an (X, 4 /(P (u)")
isomorphism AA/ZSA@O = A;l/’lSA’xO. Then we can lift this ismorphism to an

OA 5,4 -isomorphism A4 =2 A’y which maps 13,47350 C A4 onto ﬁAJO C Ay, So we
have rank 4 (Ad(ﬁA,_to) /FilOAd(AA)> — ranky4 (Ad(ﬁA,%) /FﬂOAd(A,A)). O

11.3.12. 2-dimensional example. Let pp be a 2-dimensional G k-representation.
Let us fix the following Hodge-Pink type (or rather Fy-Hodge-Pink type) v = (n =
2,AV := &p,/P(u)"). Choose My € @é@WF(E) with E a fixed finite extension
F = Frac(o) such that Mg has Hodge-Pink type v. Now, set (Dg, Ag) := H(MEg),
and choose a (£ g)a-basis {e1,e2} for Dy, such that Ag is the OA 4, -span of

{Wel, e}. Under the basis {e;; := e} ® e, }; j=1,2 for Ad (’5}3@0), the Hodge-
Pink structure Ad(Ag) is the (Oa 4, )g-span of {eu, Welg, P(u)"esr, 822}.

Therefore, {e11, €12, P(u)"es1, €2} spans Filgd(AE), so we have

Ad(Dg.,) ., Sp

- = €21.
Fll([)\d(AE) P(u)h

In particular, it follows from Corollary 11.3.11 that if J¢ /¢ is separable then
dim (R};V) = 4+ h-[£ : Fy], and if furthermore Endg, (pr) = F then dim (R},) =
1+ h-[J¢ : Fy). Here, 0 := &/P(u), viewed as an integral extension of og.

For h = 1, we will determine the connected components of Spec REF"’ and
Spec Ry later in §11.4.14 and §11.5 when %"/ is separable.

11.3.13. Relation with crystalline and semi-stable deformation rings. This para-
graph is a continuation of §11.2.11. We assume that oy = Z,. We first recall the
definition of p-adic Hodge type for a weakly admissible filtered (¢, N)-module. Let
E/Q, be a finite extension and fix a decreasing separated and exhaustive filtra-
tion v := {FilY C (J# g)®"} by J# g-submodules such that the associated graded
module is concentrated in degrees in [0, h]. For a finite E-algebra A, we say that a
weakly admissible filtered (¢, N)-module with A-coeflicients (D4, ¢, N,Fil*(D 4, »)
is of Hodge type v if there exists a filtered (¢ 4 )-linear isomorphism (% ®q, A)®" =
(D) where the filtration on the left side is {(Fily) ® g A}. For a semi-stable A-
representation V4 of G with Hodge-Tate weights in [0, h], we say V4 is of p-adic
Hodge type v if D (Va(—h)) is of p-adic Hodge type v, where D, : Repap (Gx) —
MF (o, N)Y% is the covariant equivalence of categories. By Lemma 11.3.5(1), one
can also view v := {Fily'} as an E-Hodge-Pink type.

Let A be a finite E-algebra. We defined a functor res : MF(p, N)% —
HPE () in (5.2.12.1), which takes a filtered (¢, N)-module with A-coefficients into
Hodge-Pink structure with A-coefficients. For a fixed v := {Fil} }, we can show that
the weakly admissible filtered (o, N)-module D4 := (D4, ¢, N,Fil*(D4) ) with
A-coefficients is of p-adic Hodge type v if and only if res(D 4) is of Hodge-Pink type
v. This claim essentially follows from [Kis06, Lemma 1.2.1].

As in §11.2.11, fix a mod p representation p of G . Let RSDt’gh and RSS!

cris

denote semi-stable and crystalline framed deformation ring for p in the sense of
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[Liu07], respectively. (For what follows, the same discussion works if the framed
deformation rings are replaced by deformation rings, provided Endg ,_(poc) =F.)
By [KisOS (2.6)], fixing the Hodge type v cuts out unions of connected components
Spec RV C Spec RD’\h[p] and Spec R.:Y C Spec R.: <h[p], respectively. More-

cris Cris
over, the map @bt : Spec RSt’gh — Spec RLSP defined by “restricting to G
restrict to Spec Rst’v — Spec RY:Y, where v and v are chosen as above. Similarly,
res®™ restricts to Spec RLY — Spec REO"’.

The local structure of ch‘s/ and Ry is studied in [Kis08, §3] (including the
case p = 2). For example, R}’ is equi-dimensional and formally smooth, and R
is equi-dimensional and admits a dense open subscheme which is formally smooth.
The dimensions can be computed. In particular, by comparing the dimension for-
mulae for Rcr’l‘; and for RT;Y, we see that they have the same dimension if (and
only if) h =

We give an example in case p is a 2-dimensional G ,-representation. Let v be
the filtration on #®? such that dim Fily = 2 for w < 0, dim_¢ Fily) = 1 for
1 <w < h, and dlm;g/ Fily = 0 for w > h. We obtain natural maps Spec RSE’V
Spec RY;Y and Spec Rcm — Spec RY;Y, and similarly for the deformation rings.
The first two equations of the following are from Kisin [Kis08, (3.3)] and the rest
from §11.3.12 above.

dim(Roy) = dim(RgY) = 447 : Q)
dim(RY;,) =dim(RY) = 1+ [ :Q,], if Endg,, (p) =F.
dim(RY) = 4+h[X :Q,)
dim(RY,) = 1+h[# :Qy), if Endg, (ps) =T

For h > 1, this difference of dimensions reflects the “gap” between G __ -representations
of P-height < h and crystalline or semi-stable G »-representations with Hodge-Tate
weights in [0, h].

11.4. “Ordinary” and “formal” components

We again allow op = Fy[[mo]]. In addition to Hodge-Pink types, we discuss
two more conditions on R':"gh[m] (or rather, on ¥%”S" ®, F) which cut out
unions of connected components: more precisely, we show that the “ordinary” and
“formal” deformations, which will be defined below in §11.4.3 and §11.4.6, form
unions of connected components in the generic fiber of the framed deformation ring
of P-height < h. Exactly the same results will hold for R<h [ -] whenever it exists.

Using these finer conditions, we work out a complete descrlptlon of ordinary
components of a 2-dimensional (framed) deformation ring of P-height < h with a
certain fixed Hodge-Pink type (see Proposition 11.4.15)*2. We end this discussion
with an application to crystalline and semi-stable (framed) deformation rings in
§11.4.17.

11.4.1. For the proof of Proposition 11.4.2 we need to extend Corollary 8.1.11
to allow coefficients in (B, J) € Aug,. First, recall that for Tg € Rep's®(Gx) with
B an og-algebra where 7 is nilpotent, we defined in (11.1.4.1) an étale (¢, 0¢,B)-

module Q?h(TB) free with og p-rank equal to rankp(Tp). We also showed that

12For this result, we do not require %/ ¢ to be separable.
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Q;h is exact and commutes with ®-products, internal homs, duality, and change
of coefficients.
If, furthermore, Tp is unramified (i.e., I acts trivially on Tg), then we define

(11.4.1.1) U(Tp) = (W ®,, Tp)9x/1x,

where W is as in §1.3.3 and W*" denotes the strict henselization of . We can
show the following without difficulty:

(1) For Tp € Repféee(gK/IK), U(Tp) is an finite free étale (¢, Wg)-module
with Wp-rank equal to rankp(Ts). Here, Wp := W ®,, B.

(2) A sequence () : 0 — T — Tp — Th — 0 in Reps*®(Gx/Ix) is short
exact if and only if U(T) is short exact.

(3) The formation of U commutes with ®-products, internal homs, duality,
and change of coefficients.

(4) There is a natural isomorphism og g @w, U(Tp) = Q?h(TB (h)) of étale
(¢, 0¢.3)-module, where T € Rep%®(Gre/Ik).

(5) If Mp € (ModFI/&)S" is étale, then T := T'S"(Mp) is of Lubin-Tate
type of P-height h (i.e., T(—h) is unramified) and we have a natural
p-compatible isomorphism Mp = Sp @w, U(T(—h)).

If #(B) < oo then (1)—(4) can be proved using Corollary 8.1.11, following the
argument in §8.2.4. The general case of (1)—(4) follows from this case because Tp
descends to Ts € Repfé?e(g k/Ix) with B’ C B some finite og-subalgebra, and
we have a ¢-compatible isomorphism U(Tg) = U(Tp/) ®p: B. To show (5), first
observe that Tg(—h) = Iéo(img), where the right side makes sense since Mp is
étale. Now Tp is of P-height < 0 by Proposition 11.1.6, so Tp is unramified by
Proposition 8.1.10. The second part of (5) is reduced to the case when #(B) < oo
by a similar argument as previously, and then we apply Corollary 8.1.11.
We now state the following proposition which shows the existence of the connected-

étale sequence for My € @éz\h (A, I). This generalizes Proposition 8.2.7.

PRrROPOSITION 11.4.2. Consider (A,I) € RAug,, and assume that Spec A is
connected. Any M4 € ‘@5};\@ (A,I) has a “mazimal” étale submodule M €
(ModFT /G)jh and a “mazimal” Lubin-Tate type quotient MM5T € (ModFI /G)f‘h
with the following properties.

(1) Both the quotient M4 /IS and the kernel of M4 — M5T are finite locally
free over & 4; i.e. they are objects in (ModFI /6)§h.

(2) For any morphism (A,I) — (B, J) in Aug,, the natural morphisms

MG @4 B — (Ma®a B, (Ma®4B)T —MET @4 B

are isomorphisms.

(3) The natural morphisms (M5T)Y — (M) and (M7 — (M) are
isomorphisms.

(4) The formation of M and zmﬁ”f is “functorial,” in the followz'ng/sense:
any -compatible map My — M,y in (ModFI /6)§h takes M into
(M) and induces a map IM5T — (IM,)*7T.

PROOF. The proof is essentially identical to [Kis09b, Proposition 2.4.14]. The
existence and properties of EmﬁT can be reduced to the corresponding claims on
M by duality of P-height h, so it suffices to handle the claims on 9M¢. We
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may assume that A is finitely generated over 0. Then A is Jacobson since A,eq
is finitely generated over F,. The key step is to show that for any closed point
x € Spec A, d(z) := ranke,, (M4 @a k()% is locally constant in MaxSpec A
(hence in Spec A), where k(x) denotes the residue field at « € Spec A.
We first show that d(z) is lower semi-continuous (i.e., d(z) goes down along
a closed subset), as follows. Consider a @-module M 4/uM4 and choose a basis.
Let P(T) be the characteristic polynomial for the matrix representation of ¢ :
o*(Ma/uMy) — My /uIM 4 with respect to the chosen basis. Then d(x) equals
the largest integer d such that the coefficient of 7"~ in P(T) does not vanish at
x.
In order to show that d(z) is upper semi-continuous, we will define for each

d € [0,n] a projective A-scheme XngAv such that d(z) > d if and only if z is in
the image of X%IA. To construct XgnAa consider My € Qéz\h(/l, I) with (A, 1) €
Aug,, and let T4 := Iéh(DﬁA) as defined in (the proof of) Proposition 11.1.6. For
any A-algebra B, we define XgﬁA (B) to be the set of Gg-stable B-submodules
Lp C Ty ® 4 B with the following properties.

(1) The submodule Lg is locally free of B-rank d and the quotient (T4 ® 4

B)/Lp is locally free over B.
(2) The Tate twist Lp(—h) is unramified.
(3) We identify M4[1] with Q;’A(TA) using Proposition 11.1.6. The ¢-stable
Wg-submodule U(Lg(—h)) C QEZ(TA) is contained in M4 R4 B.

We now show that the functor th is representable by a projective A-scheme
equipped with a universal rank-d G g-stable subbundle L xd,  C Ty®4 0 xd, of

Lubin-Tate type of P-height h. It is clear from the deﬁmtlon that the formatlon
of XsmA and LX%1 , if they exist, commutes with arbitrary scalar extension for
A

A — B. For the proof of representability, first observe that the conditions (1)
and (2) obviously define a closed subscheme (which we denote by Y ) of the
grassmannian of rank-d subspaces of T4. We now show that the third condition
is closed in Yiflnm as follows. It is enough to show that for any A-algebra B and
any B-point Lp € Yif)lu (B), there exists an ideal J € B with the property that
Lp®pC CTsy®4 C satisfies (3) above for a B-algebra C if and only if JC = 0. It
is clear that the construction of J C B is compatible with scalar extension, so we
obtain the universal closed subscheme of the grassmannian with conditions (1)—(3)
by gluing such ideals J, C B, for some open affine covering {Spec By}, of YQ%A

To construct the ideal J C B as above, put Mg := My Q@4 B and T =
Ta ®4 B. Since Sp[1]/Sp is free over B, Mp[L]/Mp is also free over B. Choose
an B-basis {e;}; for Mp[1]/Mp. Now consider the following composite of B-linear
maps

rp : U(Lp(~h)) = DF"(Tp) - D" (T5)/Mp = Mp[1/u)/Mp = (P Be;.
J

Note that U(Lp(—h)) is finite free over B since Wp is so. Choose a B-basis {u;} for
U(Lg(—h)), and let J C B be the ideal generated by rg(u;). Since the formation
of U and the B-linear map rp commutes with change of coefficients, the ideal J
has the required property.

Now, let us show that for a closed point « € Spec(A), we have d(x) > d if and
only if z is in the image of XngA' (This shows that d(z) is locally constant on Spec A,
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so it is constant if Spec A is connected.) First, it directly follows from the definition
of Xg,  that for any map (A,I) — (B,J) in 2ug, we have a natural isomorphism
X4, ©aB =X where Mp := Ma ®4 B. By taking (B, J) = (k(z), (0)) where
k(z) is the residue field at x, we are reduced to showing that the Xgm@) is non-
empty if and only if rankgﬁ(m)(?J)I,i(gc))ét > d, where My (5) 1= M4 @4 K(x). If we
have the inequality ranke, ((mﬁ(m))ét) > d, then any d-dimensional G g-stable
subspace L, () of Iéh ((smn(m))ét) defines a k(x)-point of Xgﬁnm' (That L)
satisfies condition (3) of the definition of Xg, follows Corollary 8.1.11, especially
the special case of (2) and (5) in §11.4.1.) Conversely, if Xgnn(z) is non-empty
then there exists a x-point L, € Xgm(m)(n) for some finite extension x/k(z). By
definition of Xgm@)’ especially by condition (3), we have &,, @w, U(L.(—h)) C
(M) Oy K) = (Myo(2))® @p(a) & (Where the isomorphism is obtained from
Proposition 8.2.7), so we have the desired inequality ranks,,,, (Dﬁm(w))ét >d.

This shows that d(z) is locally constant on Spec A. We can furthermore show
that the structure morphism XECIZJIA — Spec A induces an isomorphism over the
(possibly empty) union of connected components on which d(x) = d. Assume that
Spec A is connected and d(xz) = d for all closed point x € Spec A. Since XE%IA is
proper over A, it is enough to show that if the formal completion at each closed
point of Spec A is an isomorphism. Since the formation of XgnA commutes with
scalar extension A — A/m? (where m, is the maximal ideal corresponding to z), it
suffices to show that if A is local with #(A) < oo then we have rankg , (M%) = d
and Xg (B) — (Spec A)(B) is a bijection for any finite A-algebra B. To prove
this claim, observe that for any B-point Lp € XgﬁA (B) we have U(Lp) C (M4 ®a
B)¢ =~ M ®4 B by definition of Xf)inA and Proposition 8.2.7, so (essentially by
Corollary 8.1.11) we have an inclusion Lg C zéh(mi{) ®4 B of rank-d free B-
modules which are direct factors in T's (as abstract B-modules). Thus, we have an
equality Lp = zéh(zm?;) ®4 B, which proves the claim.

Now, assume that A is connected and finitely generated over o9 with d(z) = d
for all closed point x € Spec A. Since the structure morphism Xg;nA — Spec A is
an isomorphism, we obtain the universal G i-stable submodule L4 C T4 of Lubin-
Tate type of P-height h. When #(A) < oo, it follows from Corollary 8.1.11 and
the discussion of the paragraph immediately above that im‘if = 64w, U(La)
as submodules of 9 4. In general, we put ﬁﬁ‘fz‘t = G4 ®w, U(La). Since the
formations of L4 and U commute with any change of coefficients for A — B, we
obtain the equality zmi{ ®4 B = (M4 @4 B)** of submodules of M4 @4 B for any
A — B, and if #(B) < oo then this is known to be a maximal étale submodule
of M4 ®4 B. In particular, zmi{ ®a B contains the image of ﬂfil P (™ M4) in
M4 ® B. So for any maximal ideal m C A and any positive integer i, we have

()¢ (e Ma) /MG C m' (Ma/MY),
=1

thus, we have MG = 72, ¢"(6™*M4). This shows that MY is a maximal étale
submodule of M 4. To see M4 /M is a finite locally free & 4-module, note that
(Ma/M) ®s, & 4+ is finite locally free over & 5 for any maximal ideal m C A

because the formation of 9¢ commutes with change of coefficients and 90t 4 /9N is
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finite locally free over & 4 when #(A) < oo by Proposition 8.2.7. The functoriality
assertion is clear. ([

11.4.3. Definition: formal G x-representations. A torsion og-representation T
is said to be formal if there exists a a unipotent'? torsion p-module M € (Mod /&)<"
such that T = Zéh(ﬁ) =Ts (ﬁv) A lattice og-representation 7" is said to be
formal if there exists a unipotent @-module 9 € (Mod /&)S" such that T =
zéh(an) = Tg(MY). Tt follows from Proposition 9.2.6 and the existence of (the
dual of) connected-étale sequence that a lattice og-representation 7' is formal if and
only if T/n{T is formal as a torsion representation for each n.

Let A° be a complete local noetherian 0g-algebra with finite residue field. We
say an A°-representation T4o is formal if Tgo ® 40 (A°/m",) for each n is formal
as a torsion og-representation. Observe that if A° = oo then this definition recov-
ers the definition of formal og-lattice representations by the above application of
Proposition 9.2.6.

An Fy-representation V is said to be formal if there exists a Gy-stable o0p-
lattice T C V which is formal as a lattice og-representation. In fact, for an Fy-
representation V', if a Gg-stable lattice T C V is formal then any other Gg-
stable lattice is formal. (Proof: if M € Modg()S" is p-nilpotent then any I €
Mod g ()S" which is isogenous to 9 is p-nilpotent. Now apply Proposition 5.2.9.)
For a finite Fy-algebra A, we say an A-representation Vy is formal if it is formal as
an Fp-representation.

We record some special cases of this, which justifies the name “formal” G k-
representation

If o9 = Fy[[mo]] and A is finite flat over Fy[[mo]], then formal G x-representations
(over A) of P-height < h are exactly those that come from formal (i.e., connected)
mo-divisible groups of P-height < h (with A-action). Next, suppose 0y = Z, and
h = 1. We shall use the notations from §1.3.1.2. Assume that p > 2 so that we
can use the Breuil-Kisin classification of Barsotti-Tate groups and finite flat group
schemes. Let A be a finite flat Zj,-algebra, and consider a Barsotti-Tate group
G over o with an action of A. Then the G -restriction of the Tate module
T,(G) is formal if and only if G is a formal (i.e., connected) Barsotti-Tate group.
Similarly, let A be a finite Z,-algebra of finite length and let G be a finite flat
group scheme over o with an action of A. Then the G __-restriction of the
torsion G -representation G(#) is formal if and only if G is connected.'*

Now let us define the full subgroupoids Qgﬂ; C .@éhMlF whose objects are

unipotent of P-height < h, and @gfh C @pﬁh whose objects are formal deforma-

tions. That they are subgroupoids follows from the fact that if M4 € (ModFI /6)§h
is @-nilpotent then the change of coefficients My ®4 A’ is also p-nilpotent (so

we have enough co-cartesian lifts). The composition of 1-morphisms _@gﬁ/[hr —

Ts"
<h Le <h £.<h
Dev, —— 25" factors through 775",

PROPOSITION 11.4.4. Let Rep, (Gk) be the category of finitely generated o¢-
modules with a continuous G i -action, and Repp, (G ) the category of Fy-representations
of Gi. The full subcategories of Rep, (Gx) and Repg (Gx) whose objects are

13Recall from §8.3.6 that 9t is unipotent if and only if m’ s p-nilpotent.
14The “if” direction is still true when p = 2 by [Kis09a].
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formal of P-height < h are closed under subobjects, quotients and direct sums.
Therefore, the natural inclusion .@gfh - .@pﬁh of Q/L‘)\{u -groupoids is relatively rep-
resentable by surjections of rings.

For ¢ € .@pfkh‘(R) and R € AR,, let RS be the universal quotient of R which
represents the inclusion ngh C @;h, Then the subscheme Spec(R/ @, F) C
Spec(R ®, F) is open and closed.

Assume that J¢/F is separable (which is automatic if oy = Z,) and let v
be any E-Hodge-Pink type for some finite extension E/F. Let Spec RV denote the
union of connected components of Spec(R ®, F) whose closed points have Hodge-
Pink type v. (Such a quotient R, exists by Proposition 11.3.7.) It follows from
the proposition above that there exists an open and closed subscheme Spec R"Y C
Spec RY whose closed points corresponds to formal G g-representation of Hodge-
Pink type v.

PrOOF. The first claim is reduced to the fact that p-nilpotentness of p-modules
is closed under subobjects, quotients, and direct sums, by a schematic closure ar-
gument similar to Proposition 9.2.2. (The claims for formal Fj-representations
are reduced to the claims for formal lattice og-representations.) Applying Ra-
makrishna’s relative representability criterion [Ram93], it follows that the natural
inclusion @gﬁh C @pﬁh is relatively representable by surjections of rings.

It is left to show that the map Spec(R/ ®, F) — Spec(R ®, F) is formally
étale at each closed point (since R ®, F is Jacobson). Put Vg := Tg[ﬂio} where T¢
is the representation space which corresponds to £. Let A be a finite artin local F-
algebra, let I C A be a square-zero ideal, and put A := A/I. Let us fix an A-point
z: R — Asuch that z: R = A — A factors through Rf. Set V, := Ve ®po A and
Vi = V§®R’fﬁ. Then we have a short exact sequence 0 — Vz® 11 — V, — V3 — 0,
Now it follows that V. is formal, being an extension of formal G y-representations.
In other words, x factors through R7. O

ProrosiTiON 11.4.5. The natural inclusion @gﬁ/[hr — Qélﬁw is open and
closed. In particular, for any £ € .@;h(R) and R € Q/lf)\%, there exists a universal
open and closed immersion fﬁ%ﬂg’gh — g%fh of R-schemes which represents the

. . . <h <h <hoo < ,<
fully faithful inclusion D8 3p. ¢ = Dsiar, ¢ Where D55y ¢ = (9;}1/5) X g @g}f",
Furthermore the composition %@Z’gh — g%§h — Spec R factors through Spec RY
and induces an isomorphism %@g’gh ®o F — Spec(Rf @, F).

From the proposition above, one can immediately deduce that an A-point M4 €
%%?h(/l) (with A finite over F') is supported in %%g’gh if and only if M4 is
unipotent of P-height < h (i.e., M4 allows a & go-lattice Moo C M4 which is

“unipotent” of P-height < h, where A° C A is a finite flat o-subalgebra with
A°[L] = A).
o

PROOF. Let us first show that .@gﬁ,}; — gé}ﬁm is open and closed. Con-

sider M4 € @éﬁww(AJ) for (A,I) € Aug,. Let Spec A7 C Spec A be the locus
where the rank of maximal Lubin-Tate quotient dy7 is zero, which is open and
closed by Proposition 11.4.2 applied to connected components of Spec A. Thus,

——u,<h ——<h
there is a unique union of connected components %%g C Y%, such that
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its functorial points are exactly the “unipotent points” of %%’?h . Now clearly

——u,<h
%%z is obtained from mpg-adic completion of an open and closed subscheme

%%g’gh C %%§h. The last claim in the proposition readily follows from the def-
inition of formal G g-representations of P-height < h and the structure morphism
%%’?h ®, F' — Spec(R ®, F) being isomorphic. O

11.4.6. Definitions: ordinary G g-representations. Let A be one of the fol-
lowing: A € AR,, (A,I) € 2ug,, or a finite F-algebra A. A (continuous) A-
representation V4 of G of P-height < h is said to be ordinary if there exists a
G k-stable A-submodule Ly C Vy such that V4/L4 is a projective A-module (of
constant rank) and both V4/L4 and L4(—h) are unramified representations'®. In
other words, V4 is an extension of an unramified representation by a Lubin-Tate
type representation of P-height h. For a complete local noetherian o-algebra A, the
ordinary-ness for Vy is equivalent to the ordinary-ness for each Va4 ®4 (A/m%). If
A is a finite Fy-algebra, then the ordinary-ness for V4 is equivalent to requiring the
existence of an ordinary “G -stable A°-lattice” for some finite flat 0g-subalgebra
A° C A by Lemma 11.4.7 below.

Let A be either an object in AR, or (A, I) € Aug, for some ideal I with Spec A
connected. By Proposition 11.4.2 any M4 € (ModFI /G)Eh admits the maximal
étale subobject M C M4 and the maximal p-nilpotent quotient M 4 /M, which
are both objects in (ModFI/ G)Eh. In other words, there exists a “connected-
étale sequence” for any My € (ModFI /G)Eh. We say that M4 € (ModFI /G)Eh
is ordinary if the maximal p-nilpotent quotient 974 /smif is of Lubin-Tate type
of P-height h. When A € Q@o, the ordinary-ness of 94 is equivalent to the
ordinary-ness of M4 ®4 (A/m’;) for each n. For a finite F-algebra A, we say
M4 € (ModFI /G)Eh is ordinary if there exists a finite flat o-subalgebra A° C A
and M40 € (ModFI /6)§f such that My = E)JTAO[%O} and M 4o is ordinary. The
ordinary-ness is stable under the duality of P-height h.

Let A be either a complete local noetherian og-algebra or a finite Fy-algebra,
and consider M4 € (ModFI/&)S". Then we can see that zé’l(&m) is ordinary
as a G-representation if and only 94 is ordinary. (The ‘if” direction of the case
when A is Fp-finite uses Lemma 11.4.7 below and Theorem 5.2.3.)

LEMMA 11.4.7. Let A be a finite Fy-algebra. Consider a short exact sequence
Ve: 00— V) = Vyg — V) — 0 of finite free A-modules with continuous G-
action and assume that all the maps are G i -equivariant. Then there exists a finite
flat o-subalgebra A° C A with Ao[ﬂ—lo] = A, and Gx-stable A°-lattices Ty, C V},
Tyo C Va, and T, C VY, such that the short exact sequence V' restricts to a short
exact sequence 0 — T, — Tao — Tl, — 0.

ProoF. We modify the argument in [Kis03, Proposition 9.5], at the bottom of
page 433. We may assume that A is local, and let E be its residue field. Let A™ be
the preimage of oz under the natural projection A — E. Note that A% is a rising
union of finite flat 0p-subalgebras A° C A. Since the claim is clear when A = F (by
taking A° := 0g), we may choose an A-basis {e1, - ,e.,€mp1, - ,€uim} of Vy
such that {ey,--- , e} is an A-basis for the image of V} in Va, {€41, - ,€pypr}

151 g = Zyp, then G = G acts on Zy(1) via the restriction of the p-adic cyclotomic
character; and if og = Fq[[mo]], then Gk acts on Fy[[mo]](1) via the Lubin-Tate character.
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reduces to an A-basis for V}, and the image of {e1, -+ , e, 4,» } in V®4 F generates
a Gx-stable op-lattice (i.e., the AT-span of {ey,--- e} is Gx-stable). By
compactness of G, the image of G in GL, 1,7 (A™) has to lie in GL, . (A°) for
some finite flat og-subalgebra 4° C A*. Now, we put Thso C V4 be the A°-span
of {e1,--- ey}, Tho C V4 the A°-span of {e1,---,e~}, and T%, C V} the
A°-span of {e;r11, €1y} O

11.4.8. Let £ € Z5"(R) for some R € AR,. We now show that the “ordinary-
ness condition” cuts out a union of connected components in %%’?h’d. Choose
non-negative integers d := {det,do7} such that dg + der < n := dimgp(pr). We
define a full ug,-subgroupoid @é@v}i C Qé,@w such that My € @é?}’fw (A, I) for
(A, 1) € Aug, if and only if M is of & s-rank dg; and M47 is of S 4-rank dor.
This is a 2ug,-subgroupoid by Proposition 11.4.2; especially by (2). If d = dg and
dgt + do7 = n, then we put @é%ord = @é}ﬁ\’/}i; ie, My € Qéfﬁw is an object in
@é%jord(A, I) if and only if it is an extension of a Lubin-Tate type object of rank
n — d by an étale object of rank d.

S <h,d
For any R € AR, and { € Z5"(R), the 2-fiber product @éMF,ﬁ = (25"/¢) X gsh

@é% is a full Augp-subgroupoid of QS}MT ¢ By Corollary 11.1.11, @é@w ¢ can

be represented by a projective R-scheme %%’?h.

PROPOSITION 11.4.9. The full Augp-subgroupoid Qélﬂ}\’/gf is representable by
an open and closed R-subscheme 54%’?’“‘1 of %%?h. As a special case, the full

Aug -subgroupoid _@é}}\’g’ord can be represented by an open and closed R-subscheme

fmf’“dmd of gm?&

PrOOF. The proof is essentially identical to the proof of Proposition 11.4.5.
Consider My € .@éiﬁww (A, I) for (A, I) € Aug,. Let Spec A C Spec A be the locus
where the rank of EmﬁT is d,7 and the rank of SIRf;f is dgt, which is open and closed
by Proposition 11.4.2 applied to connected components of Spec A. Thus, there is a

——<hd —<h
unique union of connected components 4%, C 9%, such that its functorial

points are exactly the points of Eﬁ%?h with the “condition d” on the ranks of a

maximal étale subobject and a maximal Lubin-Tate type quotient. Now clearly
—— <h,d

K is obtained from mpg-adic completion of an open and closed subscheme
GRE" C GAE". O
Let Spec(R[%o])d C Spec R[%O] be the union of connected components which

is the image of g%’?h’d under the structure morphism S%%’?h ®, F = Spec R[%O]

We put (R[%O])dvord = (R[%U])d with d = d¢ and dpr = n—d (where n = dimp pp).
From the discussion in §11.4.6 and the proposition above, we can easily deduce that
an o-map R[%ﬁ] — A (with A finite over F') factors through (R[W—lo])d’ord if and only
if £ ®g A is ordinary with maximal Lubin-Tate A-subrepresentation of rank d. One
can deduce a similar assertion for A-points of %@?’“{ Spec(R[%O])d, and g%?gh
(with A finite over F).

We will often apply this discussion to R = R‘p:'F’gh and R = R;}Fh, in which case

we respectively write Rl'f'w’gh’d’ord and R§Fh>d’°rd for R%erd,
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REMARK 11.4.10. Consider an Fy-Hodge-Pink type vq := (n, (&r/P(u))®?).
(If o/ ¢ o is separable then fixing the Hodge-Pink type v, is equivalent by Lemma
11.3.5(1) to fixing the filtration Fil}, of /#®" given as follows: dim (gr9 ) = n—d,
dim (g ) = d, and dimy (gr¥,) = 0 if w # 0,h.) We claim that for a finite F-
algebra A, an A-point (4 € ¥%;*(A) factors through %%fh’d’ord ®, F if and only
if the corresponding & 4-lattice of P-height < h is ordinary with Fy-Hodge-Pink
type vq. In particular, if Z /¢ is separable then %%?h’d’ord ®, F' is contained
in 9% (as a union of connected components).

In fact, we have the following general claim. Let A be one of the following:
complete local noetherian ogp-algebra with finite residue field, an og-algebra with
7'+ A =0, and a finite Fy-algebra. For any 94 € (ModFI /6)§h of Lubin-Tate
type of P-height h (as defined in §8.3.5), the image of gy , is precisely P(u)"9 4. If
M4 fits in the following short exact sequence 0 — INE — My — MET — 0 where
IS is an finite free étale (¢, & 4)-module and M47 € (ModFI /6)§h is of Lubin-
Tate type of P-height h, then we have an & 4 /(P (u)")-isomorphism coker(poy ) =
IMET /P (u)"IMET =2 (& 4/(P(u)"))®4T where the second isomorphism is obtained
by choosing & 4-basis for 947 (where d.7 is the & 4-rank of 947 ).

11.4.11. Let n := dimp(pr). We choose My € .@é,hj\’/i’ord(lﬁ‘); ie., Mg is a Sp-
lattice of P-height < h for Q?h(p[p) such that M is of rank d and Mp/ME is
of Lubin-Tate type of P-height h. We consider an 2A0R,-groupoid _@iﬁ’d’ord whose

objects over A are (Ma,t4), where My € _@é’hj\ﬁmd(A) and 14 : Mag @4 A/ma =
Mp. There is a natural 1-morphism ng{;’d’ord — .@é%ord, defined by forgetting
ta. If Endg, (pr) = F, then @;t’;’d’ord is pro-representable by the completed local

ring of G <"1 at the closed point corresponding to My. In general, the 2-fiber
ggh,d,ord —

_ <h <h,d,ord .
product Zgy (25" /&) o<t Doy, is pro-representable by the completed
local ring of %%?h’d’ord at the closed point corresponding to 9r. By increasing F,

we obtain the completed local ring of %@?h’d at any closed point.

~

There is an &g /(P (u)")-isomorphism G : (Sp/P(u)")®" = Mg /P (u) "My by
Remark 11.4.10, and we choose one. We define an 2AR,-groupoid!® @;{:d’ord, where
an object over A is My € :@;{;d’ord(A) together with an & 4 /P (u)"-isomorphism

~

Ba i (Sa/Pu)M)®" = My /P(u)"9MM 4 which lifts Br. (Note that such an iso-
morphism exists by Remark 11.4.10.) By forgetting this isomorphism, we obtain a

L=< < . .
1-morphism Qﬁg’d’ord — .@D};L’d’ord, which makes the former into a torsor under the

formal completion of the Weil restriction ResDG"/ Pw)" GL,, at the identity section.
In particular, this 1-morphism is formally smooth.

Now, we define another 2R, -groupoid Grs" (n, d) whose objects are quotients of
(&4/P(u)h)®" which are free of & 4/P(u)"-rank d. This groupoid is representable

by (the mg-adic completion of) a grassmannian for Resoe"/ Pw" GL,,, which is a

smooth formal o-scheme. We have a 1-morphism é;{lf’d’ord — GrS"(n, d) by send-

~

ing (M4, Ba) to the composite (&4 /P(u)")®" o M4 /P(u)" My L coker p. We
A

now show that this 1-morphism is formally smooth, as follows. Let A € 2R, and

16Here7 the tilde in the notation does mot mean the extension by 2-direct limits, which is
defined in §10.4.4.
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let I C A be a square-zero ideal. Put A := A/I. Let (M4, B4) € .@;{;’d’ord(ﬁ), and
we put (& 5/P(u))®" — /i% be the corresponding point in Grs"(n, d)(A4) and fix a
lift (&4/P(u)")®" — A%. We put M4 := G4" and choose M4 — M 7 which lifts
B4- Now, we can give ¢ on M4 by choosing a lift of ¢ := ¢on , in the commutative
diagram below with exact rows:

0—>0" My " >My —> A% ——>0

L

0——0*"My i M4 A% 0.

Now, let S and MM4T be a maximal étale subobject and a maximal Lubin-Tate
type quotient of M 4, respectively. Since the formation of M and SﬁﬁT commutes
with change of coefficients by Proposition 8.2.7, we have natural isomorphisms
mti{ R4 A szg and imﬁT R4 A DJT%T. This shows that 94 together with the

obvious choice of 54 defines an object in é;{;d’ord(A).

Now, we are ready to prove the following

PROPOSITION 11.4.12. Assume that (@;h/ﬁ) — @éh is formally smooth. Then

%%?h’d’ord is formally smooth over o. In particular, 9%~ <" s formally

<h,d,ord

smooth over o and Y% is formally smooth over o if @fwh is representable.

PrROOF. It is enough to show the completed local ring of %%’?]“d’ord at each

closed point is a formally smooth o-algebra. Now consider the following diagrams
where all the arrows are formally smooth.

= <h,d,ord > <h,d,ord <h
Donee — Dom, — Gr™"(n,d)

| |

@;Z:g,ord gétﬁ,d,ord
The two horizontal arrows in the square are formally smooth since they are 2-
pull back of the formally smooth 1-morphism (Z5"/¢) — 25" and the formal
smoothness pulls back under 2-base changes (Proposition 10.2.8). Since the square
is 2-cartesian and the right vertical arrow is formally smooth, the left vertical arrow
is because the formal smoothness pulls back under 2-base changes. Finally, we have

seen that Grgh(n, d) is a smooth formal o-scheme, and @;{Fl’g’ord is prorepresentable
by the completed local ring of %%?h’d at the closed point which corresponds to
M. O

Let g%;g’dmd be the fiber over the closed point of Spec R under Iéh :
%%’?h’d’ord — SpecR. The following corollary shows that distinct connected
components of %%’?h’d’ord

%%fg’d’ord. We let Ho(X) denote the set of connected components of X.

®o F “reduce” to distinct connected components of

COROLLARY 11.4.13. We keep the assumption that (@;h/f) — Qth is formally
smooth. Then the natural maps below

Ho(%%§h,d,ord ®o F) — Ho(g%§h,d,ord) o Ho(g%,ég,d,ord)
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are bijective.

PROOF. The first bijection is clear from the formal smoothness of Y%
— < h,d,ord

<h,d,ord
¢ .

By the theorem on formal functions, the natural map Ho (4%, ) — Hy (%%’?h’d’ord)
. L ——<h,dord . . . ——<h,d,ord
is a bijection, where 4%, is the mp-adic completion. Since 4%, and

g%?g’d’ord have the same underlying topological space, we have the second bijec-
tion. (]

11.4.14. Rank-2 example. We assume that (.@;h/f) — .@pih is formally smooth,

<hydsord .
80 YR "% is formally smooth over o. Thus, to compute the connected com-
<h,d,ord

ponents of %%’é ®, F' it is enough to compute the connected component of
the fiber %%fg’d’ord over the closed point of Spec R (by the theorem on formal

functions). We now do this computation for the case when that dimp(pr) = 2 and
d:=dg =1. We let %%?h’ord denote the ordinary locus of %%’?h with d := dg =
1. When ¢ /¥ ¢ is separable, %%’?h’ord ®, F' is a union of connected components
of the 9#y’s where v := (n = 2,AV := &, /P(u)") (by Remark 11.4.10), and its
complement is precisely the “unipotent locus” in g%’z (which is open and closed,
by Proposition 11.4.5). But even when J¢ /¢ is not separable, any A-point of
%%’?h’ord(}@oF has Fy-Hodge-Pink type v := (n = 2, AY := &5, /P(u)") by Remark
11.4.10. In this sense, the following discussion is the continuation of §11.3.12.

We now set up some notations. Let xo7 : G — IB‘qX be the character by which
Gk acts on Fy(1) := Tg (6(1)) ®o, Fq. If 09 = Zp, then x o7 is the restriction of
the p-adic cyclotomic character to G = Gk. (Note that ¢ = p in this case.) If
09 = Fy[[mo]], then x 7 is obtained from the mg-torsion points of the Lubin-Tate
formal group. For an unramified character i, let 9, denote the unique Lubin-
Tate type ¢-module over Gy of P-height h such that z@(imw) = 1). (So the Tate
twist M, (—h) is an étale (¢, Sp)-module such that G acts on Iéh(i)ﬁw(—h)) via
UXET)

ProroSITION 11.4.15. Assume that (:@pih/f) — .@pﬁh is formally smooth. If
%%;g‘ord is mon-empty then it consists of a single point, unless py = <1%1 1;32

where both 11 and o are unramified (so necessarily xcT is unramified). In the
latter case, we have two possibilities:

(1) If 1 # g then g%ég’ord consists of two (reduced) points which corre-
spond to

(11.4.15.1) (9)2¢1ng> (—h) & My,, and (93? ) (—h) ® My,, respectively.

Yaxzy
(2) If Y = Y1 = by then any My € g%ég’ord(ﬂ?) is of the following form:
(11.4.15.2) My = (fmwx;’;) (—h) ® My

Furthermore, we have a natural isomorphism g%fg’ord = PL of F-
schemes, and this sends Mp € g%’ég’ord(ﬁ) to Ly = zgh(smﬁt) C Ty
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(which defines an F-point of P}), where Ty := Iéh(i)ﬁ[g) is the representa-
tion space for pg. Note that under the isomorphism (11.4.15.2), we have

M = (mwxzé) (=h).

PRrROOF. Let A be a finite artin local F-algebra, and put Ty := Tr Qr A, M4 :=
Q;h(TA) We first consider a point 94 € %%gh ord(A), which is a & 4-lattice of
P-height < h for M 4. Then we have a short exact sequence

0— M — My — ME7

We put Ly = Iéh(imif), so the locally free quotient T4/L4 = zéh(smﬁff) is
unramified.

CLAIM. Let T4 be an A-representation of Gk of P-height < h (as an og-torsion
G i -representation in the sense of Definition 8.1.77) and we put My := Q;h(TA).
For any Gk -stable A-line Ly C Ty (i.e., Ta/Ly4 is A-projective of constant rank)
such that La(—h) and Ta/La are unramified, there exists a unique & 4-lattice
My € (ModFI/S&)S" in Ma such that TS"(ME) = La and TS"(M5T) = Ta/La.

We first grant this claim and deduce the proposition. The proposition follows

straightforwardly from the claim except when pp = (7’3 3)), in which case we only

have a functorial isomorphism gﬂgh 14 (A) = PL(A) for finite artinian F-algebras

A. However, this implies that the smooth proper F-scheme %% hord has zeta

gh ord

function coinciding with that of P}, which forces GR.: to be a meOth curve

of genus 0. Since F is finite, we have %%’gh ord o ~ Pl

It remains to show the claim. Conblder the étale S-lattice MY, € (Mod /&)S"
in D§"(L ), and the Lubin-Tate type &-lattice MET | € (Mod /&)<" of P-height

h in Q?h(TA/LA). Note that the A-action on L4 induces a p-compatible A-action
on MG (by functoriality of a maximal S-lattice of P-height < k), and one can
show that this makes SJT‘?A a finite free & 4-module by an argument as sketched
in §8.2.4'%; ie., MY € (ModFI/G)F". By duality of P-height h, we also have
MET,| € (ModFI /&)5".

Now, we can rephrase the claim that there exists a unique & 4-lattice 914 of P-
height < h in My ®p A which is an extension of EDTT /L DY MY in (ModFI /6)5".
To show the existence of 94 with the required property, consider a maximal & 4-
lattice SDTX of P-height < h in My ®p A, so the inclusion Ly — T4 induces zméLtA —
M. Since MS* is a maximal & 4-lattice in Q?h(L A), it follows that 9} /MM,
has no non-zero u-torsion so it is a S-lattice of P-height < h in D\ "(Ta/La4).
Now, I} /omst ', contains SﬁT /La because the latter is a minimal &- lattlce of P-

height < h, and let 94 be the preimage of QJT%AT/ 1, under the natural projection

17 A priori, we do not necessarily have M4 € (ModFI/G)f‘h such that T4 = Zéh(fmA);
the definition only guarantees the existence of M4 € (Mod /&)S" which may not be a (¢, Sa)-
module, such that T4 & (SDTA) as op-torsion G i -representations.

18We briefly recall the argument. Essentially by Corollary 8.1.11, we have smet >~ G Ow
U(L4) in (Mod /&)S" which respects the natural A-actions on both sides. (See the proof of
Proposition 8.1.10 for the definition of U.) Now, we repeat the argument in §8.2.4 to show that
U(L4) is Wa-free with rank equal to rank 4 (L 4).
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MY — M /MG . By construction My has a natural p-compatible A-action, so we
have a short exact sequence 0 — MG — My — zmg/“ — 0 of (p, &4)-modules.
Since both flanking terms are finite free over & 4, so is the middle term 9 4; i.e.,
M4 € (ModFI/&)5".

To show the uniqueness, observe that if 94 and 9, are extensions of S)ﬁlTlAT/ La
by M in (ModFI /6)§h then so is M4 + M’ where the sum is taken inside
My ®r A; clearly M4 + DV, is an extension of zmgj/“ by M?A as a (p,64)-
module, so G 4-freeness follows. By Lemma 9.2.4 there exist maximal and minimal
G 4-lattices SJTE:),DJ?E;) C My ®p A of P-height < h among the extensions of
93?%3/ L. by SﬁéLtA. Now, we have the following commutative diagram with short
exact rows:

0 W%A ‘.UIS;) mg’Z/LA 0,
idl J idl
0 m%tA mfj) EIné;zy/LA 0

where the vertical map in the middle is the natural inclusion. By 5-lemma, the
vertical map in the middle is an isomorphism, which shows the uniqueness. (I

COROLLARY 11.4.16. Assume that dimp(pp) = 2 and & /X% ¢ is separable (so
that we can apply Proposition 11.3.7). Let R be R‘p:']fh, or RﬁFh if it exists. Let
E/F be a finite extension, and let x1,z2 € (Spec RV)(E), where v is the Fy-Hodge-
Pink type (n = 2,&/P(u)"). If 21 and xy lie in the same connected component
of Spec RV then V,, and V., are either both ordinary or both non-ordinary.

If both Vy, and Vy, are ordinary, then x1 and x4 are in the same connected
component if for the unique E-line L; C Vy, on which Ik acts via XZT, the Galois
group G acts on Ly and Lo via oj-valued characters with the same reduction
modulo mg.

Assuming that ¢ /% is separable, the natural question that arises is to
compute the non-ordinary connected components of Spec RY, where v := (n =
2,8 /P(u)) is as in the statement of the corollary. If h = 1, then we can show
that the non-ordinary locus in Spec RY is connected, which will be seen in the next
section. On the other hand, this question for A > 1 seems to require a new idea.

11.4.17. Application to crystalline and semi-stable deformation rings. Assume
00 = Zp, and use the same notations as in §11.2.11. Let V be a p-adic G »-
representation which is semi-stable with Hodge-Tate weights in [0, h]. We say that
V is ordinary if there exists a G -stable subspace L C V such that both L(—h)
and V/L are unramified. Equivalently, one can require that D% (V'), or equivalently
D« (V)(h), is an extension of a weakly admissible filtered ¢-module pure of slope
h by an étale filtered ¢p-module. We say that V is formal if V admits no non-
trivial unramified quotient. Equivalently, one can require that D7 (V') has no non-
trivial étale subobject, or equivalently that Dy (V) (h) admits no weakly admissible
quotient which is pure of slope h. We can naturally extend these definitions to
semi-stable A-representations V4 of G » where A is a finite Qp-algebra, as follows:
we say that V4 is ordinary if it is ordinary as a p-adic representation and the
maximal unramified quotient V4/L,4 is projective as an A-module; we say that
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V4 is formal if it is formal as a p-adic representation. (Note that the maximal
unramified Q,-linear quotient VSt of V4 is automatically an A-linear quotient.)
As before, we fix a mod p representation p of G . Let thh and Rfr?s respec-
tively denote the semi-stable and crystalline deformation ring or framed deforma-
tion ring of p in the sense of [Liu07]. We will use Propositions 11.4.4 and 11.4.9,

and the maps res®™® and res®' to prove:

ProrosSITION 11.4.18. Let R € Q/li)\‘io, and consider a semi-stable deformation
pr of p with Hodge- Tate weights in [0, h]; i.e., each artinian quotient pr @ g (R/mYp)
is torsion semi-stable with Hodge-Tate weights in [0, h].

(1) There exists a unique open and closed subscheme Spec(Rf ®,F) of Spec(R®,
F) with the following property: for any finite Qp-algebra A, a map x :
R — A factors through R if and only if the corresponding representation
PR QR A is formal.

(2) There exists a unique open and closed subscheme Spec R4°*? of Spec(R®,
F) with the following property: for any finite Qp-algebra A, a map x :
R®, F — A factors through R*°™ if and only if the corresponding rep-
resentation pr ®p » A is ordinary and its mazimal unramified quotient is
of A-rank (n — d).

PROOF. The uniqueness is clear, so we just have to prove existence. Let
Spec R/ C Spec R be the maximal closed subscheme (which is also open in the
Q,-fiber) such that (pr ®r R)|g,, _ is formal as a G __-representation, and let
Spec R*°™d C Spec(R ®, F') be the maximal open and closed subscheme such that
(pr ©r R**™)|g,, is ordinary and its maximal unramified quotient is of rank
(n —d). The existence of Rf and R%°'? is proved in Propositions 11.4.4 and 11.4.9,
respectively. It follows from the lemma below that R/ and R4 satisfy the desired
properties. ([

LEMMA 11.4.19. Let A be a finite local Qp-algebra and let V4 be a rank-n
semi-stable A-representation of G with Hodge-Tate weights in [0,h]. Let V' be
the mazimal unramified A-quotient of VA‘gxoo as a Gy -representation, which
exists and is a projective A-module by Proposition 8.2.7. Then Vjt is the mazximal
unramified A-quotient of V4 as a Gy -representation; i.e., the kernel of the natural
projection Va — V§' is G x-stable and has no non-trivial unramified quotient as a
Qp-representation space.

As special cases, we have the following:

(1) The G -representation Valg,,_ is formal if and only if V4 is formal
as a Gy -representation.

(2) The G.x . -representation Valg . is ordinary of P-height < h with maz-
imal unramified G _ -quotient of A-rank d if and only if V4 is ordinary
as a G -representation with maximal unramified G, -quotient of A-rank
d.

PROOF. Let Dy = (Da, o, N,Fil*(Da).x) := D% (Va) be the weakly admis-
sible filtered (y, N)-module which correspond to V4. Let res(D4) be the weakly
admissible Hodge-Pink structure corresponding to Valg,, . (The functor res is
defined in §5.2.12.)
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We may assume that the residue field k of 0 is algebraically closed, and that
A is local. Let V§' be the maximal unramified quotient of Valg,,  as a G-
representation, and set d := rank A(Vf{t). Let Dit be the maximal étale subobject
of res(D4) as an isocrystal with Hodge-Pink structure, so DY is of ¢ s-rank d.
Since k = k, by the Dieudonné-Manin decomposition D4 = D% & D'y, where any
subquotient of D’y has positive slopes. Thus, the relation Ny = ppN implies that
N‘DéAt = 0. So by the weak admissibility, we see that (D). N Fil*(Da)x =0
for all w > 0. Thus, DY defines a weakly admissible subobject of D4. Clearly,
V(DY) is the maximal unramified quotient of V4 as a G -representation over Q,,
and is an A-quotient of V§'. Now, we claim that V§ = V(D%) as A-quotients
of V. For this, it suffices to show the inequality ranke , (M%) < rank ), (DF).
First, observe that IS /udM is pure of slope 0, because by definition there exists a
finite flat Z,-subalgebra A° C A and a finite free étale (¢, & 40 )-module M 40 with
Mao[L] = M. But since Dy = Ma/udM4, we have M /uIME C DY, thus we

P
obtain the desired inequality. ([l

Consider a filtration FilS of .#®" (i.e., a p-adic Hodge type v). Proposition
11.4.18 provides a “universal” open and closed subscheme Spec RV C Spec RY,
where Spec RV is the open and closed subscheme of Spec(R ®, F') corresponding to
the Hodge type v. Let vq4 be a filtration of 2 ®™ such that dim 4 gr?,d =n —d for
w < 0, dim grfﬁd =d, and dim y gry, = 0 for w # 0, h. It follows from Proposition
11.4.18 that the natural open and closed inclusions Spec R4°"d — Spec(R ®, F)
factors through Spec RV<.

We will often apply Proposition 11.4.18 to the following cases. We let R denote
one of the following: R%:S", RDS" RSE and RS". With these choices of R, the
ordinary and formal loci R*°™ and Rf ®, F in R[%] have an obvious “mapping

1
p
0,<h

property.” For example, for any finite F-algebra A, an A-point of R_); [%] factors

through Rfr’ifh’d’ord if and only if the corresponding framed A-deformation is ordi-
nary such that the maximal étale quotient is of A-rank n — d. With this said, the
proposition can be rephrased as follows. Let R denote one of the following: RCDr’isgh,

ROSM RS and RS". Let x1, 24 be closed points of Spec(R ®, F), and Vy,, Vi,
be corresponding G  -representations. If x1 and xo lie in the same component then
either both Vy, and Vg, are ordinary or both are non-ordinary. Similarly, if z1 and
x9 lie in the same component then either both Vi, and V,, are formal or both are

non-formal.

11.5. Connected components: h = 1 Case

Now we restrict ourselves to the case when h = 1 and J¢ /¢ is separable.
We assume that dimp(pr) = 2, and choose £ € Qél(R) for some R € AR, such
that (.@51/5) — .@pil is formally smooth. Important examples are £ := &piy if
EndgK (p]F) =F, and ¢ := gEniv'

We fix a Hodge-Pink type v := (n = 2,AY := &5, /P(u)) as in §11.3.12. We
already described connected components of %%z which correspond to ordinary lifts
in Proposition 11.4.15 and Corollary 11.4.16. In this subsection, we show that the
non-ordinary locus in %%’Z is connected, which completes the description of the
connected components of %%’g Actually, we will content ourselves with reducing
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the proof to the affine grassmannian computation which is done in [Kis09b, §2.5]
and [Ima08].

We briefly explain the idea and indicate where we need the assumption kA = 1.
We start with defining a closed subscheme %@z’int C %%?1 such that %%z’im ®a

F = 9%}, and g%z’im is “reasonably nice” as a scheme so that each connected
component of %@‘g’int®oF “uniquely reduces” to a connected component of %%z’int® R
R/mp. The author does not know any analogue of %%Z’im for h > 1. Once we show

this, then the affine grassmannian computation in loc.cit. gives the connectedness
result we want.

11.5.1. For an og-algebra A, let D4 be a free & 4/P(u)-module of rank 2. We
say a G4/P(u)-submodule L4 C D, is Lagrangian if it is a direct factor as an
A-module and the submodule L4 is its own annihilator under a & 4 /P (u)-bilinear
symplectic pairing on D4 (which is unique up to unit multiple).

If o2/ 0¢ is separable and A is a finite Fy-algebra, then o(c*M4)/P(u)M 4
is necessarily projective &4/P(u)-module of rank 1; since &4/P(u) is a finite
étale A-algebra, A-flatness of Da/L4 implies &4 /P (u)-flatness by local flatness
criterion. But in general, a Lagrangian is not necessarily projective over & 4 /P (u).
If mg-A = 0 then the & 4 /P (u)-span of {u’e;,u’ ey} for i € [0, ¢] is a Lagrangian in
Di—126a/P(u)e;. If /¢ is not separable then one can construct Lagragians
in D4 which is not projective over & 4/P(u) even when A = F is a finite extension
of Fy, using an idea similar to Remark 11.3.6. -

We now define a full subgroupoid .@é’j}% C '@é,lMF over Aug, and AR, whose
objects M 4 over A are those satisfying that the & 4 /P (u)-submodule ¢(c*M 4)/P(u)M4 C
Ma/P(u)My is a Lagrangian. Note that this submodule is a direct factor as an
A-module, by Proposition 8.2.3.

PROPOSITION 11.5.2. The natural inclusion of Aug, -groupoids _@é’f;\% — .@é}MP
is relatively representable by closed immersions; i.e., for any £ € @pﬁh(R) with
R € AR, the Aug -groupoid @é’fﬁm = (Z5'/¢) X g1 @é’fﬁw is representable by
a closed subscheme %%’Z’int C g(%‘fl. If ¥ | ¥ g is separable, then g%z’illt ®eF C
%%’?1 ®, I is precisely YH¢ with v .= (n = 2, AV := &, /P(w)). (In particular,
%%z’int ®o F is a union of connected components of %@?1 ®, F.)

Even though g%Z’int ®, F' makes sense without the separability assumption
on J# /o, the author does not know whether all closed points of g%’Z’im Qo F
have Hodge-Pink type v := (n = 2, AV := &, /P(u)), nor whether %%Z’mt ®, F is

a union of connected components of g%’?l,

If X /X o is separable, one can adapt the discussions in [Kis09b, (2.2)] to define
a closed subscheme fﬁ@z’mt of R ¢ @, 0p for any E—Hodge—Pink type v of P-height
< 1 (with E/F a finite extension) such that %%’?mt ®op B =YZ.

PrROOF. We construct g%z’int as follows. Put &, <1 1= & ®,, Oy <1 and
¢ ¢
consider the universal 6, ,<:-lattice @?1 of P-height < 1in M¢®@rO,, <1 Let ¢
¢ ¢

denote the universal p-structure on @?1. By Proposition 8.2.3, im((p@/?’(u)@?l C
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@fl / ’P(u)@fl is a direct factor as a vector bundle over %%’fl. Now, choose a
Ggﬁfl/P(u)-basis for ﬂ?l/’P(u)ﬂggl and let (,) denote the standard symplec-
tic pairing on @?1/77(11)%51 with respect to the fixed basis. Choose an open
(affine) covering {U,} of %9??1 which trivializes im(¢p¢) /P(u)@?l, and choose an
Oy, -basis {€1,4, " ,€r, .o} Of (im(gog)/P(u)ﬂfglﬂUa. Now, let %%z’mt be the
closed subscheme of %%51 cut out by a coherent ideal .#, where .#|y,_ is gener-
ated by {(€ia>€ja)}ij=1, ro, viewing (,) as an O <i-bilinear pairing. Clearly
, , ¢

g%’g’mt represents the groupoid @é’y‘f}w’g. If ¢/ ¢ is separable then any A-point
My € g%?(ﬁl) with A finite over F is supported in g%g’mt ®, F if and only if
M4 is of Hodge-Pink type v := (n = 2,AY := &p,/P(u)) since any Lagrangian
in (84/P(u))®? is free of rank 1 over &4/P(u). Since both g%z’mt ®, F and
%%’?1 ®, F are Jacobson, this implies %%’Z’mt ®e F = g%’z as a subscheme of
GRS @, F. O

11.5.3. As in §11.4.11, we construct a common “formally smooth covering” of
the completed local rings of %%’Z’mt and a “model space” whose local structure
can be understood. Using this technique, we will show that g%z’mt is o-flat and

a relative complete intersection, and that 4.2y ™ ®, 0/m, is reduced. If 0oy = Z,
then the model space will coincide with the Deligne-Pappas étale-local model for
Hilbert-Brumenthal modular surfaces [DP94], as one expects from Kisin’s work
[Kis09b]. (For more general Hodge-Pink types v, the model space that appears
is the Pappas-Rapoport étale-local model for a certain type of Shimura varieties
[PRO3] in the case 0 = Z,.)

We fix My € Qé’)i]’\‘/}} (F). We consider an 2A9R,-groupoid 95;&?“ whose objects
over A are (M4, 14), where My € @é”iﬁw(A) and 14 : Ma®4 A/ms = Mp. There

is a natural 1-morphism Zyi™ — 2L | defined by replacing 14 with val=]
My @4 A/ma)[7] = Mp. If Endg, (pr) = F, then Dy is pro-representable by

the completed local ring of 2™ at the closed point corresponding to Mp. In
general, the 2-fiber product @;ﬁ;ng = (9;" /&) x a5 95;%;“ is pro-representable by
the completed local ring of g%z’irlt at the closed point corresponding to M. By
extending I, we obtain all completed local rings of g%z’illt at closed points.

We fix a Gp/P(u)-isomorphism Gr : (S/P(u))®? = Mp/P(u)Mr. We define
an AR, -groupoid*’ @;ﬁint, where an object over A is M4 € 95;&:“(%1) together with
a & 4/P(u)-linear isomorphism 34 : (&4/P(u))®? = M4 /P (u)DM 4 which lifts Br.
By forgetting this isomorphism, we obtain a 1-morphism égﬁ;m — 95;5;”, which
makes the former into a torsor under the formal completion of the Weil restriction
Resoe"/ P GL, at the identity section. In particular, this 1-morphism is formally
smooth.

Now, we define another 2AR,-groupoid M, whose objects are Lagrangians of
(&.4/P(u))®? under the standard symplectic form (in the sense of §11.5.1). This
groupoid is representable by (the mp-adic completion of) a closed subscheme of a

19Again, the tilde in the notation does not mean the extension by 2-direct limit, which is
defined in §10.4.4.
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grassmannian. We let the same notation M, denote the representing projective
o-scheme. The argument given in [DP94, §4], which also works in the case of
09 = Fy[[mo]], shows that M, is o-flat and a relative complete intersectionT and
that M, ®,0/m, is reduced. (For the o-flatness, see [EGA, IVq, 3.4.6.1].) We have a

1-morphism égﬁ;nt — M, by sending (94, B4) to the kernel of (&4 /P (u))®? %
A

M4 /P(u)My S coker p, which is seen to be formally smooth by an argument
similar to §11.4.11.

Now, we are ready to prove the following

PROPOSITION 11.5.4. Assume that (75" /€) — Z5" is formally smooth. Then
%@g’mt is o-flat and a relative complete intersection, and %%g’im ®o 0/m, is re-
duced.

PROOF. The proof is similar to that of Proposition 11.4.12. Consider the fol-
lowing diagrams where all the arrows are formally smooth.

yV,int yV,int
Dot Do, M,

L

v,int v,int
Dovtee — Doy

Since M, has the desired properties, we conclude that %@g’im has the desired
properties. O

Let 924" be the fiber over the closed point of Spec R under s GR™ —
Spec R. The following corollary shows that distinct connected components of
%%g’mt ®, F “reduce” to distinct connected components of %f%’;’éﬂt. We let Hyp(X)
denote the set of connected components of X.

COROLLARY 11.5.5. We keep the assumption that (@fwh/f) — @fwh is formally
smooth. Then the natural maps below

Ho(HL™ @, F) = Ho(GH™) — Ho(GHLG")
are bijective.
PROOF. The second bijection follows from the theorem on formal functions.

The first bijection follows from an argument similar to the proof of [Kis09b, Corol-
lary 2.4.10] using o-flatness and the reducedness of %%Z’mt ®o 0/m,. O

We now state the following theorem.

THEOREM 11.5.6. Assume that %/ ¢ is separable and & € D5 (R) is such
that (9;"/{) — @pﬁh is formally smooth. Let RY be the universal quotient of
R[io] whose points are of Hodge-Pink type v := (n = 2,AY = &g, /P(u)). Then

uy

the non-ordinary locus of Spec RY is connected.

ProoF. By Corollary 11.5.5, the problem is reduced to showing the connected-
ness of the non-ordinary locus in %@Z’éﬂt. This follows from the affine grassmannian
computation in characteristic p by Kisin [Kis09b, (2.5)] in the case of k = F, (where

q=pif o9 =Z,), and by Imai [Ima08] in the general case’. |

20The author believes, but has not carefully checked, that Imai’s computation works in the
case p = 2.
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11.6. Application to flat deformation rings

Throughout this subsection, we assume that 0g = Z,, and let p be a 2-dimensional
“finite flat” F-representation of G ,; i.e., we assume that p comes from the generic
fiber of a finite flat group scheme over o0, . Let RLS', RSL, RLS! and RS be
as in §11.2.11. By Kisin’s theorem?! (also stated in Theorem 2.4.11(2)), any crys-
talline Q,-representation with Hodge-Tate weights in [0,1] comes from the p-adic
Tate module of a Barsotti-Tate group over 0. Therefore, the crystalline defor-
mation rings Rcr’fl and Rc\m coincide with the flat deformation rings Ry and Ry,
respectively.

The goal of this subsection is to prove the following theorem, which was origi-
nally proved by Kisin [Kis09b, Corollary 2.5.16] under the assumption that p > 2,
and [Kis09a, §2] for any p (especially, p = 2). Note that this theorem plays a crucial
role in Kisin’s modularity lifting theorem for potentially Barsotti-Tate representa-
tions.

THEOREM 11.6.1 (Kisin). Assume that p is finite flat.>?> Let v be the p-adic
Hodge type such that dim g gry =1 forw =0 or 1, and dim_ gr¥ = 0 forw # 0, 1.
(1) There is at most one non-ordinary connected component in Spec Rcrl\s’

(2) There exists at most one ordinary connected component in Spec Ry if
and only if p 2 (X1 0 ) where both x1 and x2 are distinct unramified

characters.
3) Ifp ( ) where x1 # X2 are both unmmzﬁed then there exist exactly
two ordmary connected components in SpecR . For a finite extension

E/F, let 1 and x5 be E-points of Spec Rcr’l‘; such that the corresponding
G v -representations Vi, and Vy, are ordinary. Then x1 and xo are in the
same connected component if and only if for the unique E-line L; C Vy,
on which Ik acts via XZT} the Galois group G acts on Ly and Lo via

0 5-valued characters with the same reduction modulo mpg.
The same holds for Spec RY if Endg . (p) = F.

cris

11.6.2. Preliminary reduction: the case p > 2. Let v be as in the statement of
Theorem 11.6.1 and set v := (n = 2,AY = &, /P(u)). Recall from §11.3.13 that a
semi-stable Q,-representation is of p-adic Hodge type v if and only if its restriction
to G is of Hodge-Pink type v. In particular, the map res® : Spec R <1[ | —

Cris
Spec Rm’gl[p] restricts to Spec R
a finite flat group scheme and Endg,, (p) =2 F. Then we will show later in Lemma
11.6.12 that Endg,, _(ps) =, so we get Spec Ry, — Spec RY,.

On the other hand, we have obtained the complete description of the connected
components of Spec RSV, which is very similar to the statement of Theorem 11.6.1.
See §11.4-§11.5, especially Proposition 11.4.9 and Theorem 11.5.6. So in order
to obtain Theorem 11.6.1 from this, we need more information about the map
Spec Ry — Spec R%Y, and the map Spec RY,;, — Spec RY, if Endg , (p) = F.

cris

m: — Spec RZ:Y. Now assume that p comes frorn

21Breuil [Bre00] gave the first proof of this theorem for the case p > 2, and Kisin reproved
the theorem without assuming p > 2.

2214 follows from [Kis06, Corollary 2.2.6] that any torsion crystalline G ¢ -representation
comes from the generic fiber of a finite flat group scheme over 0. (even when p = 2), so this
assumption can be removed.
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PROPOSITION 11.6.3. Assume that p > 2 and p is finite flat. The natural
map res™ : Spec R.: <1[7] — Spec Ri;@[%] defined by the restriction to Gy

Cris
is an isomorphism. If furthermore Endg,, (plg, ) = F then the natural map

<1 . . ;
res®s : Spec Rc\rls[ ] — Spec Rfol[%] is an isomorphism.

11.6.4. Preliminary reduction: the case p = 2. It is conjectured that we can
remove the hypothesis p > 2 from the statement of Proposition 11.6.3.22> On the
other hand, the hard part in proving Theorem 11.6.1 is to show the connectedness of
the non-ordinary locus in Spec RY,;, (i-e., the “formal” locus in the sense of §11.4.17);
the ordinary connected components can be analyzed using Kummer theory and
some Galois cohomology considerations.?* (See [Kis09a, §2.4] for an argument.)

This leads us to consider the following setting By Proposition 11.4.4, there
exists the universal closed subscheme Spec RCD“? of Spec Rcr]s whose points cor-

respond to deformations which restrict to a formal G _-representation (in the
“torsion” sense). Recall that on the Q,-fiber, the subscheme Spec(RD’gl’f[p]) C

Cris
Spec(RlC:'r’f1 [ 1]) is open and closed, with finite artinian points corresponding to “for-
mal” lifts of p in the sense of §11.4.17. (See Proposition 11.4.5 and Lemma 11.4.19
for more details.)

By definition, the natural map res™ : Spec RCDrlfl — Spec RL S restricts to
res® : Spec Rms1 T Spec RLSHS | where RLSHS is a universal quotient of
R3S classifying “formal” framed deformations. If Endg,, (p) = F, then we can
apply the same discussion to “unframed” deformation rings. Now, we are ready
to state the following modification of Proposition 11.6.3 which we prove with no

assumption on p.

PROPOSITION 11.6.5. Assume that p is finite flat. The natural map res™ :
Spec RS [f] — Spec Rg‘(;glﬂf[%] defined by the restriction to Gy, is an iso-
morphism. If furthermore Endg ,, (ﬁ|9xm) = T, then the natural map res

cris
cris .

Spec Rc\rllgf[ ] — Spec RS f[p] is an isomorphism.

Combining the proposmon above with Theorem 11.5.6, one obtains the con-

nectedness of Spec Rms and so completes the proof of Theorem 11.6.1.

11.6.6. Kisin’s original proof of Theorem 11.6.1, or rather Propositions 11.6.3
and 11.6.5, can be rephrased as follows (using our deformation rings R%S!, RS!
for G, that were not considered in [Kis09b, Kis09a]). If p > 2, then we can use
the Breuil-Kisin classification of finite flat group schemes® over o to show that

the restriction to G »__ induces an equivalence of categories Reptor peris,[0,1] (Gx)—

Reptz(;r’[o’” (Gx.). (See [Bre02, Theorem 3.4.3] for a proof.) In particular, the

natural maps res™® : RLS! — RY and res™ : RS! — Ry are isomorphisms?S.

This proves Proposition 11.6.3.

231f the Breuil-Kisin classification of finite flat group schemes work in the case p = 2, which
is conjectured in [Bre98], then the proposition 11.6.3 for p = 2 follows.

241y particular, the argument does not use the Breuil-Kisin classification of finite flat group
schemes over o0 .

25Gee [Kis06, Theorem 2.3.5] for the precise statement.

26By the full faithfulness, Endg . (p) = F implies Endg . (plg,_ ) = F, in which case RS

exists.
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For the case p = 2, Kisin [Kis09a, §1] extended the classification theorem to
connected finite flat group schemes over 0. Now repeating the same argument,
one obtains Proposition 11.6.5 (in a stronger form, without inverting p). We note
th