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ABSTRACT. When p > 2, we construct a Hodge-type analogue of Rapoport-Zink
spaces under the unramifiedness assumption, as formal schemes parametrising “de-
formations” (up to quasi-isogeny) of p-divisible groups with certain crystalline Tate
tensors. We also define natural rigid analytic towers with expected extra structure,
providing more examples of “local Shimura varieties” conjectured by Rapoport and
Viehmann.
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1. INTRODUCTION

Let (G,H) be a Hodge-type Shimura datum; i.e., (G,H) can be embedded into
the Shimura datum associated to some symplectic similitude group (i.e., Siegel
Shimura datum). By choosing such an embedding, the associated complex Shimura
variety Sh(G,H)C obtains a family of abelian varieties (coming from the ambient
Siegel modular variety) together with Hodge cycles.

In this paper, we construct, in the unramified case, a natural p-adic local ana-
logue of such Shimura varieties; loosely speaking, what we constructed can be re-
garded as “moduli spaces” of p-divisible groups equipped with certain “crystalline
Tate tensors”. Since the precise definition is rather technical, let us just indicate the
idea. Recall that for a Q-Hodge structure H, a Hodge cycle on H can be understood
as a morphism t : 1 → H of Q-Hodge structures, where 1 is the trivial Q-Hodge
structure of rank 1. Our definition of crystalline Tate tensors is very similar, with
Q-Hodge structures replaced by F -crystals1 equipped with Hodge filtration.2

2010 Mathematics Subject Classification. 14L05, 14F30.
Key words and phrases. Rapoport-Zink Spaces, local Shimura varieties, crystalline Dieudonné theory.
1By F -crystal, we mean Tate twists by any integers of crystals equipped with nondegenerate Frobe-

nius action. This is to allow the dual of an F -crystal to be an F -crystal.
2We only define the notion of crystalline Tate tensors for p-divisible groups defined over “formally

smooth” base rings, to avoid subtleties involving torsions of crystalline Dieudonné theory. See Defini-
tion 4.6 for the precise definition over nice enough base rings.
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Let G be a connected unramified3 reductive group over Qp. We fix a reductive
Zp-model of G (which exists by unramifiedness), and also denote it by G. We
choose an element b ∈ G(Q̂ur

p ) which gives rise to a p-divisible group X over Fp
in the following sense: for some finite free Zp-module Λ with faithful G-action,
the F -crystal M := (Ẑur

p ⊗ Λ∗, b ◦ (σ ⊗ id)) gives rise to a p-divisible group X by
the (contravariant) Dieudonné theory. In this case, we can associate to such b an
“unramified Hodge-type local Shimura datum” (G, [b], {µ−1}). (See §2.5 for the
details.)

Let M⊗ denote the direct sum of the combinations of tensor products, symmetric
and alternating products, and duals of M. Then the fact that b ∈ G(K0) gets
encoded as the existence of certain “Frobenius-invariant tensors” (tα) ∈ M⊗; cf.
Lemma 2.5.6, Proposition 2.1.3.

Rapoport and Zink constructed a moduli space RZX parametrising “deforma-
tions” of X up to quasi-isogeny [39, Theorem 2.16]. Here, RZX is a formal scheme
which is locally formally of finite type over Ẑur

p . Roughly speaking, our main result
is of the following form:

Theorem (4.9.1). Let (G, b) and X be as above, and assume that p > 2.4 Then there
exists a closed formal subscheme RZG,b ⊂ RZX which classifies deformations (up to
quasi-isogeny) of X with Tate tensors (tα), such that the Hodge filtration of the p-
divisible group is étale-locally given by some cocharacter in the conjugacy class {µ}.
(See Definitions 4.6 and 5.1 for the precise conditions that define RZG,b.) Furthermore,
RZG,b is formally smooth, is functorial in (G, b), and only depends on the associated
integral Hodge-type local Shimura datum (G, [b], {µ−1}) up to isomorphism.

Rapoport and Viehmann conjectured that to any (not necessarily unramified
nor Hodge-type) “local Shimura datum” (G, [b].{µ−1}), there exists a rigid ana-
lytic tower of “local Shimura varieties” with suitable extra structure [38, §5]. In
§7, we construct the rigid analytic tower over the generic fibre of RZG,b equipped
with suitable extra structure as predicted in [38, §5]; in other words, we construct
“local Shimura varieties” associated to any unramified Hodge-type local Shimura
data when p > 2.5

In the case of unramified EL and PEL type, we also show that RZG,b recovers the
original construction of Rapoport-Zink space in [39, Theorem 3.25]. See Propo-
sition 4.7.1 for the precise statement. On the other hand, the theorem provides
Rapoport-Zink spaces for more general class of groups G that do not necessarily
arise from any EL or PEL datum. For example, we may allow G to be the spin
similitude group associated to a split quadratic space over Qp, which do not arise
from any EL or PEL datum if the rank of the quadratic space is at least 7. Note also
that the “functoriality” assertion of the theorem produces some interesting mor-
phisms between EL and PEL Rapoport-Zink spaces, which may not be easily seen
from the original construction. See Remark 4.9.7 for such an example involving an
“exceptional isomorphism”.

Recently, Scholze and Weinstein [42] constructed the “infinite-level” Rapoport-
Zink spaces of EL- and PEL- type, which provides a new approach to study Repoport-
Zink spaces. As remarked in the introduction of [42], for quite a general “local

3I.e., quasi-split and split over Qur
p .

4The assumption is made in order to use the Grothendieck-Messing deformation theory for the nilpo-
tent ideal generated by p. The main result will be generalised to the case when p = 2 in the author’s
subsequent paper.

5Rapoport and Viehmann also conjectured that “local Shimura varieties” could be constructed by a
purely group-theoretic means. Note that our construction of “local Shimura varieties” (in the unramified
Hodge-type case) is not purely group-theoretic as we make crucial use of p-divisible groups.
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Shimura datum” (G, [b], {µ−1}) – without requiring G to be unramified, nor [b] to
come from a p-divisible group – it should be possible to construct the infinite-level
Rapoport-Zink space for (G, [b], {µ}) using the technique in [42]. This approach
does not require any formal model at the “maximal level” Rapoport-Zink space,
nor does it give a natural formal model, while our approach is to start with the
formal scheme at the hyperspecial maximal level and build up the rigid analytic
tower from there. Perhaps, having a formal scheme at the hyperspecial maximal
level could be useful in some applications; for example, p-adic uniformisation of
Hodge-type Shimura varieties; see the next paragraph for more details. In §7.6
we give a construction of RZ∞G,b using “finite-level” Rapoport-Zink spaces RZKG,b and
[42, Theorem D]. Note that there should be more natural “purely infinite-level”
construction of RZ∞G,b, which should work more generally, but we give our “finite-
level” construction just to link our work with [42].

In the PEL case, Rapoport and Zink also showed that certain arithmetic quotients
of PEL Rapoport-Zink spaces can be related to PEL Shimura varieties, generalising
the theorem of Drinfeld and Cerednik on p-adic uniformisation of Shimura curves;
cf. [39, Ch. VI]. This is a useful tool for studying the mod p geometry of PEL
Shimura varieties – especially, the basic (i.e. supersingular) locus – by reducing the
question to a purely local problem of studying the corresponding Rapoport-Zink
space. In the sequel of this paper [26], we give a Hodge-type generalisation of
this result at odd good reduction primes. In particular, the result is applicable to
GSpin(n, 2) Shimura varieties for any n.

Recently, Ben Howard and George Pappas [22] gave another construction of
Hodge-type Rapoport-Zink spaces, which recovers our construction, in the case
when the Hodge-type local Shimura datum (G, [b], {µ−1}) comes from a (global)
Hodge-type Shimura datum. Their construction relies on the existence of integral
canonical models of Hodge-type Shimura varieties and the Rapoport-Zink uniformi-
sation for Siegel modular varieties. This global construction is simpler than ours
and automatically gives the Rapoport-Zink uniformisation of Hodge-type Shimura
varieties (recovering [26]), while our construction is purely local (as it should be)
and does not require the Hodge-type local Shimura datum (G, [b], {µ−1}) to come
from a global Shimura datum.

Let us comment on the proof of the main theorem (Theorem 4.9.1). We do
not directly extract defining equations of RZG,b in RZX, but instead we take an
indirect approach. As a starting point, observe that the candidate for the set of
closed points RZG,b(Fp) ⊂ RZX(Fp) is given by the affine Deligne-Lusztig set (cf.
Proposition 2.5.9). Furthermore, Faltings constructed a formally smooth closed
subspace (RZG,b)x̂ of the completion (RZX)x̂ at x ∈ RZG,b(Fp), which gives a natural
candidate for the completion of RZG,b at x.

We then construct a formal algebraic space RZG,b by patching together Faltings
deformation spaces (RZG,b)x̂ via Artin’s algebraisation technique (cf. §6.1).6 The
key step is to show that Tate tensors, constructed formal-locally over (RZG,b)x̂ by
Faltings, patch together and smear out to some neighbourhood of x whenever they
should (cf. Propositions 5.2 and 5.6).

The main reason why we exclude p = 2 is that the standard PD structure on pR
is not nilpotent unless either p > 2 or pR = 0. In particular, if p = 2 then we cannot
apply the Grothendieck-Messing deformation theory [35] for the thickenings R �
R/p. The main results of this paper will be extended to the case when p = 2 in the
author’s forthcoming paper.

6Although Artin’s criterion is only for algebraic spaces, not for formal algebraic spaces, we apply
Artin’s criterion to suitable “closed subspaces” which turn out to be algebraic spaces.
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Structure of the paper. In §2 we recall and introduce some basic definitions, such
as (iso)crystals with G-structures, filtrations, and cocharacters. In §3 we review
Faltings’s explicit construction of the “universal deformation” of p-divisible groups
with Tate tensors. The theorem on the existence of RZG,b is stated in §4, which is
proved in §5 and §6.

In §7 we define various extra structures on RZG,b as predicted in [38, §5], in-
cluding rigid analytic tower and the Hecke and quasi-isogeny group actions. In §8,
we show the existence and integrality of “étale realisations” of the crystalline Tate
tensors, which are needed for constructing the rigid analytic tower in §7.

Acknowledgement. The author would like to thank Chris Blake, James Newton,
Tony Scholl, Teruyoshi Yoshida, and Xinwen Zhu for helpful discussions and ad-
vice, and especially Brian Conrad and George Pappas for his careful reading of
the manuscript and providing helpful suggestions. The author sincerely thanks the
anonymous referee who pointed out the gap in the earlier version of the manuscript
regarding the torsion of PD hulls.

2. DEFINITIONS AND PRELIMINARIES

2.1. Notation. For any ring R, an R-module M , and an R-algebra R′, we write
MR′ := R′⊗RM . Similarly, if R is a noetherian adic ring and X is a formal scheme
over Spf R, then for any continuous morphism of adic rings R → R′ we write
XR′ := X×Spf R Spf R′.

For any ring O, we let AlgO denote the category of O-algebra. If O is a p-adic
discrete valuation ring, then we let NilpO denote the category of O-algebras R
where p is nilpotent. Let ARO denote the category of artin local O-algebras with
residue field O/mO . Note that any formal scheme X over Spf R defines a set-valued
functor on NilpW by X(R) := HomO(SpecR,X) for R ∈ NilpO .

We will work with formal schemes that satisfy the following finiteness condition:

Definition 2.1.1. Let O be a p-adic discrete valuation ring. A locally noetherian
formal O-scheme X is locally formally of finite type over Spf O if Xred is locally of
finite type over O/mO; or equivalently, if X admits an affine open covering {Spf Rξ}
where each Rξ is formally finitely generated over O in the following sense: there
exists a surjective map of O-algebras

O[[u1, · · · , ur]]〈v1, · · · , vs〉� R,

where we use the p-adic topology on O to define convergent formal power series.
A formal O-scheme X is formally of finite type if it is quasi-compact and locally
formally of finite type over Spf O.

Let C be a pseudo-abelian7 symmetric tensor category such that arbitrary (infi-
nite) direct sum exists. (For definitions in category theory, see [46] and references
therein.) Let 1 denote the unit object for ⊗-product in C (which exists by axiom of
tensor categories).

Let D be a full subcategory of C which is stable under direct sums, tensor prod-
ucts, and direct factors. Assume furthermore that D is rigid; i.e., every object of
D has a dual. (For example, C can be the category of R-modules filtered by direct
factors over R, and D can be the full subcategory of finitely generated projective
R-modules filtered by direct factors.)

7Pseudo-abelian categories are defined in the same way as abelian categories, except that we only
require the existence of kernel for idempotent morphisms instead of requiring the existence of kernel
and cokernel for any morphism. In practice, the pseudo-abelian categories that we will encounter are
the category of filtered or graded objects in some abelian category.
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Definition 2.1.2. For any object M ∈ D, we let

M⊗ ∈ C
denote the direct sum of any (finite) combination of tensor products, symmetric
products, alternating products, and duals of M . Note that M⊗ = (M∗)⊗.

Let us now recall the following (slight variant of the) standard result:

Proposition 2.1.3. Let R be either a field of characteristic 0 or a discrete valuation
ring of mixed characteristic. Let G be a connected reductive group over R, and Λ a
finite free R-module equipped with a closed embedding of algebraic R-groups G ↪→
GL(Λ). (We identify G with its image in GL(Λ).) Then there exist finitely many
elements sα ∈ Λ⊗ such that G coincides with the pointwise stabiliser of (sα); i.e., for
any R-algebra R′ we have

G(R′) = {g ∈ GL(ΛR′) such that g(sα) = sα ∀α}.

Proof. A more general statement is proved in [29, Proposition 1.3.2]. �

Example 2.1.4. For any ring R, let Λ be a finite free R-module, and (, ) : Λ⊗ Λ�
R be a perfect alternating form. Then we will construct a tensor s ∈ Λ⊗ from
R× · (, ) so that its pointwise stabiliser is GSp(Λ, (, )). Let c : GSp(Λ, (, )) → Gm
be the similitude character, and let R(c) be R as a R-module equipped with the
GSp(Λ, (, ))-action via c. Then (, ) induces a GSp(Λ, (, ))-equivariant morphism Λ⊗
Λ� R(c).

Now, we switch the role of Λ and Λ∗, so (, ) induces Λ∗ ⊗ Λ∗ � R(c)∗. We
then obtain a GSp(Λ, (, ))-equivariant section R(c) ↪→ Λ ⊗ Λ. Post-composing this
section, we may view ψ as an GSp(Λ, (, ))-equivariant endomorphism of Λ⊗Λ, so it
defines a tensor s ∈ Λ⊗2⊗Λ∗⊗2. Note that replacing (, ) with any R×-multiple does
not modify s, and the pointwise stabiliser of s in GLZp(Λ) is clearly GSp(Λ, (, )).

2.2. {µ}-filtrations.

Definition 2.2.1. Let R be any ring and M a finitely generated projective R-
module. For a cocharacter µ : Gm → GLR(M), we say that a grading gr•M is
induced by µ if the Gm-action on M via µ leaves each grading stable, and the re-
sulting Gm-action on gra(M) is given by

Gm
z 7→z−a−−−−−→ Gm

z 7→z id−−−−→ GL(gra(M)).

If gr•M is induced by µ, then for any map f : R → R′ the scalar extension of the
grading on R′ ⊗RM is induced by the pull back f∗µ.

In the defition, we chose the sign so that it is compatible with the standard sign
convention in the theory of Shimura varieties (as in [15, 36]).

Let G be a connected reductive group over Zp. We choose Λ ∈ RepZp(G) with
faithful G-action, and finitely many tensors (sα) ⊂ Λ⊗ which define G (in the sense
of Proposition 2.1.3). Let X be a formal scheme over Spf W , and E a finite-rank
locally free OX-module (i.e., a vector bundle on X). Let (tα) ⊂ Γ(X,E⊗) be finitely
many global sections.

We will introduce a notion of filtrations on E which étale-locally admits a split-
ting given by some cocharacter (but such a splitting may not be defined globally);
see Definition 4.6 for the relevant setting. To define such a notion, we need the
following formal scheme

(2.2.2) PX := isomOX

(
[E , (tα)], [OX ⊗Zp Λ, (1⊗ sα)]

)
,

classifying isomorphisms of vector bundles on X matching tα and 1 ⊗ sα. Indeed,
it is a closed formal subscheme of isomOX

(E ,OX ⊗Zp Λ), which is a GL(Λ)-torsor
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over X (hence, it is a formal scheme). Note that PX is a G-pretorsor, but it does not
have to be flat over X.

Definition 2.2.3. Let µ : Gm → GW be a cocharacter, and let {µ} denote the
G(W )-conjugacy class of µ. A filtration Fil• E of E is called a {µ}-filtration (with
respect to (tα)) if the following conditions are satisfied:

(1) PX is a G-torsor; i.e., there exist étale-local sections ςξ : Yξ → PX for
some étale covering {Yξ} of X. Note that ςξ can be understood as an
isomorphism EYξ

∼−→ OYξ
⊗Zp Λ matching (tα)Yξ

and (1⊗ sα), and using
ςξ we can embed GYξ

into GL(EYξ
).

(2) For some étale-local section {ςξ} as above (which induce an embedding
GYξ

↪→ GL(EYξ
)), the filtration (Fil• E )Yξ

of EYξ
is induced from the

conjugate of the cocharacter µ over Yξ by some element g ∈ G(Yξ).

It is clear from the definition that the notion of {µ}-filtrations only depend on
the conjugacy class {µ} of µ. Note also that the definition of {µ}-filtrations is
intrinsic to Fil• E and (tα); i.e., independent of the choice of (†) and {Yξ}. To
see the independence of the choice of (ςξ) (for the same choice of {Yξ}), note
that different choices of ςξ modify the embedding GYξ

∼−→ GL(EYξ
) by some inner

automorphisms of G (i.e., pre-composing the conjugation by some g′ ∈ G(Yξ)),
which can be cancelled out by the choice of g ∈ G(Yξ) that conjugates µ to define
some splitting of (Fil• E )Yξ

. Now by refining étale coverings {Yξ}, we obtain the
desired independence claim.

Remark 2.2.4. An equivalent definition of {µ}-filtration is given in [48, Defini-
tion 3.6]. Let Fil•µ denote the filtration of W ⊗Zp Λ induced by some µ in {µ} (cf.
Definition 2.2.1), and let Pµ ⊂ GW be the stabiliser of Fil•µ. Then the filtration
Fil• E is a {µ}-filtration with respect to (tα) if and only if the (étale-locally defined)
isomorphisms E

∼−→ OX⊗Λ matching ((tα),Fil• E ) with ((1⊗ sα),OX⊗Fil•µ) form
a Pµ-torsor.

Remark 2.2.5. If G = GL(Λ) and E is a vector bundle over X with rank equal to
rankZp(Λ), then a filtration Fil• E of E is a {µ}-filtration for some {µ} if and only if
each of the graded pieces gri E is of constant rank. (And one can write down {µ}
uniquely up to conjugation from the ranks of gri E .)

In the setting of Definition 2.2.3, let FlE ,(tα)
G,{µ} denote the functor on formal schemes

over X, which associates to Y
f−→ X the set of {µ}-filtration of f∗E with respect to

(f∗tα). We write FlE
{µ} := Fl

E ,∅
GL(Λ),{µ}, and we use the same letter to denote the the

formal scheme representing the functor, which is relatively projective and smooth
over X.

Lemma 2.2.6. Assume that PX (2.2.2) is a G-torsor. Then Fl
E ,(tα)
G,{µ} can be repre-

sented by a closed formal subscheme of FlE
{µ} which is smooth over X with nonempty

geometrically connected fibres.

Proof. The claim is obvious if the torsor PX (2.2.2) is trivial; in this case the rep-
resenting formal scheme is isomorphic to a certain flag variety for G. The claim is
obvious if the torsor PX splits Zariski-locally; indeed, formal schemes that Zariski-
locally represent the functor Fl

E ,(tα)
G,{µ} glue together because the notion of {µ}-

filtrations is independent of auxiliary choices involved. This shows the lemma when
G = GL(Λ).

Now, consider the natural inclusion Fl
E ,(tα)
G,{µ} ↪→ FlE

{µ}. Etale-locally on X this
morphism of functors is representable by a closed immersion, and it respects the
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étale descent datum. By effectivity of étale descent for closed immersions, the
lemma now follows. �

Let us finish the section with the following trivial but useful lemma:

Lemma 2.2.7. Let E /X and (tα) be as in Definition 2.2.3, and let Fil• E be a {µ}-
filtration on E . Then we have tα ∈ Γ(X,Fil0 E⊗) for each α.

Proof. Since the claim is étale-local on X, we may assume that the torsor PX (2.2.2)
is trivial. Fixing a trivialisation of PX we may assume that the filtration Fil• E is
given by a cocharacter µ : Gm → GX. This means that Fil• E admits a splitting by
the weight decomposition gr•µ E using the Gm-action by µ. In particular, gr0

µ E is
precisely the Gm-invariance (with respect to µ). On the other hand, the Gm-action
fixes each of tα as the cocharacter µ factors through the pointwise stabiliser of (tα).
It follows that tα ∈ gr0

µ E for each α. �

2.3. Review on p-divisible groups and crystalline Dieudonné theory. Through-
out the paper, κ be an algebraically closed field of characteristic p > 0 unless
stated otherwise. (Most of the time, there is no harm to set κ := Fp). We will
set W := W (κ) and K0 := W [ 1

p ]. Let σ denote the Witt vector Frobenius map on
W and K0.

We will only consider compatible PD thickenings; i.e., the PD structure is required
to be compatible with the standard PD structure on pZp.

If B is a Zp-algebra and b ⊂ B is a PD ideal, then for any x ∈ b we let x[i] denote
the ith divided power.

Definition 2.3.1. We define the isogeny category of p-divisible groups over a scheme
X over Spf Zp as follows:

• objects are p-divisible groups over X
• morphisms ι : X 99K X ′ are global sections of the following Zariski sheaf

over X:
QHomR(X,X ′) := Hom(X,X ′)⊗Z Q.

If X is quasi-compact (for example, X = SpecR for R ∈ NilpW ) then
morphisms can be understood as equivalence classes of diagrams of the
form

X
[pn]←−− X ι′−→ X ′

where the equivalence relation is defined by “calculus of fractions”. We
also say that ι is defined up to isogeny, and often write ι = 1

pn ι
′ or ι′ = pnι.

We will use dashed arrows X 99K X ′ to denote morphisms defined up to isogeny.
By quasi-isogeny ι : X 99K X ′, we mean an isomorphism in the isogeny category;
i.e., an invertible global section of QHomR(X,X ′). Let QisgR(X,X ′) be the set
of quasi-isogenies. A quasi-isogeny ι is called an isogeny if ι is an actual map of
p-divisible groups.

We define the height h(ι) of an isogeny ι : X → X ′ to be a locally constant
function on X so that over any connected component of X, the order of ker(ι) is
ph(ι). We extend the definition of the height to a quasi-isogenies by

h(p−nι) := h(ι)− h([pn])

on each component, where ι is an isogeny.

When p is nilpotent on the base, QisgR(X,X ′) satisfies the “rigidity property”
analogous to rigidity of crystals; namely, for any B � R with nilpotent kernel, and
p-divisible groups X and X ′ over B, the natural morphism

(2.3.2) HomB(X,X ′)[ 1
p ]→ HomR(XR, X

′
R)[ 1

p ]
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is bijective.(Cf. [16].) In particular, for a formal scheme X locally formally of
finite type over W , the isogeny categories of p-divisible groups over X and Xred are
equivalent via the pull back functor.

Let X be a formal scheme over Spf Zp, and set X := X×Spf ZpSpecFp. Let iCRIS :=

(iCRIS,∗, i
∗
CRIS) : (X/Zp)CRIS → (X/Zp)CRIS be the morphism of topoi induced from

the closed immersion X ↪→ X. Then iCRIS,∗ and i∗CRIS induce quasi-inverse exact
equivalences of categories between the categories of crystals of quasi-coherent (re-
spectively, finite locally free) OX/Zp -modules and OX/Zp -modules. (This follows
from [11, Lemma 2.1.4], which can be applied since the natural map iCRIS,∗OX/Zp →
OX/Zp is an isomorphism by [5, §5.17.3].) In particular, for any crystal D of quasi-
coherent OX/Zp -modules, we define the pull-back by the absolute Frobenius mor-
phism σ : X→ X as follows:

σ∗D := iCRIS,∗(σ
∗
CRISi

∗
CRISD).

For a p-divisible group X over X, we have a contravariant Dieudonné crystal8

D(X) equipped with a filtration (LieX)∗ ∼= Fil1X ⊂ D(X)X by a direct factor as
a vector bundle on X, where D(X)X is the pull-back of D(X) to the Zariski site
of X. We call Fil1X the Hodge filtration for X. If X = Spf R, then we can regard
the Hodge filtration as a filtration on the R-sections Fil1X ⊂ D(X)(R). From the
relative Frobenius morphism F : XX → σ∗XX, we obtain the Frobenius morphism
F : σ∗D(X) → D(X). On tensor products of D(X)’s, we naturally extend the
Frobenius structure and filtration.

We set 1 := D(Qp/Zp) and 1(−1) := D(µp∞). Note that 1 ∼= OX/Zp with the
usual Frobenius structure and Fil1 = 0. We define D(X)∗ to be the OX/Zp -linear
dual with the dual filtration. (Note that the Frobenius structure on D(X)∗ is defined
“up to isogeny”.) We set 1(0) := 1 and

1(−c) := 1(−1)⊗c & 1(c) := 1(−c)∗ if c > 0

For any crystal D with Frobenius structure and Hodge filtration, we set D(r) :=
D⊗ 1(r) for any r ∈ Z. Note that D(X∨) ∼= D(X)∗(−1) by [4, §5.3].

Definition 2.3.3. We define the category of isocrystals over X as follows:
• objects are locally free OX/Zp -modules D; we write D[ 1

p ] if we view D as an
isocrystal;

• morphisms are global sections of the Zariski sheaf Hom(D,D′)[ 1
p ] over X.

If X is quasi-compact (for example, X = SpecR for R ∈ NilpW ) then
morphisms can be understood as equivalence classes of diagrams of the
form

D pn←− D ι′−→ D′

where the equivalence relation is defined by “calculus of fractions”.
An F -isocrystal over X is a pair (D[ 1

p ], F ) where D[ 1
p ] is an isocrystal over X and

F : σ∗D[ 1
p ]
∼−→ D[ 1

p ] is an isomorphism of isocrystals.

For a p-divisible group X, D(X)[ 1
p ] can be naturally viewed as an F -isocrystal.

Note also that the notion of F -isocrystals is closed under direct sums, tensor prod-
ucts, and duality. So D(X)∗[ 1

p ] is an F -isocrystal although the Frobenius structure
may not be defined on D(X)∗.

We will often let 1(−c) denote the isocrystal associated to 1(−c), which is also
an F -isocrystal by the discussion above.

8See [35], [34], or [4] for the construction.



RAPOPORT-ZINK SPACES OF HODGE TYPE 9

Note that for any morphism up to isogeny ι : X 99K X ′ of p-divisible groups
over X, we obtain a morphism of isocrystals D(ι) : D(X ′)[ 1

p ] → D(X)[ 1
p ]. If ι is a

quasi-isogeny, then D(ι) is an isomorphism of isocrystals.
We now define D(X)⊗ by setting C to be the category of (integral) crystals of

quasi-coherent OX/Zp -modules and D ⊂ C to be the full subcategory of finitely
generated locally free objects (cf. Definition 2.1.2). Then the Hodge filtration on
D(X)X induces a natural filtration on D(X)⊗X , and the Frobenius morphism on
D(X) induces an isomorphism of isocrystals F : σ∗D(X)⊗[ 1

p ]
∼−→ D(X)⊗[ 1

p ]. More
generally, for any quasi-isogeny ι : X 99K X ′ of p-divisible groups over R, D(ι)
extends to

D(ι) : D(X ′)⊗[1/p]
∼−→ D(X)⊗[1/p].

For example, [p] : X → X induces the multiplication by p on D(X)[1/p], and the
multiplication by 1/p on D(X)∗[1/p].

Definition 2.3.4. Let X be a p-divisible group over R, and t : 1 → D(X)⊗ a
morphism of crystals. For a PD thickening S � R where p is nilpotent in S, we
define the section t(S) of t over S (or the S-section of t) to be the image of 1 under
the map

S = 1(S)
t−→ D(X)(S)⊗.

Later, we will implicitly extend the definition to the case when S is a “p-adic PD
thickening” in the sense of Definition 5.3.1.

2.4. F -isocrystals with G-structure over κ. We review some basic definitions and
results on “F -isocrystals with G-structure” [31]. See [39, Ch.1] for a more detailed
overview.

Recall that the category of quasi-coherent crystals ofOSpecκ/W -modules is equiv-
alent to the category of W -modules by taking sections over W = W (κ). Therefore,
an F -isocrystal over κ can be regarded as a pair (D,F ), where D is a K0-vector
space and F : σ∗D

∼−→ D is an isomorphism. By abuse of notation, we also call
(D,F ) an F -isocrystal over κ.

Let (D,F ) be a rank-n F -isocrystal over κ. By choosing a basis of D (or equiv-
alently, by choosing a faithful algebraic action of GLn on D), we can find b ∈
GLn(K0) which is the matrix representation of F (i.e., F is the linearisation of bσ).
Choosing a different basis of D, b is replaced by a suitable “σ-twisted conjugate”.
Motivated by this, we make the following definition (cf. [31], [39, §1.7]):

Definition 2.4.1. Let G be a linear algebraic group over Qp. We say that b, b′ ∈
G(K0) are σ-conjugate in G(K0) if there exists g ∈ G(K0) such that b′ = gbσ(g)−1.
Let [b] ⊂ G(K0) denote the set of σ-conjugates of b ∈ G(K0) in G(K0).

Let RepQp(G) denote the category of finite-dimensional Qp-vector spaces with
algebraic G-action. Then for any b ∈ G(K0) we can functorially associate, to any
V ∈ RepQp(G), an F -isocrystal βb(V ) = (K0 ⊗Qp V, F ), where F is defined as
follows:

(2.4.2) F : σ∗(K0 ⊗Qp V ) ∼= K0 ⊗Qp V
ρV (b)−−−→ K0 ⊗Qp V.

Here, ρV : G → GL(V ) is the homomorphism of algebraic groups defining the
G-action on V . For b, b′ ∈ G(K0), we have βb ∼= βb′ if b and b′ are σ-conjugate in
G(K0). Note that if G = GLn /Qp and V = Qnp is the standard representation of
GLn, then b 7→ βb(V ) induces a bijection between the set of σ-conjugacy classes in
GLn(K0) and the set of isomorphism classes F -isocrystals of rank n over κ.

We define the following group valued functor Jb = JG,b on AlgQp :

(2.4.3) Jb(R) := {g ∈ G(R⊗Qp K0)| gbσ(g)−1 = b}, ∀R ∈ AlgQp .
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Proposition 2.4.4 ([39, Corollary 1.14]). If G is a connected reductive group over
Qp then Jb can be represented by an inner form of some Levi subgroup of G.

2.5. Affine Deligne-Lusztig set. From now on, we let G be a connected reductive
group which is unramified9 over Qp. We fix a reductive model GZp over Zp, and
will often write G = GZp if there is no risk of confusion. For any Zp-algebra R, we
write GR the base change of G over SpecR.

Note that we have a bijection
(2.5.1)

HomW (Gm, GW )/G(W ) ∼= HomK0
(Gm, GK0

)/G(K0)
∼−→ G(W )\G(K0)/G(W )

induced by {ν} 7→ G(W )pνG(W ), where pν := ν(p) ∈ G(K0); indeed, the first
bijection is because G is split over W and the second bijection is the Cartan decom-
position.

Definition 2.5.2. To b ∈ G(K0) and a G(W )-conjugacy class {ν} of cocharacters
ν : Gm → GW , we associate the affine Deligne-Lusztig set as follows:

XG
{ν}(b) :=

{
g ∈ G(K0) such that g−1bσ(g) ∈ G(W )pνG(W )

}
/G(W )

⊂ G(K0)/G(W ).

In the intended application, we will choose {ν} so that b ∈ G(W )pνG(W ). If {ν} is
chosen this way, then we write XG(b) := XG

{ν}(b) since it only depends on (G, b).

For γ ∈ G(K0), the left translation gG(W )→ γgG(W ) induces

(2.5.3) XG
{ν}(γ

−1bσ(γ))
∼−→ XG

{ν}(b).

In particular, we obtain a natural action Jb(Qp) onXG
{ν}(b) (since Jb(Qp) ⊂ G(K0)),

and XG
{ν}(b) only depends on the tuple (G, [b], {ν}) up to bijection, where [b] is the

σ-conjugacy class of b in G(K0).
The following properties are straightforward to verify from the definition:

Lemma 2.5.4. (1) For any morphism f : G → G′ of connected reductive group
over Zp, we have a natural mapXG

{ν}(b)→ XG′

{f◦ν}(f(b)) induced by gG(W ) 7→
f(g)G′(W ). Furthermore, if f is a closed immersion, then the induced map
on the affine Deligne-Lusztig sets is injective.

(2) For another connected reductive group G′ over Zp, b′ ∈ G′(W ) and a conju-
gacy class of cocharacters ν′ : Gm → G′W , we have an isomorphism

XG×G′
{(ν,ν′)}(b, b

′)
∼−→ XG

{ν}(b)×X
G′

{ν′}(b
′)

induced by the natural projections.
In particular, f : G → G′ induces XG(b) → XG′(f(b)) and we have a natural

isomorphism XG×G′(b, b′)
∼−→ XG(b)×XG′(b′).

Proof. The only possibly non-trivial assertion is the injectivity of the mapXG
{ν}(b)→

XG′

{f◦ν}(f(b)) when f is a closed immersion. By embedding G′ into some GLn, we
may assume that G′ = GLn. Then by Proposition 2.1.3, the following map

G(K0)/G(W )→ G′(K0)/G′(W ),

induced by f , is injective, from which the desired injectivity follows. �

Later, we will consider pairs (G, b) which can be related to some p-divisible group
in the following sense.

9I.e., quasi-split and split over Qur
p ; or equivalently, G admits a reductive model over Zp.
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Definition 2.5.5. We fix b ∈ G(K0). Assume that there exists a faithfulG-representation
Λ ∈ RepZp(G) such that we have the following W -lattice

MΛ
b := W ⊗Zp Λ∗ ⊂ βb(Λ∗ ⊗Zp Qp)

satisfies pMΛ
b ⊂ F (σ∗MΛ

b ) ⊂MΛ
b . (The existence of such Λ is a restrictive condition

on G and b. See Example 2.5.11 for the reason to dualise Λ in the definition of
MΛ

b .) Then for such b and Λ, we let XΛ
b denote the p-divisible group over κ such

that D(XΛ
b )(W ) ∼= MΛ

b .

Note that if G = GLn and Λ = Znp is the standard representation, then b is the
transpose-inverse of the matrix representation of the Frobenius operator on MΛ

b

(since MΛ
b := W ⊗Zp Λ∗).

Just like the abelian variety which appears as a complex point of some Shimura
variety of Hodge type has certain Hodge cycles, the p-divisible group X as in Def-
inition 2.5.5 has certain crystalline tensors from the fact that b ∈ G(K0). The
following lemma is straigntforward.

Lemma 2.5.6. Let (G, b) and X := XΛ
b be as in Definition 2.5.5. Let s ∈ Λ⊗ be such

that for any Zp-algebraR, 1⊗s ∈ R⊗Λ⊗ is fixed byG(R). (For example, we may take
s = sα for sα as in Proposition 2.1.3.) Consider 1⊗ s ∈W ⊗Λ⊗ = D(X)(W )⊗. Then
1⊗ s ∈ D(X)(W )⊗[ 1

p ] is fixed by F , where we extend F naturally to D(X)(W )⊗[ 1
p ].

We fix finitely many tensors (sα) ⊂ Λ⊗ which defines G in the sense of Proposi-
tion 2.1.3. We set (tα) := (1⊗ sα) ∈W ⊗Zp Λ⊗ ∼= D(X)(W )⊗.

Lemma 2.5.7. Let (G, b) and Λ be as in Definition 2.5.5, and set X := XΛ
b . Let {µ}

be a G(W )-conjugacy class of cocharacters Gm → GW . Then the following hold

(1) If µ : Gm → GW is such that b ∈ G(W )pσ
∗µ−1

, then the Hodge filtration
Fil1X ⊂ D(X)(κ) = κ ⊗Zp Λ∗ is induced by µ. (Recall that we identified
D(X)(W ) = MΛ

b = W ⊗Zp Λ∗.)
(2) The Hodge filtration Fil1X ⊂ D(X)(κ) is a {µ}-filtration with respect to the

image of (tα) in D(X)(κ)⊗ (cf. Definition 2.2.3) if and only if we have
b ∈ G(W )pσ

∗µ−1

G(W ).
(3) The image of (tα) in D(X)(κ)⊗ lies in the 0th filtration with respect to the

Hodge filtration.

Proof. Let us first show (1). Assume that b ∈ G(W )pν for some ν : Gm → GW .
Since the Hodge filtration Fil1X ⊂ D(X)(κ) is the kernel of b(σ ⊗ idΛ∗) acting on
κ⊗Zp Λ∗ = D(X)(κ), we have

(bσ)−1(pMΛ
b ) = σ−1((p−1)ν · pMΛ

b ) = gr1
(σ−1)∗ν−1 M

Λ
b + pMΛ

b ,

whose image in MΛ
b /pM

Λ
b
∼= D(X)(κ) is the kernel of b(σ ⊗ idΛ∗). This shows that

µ := (σ−1)∗ν−1 induces the Hodge filtration Fil1X.
Let us show (2). Choose a cocharacter ν : Gm → GW such that b ∈ G(W )pνG(W );

recall that such ν is unique up to G(W )-conjugate. By replacing ν by a suitable
G(W )-conjugate, we may assume that b = gpν for some g ∈ G(W ); indeed,
if b = g1p

νg2 for g1, g2 ∈ G(W ), then we take g = g1g2 and replace ν with
g−1

2 νg2. Now from (1) it follows that the Hodge filtration Fil1X is a {µ}-filtration
for µ = (σ−1)∗ν−1. Now, by uniqueness of HomW (Gm, GW )/G(W ) is a constant
sheaf on SpecW as GW is a split reductive group, there exists exactly one G(W )-
conjugacy class of cocharacters {µ} over W such that Fil1X is a {µ}-filtration. So if
Fil1X is a {µ}-filtration, then we have {µ} = {(σ−1)∗ν−1}, which proves (2).

By Lemma 2.2.7, (3) follows from (2). �
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Remark 2.5.8. We use the notation in Lemma 2.5.7. Then Lemma 2.5.7 asserts
that for any X := XΛ

b with b ∈ G(K0), there exists a unique conjugacy class of
cocharacters {µ} such that the Hodge filtration Fil1X is a {µ}-filtration.

Since there is no obstruction of lifting {µ}-filtrations (cf. Lemma 2.2.6), there
exists a {µ}-filtration Fil1X̃ ⊂ MΛ

b lifting Fil1X. If p > 2, then such a lift Fil1X̃
gives rise to a p-divisible group X̃ over W . For such a lift X̃, the tensors (tα) ⊂
D(X̃)(W )⊗ = (MΛ

b )⊗ lie in the 0th filtration with respect to the Hodge filtration for
X̃; cf. Lemma 2.2.7.

We consider (G, b) and Λ as in Definition 2.5.5, and choose finitely many tensors
(sα) ⊂ Λ⊗ defining G ⊂ GL(Λ) as in Proposition 2.1.3. Then to (G, b) and Λ,
we can associate (X, (tα)) and an isomorphism ς : W ⊗Zp Λ∗ ∼= D(X)(W ), where
X := XΛ

b is a p-divisible group over κ, (tα) ⊂ D(X)(W )⊗ are F -invariant tensors (cf.
Lemma 2.5.6), and ς is a W -linear isomorphism which matches (1 ⊗ sα) and (tα).
Note that we can recover (G, b) from (X, (tα), ς). In the setting of Example 2.1.4
(when G = GSp2g and Λ = Z2g

p is the standard representation), we can interpret
(X, (tα)) as a principally polarised p-divisible group.

We will now interpret XG(b) = XG
{σ∗µ−1}(b) in terms of quasi-isogenies of p-

divisible groups with F -invariant tensors over κ. For gG(W ) ∈ XG(b), we pick
a representative g ∈ gG(W ) and set b′ := g−1bσ(g). Consider MΛ

b′ = W ⊗Zp Λ∗

with F given by b′ ∈ G(K0), and F -invariant tensors (t′α) = (1 ⊗ sα) ⊂ (MΛ
b′)
⊗.

The condition b′ ∈ G(W )pσ
∗µ−1

G(W ) implies that MΛ
b′ corresponds to a p-divisible

group X′ := XΛ
b′ , whose Hodge filtration is a {µ}-filtration with respect to (t′α) by

Lemma 2.5.7. We also obtain a quasi isogeny ι : X 99K X′ corresponding to

MΛ
b′ [

1
p ] = K0 ⊗Zp Λ∗

g−→ K0 ⊗Zp Λ∗ = MΛ
b [ 1
p ],

which matches (t′α) ⊂ (MΛ
b′)
⊗ with (tα) ⊂ (MΛ

b )⊗. The tuple (X′, (t′α), ι) only
depends on gG(W ) up to (the natural notion of) isomorphism.

Proposition 2.5.9. The map defined above gives a bijection from XG(b) to the set of
isomorphism classes of tuples (X′, (t′α), ι) which satisfies the following

• X′ is a p-divisible group over κ and (t′α) ⊂ D(X′)(W )⊗ are F -invariant
tensors, such that there exists an isomorphism ς ′ : W ⊗Zp Λ∗

∼−→ D(X′)(W )

that matches (1 ⊗ sα) and (t′α), and the Hodge filtration Fil1X′ is a {µ}-
filtration with respect to (t′α).

• ι : X 99K X′ is a quasi-isogeny such that D(ι) : D(X′)(W )[ 1
p ]
∼−→ D(X)(W )[ 1

p ]

matches (t′α) with (tα).

Proof. We will define the inverse map. Let (X′, (t′α), ι) be a tuple as in the statement.
Then choosing ς ′ : W ⊗Zp Λ∗

∼−→ D(X′)(W ) which matches (1 ⊗ sα) and (t′α), we
can obtain b′ ∈ G(K0) such that X′ ∼= XΛ

b′ , and g ∈ G(K0) such that D(ι) coincides
with

D(X′)(W )[ 1
p ]

(ς′)−1

−−−−→
∼

K0 ⊗Zp Λ∗
g−→
∼
K0 ⊗Zp Λ∗

ς−→
∼

D(X)(W )[ 1
p ].

It then follows that b′ = g−1bσ(g), and since the Hodge filtration for X′ is a {µ}-
filtration, we have b′ ∈ G(W )pσ

∗µ−1

G(W ).
The choice of ς ′ is not canonical, but any other choice of ς ′ is of the form ς ′ ◦ h

for some h ∈ G(W ), which would replace g by gh. Since any tuple (X′, (t′α), ι)
is isomorphic to the one associated to X′ := XΛ

b′ , one can easily check that map
sending the isomorphism class of (X′, (t′α), ι) to gG(W ) is well defined, and is the
inverse map as desired. �
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The following notion, which is the local analogue of Hodge-type Shimura data,
turns out to provide a group-theoretic invariant associated to the equivalence class
of XG(b) given by (2.5.3):

Definition 2.5.10. Let G be a connected reductive group over Zp, and b ∈ G(K0).
We associate, to any (G, b), a tuple (G, [b], {µ−1}), where [b] is the σ-conjugacy
class of b in G(K0) and {µ−1} is the unique G(W )-conjugacy class of cocharacters
Gm → GW such that b ∈ G(W )pσ

∗µ−1

G(W ). (The unique existence of such {µ} is
by the Cartan decomposition.)

If there is a faithful representation Λ ∈ RepZp(G) as in Definition 2.5.5 (i.e.,
there exists a p-divisible group XΛ

b , then we call the associated triple (G, [b], {µ−1})
an (unramified) integral local Shimura datum of Hodge type. We take the obvious
notion of morphisms.

To an unramified integral Hodge-type local Shimura datum, one can easily as-
sociate a local Shimura datum as defined in Rapoport and Viehmann by replacing
G with GQp [38, Definition 5.1]. (Since G is split over W , geometric conjugacy
classes of cocharacters can be viewed as G(W )-conjugacy classes of cocharacters
defined over W .)

If (G, [b], {µ−1}) is an unramified integral Hodge-type local Shimura datum via
Λ, then the natural inclusion G ↪→ GL(Λ) induces a morphism (G, [b], {µ−1}) →
(GL(Λ), [b], {µ−1}) of unramified integral Hodge-type local Shimura data.

Let (G′, [b′], {µ′−1}) be another unramified integral local Shimura datum of Hodge
type induced by (G′, b′) and a faithful G-representation Λ′ (giving rise to a p-
divisible group XΛ′

b′ ). Then the product (G × G′, [(b, b′)], {(µ−1, µ′−1)}) is again an
integral unramified Hodge-type local Shimura datum. (Indeed, we can associate
the following p-divisible group XΛ×Λ′

(b,b′)
∼= XΛ

b × XΛ′

b′ .)

Example 2.5.11. Assume thatG comes from a reductive group over Z(p), which we
also denote by G. Assume that there exists a Hodge-type Shimura datum (GQ,H).
Let Kp := G(Zp) be the hyperspecial maximal subgroup of G(Qp). By construc-
tion, an integral canonical model SKp(GQ,H), when it exists, carries a “universal”
abelian scheme depending on some auxiliary choices. See [44, §1.4] or [29, §2.3]
for more details on the construction. Pick any point valued in W := W (Fp), and let
X̃ be the p-divisible group associated to the corresponding abelian scheme over W .
Let Λ := T (X̃) denote the (integral) Tate module. Then by construction there exist
finitely many “étale Tate tensors” (sα) ⊂ Λ⊗ whose pointwise stabiliser is GZp . By
a conjecture of Milne (proved independently in [45, Main Theorem 1.2] and [29,
Proposition 1.3.4]) there exists a W -isomorphism

W ⊗Zp Λ∗ ∼= D(X̃)(W )

which takes (1 ⊗ sα) to the crystalline Tate tensors (tα) corresponding to (sα) via
crystalline comparison isomorphism. Choosing such an isomorphism, we can ex-
tract b ∈ G(K0) from the matrix representation of F .

As tα : 1 → (MΛ
b )⊗ are morphisms of “strongly divisible modules”, we may

apply Wintenberger’s theory of canonical splitting [47, Théorème 3.1.2] and ob-
tain a unique cocharacter µ : Gm → GW such that µ gives the Hodge filtration
for X̃ and b ∈ G(W )pν with ν = σ∗µ−1; cf. Lemma 2.5.7. Therefore, the triple
(GZp , [b], {µ−1}) obtained from SKp(GQ,H)(W ) is an unramified Hodge-type local
Shimura datum in the sense of Definition 2.5.5. Note that the geometric conjugacy
class {µ} corresponds to the geometric conjugacy class associated to the Shimura
datum (GQ,H).
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3. FALTINGS’S CONSTRUCTION OF UNIVERSAL DEFORMATION

In this section we review Faltings’ explicit constructions of a “universal” deforma-
tion of p-divisible groups with Tate tensors (depending on some auxiliary choices).
We will crucially use this formal local construction to obtain the natural closed
formal subscheme of a Rapoport-Zink space where some natural crystalline Tate
tensors are defined. All the results in this section (except Proposition 3.8) can be
found in [17, §7] and [37, §4].

Let κ be an algebraically closed field of characteristic p > 2, with W := W (κ).
We consider a p-divisible group X over κ. Recall that ARW is the category of artin
local W -algebra with residue field κ.

Definition 3.1. We define a functor DefX : ARW → (Sets) by

DefX(R) := {(X/R, Xκ
∼= X)}/∼=

for any R ∈ ARW . We will often suppress Xκ
∼= X, and write X ∈ DefX(R).

3.2. Explicit construction in characteristic p. The functor DefX can be prorepre-
sented by the formal power series ring over W with d ·d∨ variables, where d and
d∨ are respectively the dimensions of X and X∨; cf. [24, Corollaire 4.8(i)]. Falt-
ings made such an identification via explicitly describing a “universal Dieudonné
crystal” when p > 2; cf. [37, §4.8], [29, §1.5], which we recall now.

For a p-divisible group X over κ, we write (M, F ) := D(X)(W ) for the con-
travariant Dieudonné module. Choosing a lift X̃ over Spf W , we obtain a direct
factor Fil1X̃ ⊂ D(X̃)(W ) ∼= M from the Hodge filtration for X̃. We also fix a splitting
of this filtration; or equivalently, we choose a cocharacter µ : Gm → GLW (M)
which induces Fil1X̃. Using the choice of splitting, we can define the “opposite
unipotent subgroup” Uµ.10 Let AµGL be such that Spf AµGL

∼= Ûµ, where Ûµ is the
formal completion of Uµ at the identity section. We also choose a lift of Frobenius
σ : AµGL → AµGL by choosing “coordinates” uij and setting σ(uij) = upij .

Let ut ∈ Ûµ(AµGL) be the tautological point. We consider the following object:

Mµ
GL := AµGL ⊗W M; Fil1 Mµ

GL := AµGL ⊗W Fil1X̃; F := u−1
t ◦ (AµGL ⊗ F ).

More concretely, if we choose M ∼= MΛ
b (with the notation of Definition 2.5.5 for

G = GL(Λ)) then the matrix representation of F on Mµ
GL
∼= AµGL ⊗Zp Λ∗ is u−1

t b.
As discussed in [37, §4.5], Faltings showed that there exists a unique inte-

grable connection ∇ on Mµ
GL which commutes with F . In particular, the tuple

(Mµ
GL, F,∇) is a crystalline Dieudonné module in the sense of [11, Definition 2.3.4]

and gives rise to a p-divisible group X
µ

GL over SpecAµGL/(p) by [11, Main The-
orem 1].11 By construction, it is clear that σ∗(Fil1 Mµ

GL/(p)) coincides with the
kernel of F on Mµ

GL/(p); in other words, Fil1 Mµ
GL/(p) is the Hodge filtration of

X
µ

GL.
Faltings also showed that X

µ

GL is a universal mod p deformation of X via the
Kodaira-Spencer theory. Implicit in the proof is the following lemma, which com-
pares the tangent space of AµGL/(p) and the deformations over κ[ε]/(ε2) given by
the Grothendieck-Messing deformation theory. We give a proof of the lemma as we
will need it later (cf. Proposition 3.8).

10I.e., Uµ is the unipotent radical of the parabolic subgroup opposite to the stabiliser of Fil1
X̃Λ
b

.
11Crystalline Dieudonné modules over AµGL correspond to Dieudonné crystals over SpecAµGL/(p),

not Spf AµGL/(p). The distinction between Spec and Spf will be important, especially for verifying the
effectivity property §6.1(3).
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Lemma 3.2.1. Let B := κ[ε]/(ε2), and we give the square-zero PD structure on b :=

εB. For any γ ∈ Ûµ(B) = HomW (AµGL, B), we set γX := γ∗Xµ
GL. Then γX is the lift

of X which corresponds, via the Grothendieck-Messing deformation theory, to the lift
of the Hodge filtration γ(B⊗κFil1X) ⊂ B⊗κD(X)(κ) = D(X)(B), where γ(B⊗κFil1X)

is the filtration translated by γ ∈ Ûµ(B).

Proof. Let B̃ := W [ε]/(ε2), and we give the square-zero PD structure on εB̃, which
is compatible with the standard PD structure on (p). We also define a lift of Frobe-
nius σ : B̃ → B̃ by letting σ(ε) := εp = 0. Since B̃ is a (compatible) PD thick-
ening of both κ and B, there exists a natural Frobenius-equivariant isomorphism
D(γX)(B̃)

∼−→ D(X)(B̃) such that after reducing modulo p the Hodge filtration for
γX on the left hand side maps to the lift of the Hodge filtration for X which corre-
sponds to γX via the Grothendieck-Messing deformation theory. Note that choosing
a lift γ̃ ∈ Ûµ(B̃) of γ, we obtain natural isomorphisms

(3.2.2) D(γX)(B̃) ∼= B̃ ⊗γ̃,AµGL
Mµ

GL
∼= B̃ ⊗W D(X)(W )

and the crystalline Frobenius action on the left hand side corresponds to γ̃−1 ◦
(B̃ ⊗ F ) on the right hand side. (Recall that we used the inverse of the tautological
point to define Frobenius-action on Mµ

GL.) Thus, the natural Frobenius-equivariant
isomorphism D(γX)(B̃)

∼−→ D(X)(B̃) can be translated as g ∈ 1+εEndW (M) which
makes the following diagram commute:

D(γX)(B̃)
∼

(3.2.2)
// B̃ ⊗W D(X)(W )

∼
g
//

γ̃−1◦(B̃⊗F )

��

B̃ ⊗W D(X)(W )

B̃⊗F
��

D(X)(B̃)
∼oo

B̃ ⊗W D(X)(W )
∼
g
// B̃ ⊗W D(X)(W )

.

By chasing the top row, it follows that Fil1γ̃X ⊂ D(γ̃X)(B̃) maps to g(B̃ ⊗W Fil1X̃) ⊂
D(X)(B̃). So to prove the lemma, it suffices to prove that g = γ̃. Indeed, we have
(B̃ ⊗F ) ◦ g = B̃ ⊗F , as σ(ε) = 0. Now the commutative square forces g = γ̃, since
B̃ ⊗ F becomes an isomorphism after inverting p. �

3.3. Explicit construction: lifting Hodge filtration. Lemma 3.2.1 also shows that
any p-divisible group Xµ

GL over Spf(AµGL, (p)) which lifts X
µ

GL is a universal defor-
mation of X. Note that the Frobenius endomorphism and ∇ on D(Xµ

GL)(AµGL) only
depends on X

µ

GL; i.e., we naturally have a Frobenius-equivariant horizontal iso-
morphism D(Xµ

GL)(AµGL) ∼= Mµ
GL.

We now turn to the Hodge filtration for Xµ
GL. Since the Hodge filtration for

X
µ

GL is the image of Fil1 Mµ
GL in Mµ

GL/(p), the Grothendieck-Messing deformation
theory gives us a AµGL-lift Xµ

GL of X
µ

GL with Hodge filtration Fil1 Mµ
GL if p > 2.

To sum up, we have proved the following result:

Theorem 3.4 (Faltings). Assume that p > 2. Then the p-divisible group Xµ
GL over

AµGL, corresponding to the filtered crystalline Dieudonné module (Mµ
GL,Fil1 Mµ

GL, F,∇),
is a universal deformation of X.

3.5. Deformation with Tate tensors. In this section, we return to the “unramified
Hodge-type” setting (cf. Definition 2.5.5): namely, we let G ⊂ GL(Λ) be a con-
nected reductive subgroup over Zp, and assume that there exists an isomorphism
X ∼= XΛ

b for some b ∈ G(K0). (In particular, we assume that there exists an iso-
morphism M ∼= MΛ

b of Dieudonné modules.) For finitely many tensors (sα) ⊂ Λ⊗

whose stabiliser is G, we let (tα) ⊂M⊗ denote the image of (1⊗ sα) ∈ (MΛ
b )⊗ via

the isomorphism M ∼= MΛ
b . Note that (tα) are F -invariant up to isogeny.
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Let us now recall Faltings’ construction of the “universal” deformation of (X, (tα))

when p > 2. We can choose a W -lift X̃ whose Hodge filtration is induced by some
cocharacter µ : Gm → GW ; cf. Remark 2.5.8. Then (tα) lies in the 0th filtration
with respect to the Hodge filtration for X̃ by Lemma 2.2.7.

Let UµG := Uµ ∩ GW be the scheme-theoretic intersection, which turns out to
be a smooth unipotent W -group (being the unipotent radical of some parabolic
subgroup of GW ). Let AµG be the quotient of AµGL corresponding to the formal
subgroup ÛµG ⊂ Ûµ. Then, AµG is a formal power series over W . We also choose
a “coordinate” for AµGL so that the kernel of AµGL � AµG is stable under σ. (In
particular, we get a lift of Frobenius σ on AµG induced by σ on AµGL.)

Let Xµ
G denote the pull-back of Xµ

GL over Spf(AµG, (p)). Then, D(Xµ
G)(AµG) with

the Hodge filtration and Frobenius action corresponds to the following quotient of
(Mµ

GL,Fil1 Mµ
GL, F ):

(3.5.1) Mµ
G := AµG ⊗W M; Fil1 Mµ

G := AµG ⊗W Fil1X̃; F := u−1
t ◦ (AµG ⊗ F ),

where (M, F ) := D(X)(W ) and ut ∈ UµG(AµG) is the tautological point.
From this explicit description, it is immediate that the tensors (1⊗tα) ⊂ (Mµ

G)⊗[ 1
p ]

are F -invariant, and the pointwise stabiliser of (1 ⊗ tα) is isomorphic to GAµG .
Since Fil1 Mµ

G is a {µ}-filtration, the tensors (1 ⊗ tα) lie in the 0th filtration by
Lemma 2.2.7. It is also known that (1⊗ tα) are horizontal (cf. [29, §1.5.4]). So for
each α we obtain a morphism

(3.5.2) tuniv
α : 1→ D(Xµ

G)⊗

of crystals over Spf(AµG, (p)) such that tuniv
α (AµG) = 1 ⊗ tα on the AµG-sections by

the usual dictionary [11, Corollary 2.2.3].
Now we can rephrase the theorem of Faltings as follows (cf. [17, §7], [37,

Theorem 4.9]):

Theorem 3.6 (Faltings). Let A be either W [[u1, · · · , uN ]] or W [[u1, · · · , uN ]]/(pm),
and choose a p-divisible group X over A which lifts X. Let f : AµGL → A be the mor-
phism induced by X (via Spf AµGL

∼= DefX). Then f factors through AµG = D(X)(W )⊗

if and only if the map 1 → M⊗, sending 1 to tα, has a (necessarily unique) lift to a
morphism of crystals over Spf(A, (p))

tα : 1→ D(X)⊗

which is Frobenius-equivariant up to isogeny and has the property that its A-section
tα(A) ∈ D(X)(A)⊗ lies in the 0th filtration with respect to the Hodge filtration. If this
holds, then we necessarily have f∗tuniv

α = tα.
Furthermore, the image of the closed immersion Spf AµG ↪→ DefX, given by Xµ

G, is
independent of the choice of (tα) and µ ∈ {µ}.

Proof. The universal property for AµG for test rings of the form A = W [[u1, · · · , uN ]]
was proved by Faltings (cf. [37, Theorem 4.9]). For the case whenA = W [[u1, · · · , uN ]]/(pm),
we choose a lift X̃ over Ã := W [[u1, · · · , uN ]] corresponding to a {µ}-filtration
(with respect to (tα(Ã))) in D(X)(Ã) lifting the Hodge filtration of X. Then tα also
defines a unique morphism 1 → D(X̃)⊗ (as it only depends on the mod p fibre of
X̃), and we obtain the desired claim by applying [37, Theorem 4.9] to (X̃, (tα)).

The closed immersion Spf AµG ↪→ DefX is clearly independent of the choice of
(tα), and the independence of the choice of µ ∈ {µ} follows from the universal
property. �
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3.7. Functoriality of deformation spaces. We identify the deformation functor
DefX with the formal spectrum of complete local noetherian ring which prorepre-
sents DefX.

Definition 3.7.1. Using the notation from Theorem 3.6, we define DefX,G to be
the formally smooth closed formal subscheme of DefX which classify deformations
of (X, (tα)) over formal power series rings over W or W/(pm) in the sense of The-
orem 3.6. Note that for any cocharacter µ : Gm → GW giving rise to the Hodge
filtration of X, we get an isomorphism ÛµG

∼−→ DefX,G induced by Xµ
G, and the

closed formal subscheme DefX,G ⊂ DefX is independent of the choice of (tα).

Note that for any isomorphism (X, (tα))
∼−→ (XΛ

b , (1 ⊗ sα)), we have a natural
isomorphism DefX,G

∼−→ DefXΛ
b ,G

. Therefore, we fix an identification X = XΛ
b for

the moment, and show that DefX,G only depends on (G, b), not on Λ, in a canonical
way, and that it is functorial with respect to (G, b). (See Remark 3.7.4 for the
discussion on the choice of isomorphism (X, (tα))

∼−→ (XΛ
b , (1⊗ sα)).)

We consider another pair (G′, b′) and Λ′ as in Definition 2.5.5, and consider
X′ := XΛ′

b′ . We also obtain a subfunctor DefX′,G′ ⊂ DefX′ , such that for any cochar-
acter µ′ : Gm → G′W that induces the Hodge filtration of X′ we have a natural
isomorphism Ûµ

′

G′
∼−→ DefX′,G′ induced by Xµ′

G′ . We do not assume the existence of
any morphism between X and X′.

Proposition 3.7.2. In the above setting, the natural monomorphism DefX×DefX′ →
DefX×X′ , defined by taking the product of deformations, induces an isomorphism

DefX,G × DefX′,G′
∼−→ DefX×X′,G×G′ .

Let f : GW → G′W be a homomorphism over W such that f(b) = b′. We choose
a cocharacter µ : Gm → GW inducing the Hodge filtration of X := XΛ

b . Then the
morphism DefX,G → DefX′,G′ , corresponding to f |ÛµG : ÛµG → Ûf◦µG′ , depends only on
f , not on the choice of µ.

Before we begin the proof, let us make some remarks on the statement.

Remark 3.7.3. One can apply this proposition to the identity map on (G, b) with
different choice of Λ and Λ′ to obtain a natural functorial isomorphism DefXΛ

b ,G
∼−→

DefXΛ′
b ,G

. Under this identification, the morphism DefXΛ
b ,G
→ DefXΛ′

b′ ,G
′ associated

to f : (G, b)→ (G′, b′) depends only on f , not on the choice of Λ and Λ′.

Proof of Proposition 3.7.2. For the first assertion on the product decomposition, ob-
serve that we have X(µ,µ′)

G×G′
∼= Xµ

G×X
µ′

G′ , which follows from the explicit description
(§3.5). The claim now follows.

Let us now show that for a fixed choice of Λ and Λ′ the map DefX,G → DefX′,G′

induced by f |ÛµG is independent of the choice of µ. For this, we factor the map
DefX,G → DefX′,G′ as follows, and show that each arrow on the top row is indepen-
dent of the choice of µ:

DefX,G
∼=��

DefX×X′,Gpr1

oo � � //

∼=��

DefX×X′,G×G′
∼=��

DefX,G × DefX′,G′

pr1

rr

∼=
oo

pr2 // //

∼=��

DefX′,G′
∼=��

ÛµG

f

22ÛµG
idoo � � (id,f)

// Û
(µ,f◦µ)
G×G′ ÛµG × Û

f◦µ
G′

∼=oo // // Ûf◦µG′

.

Here, we view Λ×Λ′ as a faithful G-representation by G
(id,f)−−−→ G×G′, so we have

X× X′ = XΛ×Λ′

b .
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Note that the third arrow on the top is the isomorphism defined by taking the
product of deformations, which is independent of the choice of µ since the sub-
spaces DefX,G ⊂ DefX and DefX′,G′ ⊂ DefX′ are independent of the choice of
cocharacters (cf. Theorem 3.6). Similarly, it follows that the projection maps on
the top row (pr1 and pr2) are independent of the choice of µ, as they are the re-
strictions of the natural projections DefX×DefX′ � DefX and DefX×DefX′ � DefX′

to a closed subspace independent of the choice of cocharacter.
The second arrow on the top row can be obtained from the universal property for

DefX×X′,G×G′ , hence it is independent of the choice of µ. This shows that the first
arrow does not depend on the choice of µ as it can be obtained as the compositions
of maps independent of µ. Furthermore, it is an isomorphism as it corresponds
to the identity map of ÛµG. Now, chasing the diagram, we conclude that the map
DefX,G → DefX′,G′ does not depend on the choice of µ. �

Remark 3.7.4. We remark on the effect of different choice of isomorphism X ∼= XΛ
b

in Proposition 3.7.2. For g ∈ G(W ), we write b′ := g−1bσ(g) and X′ := XΛ
b′ . Then g

induces an F -equivariant isomorphism g : MΛ
b′ →MΛ

b , so we get an isomorphism

(X, (1⊗ sα))
∼−→ (X′, (1⊗ sα)),

preserving tensors, where X := XΛ
b as before. This induces an isomorphism DefX,G

∼−→
DefX′,G. We want to give a group-theoretic interpretation of this isomorphism via
the explicit construction of universal deformations with Tate tensors.

Choose a cocharacter µ : Gm → GW which induces the Hodge filtration of
X. Then, µ′ := g−1µg induces the Hodge filtration of X′, so we have an iso-
morphism Ûµ

′

G = Spf Aµ
′

G
∼−→ DefX′,G defined by the deformation Xµ′

G of X′. Let
ut ∈ ÛµG(AµG) ⊂ G(AµG) and u′t ∈ Û

µ′

G (Aµ
′

G ) ⊂ G(Aµ
′

G ) be the tautological points.
We have an isomorphism jg : ÛµG

∼−→ Ûµ
′

G , defined by the conjugation by g−1,
and we have u′t = g−1(j∗gut)g as an elements in G(Aµ

′

G ). So we have

(u′t)
−1(g−1bσ(g)) = (g−1j∗g (u−1

t )g) · (g−1bσ(g)) = g−1j∗g (u−1
t b)σ(g).

In particular, by identifying the underlying Aµ
′

G -modules of Mµ′

G and j∗gM
µ
G with

Aµ
′

G ⊗Zp Λ, the isomorphism g : Mµ′

G
∼−→ j∗gM

µ
G is horizontal, filtered, and F -

equivariant. In short, we obtain the following commutative diagram of isomor-
phisms

ÛµG
∼
jg

//

XµG

��

Ûµ
′

G

Xµ
′

G

��

DefX,G
∼ // DefX′,G

,

where the bottom isomorphism is induced by (X, (1⊗ sα))
∼−→ (X′, (1⊗ sα)) which

corresponds to g : MΛ
b′ →MΛ

b .
Let us return to the setting of Proposition 3.7.2, and consider a homomorphism

f : G→ G′. Then it follows without difficulty that for any g ∈ G(W ) the following
diagram commutes

(3.7.5) DefXΛ
b ,G

∼=

��

// DefXΛ′
f(b)

,G′

∼=

��

DefXΛ
g−1bσ(g)

,G
// DefXΛ′

f(g−1bσ(g))
,G′

,
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where the vertical isomorphisms are as constructed above associated to g ∈ G(W )
and f(g) ∈ G′(W ), respectively, and the horizontal arrows are associated to f :
G→ G′ via Proposition 3.7.2.

We now study deformation theory for points of DefX,G valued in artin local
rings. We consider a W -morphism f : SpecR → DefX,G for R ∈ ARW , and set
(XR, (tα)) := (f∗Xµ

G,b, (f
∗tuniv
α )). Let B � R be a square-zero thickening with

finitely generated kernel b, and give the square-zero PD structure on b; i.e., a[i] = 0
for any i > 1 and a ∈ b. Then we can define the B-sections (tα(B)) ⊂ D(XR)(B)⊗

as in Definition 2.3.4. Let f̃ : SpecB → DefX,G be a lift of f , and set (XB , (t̃α)) :=

(f̃∗Xµ
G,b, (f̃

∗tuniv
α )). Then we have a natural isomorphism D(XB)(B) ∼= D(XR)(B),

which matches (t̃α(B)) with (tα(B)).

Proposition 3.8. Assume that p > 2. Let (XR, (tα)) and B � R be as above. Then a
B-lift XB of XR defines a B-point of DefX,G if and only if the Hodge filtration

Fil1XB ⊂ D(XB)(B) ∼= D(XR)(B)

is a {µ}-filtration with respect to (tα(B)), where µ : Gm → GW is the cocharacter in
the definition of Xµ

G.

Let us outline the basic strategy of the proof. The proposition when B = κ[ε]�
R = κ can be deduced from Lemma 3.2.1. When B � R is a small thickening
(i.e., b is of B-length 1) then we prove the proposition using the fact that the set of
B-lifts of f is a torsor under the reduced tangent space of DefX,G. The general case
can be deduced by filtering B � R into successive small thickenings.

Before beginning the proof of the proposition, let us review fibre products of
rings. Let B � R be a small thickening of rings in ARW with kernel b ⊂ B. Let
κ[b] denote the κ-algebra whose underlying κ-vector space is κ ⊕ b, such that b is
the augmentation ideal. If we pick a generator ε ∈ b then we have κ[b] = κ[ε]/ε2.

We have the following isomorphism

(3.8.1) B ×κ κ[b]
∼−→ B ×R B =: B′; (a, ā+ a′) 7→ (a, a+ a′),

where a ∈ B, a′ ∈ b, and ā ∈ κ is the image of a. The inverse is given by (a, a′) 7→
(a, ā+ (a′ − a)).

Let F : ARW → (Sets) be a pro-representable functor. (For example, F = DefX
or F = DefX,G.) Then we have a natural bijection

F(B ×R B′)
∼−→ F(B)×F(R) F(B′)

for any B,B′ � R. So from (3.8.1) we obtain a natural bijection

(3.8.2) F(B)×F(κ[b])
∼−→ F(B)×F(R) F(B),

which defines an F(κ[b])-action on F(B), and makes the set of f̃ ∈ F(B) lifting a
fixed f ∈ F(R) into a F(κ[b])-torsor.

Let us consider the case when F = DefX. For any R ∈ ARW , we set MR :=
R ⊗W M and Fil1 MR := R ⊗W Fil1X̃ ⊂MR. Via the Grothendieck-Messing defor-
mation theory, we have a natural bijection

(3.8.3) Ûµ(κ[b]) ∼= DefX(κ[b]).

Indeed, we associate to γ ∈ Ûµ(κ[b]) the lift γX ∈ DefX(κ[b]) which corresponds to
the filtration γ(Fil1 Mκ[b]); cf. Lemma 3.2.1.

Now we give the square-zero PD structure on b. (We still assume that p >

2.) We define the Ûµ(κ[b])-action on DefX(B) to be the one induced from the
natural Ûµ(κ[b])-action on the Hodge filtration ofXB via the Grothendieck-Messing
deformation theory.
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Lemma 3.8.4. In the above setting setting, the actions of Ûµ(κ[b]) and DefX(κ[b]) on
DefX(B), which are defined above, coincide via the isomorphism (3.8.3).

Proof. Let us give the square-zero PD structure on the kernel of B′ := B×RB � R
so that both projections B′ ⇒ B are PD morphisms. Let γX ∈ DefX(κ[b]) be the
deformation corresponding to γ ∈ Ûµ(κ[b]). Then the action of γX maps XB to the
pull-back of XB ×X

γX ∈ DefX(B′) via the second projection B′ � B. Meanwhile,
XB ×X

γX corresponds to the filtration

(3.8.5) Fil1XB ×Fil1 Mκ

[
γ(Fil1 Mκ[b])

]
⊂ D(XR)(B)×Mκ

Mκ[b]
∼= D(XR)(B′),

using the notation as above. Now from the isomorphism (3.8.1) it follows that the
image of the filtration (3.8.5) under the second projection is γ Fil1XB . �

Proof of Proposition 3.8. IfB = κ[ε] then the proposition is clear from Lemma 3.2.1.
Now assume that B � R is a small thickening (i.e., the B-length of b is 1). We let
f : SpecR → DefX,G denote the map induced by XR. For any lift f̃ : SpecB →
DefX,G of f (with XB := f̃∗Xµ

G) the Hodge filtration

Fil1XB ⊂ D(XB)(B) ∼= D(XR)(B)

is a {µ}-filtration with respect to (tα(B)); indeed, Fil1XB and (tα(B)) are respec-
tively the images of Fil1 Mµ

G and (tuniv
α (AµG)). (Note that we have a natural isomor-

phism D(XB)(B) = f̃∗Mµ
G.) So we obtain a map

{f̃ ∈ DefX,G(B) lifting f} → {{µ}-filtrations in D(XR)(B) lifting Fil1XR},

sending f̃ to Fil1
f̃∗XµG

. By Lemma 3.8.4, this map is a morphism of ÛµG(κ[b])-torsors,
so it has to be a bijection. This proves the proposition when B � R is a small
thickening.

Now let B � R be any square-zero thickening with B ∈ ARW , and consider an
quotient R′ of B which surjects onto R. Then b′ := ker(B � R′) is a square-zero
ideal, so by giving the “square-zero PD structure”, b′ is a PD subideal of b. We fix a
lift f ′ ∈ DefX,G(R′) of f and set (XR′ , (t

′
α)) := (f ′∗Xµ

G,b, (f
′∗tuniv
α )).

Since b′ is a (nilpotent) PD subideal, we have a natural isomorphism D(XR)(B) ∼=
D(XR′)(B), which matches (tα(B)) and (t′α(B)).12 Therefore, the proposition for
B � R is obtained by filtering it with successive small thickenings. �

4. MODULI OF p-DIVISIBLE GROUPS WITH TATE TENSORS

In this section, we state the main results on Hodge-type analogue RZΛ
G,b of

Rapoport-Zink spaces (Theorem 4.9.1). This construction recovers EL and PEL
Rapoport-Zink spaces if (G, b) is associated to an unramified EL and PEL datum
(§4.7).

Let κ be an algebraically closed field of characteristic p, and set W := W (κ) and
K0 := FracW . The most interesting case is when κ = Fp. Let X be a p-divisible
group over κ.

We begin with the review of the formal moduli schemes classifying p-divisible
groups up to quasi-isogeny [39, Ch.II], which is the starting point of the construc-
tion of RZΛ

G,b.

Definition 4.1 ([39, Definition 2.15]). Let RZX : NilpW → (Sets) be a covariant
functor defined as follows: for any R ∈ NilpW , RZX(R) is the set of isomorphism

12This can be seen as follows. For any maps f̃ ∈ DefX,G(B) lifting f ′ (and hence, f) and (XB , (t̃α))
pulling back the universal objects, we have natural isomorphisms D(XR)(B) ∼= D(XR′ )(B) ∼=
D(XB)(B) matching (tα(B)), (t′α(B)), and (t̃α(B)).
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classes of (X, ι), where X is a p-divisible group over R and ι : XR/p 99K XR/p is a
quasi-isogeny. (We take the obvious notion of isomorphism of (X, ι).)

For h ∈ Z, let RZX(h) : NilpW → (Sets) be a subfunctor of RZX defined by
requiring that the quasi-isogeny ι has height h.

Remark 4.1.1. Let X̃ be any p-divisible group over W which lifts X := XΛ
b . Then for

any (X, ι) ∈ RZX(R), ι uniquely lifts to

(4.1.2) ι̃ : X̃R 99K X

by rigidity of quasi-isogenies; cf. (2.3.2). So we may regard RZX(R) as the set of
isomorphism classes of (X, ι̃) where ι̃ : X̃R 99K X is a quasi-isogeny.

Theorem 4.2 (Rapoport, Zink). The functor RZX can be represented by a separated
formal scheme which is locally formally of finite type (cf. Definition 2.1.1) and for-
mally smooth over W . We also denote by RZX the formal scheme representing RZX. For
h ∈ Z, the subfunctor RZX(h) can be represented by an open and closed formal sub-
scheme (also denoted by RZX(h)). Furthermore, any irreducible component of (RZΛ

b )red

is projective.

Proof. The representability of RZX is proved in [39, Theorem 2.16]. It is clear
that RZX(h) is an open and closed formal subscheme of RZX. The assertion on
the irreducible components of (RZΛ

b )red is proved in [39, Proposition 2.32]. �

For each h ∈ Z, we can write RZX(h) as the direct limit of subfunctors repre-
sentable by closed schemes, as follows. Let (XRZX(h), ιRZX(h)) denote the universal
p-divisible group up to height-h quasi-isogeny.

Definition 4.3. We fix a W -lift X̃ of X, and view RZX(R) as a set of {(X, ι̃ :

X̃R 99K X)}/ ∼= (cf. Remark 4.1.1). Then for any m > 0 and n ∈ Z, we define
RZX(h)m,n ⊂ RZX(h) to be the subfunctor defined as follows: for any W/pm-algebra
R, RZX(h)m,n(R) is the set of (X, ι̃) ∈ RZX(h)(R) such that pnι̃ : X̃R 99K X is an
isogeny of p-divisible group. (We set RZX(h)m,n(R) = ∅ if pmR 6= 0.)

As explained in [39, §2.22], RZX(h)m,n can be realised as a closed subscheme
of certain grassmannian, hence it can be represented by a projective scheme over
W/pm. And it is a closed subscheme of RZX(h) such that RZX(h) = lim−→m,n

RZX(h)m,n.
We now recall the deformation-theoretic interpretation of the completed local

ring of RZX has a deformation-theoretic interpretation.

Lemma 4.3.1. For x = (Xx, ιx) ∈ RZX(κ), the formal completion (RZX)x̂ at x repre-
sents the functor DefXx , using the notation above.

Proof. We have a morphism (RZX)x̂ → DefXx given by forgetting the quasi-isogeny.
By rigidity of quasi-isogeny, we have a natural morphism of functors DefXx →
(RZX)x̂ defined by sending X ∈ DefXx(R) to (X, ι) ∈ RZX(R) where ι : XR/p →
XR/p is the unique quasi-isogeny that lifts ιx. It also follows from rigidity that the
composition (RZX)x̂ → DefXx → (RZX)x̂ is an identity morphism. To finish the
proof, note that both are representable by formal power series rings over W with
same dimension. (The dimension of (RZX)x̂ can be obtained from [39, Proposi-
tion 3.33].) �

4.4. Let us return to the setting of §2.5. Let (G, b) and Λ be as in Definition 2.5.5,
so we have a p-divisible group X := XΛ

b with the contravariant Dieudonné module
MΛ

b . We choose finitely many tensors (sα) ⊂ Λ⊗ which defines G as a subgroup
of GL(Λ); cf. Proposition 2.1.3. We also choose a W -lift X̃(= X̃Λ

b ) of X as in
Remark 2.5.8.
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Definition 4.5. Let (X, ι̃) ∈ RZX(R) withR ∈ NilpW , where ι̃ : X̃R 99K X is a quasi-
isogeny; cf. Remark 4.1.1. We define sα,D : 1→ D(X)⊗[ 1

p ] to be the composition

1
17→1⊗sα //D(X̃R)⊗[ 1

p ] ∼
D(ι̃)−1

//D(X)⊗[ 1
p ] ,

where the first morphism is the pull-back of the map 1 → D(X̃)⊗ which induces
1 7→ 1⊗ sα on the W -sections.

Note that sα,D : 1 → D(X)⊗[ 1
p ] only depends on (X, ι) ∈ RZX(R) but not on the

choice of X̃. Indeed, the morphism

1
17→1⊗sα //D(XR/p)⊗[ 1

p ] ∼
D(ι)−1

//D(XR/p)
⊗[ 1

p ]

uniquely determines sα,D.
It is clear that each sα,D is Frobenius-equivariant, but it may not come from a

morphism of crystals tα : 1 → D(X)⊗. Even if it does, such a morphism tα of
(integral) crystals may not be uniquely determined by sα,D due to the existence
of non-zero p-torsion morphism when the base ring R is not nice enough. (See
Appendix in [2] for such an example.) To deal with this problem, we work only
with the morphism of (integral) crystals tα : 1 → D(X)⊗ giving rise to sα,D which
is “liftable” in some suitable sense.

Let Nilpsm
W denote the full subcategory of NilpW consisting of formally smooth

formally finitely generated W/pm-algebras A. Then there exists a p-adically sepa-
rated and complete formally smooth W -algebra Ã which lifts A; indeed, we apply
[11, Lemma 1.3.3] to obtain a p-adic W -lift Ã of A/p, which is formally smooth
over W by construction, so we may view Ã as a lift of A. By formal smoothness
over W , any two such lifts are (not necessarily canonically) isomorphic.

Definition 4.6. For any A ∈ Nilpsm
W , we define RZ

(sα)
X,G (A) ⊂ HomW (Spf A, RZX) as

follows: Let f : Spf A→ RZX be a morphism, and X a p-divisible group over SpecA

which pulls back to f∗XRZX over Spf A. Then we have f ∈ RZ
(sα)
X,G (A) if and only if

there exist morphisms of integral crystals (over SpecA)

tα : 1→ D(X)⊗

such that

(1) For some ideal of definition J of A (or equivalently by Lemma 4.6.3, for
any ideal of definition J), the pull-back of tα over A/J induces the map of
isocrystals sα,D : 1→ D(XA/J)⊗[ 1

p ].

(2) We choose a formally smooth p-adic W -lift Ã of A, and let (tα(Ã)) denote
the Ã-section of (tα) (cf. Definition 2.3.4). Then the Ã-scheme

PÃ := isomÃ

[
(D(X)(Ã), (tα(Ã))], [Ã⊗Zp Λ∗, (1⊗ sα)]

)
,

classifying isomorphisms matching (tα(Ã)) and (1⊗ sα), is a G-torsor. (Cf.
(2.2.2).) Note that this condition is independent of the choice of Ã, since
any choice of Ã are isomorphic.

(3) The Hodge filtration Fil1X ⊂ D(X)(A) is a {µ}-filtration with respect to
(tα(A)) ⊂ D(X)(A)⊗, where {µ} is the unique G(W )-conjugacy class of
cocharacters such that b ∈ G(W )pσ

∗µ−1

G(W ).

We thus obtain a functor RZ(sα)
X,G : Nilpsm

W → (Sets). For (X, ι) ∈ RZ
(sα)
X,G )(A), we call

(tα) as above crystalline Tate tensors or Tate tensors on X.
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If A is formally smooth and formally finitely generated over W , we write

RZ
(sα)
X,G (A) := lim←−

m

RZ
(sα)
X,G (A/pm) ⊂ HomW (Spf A, RZX).

Example 4.6.1. If G = GL(Λ), we may choose (sα) to be the empty set. Then we
claim that RZX represents RZ∅X,G. Indeed, we only need to check Definition 4.6(3),
which is clear since for any (X, ι) ∈ RZX(R) the dimension of X is constant on R
and consistent with {µ} associated to (G, b); cf. Remark 2.2.5.

Remark 4.6.2. Let A be a formally smooth formally finitely generated algebra over
either W or W/pm. Then we may view HomW (Spf A, RZX) as the set of isomor-
phism classes of (X, ι), where X is a p-divisible group over A and ι is a quasi-
isogeny defined over Spf A/p (not necessarily defined over SpecA/p). By rigid-
ity of quasi-isogeny (2.3.2), giving such ι is equivalent to giving an quasi-isogeny
ιA/J : XA/J 99K XA/J for some ideal of definition J ⊂ A containing p.

Lemma 4.6.3. Let R ∈ NilpW and I be a nilpotent ideal of R. Let X be a p-divisible
group and consider Frobenius-equivalent morphisms of isocrystals

t, t′ : 1→ D(X)⊗[ 1
p ].

Then we have t = t′ if and only if the equality holds over R/I.

In particular, Definition 4.6(1) for some ideal of definition J implies Defini-
tion 4.6(1) for any ideal of definition J ′; indeed, if J ′ ⊂ J then we apply the
lemma to R := A/J ′ and I := J/J ′.

Proof. We may assume that pR = 0. Then by Frobenius-equivariance, one can
replace X by σn∗X for some n, while σn∗X only depends on XR/I if σn(I) = 0; cf.
the proof of [11, Corollary 5.1.2]. �

Lemma 4.6.4. Let (X, ι) ∈ RZ
(sα)
X,G (A) for some A ∈ Nilpsm

W . Then the Tate tensors
tα : 1→ D(X)⊗ in Definition 4.6 are uniquely determined by (X, ι).

Proof. The lemma is known when A = W [[u1, · · · , uN ]]/(pm), since the tensors (tα)
are obtained as the parallel transports of their fibres at the closed point. (This was
implicitly stated in Theorem 3.6.) The general case now follows since each of (tα)

is uniquely determined by its pull-back over Âx for each closed point x ∈ Spf A. �

4.7. Example: unramified EL and PEL cases. To a (not necessarily unramified)
EL or PEL datum, Rapoport and Zink formulated a suitable moduli problem of p-
divisible groups with extra structure, and constructed a representing formal scheme
[39, Theorem 3.25].13 In this section, we show that when (G, b) comes from an
unramified EL or PEL datum, the formal moduli schemes constructed by Rapoport
and Zink represents RZ(sα)

X,G for some suitable choice of (Λ, (sα)).
Let us first recall the setting of [39, Ch.3] in the unramified case. Let OB be

a product of matrix algebras over finite unramified extensions of Zp, and Λ be a
faithful OB-module which is finite flat over Zp. We consider the following data (cf.
[39, §1.38], [18, Ch.2])14:

unramified EL case: (OF ,OB ,Λ, G), where (OB ,Λ) is as before, OF is the
centre of OB , and G = GLOB (Λ) is a reductive group over Zp.

13See also [18] for the exposition that is just focused on the unramified case of type A and C.
14To make the comparison with Definition 4.6 more direct, we work over Zp instead of over Qp as

in the aforementioned references.
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unramified PEL case: (OF ,OB , ∗,Λ, (, ), G), where (OF ,OB ,Λ, G) is an un-
ramified EL-type Rapoport-Zink datum, (, ) is a perfect alternating Zp-bilinear
form on Λ, ∗ : a 7→ a∗ is an involution on OB such that (av, w) = (v, a∗w)
for any v, w ∈ Λ, and

G = GUOB (Λ, (, ))) := GLOB (Λ) ∩GUZp(Λ, (, ))

where the (scheme-theoretic) intersection takes place inside GLZp(Λ).
For G as above, consider b ∈ G(K0) such that we have a p-divisible group X := XΛ

b

(cf. Definition 2.5.5), and choose a conjugacy class {µ} so that b ∈ G(W )pσ
∗µ−1

G(W )
(cf. Definition 2.5.10). In the PEL case, we additionally assume that ordp(c(b)) =
−1, where c : G → Gm is the similitude character. This assumption is to ensure
that the pairing (, ) induces a polarisation of X via crystalline Dieudonné theory
and a 7→ a∗ corresponds to the Rosati involution; cf. [39, §3.20].15

Under this setting, Rapoport and Zink formulated a concrete moduli problem
for p-divisible groups, and constructed a formal moduli scheme M̆ := M̆G,b, which
turns out to be a formally smooth closed formal subscheme of RZX. See [39, Defi-
nition 3.21, Theorem 3.25, §3.82] for more details. Note that in the PEL case we
always assume that p > 2.

For the unramified EL case, we choose a Zp-basis (sα) of OB and view them as
elements in Λ⊗Λ∗ ⊂ Λ⊗. For the unramified PEL-type case, we additionally include
a tensor s0 ∈ Λ⊗2 ⊗ Λ∗⊗2 ⊂ Λ⊗ associated to the pairing (, ) up to similitude, as
in Example 2.1.4. Now we consider the subfunctor RZ(sα)

X,G of RZX using this choices
(Λ, (sα)); cf. Definition 4.6.

Proposition 4.7.1. Assume that p > 2. In the unramified EL and PEL cases, the sub-
functor RZ(sα)

X,G of RZX can be represented by the formal moduli scheme M̆ constructed
by Rapoport and Zink (cf. [39, Theorem 3.25, §3.82]).

Proof. Let us first handle the unramified EL case. By considering simple factors of
B and applying the Morita equivalence, it suffices to handle the case when OB =
OF = W (κ0) and Λ = On

F , where κ0 is a finite extension of Fp. Let us assume this.
Let (X, ι) denote a p-divisible group over A ∈ Nilpsm

W with quasi-isogeny defined
over A/J for some (or any) ideal of definition J containing p. We choose (sα)

corresponding to a Zp-basis of OB . If (X, ι) corresponds to Spf A → M̆, then
the induced OB-action on X gives rise to Tate tensors (tα). If we have (X, ι) ∈
RZ

(sα)
X,G (A), then the Tate tensors (tα) should correspond to an OB-action by the full

faithfulness of the Dieudonné theory over A/p (cf. [11]) and the Grothendieck-
Messing deformation theory.

From now on, we assume that X is equipped with an OB-action corresponding
to the Tate tensors (tα), and we will translate Definition 4.6 in terms of endo-
morphism, polarisation, and Kottwitz determination condition. For any ideal of
definition J ⊂ A containing p, the crystalline Dieudonné functor over A/J is fully
faithful up to isogeny by [11, Corollary 5.1.2]. Therefore, D(ι) matches (tα) for X
and XA/J if and only if ι is a B-linear quasi-isogeny. If these equivalent properties
hold, then we claim that the scheme PÃ (with the notation as in Definition 4.6(2))
is a GLOB (Λ)-torsor. Indeed, it suffices to handle the case when Ã is a formal
power series ring over W by considering the completions of Ã at maximal ideals.
Since OB ⊗Zp Ã =

∏
τ :κ0↪→Fp Ã, the existence of B-linear quasi-isogeny ι implies

that D(X)(Ã) is a free OB ⊗Zp Ã-module with the same rank as Λ, which implies
that PÃ is a trivial GLOB (Λ)-torsor.

15Note that our choice of b is the transpose-inverse of the Frobenius matrix (cf. the remark below
Definition 2.5.5), so in our convention we have ordp(c(b)) = −1, which differs by sign from [39, §3.20].
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Let us show that Fil1X is a {µ}-filtration with respect to (tα(A)) (Definition 4.6(3))
if and only if the “Kottwitz determinant condition” holds for XA/Jn for each n [39,
Definition 3.21(iv)]. For this, it suffices to show that for a fixed n and R := A/Jn,
Fil1XR is a {µ}-filtration if and only if the “Kottwitz determination condition” holds.
Since the claim is étale-local on SpecR,16 we may assume that the torsor PR is
trivial. Since OB = W (κ0) for some finite extension κ0 of Fp, we can decompose

D(XR)(R) =
∏

τ∈Hom(κ0,Fp)

D(XR)(R)τ

Fil1XR =
∏

τ∈Hom(κ0,Fp)

Fil1XR,τ .

It follows that the G(R)-conjugacy classes of (minuscule) cocharacters µ exactly
correspond to certain integer tuples (aτ )τ with aτ ∈ [0, rkR⊗ZpOB D(XR)(R)τ ], and
Fil1XR is a {µ}-filtration if and only if aτ = rkR Fil1XR,τ , which is exactly the Kottwitz
determinant condition.

Let us turn to the unramified PEL case. Since ordp(c(b)) = 1, there exists u ∈W×
such that c(b) = p−1σ(u)−1u. Then we obtain an F -equivariant perfect pairing

u(, ) : MΛ
b ⊗MΛ

b

(,)−→Mc(b)−1
u−→Mp = 1(−1),

where Mz for z ∈ Gm(K0) denotes the F -crystal on W with F given by multiplica-
tion by z. (Recall that MΛ

b = W ⊗Zp Λ∗, so the similitude character for the pairing
(, ) on MΛ

b is c−1.) Then u(, ) induces a principal polarisation λ0 : X→ X∨, and the
Z×p · λ0 is well defined independent of the choice of u.

Conversely, given an OB-linear principal polarisation λ : X → X∨ of a p-divisible
group over A ∈ Nilpsm

W , we obtain a tensor tλ : 1 → D(X)⊗2 ⊗ D(X)∗⊗2 only
depending on Z×p ·λ; cf. Example 2.1.4. By the full faithfulness result as before, the
existence of a principal polarisation λ : X → X∨ is equivalent to the existence of a
certain Tate tensor tλ. If s0 ∈ Λ⊗ is the tensor corresponding to Z×p · (, ) and t0 the
Tate tensor on X corresponding to s0, then we have t0 = tλ0

.
We choose a W -lift X̃ of X which lifts the OB-action and λ0. We let λ0 and t0 also

denote their lifts over W . For any (X ′, ι′) ∈ RZX(R′) with R′ ∈ NilpW , we choose
the unique lift ι̃′ : XR′ 99K X ′.

We now claim the following are equivalent:

(1) For any n, the quasi-isogeny ι̃ : X̃A/Jn 99K XA/Jn matches the Tate tensors
t0 for X̃ and tλ for X. Furthermore, the scheme PÃ, constructed as in
Definition 4.6(2) using (tα(Ã)) and tλ(Ã), is a GUOB (Λ)-torsor;

(2) The polarisation λ is OB-linear. For any n, the following diagram com-
mutes up to the multiple by some Zariski-locally constant function c :
SpecA/Jn → Q×p :

(4.7.2) XA/Jn
λ // X∨A/Jn

ι̃∨

��

X̃A/Jn
λ0 //

ι̃

OO

X̃∨A/Jn

.

16The notion of {µ}-filtration is étale-local on the base. The Kottwitz determinant condition can be
phrased in terms of the ranks of certain vector bundles, and ranks can be computed étale-locally.
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Granting this claim, it follows that M̆ represents RZ(sα)
X,G in the unramified PEL case;

indeed, the “Kottwitz determinant condition” and Definition 4.6(3) can be matched
in the identical way as in the unramified EL case.

Let us first show that (1)⇒(2). For this, we may replace Spf A by some étale
covering to assume that the torsor PÃ is trivial. Then the OB-linearity of λ fol-
lows from the full faithfulness of the Dieudonné theory over A/p (cf. [11]) and
Grothendieck-Messing deformation theory.

Now, let (, )0 : D(X̃)⊗2 → 1(−1) and (, )λ : D(X)⊗2 → 1(−1) denote the perfect
symplectic F -equivariant pairing induced by the principal polarisations. To simplify
the notation, set R := A/Jn. By definition of t0 and tλ, the quasi-isogeny ι̃ over
R matches t0 and tλ if and only if there exists a Zariski-locally constant function
c : SpecR → Q×p such that c(, )λ,R = (, )0,R ◦ (D(ι̃)⊗2) as pairings on D(XR)[ 1

p ].
(Indeed, c is Q×p -valued because the automorphism of the F -isocrystal 1(−1) over
a finite-type κ-scheme is Q×p – a very degenerate case of [11, Main Theorem 2].)
On the other hand, D(λ−1

0 ι̃∨λ) : D(X̃R)[ 1
p ]→ D(XR)[ 1

p ] is the “transpose” of D(ι̃) in
the sense that

(, )0,R ◦ (D(ι̃)⊗ id) = (, )λ,R ◦ (id⊗D(λ−1
0 ι̃∨λ)) : D(XR)[ 1

p ]⊗ D(X̃R)[ 1
p ]→ 1(−1).

Therefore, we have c(, )λ,R = (, )0,R ◦ (D(ι̃)⊗2) if and only if we have D(λ−1
0 ι̃∨λι̃) =

c id. By full faithfulness of Dieudonné theory up to isogeny overR, this is equivalent
to ι̃∨λR ι̃ = cλ0,R. This shows that (1)⇒(2).

To show (2)⇒(1), it remains to show that (2) implies that PÃ is a GUOB (Λ)-
torsor. Since M̆ is formally smooth, we may lift (X, ι) so that A = Ã is formally
smooth and formally finitely generated overW . Then, it suffices to show that PA/Jn
is a GUOB (Λ)-torsor for each n, which follows from [39, Theorem 3.16]. �

4.8. “Closed points” and deformation theory for RZ
(sα)
X,G . We choose (G, b), Λ,

and (sα) ⊂ Λ⊗ as before. Let (G, [b], {µ−1}) denote the unramified integral Hodge-
type local Shimura datum associated to (G, b); cf. Definition 2.5.10. In this section,
we show that the moduli functor RZ(sα)

X,G ⊂ RZX interpolates XG(b) ⊂ XGL(Λ)(b) on
κ-points and DefXx,G ⊂ DefXx on “formal completions”.

By Proposition 2.5.9, we have a natural bijection

(4.8.1) XG(b) ∼= RZ
(sα)
X,G (κ).

Recall thatXG(b) satisfies functorial properties with respect to (G, b) (Lemma 2.5.4).
We also have the following cartesian diagram:

(4.8.2) XG(b) �
�

//

∼=
��

XGL(Λ)(b)

∼=
��

RZ
(sα)
X,G (κ) �

�
// RZX(κ)

,

where the vertical isomorphisms are given by Proposition 2.5.9, and the horizontal
map on the bottom row is the forgetful map, which is injective by Lemma 4.6.4.

Consider (Xx, ιx) ∈ RZ
(sα)
X,G (κ) corresponding to a closed point x ∈ RZX(κ). We

define the “formal completion” (RZ
(sα)
X,G )x̂ of RZ(sα)

X,G at x to be the set-valued functor
on the category of formal power series rings over W/(pm) (for some m) defined
as follows: for any formal power series ring A over W/(pm), (RZ

(sα)
X,G )x̂(A) is the

subset of elements in RZ
(sα)
X,G (A) which lift x. Equivalently, we have the following
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description

(4.8.3) (RZ
(sα)
X,G )x̂ ∼= RZ

(sα)
X,G ×RZX (RZX)x̂,

where the right hand side is viewed as the fibre product of functors on the category
of formal power series rings over W/(pm). If RZ(sα)

X,G can be represented by a “nice”

formal scheme, then (RZ
(sα)
X,G )x̂ can be represented by its formal completion at x.

Choose a coset representative gx ∈ G(K0) of x := gxG(W ) ∈ XG(b), and write
bx := g−1

x bσ(gx) (so that we have (Xx, (tα,x)) ∼= (XΛ
bx
, (1 ⊗ sα))). Then for a suit-

able choice of µ ∈ {µ}, the universal deformation with Tate tensors (Xµ
G, (t

univ
α ))

of (Xx, (tα,x)), together with the quasi-isogeny ιx : X 99K Xx, defines an element
RZ

(sα)
X,G (AµG). (This can be verified by the explicit construction of Mµ

G.) Now, Theo-
rem 3.6 shows that the isomorphism DefXx

∼−→ (RZX)x̂ (cf. Lemma 4.3.1) induces
the following isomorphism

(4.8.4) DefXx,G
∼−→ (RZ

(sα)
X,G )x̂

of functors on formal power series rings over W/(pm); note that the deformations
coming from DefXx,G automatically satisfy the condition on the Hodge filtrations
(Definition 4.6(3)) thanks to the explicit construction of the universal deformation
over DefXx,G. In particular, (RZ

(sα)
X,G )x̂ can be pro-represented by a formal power se-

ries ring over W . If RZ(sα)
X,G can be represented by a formal scheme which is formally

smooth and locally formally of finite type over W , then the above isomorphism
gives an identification of the formal completion at a closed point x with DefXx,G.

Let us record some functorial properties that DefXx,G enjoys. To explain, let
(G′, b′) and Λ′ be as in Definition 2.5.5. (We do not assume the existence of any
“equivariant” morphism Λ→ Λ′.) We write X′ := XΛ′

b′ .
For any x′ ∈ XG′(b′) and the corresponding element (X ′x′ , ι) ∈ RZX′(κ) (via the

embedding XG′(b′) ↪→ XGL(Λ′)(b′), we have a natural isomorphism

(4.8.5) DefXx,G × DefXx′ ,G′
∼−→ DefXx×Xx′ ,G×G′ ,

defined by taking the product of deformations. This isomorphism is compatible
with the morphism RZX×RZX′ → RZX×X′ defined by taking the product of p-divisible
groups and quasi-isogenies.

Let f : G → G′ be a homomorphism over Zp which takes b to b′, and consider
the map XG(b) → XG′(b′) associated to f by Lemma 2.5.4. We choose x ∈ XG(b)

and let x′ ∈ XG′(b′) denote its image by this natural map. We choose a coset
representative gx ∈ G(K0) of x = gxG(W ) ∈ XG(b), and write bx := g−1

x bσ(gx)
and b′x′ := f(bx). Then by the choice of gx (and f(gx)), we obtain isomorphisms

DefXx,G
∼= DefXΛ

bx
,G, DefX′

x′ ,G
′ ∼= DefXΛ′

b′
x′
,G′ .

So by Proposition 3.7.2 we obtain a morphism

(4.8.6) DefXx,G → DefX′
x′ ,G

′

By Remark 3.7.4 it follows that the morphism above does not depend on the choice
of the coset representative gx of x = gxG(W ) ∈ XG(b).

4.9. Main Statements. We are ready to state the main result, which asserts that
the subset RZ

(sα)
X,G (κ) ⊂ RZX(κ) and the subspaces (RZ

(sα)
X,G )x̂ ⊂ (RZΛ

b )x̂ for x ∈
RZ

(sα)
X,G (κ) patch to give a closed formal subscheme RZΛ

G,b ⊂ RZX, and the functo-

rial properties enjoyed by XG(b) ∼= RZ
(sα)
X,G (κ) and DefXx,G

∼= (RZ
(sα)
X,G )x̂ patch to

give the corresponding functorial properties for RZΛ
G,b.
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Theorem 4.9.1. Let p > 2. Then there exists a closed formal subscheme RZΛ
G,b ⊂ RZX

which is formally smooth over W and represents the functor RZ(sα)
X,G for any choice of

(sα) ⊂ Λ⊗ with pointwise stabiliserG. More precisely, for any sα there exist “universal
Tate tensors”

tuniv
α : 1→ D((XRZX)|RZΛ

G,b
)⊗,

such that for A ∈ Nilpsm
W , a map f : Spf A→ RZX factors through RZΛ

G,b if and only if

f ∈ RZ
(sα)
X,G (A), in which case (tα) as in Definition 4.6 recovers (f∗tuniv

α ).
For another pair (G′, b′) and Λ′ ∈ RepZp(G′) that give rise to a p-divisible group

(as in Definition 2.5.5), we consider the closed formal subscheme RZΛ′

G′,b′ ⊂ RZX′ which
was just constructed. Then the following properties hold:

(1) The morphism RZX ×Spf W RZX′ → RZX×X′ , defined by the product of p-
divisible groups with quasi-isogeny, induces an isomophism

RZΛ
G,b ×Spf W RZΛ′

G′,b′
∼−→ RZΛ×Λ′

G×G′,(b,b′)

such that it induces the product decomposition of affine Deligne-Lusztig sets
(Lemma 2.5.4) and the deformation spaces (Proposition 3.7.2) via the iso-
morphisms (4.8.1) and (4.8.4), respectively.

(2) Let f : G → G′ be a homomorphism which takes b to b′. Then there exists a
(necessarily unique) morphism RZΛ

G,b → RZΛ′

G′,b′ which induces the maps that
fit in the following cartesian diagrams:

XG(b)
Lem 2.5.4 //

(4.8.1)∼=
��

XG′(b′)

(4.8.1)∼= ��

DefXx,G
(4.8.6)

//

(4.8.4)∼=
��

DefXx′ ,G′

(4.8.4)∼= ��

RZΛ
G,b(κ) // RZΛ′

G′,b′(κ) (RZΛ
G,b)x̂

// (RZΛ′

G′,b′)x̂′

,

where x′ ∈ RZΛ′

G′,b′(κ) is the image of x, and the arrows on the top row are
the natural maps induced by f .

Furthermore, ifG′ = GL(Λ), then the natural inclusion (G, b)→ (GL(Λ), b)
induces the natural inclusion RZΛ

G,b → RZΛ
GL(Λ),b = RZX (cf. Example 4.6.1).

We will prove this theorem in §5 and §6. Let us now record immediate conse-
quences of Theorem 4.9.1.

Remark 4.9.2. When the pair (G, b) and the choice of (Λ, (sα)) correspond to the
unramified EL or PEL case (cf. §4.7), then RZΛ

G,b ⊂ RZX coincides with the formal
moduli subscheme M̆ ⊂ RZX constructed by Rapoport and Zink, often referred to
as an EL or PEL Rapoport-Zink space.

Remark 4.9.3. Choose g ∈ G(K0) such that b′ := g−1bσ(g) also defines a p-divisible
group X′ := XΛ

b′ . We let ιg : X 99K X′ denote the quasi-isogeny induced by g :

MΛ
b′ [

1
p ]
∼−→MΛ

b [ 1
p ]. Then we have a natural isomorphism RZ

(sα)
X′,G

∼−→ RZ
(sα)
X,G by post-

composing ιg (or rather, the suitable base change of it). In particular, we obtain an
isomorphism RZΛ

G,b′
∼−→ RZΛ

G,b.

Remark 4.9.4. Applying Theorem 4.9.1(2) to f = id : (G, b) → (G, b), we obtain
a canonical isomorphism RZΛ

G,b
∼−→ RZΛ′

G,b which respects the identifications of κ-
points with XG(b) and the formal completion at a κ-point x with DefΛ

G,bx
.

Combining this with Remark 4.9.3, it follows that RZΛ
G,b only depends on the

associated unramified integral Hodge-type local Shimura datum (G, [b], {µ−1}) up
to (usually non-canonical) isomorphism. Furthermore, if (G′, [b′], {µ′−1}) is an-
other unramified integral Hodge-type local Shimura datum, then for any map f :
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(G, [b], {µ−1}) → (G′, [b′], {µ′−1}), we have a morphism RZΛ
G,b → RZΛ′

G′,b′ for some
suitable choice of (b,Λ) and (b′,Λ′).

Remark 4.9.5. In the setting of Theorem 4.9.1(2), the association

[(G, b)→ (G′, b′)] [RZΛ
G,b → RZΛ′

G′,b′ ]

respects compositions and products of morphisms (in the obvious sense), since the
analogous statement is true for XG(b) and DefΛ

G,bx
.

Remark 4.9.6. If f : G → G′ is a closed immersion (so we write b′ = b), then the
associated map RZΛ

G,b → RZΛ′

G′,b is a closed immersion. Indeed, by Remark 4.9.4
we may take Λ = Λ′, and the natural inclusion RZΛ

G,b ↪→ RZX factors as RZΛ
G,b →

RZΛ
G′,b ↪→ RZX by Remark 4.9.5.

Remark 4.9.7. If (G, b) comes from an unramified EL or PEL datum, then it fol-
lows from Proposition 4.7.1 that our construction of RZΛ

G,b is compatible with the
original construction of Rapoport and Zink. On the other hand, the “functoriality”
aspect of Theorem 4.9.1 produces morphisms between EL and PEL Rapoport-Zink
spaces which cannot be constructed as a formal consequence of the (P)EL moduli
problem. For example, consider an exceptional isomorphism GSp(4) ∼= GSpin(3, 2)
of split reductive Z(p)-groups, and set G := GSp(4)Zp . Let (G, [b], {µ−1}) be a
unramified Hodge-type local Shimura datum, coming from a (global) Shimura da-
tum for GSp(4)/Q as in Example 2.5.11. Recall that we have another faithful G-
representation Λ; namely, the even Clifford algebra for a split rank-5 quadratic
space over Zp. Assume that there exists a perfect alternating form ψ such that
the natural G-action on Λ induces a closed immersion f : G = GSpin(3, 2) ↪→
GSp(Λ, ψ) =: G′ and the local Shimura datum (G′, [f(b)], {f ◦ µ−1}) is of PEL
type.17 Then Theorem 4.9.1 produces a closed immersion RZG,b ↪→ RZG′,f(b) (with-
out studying how the spin representation sits in the Clifford algebra).

5. DESCENT AND EXTENSION OF TATE TENSORS FROM A COMPLETE LOCAL RING TO

A GLOBAL BASE

In this section, we prove the technical results (especially, Propositions 5.2 and
5.6) which allow us to “globalise” the Faltings deformation spaces.

Let Nilpft
W be the category of finitely generated W/pm-algebras for some m. We

first define the following subfunctor RZΛ
G,b of RZX. We will show in §6 that this

subfunctor can be represented by a closed formal scheme of RZX which satisfies the
desired properties stated in Theorem 4.9.1.

Definition 5.1. In the setting of §4.4, we define a functor RZΛ
G,b : Nilpft

W → (Sets)

as follows: for any R ∈ Nilpft
W , RZΛ

G,b(R) ⊂ RZX(R) consists of (X, ι) ∈ RZX(R)

such that for any x : Specκ → SpecR, we have (Xx, ιx) ∈ RZ
(sα)
X,G (κ) and the map

Spf R̂x → DefXx , induced by XR̂x
, factors through DefXx,G.

For (X, ι) ∈ RZG(R) with R ∈ Nilpft
W , we set

(5.1.1) t̂α,x : 1→ D(XR̂x
)⊗

to be the pull-back of the universal Tate tensors t̂univ
α,x (3.5.2) via Spf R̂x → DefXx,G.

We extend the definition of the subfunctor RZΛ
G,b ⊂ RZX on NilpW by direct limit;

namely, for any R′ ∈ NilpW , (X ′, ι′) ∈ RZX(R′) lies in RZΛ
G,b(R

′) if and only if for
some finitely generated W -subalgebra R ⊂ R′, there exists (X, ι) ∈ RZΛ

G,b(R) which
descends (X ′, ι′).

17If ψ is not perfect, ψ induces a perfect alternating form on Λ⊕4 ⊕ Λ∗(−1)⊕4 by Zarhin’s trick, so
we still obtain a morphism of PEL local Shimura data of type C.



30 W. KIM

Lemma 5.1.2. The functor RZΛ
G,b on NilpW commutes with arbitrary filtered direct

limits.

Proof. Let {Rξ} be a filtered direct system of rings in NilpW , and set R := lim−→ξ
Rξ.

We want to show that for any (X, ι) ∈ RZΛ
G,b(R) there exists (Xξ, ιξ) ∈ RZΛ

G,b(Rξ)

which pulls back to (X, ι). Let us first handle the case when R and Rξ are finitely
generated over W . In that case, there exists Rξ such that the natural map Rξ → R

is surjective and admits a section R → Rξ.18 Now, we set (Xξ, ιξ) ∈ RZΛ
G,b(Rξ) to

be the pull back of (X, ι), which has the desired property.
The general case can be reduced to this special case; indeed, we may replace R

with some finitely generated W -subalgebra R0 ⊂ R, and work with a filtered direct
system of finitely generated W -subalgebras of Rξ whose direct limit is R0. �

From the definition of RZΛ
G,b, it is not clear whether RZΛ

G,b is formally smooth,

and whether we have RZ
(sα)
X,G (A) ∼= lim←−n RZ

Λ
G,b(A/J

n) for A ∈ Nilpsm
W with ideal of

definition J (cf. Corollary 5.2.3). Also it is unclear how to rule out the possibility
that RZΛ

G,b is the disjoint union of DefXx,G when we do not expect this to be the case
(cf. Proposition 5.6). These issues will be resolved by the technical results proved
in this section.

Let us first state our descent result:

Proposition 5.2. Assume that p > 2 and let (X, ι) ∈ RZΛ
G,b(R) for R ∈ Nilpft

W . Then
for each α, there exists a unique morphism of crystals

tα : 1→ D(X)⊗

which induces sα,D on the isocrystals (cf. Definition 4.5), and pulls back to t̂α,x for
each closed point x in SpecR (cf. (5.1.1)).

Before we prove the proposition (in §5.3–§5.5), let us record a few direct conse-
quences. We begin with the following definition:

Definition 5.2.1. Let R ∈ NilpW , and assume that for a finitely generated W -
subalgebra R0 ⊂ R (X, ι) ∈ RZΛ

G,b(R) descends to (XR0
, ι) ∈ RZΛ

G,b(R0). Then we
define

tα : 1→ D(X)⊗

by pulling back tα : 1 → D(XR0)⊗, constructed in Proposition 5.2. By the unique-
ness part of Proposition 5.2, it follows that tα on X is independent of the choice of
R0 ⊂ R and (XR0

, ι).

Corollary 5.2.2. Assume that p > 2. Let (X, ι) ∈ RZΛ
G,b(R) for R ∈ NilpW , and

B � R be a square-zero thickening, viewed as a PD thickening via “square-zero PD
structure”. Consider the morphisms of crystals tα : 1→ D(X)⊗ as in Definition 5.2.1,
and let (tα(B)) ⊂ D(X)(B)⊗ denote their sections.

(1) The following B-scheme is a G-torsor:

PB := isomB

(
[D(X)(B), (tα(B))], [B ⊗Zp Λ∗, (1⊗ sα)]

)
,

(2) The Hodge filtration Fil1X ⊂ D(X)(R) is a {µ}-filtration with respect to
(tα(R)) ⊂ D(X)(R)⊗.

(3) Let (X̃, ι) ∈ RZX(B) be a lift of (X, ι). Then we have (X̃, ι) ∈ RZΛ
G,b(B) if and

only if the Hodge filtration Fil1
X̃
⊂ D(X̃)(B) ∼= D(X)(B) is a {µ}-filtration

with respect to (tα(B)).

18Indeed, we choose Rξ0 which surjects to R. Then for some ξ > ξ0, the natural map Rξ0 → Rξ
should factor through R in order to have R = lim−→ξ

Rξ.
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Furthermore, the functor RZΛ
G,b on NilpW is formally smooth.

Proof. To prove the proposition, we may replace R with a finitely generated W -
subalgebra R0 ⊂ R such that (X, ι) descends to RZΛ

G,b(R0), and B with a finitely
generated W -subalgebra of B0 ⊂ B surjecting onto R0. (For (3), we enlarge B0 so
that (X̃, ι) descends to RZX(B0).) Therefore we assume that B and R are finitely
generated over W .

For a closed point x ∈ SpecR, let B̂x denote the completion at x viewing it as a
point of SpecB. Then PB̂x is a trivial G-torsor, as it is the pull back of the trivial G-
torsor obtained from the universal deformation of Xx with Tate tensors. Since the
natural map SpecR ↪→ SpecB is a homeomorphism on the underlying topological
spaces, we obtain (1).

Claim (2) follows from Lemma 2.2.6 since Fil1X ⊗RR̂x are {µ}-filtrations with
respect to (t̂α,x(R̂x)). Finally, (3) is a consequence of Proposition 3.8, and formal
smoothness of RZΛ

G,b is clear from (3). �

Corollary 5.2.3. Assume that p > 2, and let A be a formally smooth formally finitely
generated algebra over W or W/pm with ideal of definition J . We consider a projective
system (X(i), ι) ∈ RZX(A/J i) (corresponding to a map f : Spf A → RZX), and let X
denote the p-divisible group over A reducing to each of X(i). Then we have (X(i), ι) ∈
RZΛ
G,b(A/J

i) for each i if and only if (X, ι) ∈ RZ
(sα)
X,G (A).

Proof. It suffices to handle the case when A is formally smooth over W/pm. The
“if” direction is straightforward. To prove the “only if” direction, choose a p-adic
formally smooth W -lift Ã of A, and let J̃ denote the preimage of J , which is an
ideal of definition of Ã. Let tα(Ã) ∈ D(X)(Ã)⊗ denote the limit of the sections
tα(Ã/J̃ i) ∈ D(XÃ/(pm,J̃i))(Ã/J̃

i)⊗, where (tα) is constructed in Proposition 5.2.

Let (tα(A)) ⊂ D(X)(A)⊗ denote the image of (tα(Ã)).
Let us first show that tα(Ã) is horizontal with respect to the crystalline connec-

tion, which ensures that it comes from a morphism tα : 1→ D(X)⊗ of crystals over
SpecA. To verify this, we may assume that SpecA are connected. Then for any
closed point x ∈ SpecA, we have the following commutative diagram:

(5.2.4) D(X)(Ã)⊗ //
� _

��

D(X)(Ã)⊗ ⊗Ã Ω̂Ã� _

��

D(X(Ã)x̂
)((Ã)x̂)⊗ // D(X(Ã)x̂

)((Ã)x̂)⊗ ⊗(Ã)x̂
Ω̂(Ã)x̂

.

Note that the image of tα(Ã) under the left vertical arrow is the section t̂α,x((Ã)x̂)

of t̂α,x, so it is killed by the bottom horizontal arrow. By injectivity of the vertical
arrows we have the desired claim.

Since we have (tα) on X, we may verify Definition 4.6 for (X, ι) at the comple-
tions of each closed point of SpecA, which follows from the isomorphism (4.8.4)
and the assumption that (XA/Ji , ι) ∈ RZΛ

G,b(A/J
i) for any i. �

Let us now begin the proof of Proposition 5.2.

5.3. Preparation: Liftable PD thickenings.

Definition 5.3.1. For a ring R where p is nilpotent, a compatible PD thickening
S � R is called p-adic if S = lim←−n S/p

n where each S/pn is a PD thickening.
Let B � R be a PD thickening with B,R ∈ NilpW . We call B a liftable PD

thickening of R if there exist a p-adic p-torsion free PD thickening S � R and a
surjective PD morphism S � B.



32 W. KIM

Note that there exists a ring R of characteristic p which does not admit a p-adic
p-torsion free PD thickening (so the trivial thickening R =−→ R is not liftable for such
R). See [42, Remark 4.1.6] for such an example, which is the quotient of a perfect
Fp-algebra by an infinitely generated ideal. The author knows neither a proof nor
a counterexample of the claim that any finitely generated W/pm-algebra R admits
a p-adic W -flat PD thickening of R.

The aim of this section is to show that “sufficiently many” rings in character-
istic p admit lots of liftable PD thickenings (although we cannot cover all finitely
generated κ-algebras).

Recall that a ring R of characteristic p is called semiperfect if the Frobenius map
σ : R→ R is surjective. To a semiperfect ring R we can associate a perfect ring

(5.3.2) R[ := lim←−
σ

R,

complete with respect to the natural projective limit topology. Let J ⊂ R[ denote
the kernel of the natural projection R[ � R. For any semiperfect ring R we define

(5.3.3) Acris(R)� R

to be the p-adically completed PD hull of the composition W (R[) � R[ � R.19 It
turns out to be the universal PD thickening of R; cf. [42, Proposition 4.1.3].

Let us recall the following definition from [42, Definition/Proposition 4.1.2]:

Definition 5.3.4. A semiperfect ring R is called f-semiperfect if there is a finitely
generated ideal J0 ⊂ R[ such that for some n� 0 we have σn(J0) ⊂ J ⊂ J0.

In the above setting, there is an ideal J ′ ⊂ R[ with σ(J ′) = (J ′)p, such that for
some n′ we have σn

′
(J ′) ⊂ J ⊂ J ′; indeed, J ′ :=

⋃
m σ
−m(Jp

m

0 ) works.20

Lemma 5.3.5. Let R be an f-semiperfect ring of characteristic p such that J :=
ker(R[ � R) satisfies σ(J) = Jp. Set Rσ := R[/σ(J), and view it as a PD thickening
of R by giving f [p] = 0 for any f ∈ J/σ(J), which is well-defined since σ(J) = Jp. By
the universal property of Acris(R), we obtain a unique PD morphism Acris(R)� Rσ.
Then there exists a p-adic p-torsion free PD thickening WPD,1(R) � R such that
there is a PD isomorphism WPD,1(R)/(p) ∼= Rσ. In particular, the natural map
Acris(R)� Rσ factors through the Zp-flat closure of Acris(R).

Proof. Following the proof of [42, Lemma 4.1.7], we define

[J ] := {
∑
i>0

[ri]p
i| ri ∈ J},

which is an ideal of W (R[) if σ(J) = Jp.21 We set WPD(R) ⊂ W (R[)[ 1
p ] to be

the W (R[)-subalgebra generated by divided powers of [J ]. Then any element of
WPD(R) can be uniquely written as

∑
i�−∞[ri]p

i, where ri ∈ R[.. Furthermore,
we have ri ∈ σ(J) for i < 0; indeed, for any r ∈ J , f ∈ [J ] and n > p, we have

([r] + pf)n

n!
=

n∑
i=0

[ri]

i!

pn−i

(n− i)!
fn−i ≡

n∑
i=p

σ[r(i−p)/p ·r]
i!

pn−i

(n− i)!
fn−i mod W (R[).

Now we define

WPD,1(R) := WPD(R)/(WPD(R) ∩ σ[J ][ 1
p ]),

19Later in §8, we will work with another ring called Acris(R) for formally smooth W -algebra R. In
this section, Acris(R) only denotes the universal p-adic PD thickening of a semiperfect ring R.

20Since J0 is finitely generated, we have σn
′
0 (J ′) ⊂ J0 ⊂ J ′, where n′0 can be explicitly obtained

in terms of the number of generators of J0.
21Indeed, we use σ(J) = Jp to ensure that [J ] is stable under addition.
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where σ[J ] is the image of [J ] under the Witt vector Frobenius σ. Note that
WPD,1(R) is a PD quotient of WPD(R). Furthermore, from our observation on
the principal terms of WPD(R) in the previous paragraph, it follows that the nat-
ural map W (R[)/σ[J ] → WPD,1(R) is an isomorphism. So WPD,1(R) is a p-adic
p-torsion free PD thickening of R with WPD,1(R)/p ∼= Rσ, where the induced PD
structure on Rσ is as in the statement. Now by the universal property, the natural
PD morphism Acris(R) → Rσ factors through a p-torsion free ring WPD,1(R), so it
factors through the Zp-flat closure of Acris(R). �

Corollary 5.3.6. Let R be as in Lemma 5.3.5, and consider the following thickenings
of f-semiperfect rings:

Rσ � R′′ � R′ � R.

We give the PD structure on ker(R′′ � R′) by f [p] = 0, which is well defined. Then the
natural PD morphism Acris(R

′)→ R′′ factors through the Zp-flat closure of Acris(R
′).

Proof. By the universal property, the natural map Acris(R
′)→ R′′ factors as follows:

Acris(R
′)→ Acris(R)→ Rσ � R′′.

Since the middle arrow factors through the Zp-flat closure ofAcris(R) by Lemma 5.3.5,
the claim follows. �

The following corollary is the main conclusion of our discussion:

Corollary 5.3.7. Let κ be an algebraically closed field of characteristic p, and set
W := W (κ). Let B be a formally finitely generated κ-algebra which is reduced as a
ring, and R := B/J a reduced quotient where J is a closed subideal contained in some
ideal of definition of B.22 Then there exists a sequence of square-zero thickenings

B � · · ·� Bi+1 � Bi � · · ·� B0 = R

such that B = lim←−iBi and we have the following property. Choose a formally smooth
formally finitely generated W -algebra A with A � B, and let Si � Bi be the p-
adically completed PD hull of A � Bi. Then given the “square-zero PD structure” on
Bi+1 � Bi, the natural PD morphism Si � Bi+1 factors through the Zp-flat closure
Sfl
i of Si.

Similarly, for a formally smooth formally finitely generated W -algebra A such that
R := A/J is a reduced κ-algebra, there exists a sequence of square-zero liftable PD
thickenings {Ai} filtering A� R (i.e., satisfying the same property for {Bi}).

Proof. Let us first handle the case when B is a reduced formally finitely generated
κ-algebra. We write B̃ := lim−→σ

B, and define R̃[ to be the JB̃-adic completion of B̃.

Set J̃ :=
⋃
n σ
−n(Jp

n

R̃[) so that R̃ := R̃[/J̃ is f-semiperfect and σ(J̃) = J̃p. (The
notation is consistent as R̃[ = lim←−σ R̃.) Then R injects into R̃; indeed, the kernel of

B � R → R̃ consists of elements f ∈ B such that σn(f) = fp
n ∈ Jpn for some n,

but this condition forces f ∈ J as J is its own radical.
Observe that {J̃ i} is a fundamental system of neighbourhoods of 0 in R̃[.23 We

set B̃i := R̃[/J̃ i, and let Bi ⊂ B̃i denote the image of B. As B injects into R̃[, it
follows that B = lim←−iBi. To see that Si → Bi+1 factors through Sfl

i , we choose a

lift A → W (R̃[) of A � B → R̃[, and naturally extend it to a PD morphism Si →
Acris(B̃i). Since Si � Bi+1 ↪→ B̃i+1 factors through Acris(B̃i), the desired claim
follows from Corollary 5.3.6 (which can be applied since we have σ(J̃ i) = (J̃ i)p).

22In particular, R is formally finitely generated over κ, and we have B = lim←−iB/J
i.

23Indeed, {σn(J̃) = J̃p
n} is sufficient to form a fundamental system of neighbourhoods
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Let us now construct {Ai} filtering A � R when A is formally smooth formally
finitely generated over W . We set B = A/p, which is a reduced κ-algebra, and
repeat the above argument with the following modifications. Note that the ideals
(pm, [J̃n]) ⊂ W (R̃[) form a fundamental system of neighbourhoods of 0 in W (R̃[)
with respect to the product topology. We choose

W (R̃[)� · · ·� Ãi+1 � Ãi � · · ·� Ã0 = R̃,

so that each Ãi is of the form W (R̃[)/(pm, [J̃n]) for some m,n, each of Ãi+1 �
Ãi is a square-zero thickening, and W (R̃[) = lim←−i Ãi. We give the “square-zero

PD structure” to each ker(Ãi+1 � Ãi), which is compatible with the standard PD
structure on (p) since p > 2.

Now we fix a lift A→W (R[), and let Ai ⊂ Ãi denote the image of A (and define
Si and Sfl

i accordingly). Since Si → Ai+1 ↪→ Ãi+1 factors through Acris(Ãi/p)
(hence, its flat closure by Corollary 5.3.6), the PD morphism Si → Ai+1 factors
through Sfl

i . �

Remark 5.3.8. Note that the construction of Ai when A is formally smooth over
W only uses the property that A/pA is reduced and A/pA ↪→ R[ lifts to an in-
jective map A ↪→ W (R[). For example, if A is a formally finitely generated flat
W -algebra with A/pA reduced such that there is a lift of Frobenius σ : A → A,
then Corollary 5.3.7 holds for such A and the reduced quotient R of A/pA.

Remark 5.3.9. Unfortunately, Corollary 5.3.7 does not show that any finitely gen-
erated κ-algebra R admits a p-adic W -flat PD thickening, as there are examples of
R that cannot occur as one of Ri’s as in Corollary 5.3.7.

5.4. From reduced rings to formally smooth rings. Assume that p > 2. Let R
be a finitely generated reduced κ-algebra. We choose a formally smooth formally
finitely generated W -algebra A such that for the maximal ideal of definition J we
have A/J = R. In Corollary 5.3.7, we obtain a series of square-zero thickenings of
finitely generated W -algebras Ai+1 � Ai with A0 = R, such that A = lim←−Ai and
Ai+1 � Ai is a liftable PD thickening with respect to the “square-zero PD structure”
for each i.

The goal of this section is to prove the following proposition.

Proposition 5.4.1. Consider R′ such that Ai+1 � R′ � Ai for some i. Then any
(XR′ , ι) ∈ RZΛ

G,b(R
′) can be lifted to (X̃, ι) ∈ RZ

(sα)
X,G (A). In particular, for each α there

exists tα : 1→ D(X)⊗ that satisfies the conclusion of Proposition 5.2.

Let us set up the notation for the proof of Proposition 5.4.1. Since the conclusion
of Corollary 5.3.7 holds for any refinement of {Ai}, we may assume that R′ = Ai.
Let Si � Ai be the p-adically completed PD hull of A� Ai. The Zp-flat closure Sfl

i

of Si is a W -flat p-adic PD thickening of Ai, since ker(Si � Sfl
i ) is a PD subideal of

ker(Si � Ai) by Corollary 5.3.7.
For any closed point x ∈ MaxSpecR, let Âi,x and Âx be the completions at

x, where we view x also as a closed point of SpecAi and SpecA. Let Ŝfl
i,x :=

Sfl
i ⊗̂AÂx, where ⊗̂ denotes the p-adically completed tensor product. Note that Ŝfl

i,x

is topologically flat over Sfl
i for the p-adic topology; i.e., Ŝfl

i,x/p
m ∼= Sfl

i /p
m ⊗A Âx

is flat over Si/pm for any m.24 Since (Sfl
i /p)red = R, it follows that {Ŝfl

i,x} is an
topological fpqc covering of Sfl

i for the p-adic topology (or equivalently, {Ŝfl
i,x/p

m}

24Although Sfl
i is usually not noetherian, one can still verify directly that Ŝi,x/pm ∼= Sfl

i /p
m⊗A Âx.

Alternatively, one can use a very general result such as [20, EGA 0I, Proposition 7.2.7].
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is an fpqc covering of Sfl
i /p

m for eachm). By flatness, the PD structure on ker(Sfl
i �

Ai) extends to a PD structure on ker(Ŝfl
i,x � Âi,x) by [5, Corollary 3.22].

For (X(i), ι) ∈ RZX(Ai), we consider the following tensors

(5.4.2) 1⊗ sα ∈ Sfl
i [ 1
p ]⊗Zp Λ⊗ ∼= D(X(i))(Sfl

i )⊗[ 1
p ],

where the isomorphism is induced by D(ι) : D(X
(i)
Ai/p

)[ 1
p ]
∼−→ D(XAi/p)[

1
p ]. Note

that 1⊗ sα above coincides with the Sfl
i -section of sα,D : 1→ D(X(i))⊗[ 1

p ].
For (X(i), ι) ∈ RZΛ

G,b(Ai) and x ∈ MaxSpecAi, we have a morphism of crystals

t̂α,x : 1 → D(X
(i)

Âi,x
)⊗ for each α, so we obtain t̂α,x(Ŝfl

i,x) ∈ D(X
(i)

Âi,x
)(Ŝfl

i,x)⊗. The

following lemma shows that the images of (1 ⊗ sα) and (t̂α,x(Ŝfl
i,x)) coincide in

D(X
(i)

Âi,x
)(Ŝfl

i,x)⊗[ 1
p ] ∼= Ŝfl

i,x[ 1
p ]⊗Zp Λ⊗.

Lemma 5.4.3. Let R be a complete local noetherian W/pm-algebra (for some m)
with residue field κ, and let (X, ι) ∈ RZX(R). Assume that the map Spf R → DefXκ ,
corresponding to the deformation X over R, factors through DefXκ,G. Consider a
morphism t̂α : 1 → D(X)⊗ of crystals over SpecR, obtained from the pull back of
the universal Tate tensors (3.5.2). Then (t̂α) induce (sα,D) on the F -isocrystals (cf.
Definition 4.5).

Proof. Since both (t̂α) and (sα,D) only depends on R/p, we may assume that pR =
0. Then the lemma is a direct consequence of [14, Lemma 4.3] (since on the special
fibre (t̂α) induce (sα,D) on the isocrystals by construction). �

Lemma 5.4.4. Let (X(i), ι) ∈ RZΛ
G,b(Ai), and we use the notation as above. Then the

tensors (1⊗ sα) ⊂ D(X(i))(Sfl
i )⊗[ 1

p ], defined in (5.4.2), actually lie in D(X(i))(Sfl
i )⊗,

and its image in D(X
(i)

Âi,x
)(Ŝfl

i,x)⊗ coincides with t̂α,x(Sfl
i ).

Proof. By Lemma 5.4.3, the images of (1 ⊗ sα) in D(X
(i)

Âi,x
)(Ŝfl

i,x)⊗[ 1
p ] are precisely

(t̂α,x(Sfl
i )), which lie in D(X

(i)

Âi,x
)(Ŝfl

i,x)⊗. By topological fpqc descent, it follows that

(1 ⊗ sα) ⊂ D(X(i))(Sfl
i )⊗. Indeed, by Zp-flatness of Sfl

i and Ŝfl
i,x, the collection of

morphisms Ŝfl
i,x → D(XR̂x

)(Ŝfl
i,x)⊗, defined by 1 7→ tα(Ŝfl

i,x), should glue to a map

Sfl
i → D(XR)(Sfl

i )⊗,

and it should map 1 to 1⊗ sα. �

Proof of Proposition 5.4.1. By Corollary 5.3.7, for any i the projection A � Ai+1

naturally extends to Sfl
i � Ai+1, inducing the square-zero PD structure on the

kernel of Ai+1 � Ai. For any (X(i), ι) ∈ RZΛ
G,b(Ai), we define

tα(Ai+1) ∈ D(X(i))(Ai+1)⊗ ∼= D(X(i))(Sfl
i )⊗ ⊗Sfl

i
Ai+1

to be the image of 1 ⊗ sα ∈ D(X(i))(Sfl
i )⊗ ⊂ Sfl

i [ 1
p ] ⊗Zp Λ⊗. Note that (tα(Ai+1))

glues {(t̂α,x(Âi+1,x))}x; cf. Lemma 5.4.4.
We view any closed point x ∈ MaxSpecAi as a point of SpecAi′ for all i′ > i, and

hence, as a point of Spf A. For (X(i), ι) ∈ RZΛ
G,b(Ai), letX(i+1) be a p-divisible group

over Ai+1 lifting X(i), such that the Hodge filtration Fil1X(i+1) ⊂ D(X(i))(Ai+1)
is a {µ}-filtration with respect to (tα(Ai+1)). Then by Proposition 3.8, we have
(X(i+1), ι) ∈ RZΛ

G,b(Ai+1), where ι is the unique lift of the quasi-isogeny. By re-
peating this process, we obtain projective systems {(X(i′), ι) ∈ RZΛ

G,b(Ai′)}i′>i. and
{(tα(Ai′))}i′>i.
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Let X̃ denote the p-divisible group over A which reduces to X(i′) for each i′ > i.
By taking the limit of tα(Ai′), we also obtain tα(A) ∈ D(X̃)(A)⊗. By construction,
the image of tα(A) in D(X̃Âx

)(Âx)⊗ is precisely t̂α,x(Âx) where t̂α,x is the pull-back
of t̂univ

α,x . It follows from the diagram (5.2.4) that tα(A) is horizontal; indeed, it is
horizontal over Âx for any closed point x. Therefore, (tα(A)) induce morphisms
tα : 1→ D(X̃)⊗.

It remains to verify Definition 4.6 for (X̃, (tα)). To verify Definition 4.6(1) it
suffices to check that the image of tα(A) in D(X(i))(Sfl

i )⊗[ 1
p ] ∼= Sfl

i [ 1
p ] ⊗Zp Λ⊗ is

precisely 1⊗ sα, which holds by construction (using Lemma 5.4.3). The other two
conditions can be verified over Âx for any x ∈ MaxSpecA, which clearly hold by
construction. �

5.5. Proof of Proposition 5.2. For R ∈ Nilpft
W consider B,R′ ∈ Nilpft

W with W -
morphisms B,R′ → R. Assume that B → R is surjective with the kernel b killed by
the nil-radical of B, and R′red � Rred is surjective. We set B′ := B ×R R′ ∈ Nilpft

W .
By assumption, we can regard any closed point x ∈ SpecR as a point of SpecR′,
SpecB and SpecB′. Since RZX is representable by a formal scheme, we have a
natural bijection:

(5.5.1) RZX(B′)
∼−→ RZX(B)×RZX(R) RZX(R′).

Lemma 5.5.2. In the above setting, the natural map RZΛ
G,b(B

′)→ RZΛ
G,b(B)×RZΛ

G,b(R)

RZΛ
G,b(R

′), obtained by restricting the isomorphism (5.5.1), is a bijection.

Proof. The lemma follows from the isomorphism

DefXx,G(B̂′x)
∼−→ DefXx,G(B̂x)×

DefXx,G(R̂x) DefXx,G(R̂′x),

which holds since DefXx,G is a formal scheme and we have B̂′x
∼−→ B̂x ×R̂x R̂

′
x. �

Proof of Proposition 5.2. Let R ∈ Nilpft
W , and choose a formally smooth formally

finitely generated W -algebra A with A/J = R for some ideal of definition J . Let
A0 := Rred and choose {Ai+1 � Ai} as in Corollary 5.3.7. We write Ii := ker(A�
Ai). We refine the sequence of thickenings so that I0Ii ⊆ Ii+1 for each i.

Note that for some j we have Aj � R. For i 6 j, we set Ri := A/(J + Ii), which
is a simultaneous quotient of R and Ai. Let (X, ι) ∈ RZΛ

G,b(R), and we denote by
(X(0), ι) ∈ RZΛ

G,b(A0) the restriction of (X, ι) over A0 = Rred.
We now inductively show that the restriction (XRi , ι) ∈ RZΛ

G,b(Ri) of (X, ι) can
be lifted to some (X(i), ι) ∈ RZΛ

G,b(Ai) for any i 6 j. The base case i = 0 is already
handled in Proposition 5.4.1 since A0 = R0 = Rred.

Assume that there exists (X(i−1), ι) ∈ RZΛ
G,b(Ai−1) lifting (XRi−1 , ι). We also

have tα : 1→ D(XRi−1
)⊗, glueing {t̂α,x}x, by pulling back tα on X(i−1) (cf. Propo-

sition 5.4.1).
Note that we have

Bi := A/((J ∩ Ii−1) + Ii)
∼−→ Ri ×Ri−1 Ai−1;

indeed, for any ring A and ideals a, a′ ⊂ A the diagonal map A/(a ∩ a′) →
A/a×A/(a+a′)A/a

′ is an isomorphism,25 and we apply it to a = J+Ii and a′ = Ii−1.
Since we have I0(J + Ii−1) ⊂ J + Ii by assumption (that I0Ii−1 ⊆ Ii), we can

25The injectivity of the map A/(a ∩ a′)→ A/a×A/(a+a′) A/a
′ is clear. It remains to show that for

a, a′ ∈ A such that a ≡ a′ mod a + a′, the element (a mod a, a′ mod a′) is in the image of A/(a ∩ a′).
For this, we may replace (a, a′) with (0, a′ − a), where a′ − a ∈ a+ a′. Now the claim follows from the
isomorphism (a + a′)/a′ ∼= a/(a ∩ a′).
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apply Lemma 5.5.2 and obtain (XBi , ι) ∈ RZΛ
G,b(Bi) which simultaneously lifts

(XRi , ι) ∈ RZΛ
G,b(Ri) and (X(i−1), ι) ∈ RZΛ

G,b(Ai−1). Now, since we have

Ai = A/Ii � Bi = A/((J ∩ Ii−1) + Ii)� Ai−1 = A/Ii−1,

we may apply Proposition 5.4.1 to get a lift (X(i), ι) ∈ RZΛ
G,b(Ai) of (XBi , ι) (which

lifts (XRi , ι)). This completes the induction claim.
By repeating this step, we eventually obtain a lift (X(j), ι) ∈ RZΛ

G,b(Aj) of (X, ι) ∈
RZΛ
G,b(R) for j � 0. We then obtain the desired tα : 1 → D(X)⊗ by restricting tα

on X(j) (cf. Proposition 5.4.1). �

Let us now move on to the other main result of this section on “effectiveness”:

Proposition 5.6. Let R̂ be a formally finitely generated W/pm-algebra, and let I ⊂ R̂
denote the Jacobson radical. (In particular, R is I-adically separated and complete,
and R/I is a reduced κ-algebra.) Consider (XR̂, ιR̂/p) ∈ RZX(R̂). (In particular,

ιR̂/p is defined over Spec R̂/p.) Then we have (XR̂, ιR̂/p) ∈ RZΛ
G,b(R̂) if and only if

(XR̂/Ii , ιR̂/(p,Ii)) ∈ RZΛ
G,b(R̂/I

i) for any i.

Note that the “only if” direction is trivial. We will now prove the “if” direction for
the rest of the section. Conceptually, the “if” direction when R̂ is a complete local
noetherian W/pm-algebra asserts that formal-locally defined Tate tensors extend
over some finite-type base ring if the quasi-isogeny does.

5.7. Preparation. For (R̂, I) as in Proposition 5.6, let (XR̂, ι) ∈ RZX(R̂) be such
that (XR̂/Ii , ι) ∈ RZΛ

G,b(R̂/I
i) for any i. Then the “if” direction of Proposition 5.6

claims the existence of (X, ι) ∈ RZΛ
G,b(R) for some finitely generated W -subalgebra

R ⊂ R̂, such that (X, ι) pulls back to (XR̂, ι).
Let Â be any formally smooth formally finitely generated W -algebra which sur-

jects onto R̂ and is J -adically separated and complete, where J ⊂ Â is the preimage
of I ⊂ R̂. From the formal smoothness of RZΛ

G,b and Corollary 5.2.3, there exists

(XÂ, ι) ∈ RZ
(sα)
X,G (Â) lifting each of (XR̂/Ji , ι) ∈ RZΛ

G,b(R̂/J
i). (Indeed, we use the

thickenings Â/J i+1 � Â/J i ×R̂/Ii R̂/I
i+1 � Â/J i to choose a lift over Â/J i+1

which simultaneously lifts the chosen lift over Â/J i and (XR̂/Ii+1 , ι).) We also let
t̂α : 1→ D(XR̂)⊗ denote the pull back of the Tate tensors t̂α : 1→ D(XÂ)⊗. Then
t̂α induces sα,D on the isocrystals over Spec R̂.

By assumption, the following Â-scheme

PÂ := isomÂ

(
[D(XÂ)(Â), (t̂α(Â))], [Â⊗Zp Λ∗, (1⊗ sα)]

)
,

is a G-torsor, and the Hodge filtration Fil1XÂ ⊂ D(XÂ)(Â) is a {µ}-filtration with

respect to (t̂α(Â)). Clearly, the same holds over R̂ by pull back.
By standard argument, one can find a finitely generated W -subalgebra R ⊂ R̂

with the following properties:

(1) There exists (X, ι) ∈ RZX(R) which pulls back to (XR̂, ι) over R̂; this is
possible since RZX is locally formally of finite type over W .

(2) The (finitely many) tensors (t̂α(R̂)) ⊂ D(XR̂)(R̂)⊗ lie in the image of
D(X)(R)⊗; indeed, this can be arranged by considering a finite-rank di-
rect factor of D(XR̂)(R̂)⊗ containing (t̂α(R̂)), and possibly by increasing
R by adjoining finitely many elements in R̂. We let (tα(R)) ⊂ D(X)(R)⊗

denote the tensors which (injectively) map to (t̂α(R̂)).
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(3) The following R-scheme is a G-torsor

PR := isomR

(
[D(X)(R), (tα(R))], [R⊗Zp Λ∗, (1⊗ sα)]

)
.

In fact, the natural G-action on PR is already transitive, and by possi-
bly increasing R we can ensure that PR is smooth with non-empty fi-
bre everywhere. (This is possible by [20, EGA IV4, Proposition 17.7.8,
Théorème 8.10.5] as PR̂ has these properties).

(4) The Hodge filtration Fil1X ⊂ D(X)(R) is a {µ}-filtration with respect to
(tα(R)); this follows since {µ}-filtrations form a closed subscheme of a
suitable grassmannian.

If R ⊂ R̂ is a finitely generated W -subalgebra which satisfies the above conditions,
then any finitely generated W -subalgebra of R̂ containing R satisfies the same con-
ditions.

To prove Proposition 5.6, it suffices to prove the following proposition.

Proposition 5.8. There exists a finitely generated W -subalgebra R ⊂ R̂ which sat-
isfies the properties listed in §5.7, such that (X, ι) ∈ RZΛ

G,b(R) and (tα(R)) coincides
with the R-sections of (tα) constructed in Proposition 5.2.

5.9. Proof of Proposition 5.8. Let us first handle the case when R̂ is reduced.
Since the κ-subalgebra R ⊂ R̂ is also reduced, we can consider the perfections
R̃ := lim−→σ

R and (R̂)̃ := lim−→σ
R̂. We extend the injective map R ↪→ R̂ to an

injective map R̃ ↪→ (R̂)̃ .
Using the quasi-isogeny ιR̃ : XR̃ 99K XR̃, we get (1 ⊗ sα) ⊂ W (R̃)[ 1

p ] ⊗Zp Λ⊗ ∼=
D(XR̃)(W (R̃))⊗[ 1

p ]. Note that they are the W (R̃)[ 1
p ]-sections of (sα,D); cf. Defini-

tion 4.5.

Lemma 5.9.1. In the above setting, each of (1 ⊗ sα) lies in D(XR̃)(W (R̃))⊗. In
particular, each of sα,D comes from a unique morphism of integral crystals, which we
denote by tα : 1 → D(XR̃)⊗. Furthermore, the R̃-sections (tα(R̃)) ∈ D(XR̃)(R̃)⊗ of
(tα) coincide with the image of (tα(R)).

Proof. Note that the isomorphism D(ι̂) matches (t̂α(W ((R̂)̃ )) ⊂ D(XR̂)(W ((R̂)̃ ))⊗

with 1⊗sα ∈W ((R̂)̃ )[ 1
p ]⊗ZpΛ⊗. This shows that each of 1⊗sα lies in D(XR̃)(W (R̃))⊗

since we have W (R̃) = W (R̃)[ 1
p ] ∩ W ((R̂)̃ ). By standard dictionary (cf. [21,

IV §4]), we obtain a unique map tα : 1 → D(XR̃)⊗ so that its W (R̃)-section is
1⊗ sα ∈W (R̃)[ 1

p ]⊗Zp Λ⊗. To verify the last claim, we may compare the (injective)

images of both over (R̂)̃ , where the claim is obvious from the construction. �

For any closed point x ∈ SpecR (which may not lie in the image of Spec R̂ →
SpecR), we have a natural map R ↪→ R̃ � κ(x) = κ. By taking the image of
tα(W (R̃)) in D(XR̃)(W (R̃))⊗W (R̃) W

∼= D(Xy)(W ), we obtain

(5.9.2) (tα,x) ⊂ D(Xx)(W )⊗,

which induces (sα,D) on the isocrystals.

Lemma 5.9.3. For any closed point x ∈ SpecR, the images of (tα,x) and (tα(R))
in D(Xx)(κ) coincide. Furthermore, by replacing R with a larger finitely generated
W -subalgebra of R̂, we may ensure that (Xx, ιx) ∈ RZ

(sα)
X,G (κ) for any x.

Proof. The only assertion which may not directly follow from the construction is to
verify Definition 4.6(2) for (Xx, ιx) (up to increasing R). We consider the following



RAPOPORT-ZINK SPACES OF HODGE TYPE 39

scheme

PW (R̃) := isomW (R̃)

(
[D(XR̃)(W (R̃)), (tα(W (R̃)))], [W (R̃)⊗Zp Λ∗, (1⊗ sα)]

)
.

We want to show that the pull back of PW (R̃) by the map W (R̃) � W induced by

x : R̃ � κ is a G-torsor over W . By construction, PW (R̃)[ 1
p ] and PR̃ are G-torsors.

The assumption on (XR̂, ι) implies that the base change PW ((R̂)̃ ) is a G-torsor.

(To see this, note that (tα(W ((R̂)̃ )) comes from (t̂α(Â)) ⊂ D(XÂ)(Â)⊗, where
(XÂ, ι) ∈ RZ

(sα)
X,G (Â) is a lift of (XR̂, ι) over a formally smooth formally finitely

generated W -algebra Â, as in the beginning of §5.7.)
We choose a filtered direct system {Rξ} of finitely generated R-algebras with

R̂ = lim−→ξ
Rξ.26 Although we do not know whether W ((R̂)̃ ) is faithfully flat over

lim−→ξ
W (R̃ξ), we do have that for a generic point η̂ ∈ Spec(R̂)̃ and its image

ηξ ∈ Spec R̃ξ, the natural map lim−→ξ
W (κ(ηξ))→W (κ(η̂)) is faithfully flat (with the

obvious notation); indeed, the mod p reduction of the source is lim−→ξ
κ(ηξ) = κ(η̂),

so the natural map is a local map of discrete valuation rings. Therefore, by [20,
EGA IV3, Théorème 11.2.6], there exists ξ such that PW (R̃ξ)

is flat at ηξ. If we

denote U ⊂ SpecW (R̃ξ) to be the flatness locus of PW (R̃ξ)
, then U ∩ Spec R̃ξ is

non-empty and the lemma holds for the closed points in U ∩ Spec R̃ξ. Now, if the
preimage of U ∩ Spec R̃ξ in Spec(R̂)̃ is the entire space, then we may increase ξ so
that U ∩ Spec R̃ξ = Spec R̃ξ; cf. [20, EGA IV3, Corollaire 8.3.4].

If the preimage of U ∩ Spec R̃ξ is a proper (open) subset of Spec(R̂)̃ , then we
consider the reduced complement Z := (Spec R̃) \ (U ∩ Spec R̃). Since the natural
projection Spec R̃ → SpecR is a homeomorphism on the underlying topological
spaces, there exists an ideal J ⊂ R which defines Z (with its reduced subscheme
structure). We now repeat the previous step for R̂/JR̂ = lim−→ξ′>ξ

Rξ′/JRξ′ instead

of R̂, and this process terminates after finitely many times since R̂ is noetherian. �

Proposition 5.9.4. Proposition 5.8 holds when R̂ is reduced.

Proof. We work in the setting of §5.7 with R̂ reduced. We assume that R ⊂ R̂
satisfies the conclusion of Lemma 5.9.3. It remains to show that (X, ι) ∈ RZΛ

G,b(R)

and (tα(R)) ⊂ D(X)(R)⊗ coincides with the sections of (tα) constructed in Propo-
sition 5.2.

For any closed point x ∈ SpecR, we want to show that the map Spf R̂x → DefXx ,
induced by XR̂x

, factors through DefXx,G. Applying Corollary 5.3.7 to B = R̂x � κ

we obtain a sequence of small thickenings of artin local κ-algebras:

R̂x � · · ·� R̂x,i+1 � R̂x,i � · · ·� R̂x,0 = κ,

and p-adic p-torsion free PD thickenings Ŝfl
x,i � R̂x,i which lift to Ŝfl

x,i � R̂x,i+1

for any i. We set X(i)
x := XR̂x,i

, and let (tα(R̂x,i)) ⊂ D(X
(i)
x )(R̂x,i)

⊗ denote the
image of (tα(R)). To prove the proposition, we need to prove that for any i we
have X

(i)
x ∈ DefXx,G(R̂x,i), and (tα(R̂x,i)) ∈ D(X

(i)
x )(R̂x,i)

⊗ coincides with the
R̂x,i-section of t(i)α,x : 1 → D(X

(i)
x )⊗, the pull-back of the “universal Tate tensor

26We do not require that Rξ to be W -subalgebras of R. Although we initially choose Rξ to be
subalgebras of R̂, in the course of the proof we replace {Rξ} with suitable quotients, which may not
preserve injectivity of Rξ into the direct limit.
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t̂univ
α,x . (Granting this claim, we can conclude the proof by taking the projective limit

with respect to i.)
We show this claim by induction on i. The base case with i = 0 is exactly

Lemma 5.9.3. Now, we assume the claim for i (i.e., X(i)
x ∈ DefXx,G(R̂x,i) and

tα(R̂x,i) = t
(i)
α,x(R̂x,i)) and want to deduce the claim for i + 1. Let tα(R̂x,i+1) ∈

D(X
(i)
x )(R̂x,i+1)⊗ be the image of of tα(R) ∈ D(X)(R)⊗ via D(X)(R)⊗R R̂x,i+1

∼=
D(X

(i)
x )(R̂x,i+1), and let us consider the following commutative diagram:

(5.9.5)

1⊗ sα tα(W (R̃))�Lemma 5.9.1oo � // tα(R̃) tα(R)�Lemma 5.9.1oo

W (R̃)[ 1
p ]⊗Zp Λ⊗ D(XR̃)(W (R̃))⊗? _oo // // D(XR̃)(R̃)⊗ D(XR)(R)⊗? _oo

tα(R)7→tα(R̂x,i+1)

����

Λ⊗

OO

// Ŝfl
x,i[

1
p ]⊗Zp Λ⊗ D(X

(i)
x )(Ŝfl

x,i)
⊗? _oo // // D(X

(i)
x )(R̂x,i+1)⊗

sα
� // 1⊗ sα t

(i)
α,x(Ŝfl

x,i)
�Lemma 5.4.3oo � // t

(i)
α,x(R̂x,i+1)

.

Indeed, the diagram shows that tα(R̂x,i+1) (respectively, t(i)α,x(R̂x,i+1)) is uniquely
determined by sα by chasing the top row and the right vertical arrow (respectively,
by chasing the bottom row), so we have tα(R̂x,i+1) = t

(i)
α,x(R̂x,i+1).

It now follows from Proposition 3.8 that X(i+1)
x ∈ DefXx,G(R̂x,i+1) since the

Hodge filtration ofX(i+1)
x corresponds to a {µ}-filtration with respect to (tα(R̂x,i+1))

by assumption (cf. §5.7). The equality t(i+1)
α,x (R̂x,i+1) = tα(R̂x,i+1) follows from

t
(i)
α,x(R̂x,i+1) = tα(R̂x,i+1) and the fact that t(i+1)

α,x lifts t(i)α,x. �

Proof of Proposition 5.8. We consider a sequence of square-zero thickenings

Â� · · ·� Ân+1 � Ân � · · · = Â0 := R̂/n

as in Corollary 5.3.7, where n ⊂ R̂ is the nil-radical and each step is a liftable
PD thickening when given the “square-zero PD structure”. We have seen at the
beginning of §5.7 that there exists a lift (XÂ, ι) ∈ RZ

(sα)
X,G (Â) of (XR̂, ι). Choosing

N so that ÂN surjects onto R̂, the pull back (XÂN
, ι) ∈ RZX(ÂN ) of (XÂ, ι) lifts

(XR̂, ι) and satisfies all the assumptions for (XR̂, ι). Furthermore, in order to prove
Proposition 5.8, it suffices to prove it for (XÂN

, ι). From now on, we assume that

R̂ = ÂN .
We choose R ⊂ R̂, (X, ι) ∈ RZX(R), and (tα(R)) ⊂ D(X)(R)⊗ as in §5.7 such

that the conclusion of Lemma 5.9.3 holds. For n 6 N , we set Rn to be the image
of R in Ân, which form a finite sequence of square-zero liftable PD thickenings
Rn+1 � Rn.27 For each n, we choose a p-adic p-torsion free PD thickening Sfl

n � Rn
with a PD morphism Sfl

n → Rn+1.
Let us write X(n) := XRn . By Proposition 5.9.4, we have (X(0), ι) ∈ RZΛ

G,b(R0),
and the image tα(R0) ∈ D(X(0))(R0)⊗ of tα(R) (as in §5.7) coincides with the
section of t(0)

α : 1→ D(X(0))⊗ constructed in Proposition 5.2.

27Here is how we show that Rn+1 � Rn is a liftable PD thickening. Let A is a polynomial ring over
W surjecting onto Rn+1, and let Sn � Rn denote the p-adically completed PD hull. By liftability of
Âi+1 � Âi one can easily check that the natural PD morphism Sn � Rn+1 → Ân+1 factors through
some p-adic Zp-flat PD thickening of Ân.
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We now proceed inductively on n. More precisely, assume that we have (X(n), ι) ∈
RZΛ
G,b(Rn) and t(n)

α (Rn) = tα(Rn) in D(X(n))(Rn)⊗, where tα(Rn) is the image of

tα(R) and t
(n)
α : 1 → D(X(n))⊗ is as constructed in Proposition 5.2. Then we can

deduce that the same assertion holds for n + 1 by repeating the proof of Proposi-
tion 5.8 (especially, by chasing the same diagram as (5.9.5)). Since R = RN , we
obtain the desired claim �

6. CONSTRUCTION OF THE MODULI OF p-DIVISIBLE GROUPS WITH TATE TENSORS

We give a proof of Theorem 4.9.1 in this section, applying the technical results
proved in §5.

6.1. Artin representability theorem. Let p > 2. We choose a W -lift X̃ of X as
in Remark 2.5.8, and define RZΛ

G,b(h)m,n := RZΛ
G,b ×RZX RZX(h)m,n as a functor on

the category of W/pm-algebras; i.e., for a W/pm-algebra R, we set RZΛ
G,b(R) :=

RZΛ
G,b(R) ∩ RZX(h)m,n(R). Similarly, we define RZΛ

G,b(h) := RZΛ
G,b ×RZX RZX(h) as a

functor on NilpW .
We first prove (Theorem 6.1.5) that RZΛ

G,b(h)m,n is a separated algebraic space
locally of finite type over W/pm using the Artin representability theorem [1, Corol-
lary 5.4]28. See [30, §2] for the definition of algebraic spaces.

To apply the Artin representability theorem as stated in [1, Corollary 5.4], it
suffices to verify the following conditions29, some of which will be more precisely
stated when they are verified:

(1) RZΛ
G,b(h)m,n is separated; i.e., the diagonal map

RZΛ
G,b(h)m,n → RZΛ

G,b(h)m,n × RZΛ
G,b(h)m,n

is representable by a closed immersion. More concretely, for any W/pm-
algebra R and given two points x, y ∈ RZΛ

G,b(h)m,n(R), the locus over
which x and y coincide is a closed subscheme of SpecR. This follows
since RZΛ

G,b(h)m,n is a subfunctor of a separated scheme RZX(h)m,n.
(2) RZΛ

G,b(h)m,n commutes with filtered direct limits of W/pm-algebras (i.e.,
locally of finite presentation overW/pm); indeed, this follows because both
RZX(h)m,n and RZΛ

G,b commute with filtered direct limits (cf. Lemma 5.1.2).
(3) RZΛ

G,b(h)m,n satisfies the “effectivity property”; namely, for any complete
local noetherian W/pm-algebra (R,mR) with residue field κ, the following
natural map is bijective:

RZΛ
G,b(h)m,n(R)→ lim←−

i

RZΛ
G,b(h)m,n(R/miR).

This follows since RZX(h)m,n satisfies the effectivity property (cf. [39,
§2.22]), and (X, ι) ∈ RZX(R) lies in RZΛ

G,b(R) if and only if this is the
case over R/miR for any i (cf. Proposition 5.6).

(4) RZΛ
G,b(h)m,n is an fppf sheaf; cf. Lemma 6.1.1.

(5) RZΛ
G,b(h)m,n satisfies some suitable generalisation of Schlessinger’s crite-

rion (i.e., Conditions (S1′) and (S2) in [1, §2]); namely, Lemma 6.1.2
holds and the tangent space at any x ∈ RZΛ

G,b(h)m,n(κ) is finite dimen-
sional over κ. Finiteness of tangent spaces is obvious since RZΛ

G,b(h)m,n is
a subfunctor of RZX(h)m,n.

28See also [10] for some clarifications.
29The conditions that we state here are slightly stronger than the ones given in [1, Corollary 5.4].
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(6) If n� 0 then for anym > 1 there exists an obstruction theory for RZΛ
G,b(h)m,n

in the sense of [1, (2.6), (4.1)]. Indeed, we verify some variant of this
(exploiting the flexibility to increase n), which would still imply the repre-
sentability of RZΛ

G,b(h)m,n; cf. Lemma 6.1.4, the proof of Theorem 6.1.5.
We have already verified the first three conditions, so it remains to verify the re-
maining three conditions.

To show that RZΛ
G,b(h)m,n is an fppf sheaf, it suffices to show that RZΛ

G,b is an fppf
sheaf (as the height of a quasi-isogeny can be computed fppf-locally, and whether
pnι̃ is an isogeny can be verified fppf-locally). Since RZΛ

G,b is a subfunctor of RZX,
which is an fppf sheaf (as it can be represented by a formal scheme), the following
lemma shows that RZΛ

G,b is an fppf sheaf.

Lemma 6.1.1. Let (X, ι) ∈ RZX(R) for R ∈ NilpW . Assume that there exists an fppf
covering {Rξ}ξ such that the pull-back (Xξ, ιξ) lies in RZΛ

G,b(Rξ) for each ξ. Then we
have (X, ι) ∈ RZΛ

G,b(R).

Proof. We may assume that R is finitely generated. Since whether (X, ι) ∈ RZΛ
G,b(R)

is decided by the pull back over all artinian quotients of R, we may assume that
R ∈ ARW . Then (X, ι) defines a map SpecR → (RZX)x̂ ∼= DefXx for some closed
point x ∈ RZX(κ). This map factors through DefXx,G if and only if it does after pre-
composing with a faithfully flat map SpecR′ → SpecR, since DefXx,G is a closed
formal subscheme of DefXx . �

Lemma 6.1.2. [Cf. Condition (S1′) in [1, (2.2)]] Assume that p > 2, and consider
B,R,R′ ∈ NilpW such that B � R is a square-zero thickening with the kernel
annihilated by the nilradical of B, and R′ → R is a W -algebra map that induces a
surjective map R′ → Rred. Set B′ := B ×R R′. Let F be one of RZΛ

G,b, RZ
Λ
G,b(h) and

RZΛ
G,b(h)m,n, where in the last case we assume pmB = 0 and pmR′ = 0. Then the

natural map

(6.1.3) F(B′)→ F(B)×F(R) F(R′)

is a bijection.

Proof. The map (6.1.3) is injective, because the analogous maps for RZX, RZX(h),
and RZX(h)m,n are bijections.

To show the surjectivity of (6.1.3) for RZΛ
G,b, we may assume that both B and R′

are finitely generated over W , in which case the claim follows from Lemma 5.5.2.
To show the surjectivity of (6.1.3) for RZΛ

G,b(h) and RZΛ
G,b(h)m,n, we observe that a

cofibre product of quasi-isogenies of height h is again of height h, and that a cofibre
product of isogenies is again an isogeny. �

Lemma 6.1.4 (“Obstruction theory”). Let U ⊂ RZX(h) be a quasi-compact open
formal subscheme, and choose an integer n large enough so that the natural map
Ω̂U/W |U∩RZX(h)1,n → ΩU∩RZX(h)1,n/κ is an isomorphism.30 Let B � R be any square-
zero thickening such that its kernel b is killed by the nilradical of B, and let (X, ι̃) ∈
U(R) ∩ RZΛ

G,b(h)m,n(R).
Then there exists a B-point (XB , ι̃) ∈ RZΛ

G,b(h)m,n(B) lifting (X, ι̃) if and only if
there exists a B-point (XB , ι̃) ∈ RZX(h)m,n(B) lifting (X, ι̃).

Note that RZX(h)m,n has an obstruction theory that satisfies the conditions in [1,
(2.6), (4.1)] (given by the theory of cotangent complex, for example). And the

30Such n exists as U is noetherian; indeed, as U ×Spf W Specκ = lim−→n
(U ∩ RZX(h)1,n), we may

choose n so that U∩RZX(h)1,n contains the closed subscheme of U×Spf W Specκ cut out by the square
of the maximal ideal of definition. Note that RZX(h) may not be quasi-compact.
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lemma asserts that any obstruction theory for the U∩RZX(h)m,n (which exists) also
provides an obstruction theory for U ∩ RZΛ

G,b(h)m,n if n is large enough (depending
on U).

Proof. It suffices to prove the “if” direction. Let (X, ι̃) ∈ U(R), and assume that
there exists a B-point (XB , ι̃) ∈ RZX(h)m,n(B) lifting (X, ι̃). Set R0 := Rred, and
write (XR0

, ι̃) ∈ U(R0) denote the pull-back.
Let f0 : SpecR0 → U denote the map induced by (XR0 , ι̃). Then the set of B-

points of RZX(h)m,n lifting (X, ι̃), which is non-empty by assumption, is a torsor
under the R0-module f∗0 (Ω̂∗U/W ) ⊗R0

b by the assumption on n in the statement.
(Recall that any lift of (X, ι̃) lies in U.) Therefore, any B-lift (X ′B , ι̃

′) ∈ RZX(B) of
(X, ι̃) actually lie in RZX(h)m,n(B), as the set of such B-lifts is also a torsor under
the same R0-module f∗0 (Ω̂∗U/W )⊗R0

b. Now if we also have (X, ι̃) ∈ RZΛ
G,b(R), then

Corollary 5.2.2 produces a B-point

(XB , ι̃) ∈ RZΛ
G,b(B) ∩ RZX(h)m,n(B) = RZΛ

G,b(h)m,n(B)

lifting (X, ι̃), as desired. �

We are ready to prove the following:

Theorem 6.1.5. The functor RZΛ
G,b(h)m,n can be represented by a separated scheme

locally of finite type over SpecW/pm.

Proof. Choose a quasi-compact open U ⊂ RZX(h) which contains RZX(h)m,n. (Re-
call that RZX(h)m,n is quasi-compact.) Then we have verified the criterion in [1,
Corollary 5.4] to show that U ∩ RZΛ

G,b(h)m,n
′

is a separated algebraic space locally
of finite type over W/pm for any n′ � n. Since we have

RZΛ
G,b(h)m,n = (U ∩ RZΛ

G,b(h)m,n
′
)×RZX(h)m,n′ RZX(h)m,n,

it follows that RZΛ
G,b(h)m,n is also a separated algebraic space locally of finite type

over W/pm.
Since the natural inclusion RZΛ

G,b(h)m,n ↪→ RZX(h)m,n is a monomorphism which
is locally of finite type, it is separated and locally quasi-finite. (By looking at étale
charts, this claim reduces to the case of schemes, which is standard.) By [32,
Théorème (A.2)], RZΛ

G,b(h)m,n is a scheme. �

6.2. Closedness.

Theorem 6.2.1. The natural monomorphism RZΛ
G,b(h)m,n ↪→ RZX(h)m,n is a closed

immersion of schemes for any m, n, and h. Also, the functor RZΛ
G,b is representable

by a formal scheme locally formally of finite type over W , and the natural inclusion
RZΛ
G,b ↪→ RZX is a closed immersion of formal schemes.

To show that the monomorphism RZΛ
G,b(h)m,n → RZX(h)m,n is a closed immer-

sion, it suffices to show that it is proper. For this, we need to show that RZΛ
G,b(h)m,n

is quasi-compact (cf. Corollary 6.2.5), and verify the valuative criterion for proper-
ness (Lemma 6.2.2). The remaining claims in Theorem 6.2.1 now follow straight-
forwardly.

It remains to show the quasi-compactness for RZΛ
G,b(h)m,n and verify the valua-

tive criterion for RZΛ
G,b(h)m,n → RZX(h)m,n. We begin with the valuative criterion.

Lemma 6.2.2. Let R be a κ-algebra which is a discrete valuation ring, and L :=
Frac(R). Let (X, ι) ∈ RZX(h)m,n(R) be such that (XL, ιL) ∈ RZΛ

G,b(h)m,n(L). Then
we have (X, ι) ∈ RZΛ

G,b(h)m,n(R).
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Proof. It suffices to show that (X, ι) ∈ RZΛ
G,b(R) under the assumption as in the

statement. As both RZX and RZΛ
G,b commute with filtered direct limits in NilpW , we

may assume that L is a finitely generated field extension of κ, and (X, ι) ∈ RZX(R)

extends to (XR0
, ιR0

) ∈ RZX(R0) for some smooth31 κ-subalgebra R0 ⊂ R with
L = FracR0. By smoothness, there exists a p-adic topologically smooth W -algebra
A0 with A0/p = R0. By localising A0 at the ideal corresponding to the closed point
of SpecR and p-adically completing it, we obtain a p-adic flat W -algebra A with
A/p = R.

Recall that giving a map of crystals t : 1 → D(X)⊗ (respectively, t : 1 →
D(XL)⊗) is equivalent to giving a horizontal section t(A) ∈ D(X)(A)⊗ (respec-
tively, t(Â(p)) ∈ D(XL)(Â(p))

⊗); cf. [11, Corollary 2.2.3].
By the assumption on (X, ι), the map of isocrystals sα,D : 1 → D(X)⊗[ 1

p ] comes
from a unique map of integral crystals tα : 1 → D(XL)⊗ on the generic fibre. So
we obtain

(tα(Â(p))) ⊂ D(XL)(Â(p))
⊗ ∩ D(X)(A)⊗[ 1

p ] = D(X)(A)⊗,

since we have A = A[ 1
p ] ∩ Â(p). We rename this section as tα(A) ∈ D(X)(A)⊗.

Furthermore, since (X, ι) is defined overR0, it follows that tα(A) ∈ D(X)(A)⊗[ 1
p ]

lies in the image of D(XR0
)(A0)⊗[ 1

p ]. Since we also have A0 = A0[ 1
p ] ∩ A (as

A0/p = R0 ↪→ A/p = R by assumption), it follows that tα(A) is the image of
tα(A0) ∈ D(XR0

)(A0)⊗. Since (tα(A0)) are horizontal (as they are after inverting
p), it follows that (tα) on XL extend to maps of crystals tα : 1→ D(XR0

)⊗.
Now consider the following finitely generated A0-scheme

PA0
:= isomA0

[
(D(XR0

)(A0), (tα(A0))], [A0 ⊗Zp Λ∗, (1⊗ sα)]
)
.

By construction, PA0
restricts to a trivialG-torsor overA0[ 1

p ] since the quasi-isogeny
over R0 gives a splitting.

Let us now show that the pull-back PA of PA0
is a G-torsor over A. It suffices to

show that its pull-back PA′ is a G-torsor for some suitable faithfully flat A-algebra
A′, which we introduce now. Let R′ be a complete discretely valued R-algebra
whose residue field is an algebraic closure κ′ of the residue field of R, and we
identify R′ = κ′[[u]]. We set A′ := W (κ′)[[u]] and choose a lift A→ A′ of R→ R′.

We now show that PA′ is a (necessarily trivial) G-torsor. We already have that
PA′[1/p] is a trivial G-torsor. Since (XL, ιL) ∈ RZΛ

G,b(L), it follows that PW (L̄′) is
a G-torsor where L′ := Frac(R′), so PÂ′

(p)
is a G-torsor. (Note that Â′(p) is a p-

adic discrete valuation ring with Â′(p)/p = L′, so we have a faithfully flat map

Â′(p) → W (L
′
).) Therefore, we have that PU ′ is a G-torsor, where U ′ ⊂ SpecA′ is

the complement of the closed point.
By [9, Théorème 6.13], PU ′ extends to some G-torsor P ′A′ over A′. But since

A′ is strictly henselian, P ′A′ is a trivial G-torsor, which implies that PU ′ is a trivial
G-torsor. Therefore there exists an isomorphism of vector bundles

ς : OU ′ ⊗A′ D(XA′)(A
′)
∼−→ OU ⊗Zp Λ∗

matching tα(A′)|U ′ with 1 ⊗ sα. Since ς is defined away from a codimension-2
subset in a normal scheme, ς extends to an A′-section of PA′ by taking the global
section. This shows an isomorphism GA′ ∼= PA′ .32

Furthermore, since PA0
pulls back to a smooth scheme over A, it has to be

smooth over some open formal subscheme SpecA′0 ⊂ SpecA0 containing the closed

31Smoothness can be arranged since R is regular.
32This argument is adapted from “Step 5” of the proof of [29, Proposition 1.3.4].
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point of SpecR, with non-empty fibres at any point in SpecA′0; i.e., the restriction
PA′0 is aG-torsor. By replacingA0 with the p-adic completion ofA′0, we may assume
that PA0 is a G-torsor.

By Lemma 2.2.6, the Hodge filtration Fil1XR0
⊂ D(XR0)(R0) is a {µ}-filtration.

(Indeed, Fil1XL is a {µ}-filtration so Fil1XR0
is a {µ}-filtration over the closure of the

generic point, which is SpecR0.) This shows that (XR0 , ιR0) ∈ RZ
(sα)
X,G (R0), so we

have (X, ι) ∈ RZΛ
G,b(R). �

Proposition 6.2.3. Let R be a smooth domain over κ, and let (X, ι) ∈ RZX(R).
Assume that there exists a dense subset of closed points Σ ⊂ SpecR, such that for
any x ∈ Σ we have (Xx, ιx) ∈ RZΛ

G,b(κ). Then there exists a dense open subscheme
SpecR′ ⊂ SpecR such that (XR′ , ιR′) ∈ RZΛ

G,b(R
′).

Proof. Let us choose a formally smooth p-adic W -lift A of R. By the standard
dictionary [11, Corollary 2.2.3], the morphism sα,D : 1 → D(X)⊗[ 1

p ], constructed
in Definition 4.5, corresponds to a horizontal section tα(A) ∈ D(X)(A)⊗[ 1

p ]. Let us
first show that tα(A) ∈ D(X)(A)⊗; i.e., tα(A) is the A-section of a (unique) map of
crystals tα : 1→ D(X)⊗.

We endow the p-adic filtration with A[ 1
p ] and identify the associated graded al-

gebra gr•A[ 1
p ] ∼= R((u)) by sending p to u. Then we define {t(m)

α ∈ D(X)(R)⊗}m∈Z
so that

∑
m∈Z t

(m)
α um is the image of tα(A) via the map

D(X)(A)⊗[ 1
p ]→ gr•

(
D(X)(A)⊗[ 1

p ]
)
∼=

⊕
m∈Z, m�−∞

umD(X)(R)⊗,

where gr• is with respect to the p-adic filtration.
Note that tα(A) ∈ D(X)(A)⊗ if and only if t(m)

α = 0 for any m < 0. On the other
hand, if m < 0 then t

(m)
α vanishes at a dense set of points Σ, so t(m)

α = 0; indeed,
for any x ∈ Σ, any map x̃ : A → W lifting R � R/mx ∼= κ pulls back tα(A) to a
(p-integral) tensor in D(Xx)(W )⊗ because (Xx, ιx) ∈ RZ

(sα)
X,G (κ) = RZΛ

G,b(κ).
We next consider the following A-scheme (as in Definition 4.6(2)):

PA := isomA

(
[D(X)(A), (tα(A))], [A⊗Zp Λ∗, (1⊗ sα)]

)
.

By construction, each fibre of PA at a point of SpecA is either a G-torsor or empty.
Since the fibre Px at x ∈ Σ is a G-torsor and PA[ 1

p ] is a trivial G-torsor, it follows
that the fibre Pη at the generic point η of SpecR ⊂ SpecA is a G-torsor (by semi-
continuity of fibre dimensions, for example).

By generic flatness, we find a localisation R′ of R such that PR′ is a G-torsor, and
we choose an A-algebra A′ which lifts R′. (If R′ = R[1/f ] then we let A′ to be the
p-adic completion of A[1/f̃ ] where f̃ is some lift of f .) We want to show that PA′ is
a G-torsor. Indeed, PR′ and PA′[ 1

p ] are G-torsors so it remains to show that PA′ is
flat over A′. By local flatness criterion [33, Theorem 22.3] it suffices to show that
the following surjective map of OPR′ -modules is an isomorphism for each m:

(6.2.4) OPR′ ∼= (pmA′/pm+1A′)⊗R′ OPR′ � pmOPA′/p
m+1OPA′ .

Let Σ′ := Σ ∩ SpecR′, which is a dense set of closed points. For any x′ ∈ Σ′, we
choose a lift x̃′ : SpecW → SpecA′. By the defining condition of Σ′ it follows that
the map (6.2.4) pulls back to an isomorphism

OPx′
∼−→ pmOPx̃′/p

m+1OPx̃′ .
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Since
⋃
x′∈SpecR′ Px′ is dense in PR′ , it follows that the kernel of (6.2.4) is sup-

ported in some proper closed subset of PR′ . On the other hand, OPR′ is a domain,
which forces (6.2.4) to be an isomorphism.

To see that Fil1XR′ is a {µ}-filtration with respect to (tα(R′)), it suffices to check

this at dense set of points (namely, Σ′). This shows (XR′ , ιR′) ∈ RZ
(sα)
X,G (R′). �

The following corollary, together with Lemma 6.2.2, concludes the proof of The-
orem 6.2.1.

Corollary 6.2.5. The scheme RZΛ
G,b(h)m,n is quasi-compact for any m,n, h.

Proof. Recall that RZX(h)m,n is quasi-compact; cf. [39, §2.22]. Let Z0 ⊂ RZX(h)m,nred

denote the reduced closed subscheme whose underlying topological space is the
Zariski closure of the image of |RZΛ

G,b(h)m,n|, and Z ′0 → Z0 an alteration (i.e., a
generically finite projective surjective morphism) such that Z ′0 is a smooth projec-
tive scheme over κ; cf. [13]. Then by Proposition 6.2.3, we can produce a (nec-
essarily quasi-compact) dense open subscheme U0 ⊂ Z0 such that the natural map
RZΛ
G,b(h)m,nred → Z0 is isomorphic over U0. Note that the preimage U0 ⊂ RZΛ

G,b(h)m,nred

is again a quasi-compact open subscheme. This also shows that |Z0| is the set-
theoretic image of |RZΛ

G,b(h)m,n| by the valuative criterion (Lemma 6.2.2).
Now, let Z1 ⊂ Z0 denote the reduced complement of U0. By repeating the ar-

gument in the previous paragraph (by taking Σ to be the set of all closed points of
Z1), we obtain a (quasi-compact) dense open subscheme V1 ⊂ Z1 which is an iso-
morphic image of a locally closed subscheme V1 ⊂ RZΛ

G,b(h)m,nred . So we can choose
a quasi-compact open U1 ⊂ RZΛ

G,b(h)m,n containing V1 as a closed subscheme. Note
that this process terminates after finitely many times as Z0 is noetherian, and we
obtain finitely many quasi-compact open subschemes Ui covering RZΛ

G,b(h)m,nred . �

6.3. Independence of auxiliary choices and functoriality. We now finish the
proof of Theorem 4.9.1. We have constructed a closed formal scheme RZΛ

G,b ⊂ RZX
(Theorem 6.2.1), which enjoys the following properties:

(1) RZΛ
G,b ⊂ RZX represents RZ

(sα)
X,G as in the statement of Theorem 4.9.1. The

universal tensors tuniv
α : 1 → D(XRZX |RZΛ

G,b
)⊗ can be obtained by glueing

the unique Tate tensors over some affine open covering of RZΛ
G,b. This

claim follows from Corollary 5.2.3.
(2) RZΛ

G,b ⊂ RZX does not depend on the choice of (sα) ∈ Λ⊗; indeed, the
subset RZΛ

G,b(κ) ⊂ RZX(κ) and the completion at any κ-point do not depend
on (sα).

(3) If G = GL(Λ) then RZΛ
G,b = RZX; cf. Example 4.6.1.

(4) For any closed connected reductive Zp-subgroup G′ ⊂ G with b ∈ G′(K0),
the closed formal subscheme RZΛ

G′,b is contained in RZΛ
G,b. Indeed, this

claim amounts to verifying analogous claims on the set of κ-points and the
completions thereof; cf. Lemma 2.5.4, Proposition 3.7.2.

It remains to verify the functoriality assertions; namely, (1) and (2) in Theo-
rem 4.9.1. These assertions will immediately follow from Lemma 6.3.1 and Propo-
sition 6.3.2, hence we conclude the proof of Theorem 4.9.1.

Let (G′, b′) and Λ′ be another datum as in Definition 2.5.5, and write X′ := XΛ′

b′ .
We have constructed a natural formal closed subsheme RZΛ′

G′,b′ ⊂ RZX′ .

Recall that XΛ×Λ′

(b,b′)
∼= XΛ

b × XΛ′

b′ = X × X′. Then we have a closed immersion
RZX ×Spf W RZX′ ↪→ RZX×X′ , defined by the product of deformations up to quasi-
isogeny, and a closed formal subscheme RZΛ×Λ′

G×G′,(b,b′) ⊂ RZX×X′ .
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Lemma 6.3.1. We have RZΛ×Λ′

G×G′,(b,b′) = RZΛ
G,b ×Spf W RZΛ′

G′,b′ as closed formal sub-
schemes of RZX×X′ ; in particular, Theorem 4.9.1(1) holds.

Proof. As both are closed formal subschemes of RZX×X′ , it suffices to show the
equality of the set of κ-points and the completions thereof, which follows from
Lemma 2.5.4 and Proposition 3.7.2. �

Proposition 6.3.2. Given a map f : G → G′ which maps b to b′, there exists a map
RZΛ
G,b → RZΛ′

G′,b′ which induces the desired maps on the set of κ-points and completions
thereof as described in Theorem 4.9.1(2).

The proposition in the case when f is an identity map asserts that the formal
scheme RZΛ

G,b depends only on (G, b), not on the auxiliary choice of (Λ, (sα)), up to
canonical isomorphism.

Proof. We follow the structure of the proof of Proposition 3.7.2.
The case when f is a closed immersion and Λ = Λ′ was already handled at the

beginning of §6.3. For a natural projection pr2 : (G × G′, (b, b′)) → (G′, b′), the
natural projection

RZΛ×Λ′

G×G′,(b,b′)
∼= RZΛ

G,b ×Spf W RZΛ′

G′,b′ � RZΛ′

G′,b′

has the desired properties on κ-points and completions thereof. (The same holds
for the first projection.)

Now, let f : (G, b)→ (G′, b′) be any morphism, and consider the graph morphism

(1, f) : (G, b)→ (G×G′, (b, b′)),
which is a closed immersion on the reductive Zp-groups. By letting G act via (1, f)

on the faithfulG×G′-representation Λ×Λ′, we obtain the closed subspace RZΛ×Λ′

G,b ⊂
RZX×X′ . We claim that we have the following commutative diagram:

(6.3.3) RZΛ
G,b

∃!
��

RZΛ×Λ′

G,b
//

∼=
11

RZΛ×Λ′

G×G′,(b,b′)
∼= RZΛ

G,b ×Spf W RZΛ′

G′,b′

pr1

55 55

pr2

// // RZΛ′

G′,b′

,

where the solid arrows are already defined. By looking at the sets of κ-points
and the completions thereof (cf. Proposition 3.7.2; especially, the diagram in the
proof), it follows that pr1 restricts to an isomorphism RZΛ×Λ′

G,b
∼−→ RZΛ

G,b as claimed in
the diagram. Therefore, the broken arrow is well-defined and satisfies the desired
properties on κ-points and the completions thereof. �

7. EXTRA STRUCTURES ON THE MODULI OF p-DIVISIBLE GROUPS

We assume that p > 2, and set κ = Fp, W = Ẑur
p , and K0 = Q̂ur

p . We fix
(G, b) as in Definition 2.5.5 (with associated integral Hodge-type Shimura datum
(G, [b], {µ−1})). With some suitable choice of Λ (which gives rise to X := XΛ

b ),
we construct the closed formal subscheme RZΛ

G,b ⊂ RZX. From now on, we write
RZG,b := RZΛ

G,b as it does not depend on Λ up to canonical isomorphism.
In this section, we define a Weil descent datum, the action of Jb(Qp), “étale

realisations” of crystalline Tate tensors, the rigid analytic tower {RZKG,b}, and the
Grothendieck-Messing period map – in other words, we construct “local Shimura
varieties” as conjectured in Rapoport and Viehmann [38, §5]. Since RZG,b is locally
formally of finite type over Spf W (cf. Theorem 4.9.1), Berthelot’s construction
of rigid generic fibre RZ

rig
G,b can be applied; cf. [3], [11, §7]. We then construct
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the period morphism on the rigid generic fibre RZ
rig
G,b, which is an étale morphism

(highly transcendental in general). When RZG,b is an EL or PEL Rapoport-Zink
space, the extra structure on RZG,b that we define is compatible with the one defined
by Rapoport and Zink in [39]. (We leave readers to verify this, which is more or
less straightforward.)

The category of rigid analytic varieties can naturally be viewed as a full subcat-
egory of the category of adic spaces (cf. [23, §1.1.11]), so we may regard all the
rigid analytic varieties as adic spaces33.

For the EL and PEL case, Scholze and Weinstein [42] constructed an infinite-level
Rapoport-Zink space. We construct an “infinite-level Rapoport-Zink space” RZ∞G,b
associated to (G, b) using the infinite-level Rapoport-Zink space for GLQp(Λ[ 1

p ])

and the rigid analytic tower {RZKG,b}. This construction is rather ad hoc, and there
should be a more natural construction, as alluded in the introduction of [42].

7.1. More notation on adic spaces and p-divisible groups. We will work with
the notion of adic spaces in the sense of Huber. (See [42, §2] for basic definitions.)
Although it is possible to work with classical rigid analytic geometry for most part
of this section (except §7.6), the flexibility of the theory of adic spaces could be
useful (for example, to define geometric points).

Let X be a formal scheme locally formally of finite type over Spf W , and let Xrig

denote the rigid analytic generic fibre constructed by Berthelot (cf. [11, §7.1]). It
is often convenient to view Xrig as an adic space, which we will do implicitly.

Let us recall the functorial characterisation of Xrig; cf. [11, Proposition 7.1.7].
For an analytic space (or adic space) Y (topologically) of finite type over K0, we
have

(7.1.1) HomK0
(Y ,Xrig)

∼← lim−→
Y; Yrig=Y

HomW (Y,X),

where Y runs through formal models of Y . Note that this property uniquely deter-
mines Xrig by the rigid analytic Yoneda lemma [11, Lemma 7.1.5], and (the adic
space associated to) Xrig coincides with the generic fibre of the adic space associ-
ated to the formal scheme X; cf. [42, Proposition 2.2.2].

Remark 7.1.2. Let K be a complete extension of K0 (with rank 1 valuation), and
let OK denote its valuation. (We will often use C instead of K for algebraically
closed complete extension of Qp.) Then one can check without difficulty that any
point x : Spa(K,OK) → Xrig comes from a unique map x : Spf OK → X of formal
schemes, also denoted by x.

Let X be a p-divisible group over X, and write X := Xrig. Then, X[pn]rig is a
finite étale covering of X , which is also an abelian group object in the category of
adic spaces.

Definition 7.1.3. Let T (X) denote the lisse Zp-sheaf on X defined by the projec-
tive system {X[pn]rig}, and define V (X) to be the the lisse Qp-sheaf associated to
T (X); i.e., T (X) viewed in the isogeny category. (See [40, Definition 8.1] for the
definition of lisse Zp-sheaf on an adic space.)

As lisse Zp- or Qp- sheaves, it is possible to form tensor products, symmetric and
alternating products, and duals (so T (X)⊗ and V (X)⊗ make sense). The formation
of T (X) and V (X) commutes with any base change Y → X for reasonable formal
scheme Y. In particular, for any geometric point x̄ : Spa(C,OC) → X the fibre

33In light of the recent work on “infinite-level Rapoport-Zink spaces” in [42] and [41, §6], the theory
of adic spaces is the most natural framework to study the rigid analytic tower {RZKG,b}.
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T (X)x̄, as a Zp-module, only depends on the pull-back Xx̄ of X by x̄ : Spf OC → X.
(Here, we use the convention as in Remark 7.1.2.)

Remark 7.1.4. Let us make explicit the adic space generic fibre RZ
rig
X of RZX. For

any analytic space (or adic space) X topologically of finite type over K0, the set
HomK0

(X , RZrig
X ) can be interpreted as the set of equivalence classes of (X, ι) ∈

RZX(X) for any formal model X of X , where for any morphism X′ → X of formal
models of X , (X, ι) ∈ RZX(X) is equivalent to (XX′ , ιX′

Fp
) ∈ RZX(X′).

One can easily see that T (X) is independent of the choice of formal model X
over which X is defined. If we set XRZX to be the universal p-divisible group over
RZX and f : X → RZ

rig
X to be the map corresponding to X, then we have T (X) ∼=

f∗(T (XRZX)). A similar discussion holds for RZrig
G,b in the place of RZrig

X .

Let X be a connected component of RZrig
G,b. For a geometric point x̄ of X (i.e.,

x̄ : Spa(C,OC) → X for some algebraically closed complete extension C of K0),
let πfét

1 (X , x̄) denote the algebraic fundamental group34 of X with base point x̄ in
the terminology of [12].

Quite formally, one obtains a natural equivalence of categories from the cate-
gory of lisse Z`-sheaves on X to the category of finitely generated Z`-modules
with continuous πfét

1 (X , x̄)-action, where the equivalence is defined by F  Fx̄.
(Cf. [12, §4], [40, Proposition 3.5].) Similarly, one obtains a natural equivalence
of categories from the category of lisse Q`-sheaves on X (i.e., lisse Z` sheaves
viewed up to isogeny35) to the category of finite-dimensional Q`-vector spaces with
continuous πfét

1 (X , x̄)-action. Here, ` can be any prime (including ` = p).
Let 1 denote either the constant rank-1 Zp-sheaf, or the constant 1-dimensional

Qp-sheaf.

Definition 7.1.5. An étale Tate tensor on X is a morphism tét : 1→ V (X)⊗ of lisse
Qp-sheaves on X . An étale Tate tensor is called integral if it restricts to a map
1→ T (X)⊗ of lisse Zp-sheaves on X .

It follows that when X is connected, giving an étale Tate tensor tét is equivalent
to giving an πfét

1 (X , x̄)-invariant element tét,x̄ ∈ V (X)⊗x̄ , and tét is integral if and
only if tét,x̄ ∈ T (X)⊗x̄ for a single geometric point x̄.

We now claim that crystalline Tate tensors have “ étale realisations”.

Theorem 7.1.6. Assume that that X is formally smooth and locally formally of finite
type over Spf W , and let t : 1→ D(X)⊗ be a morphism of crystals which is Frobenius-
equivariant up to isogeny and such that t(R) ∈ Fil0 D(X)(R)⊗. Then there exists
a unique morphism tét : 1 → T (X)⊗ of lisse Zp-sheaves on X , such that at each
geometric point x̄ supported at a classical point x with residue field K, the (classical)
crystalline comparison isomorphism matches tét,x̄ ∈ T (Xx̄)⊗ with tx : 1 → D(Xx)⊗,
obtained as the pull-back of t by x : Spf OK → X. (Here Xx := x∗X is a p-divisible
group over OK .)

If x̄ is as in the theorem, then tét,x̄ ∈ T (X)⊗x̄ is invariant under the πfét
1 (X ′, x̄)-

action, not just the Gal(K0/K)-action, where X ′ ⊂ X is the connected compo-
nent containing x̄. Indeed, one can see that the requirement for tét in Theorem 7.1.6
uniquely determines tét.

34In [40, §3] the algebraic fundamental group is called the “pro-finite fundamental group”.
35Lisse Q`-sheaves are more restrictive objects than “local systems of Q`-vector spaces” as in [12,

Definition 4.1], which involve “analytic étale coverings” of X (not just finite étale coverings). In par-
ticular, the geometric fibre Fx̄ of a lisse Q`-sheaf has an action of πfét

1 (X , x̄), not just (the adic space
version of) the analytic fundamental group defined in [12, §2].
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The main idea of the proof of Theorem 7.1.6 is to construct tét using the (rel-
ative) crystalline comparison for p-divisible groups over X, and show that it is in-
tegral using the theory of Kisin modules (over a p-adic discrete valuation ring).
Although the proof is quite “standard”, it takes a long digression to set up the no-
tation. We give a proof in §8.

It should be possible to compare the fibres tét,x̄ ∈ T (X)⊗x̄ and tx̄ : 1 → D(Xx̄)⊗

at any geometric point x̄ of X , using the theory of vector bundles over the Fargues-
Fontaine curve. We will not work in this generality, as geometric points supported
at classical points are sufficient to uniquely determine tét.

7.2. The action of Jb(Qp). Recall from (2.4.3) that Jb(Qp) is the group of quasi-
isogenies γ : X 99K X which preserves the tensors (sα,D). Then RZG,b has a natural
left Jb(Qp)-action defined as follows: for any (X, ι) ∈ RZG,b(R) for R ∈ NilpW and
γ ∈ Jb(Qp), we have γ(X, ι) = (X, ι ◦ γ−1) ∈ RZX(R). To see γ(X, ι) ∈ RZG,b(R),
it suffices to observe that for R = Fp we recovers the natural Jb(Qp)-action on
XG(b) ∼= RZG,b(Fp) (cf. Proposition 2.5.9), and γ induces γ : (RZX)x̂

∼−→ (RZX)γ̂x (as
γ does not modify the underlying p-divisible group.) By functoriality of adic space
generic fibre, Jb(Qp) naturally acts on RZ

rig
G,b.

The Jb(Qp)-action on RZG,b has a kind of “continuity” property in the sense of
[18, Définition 2.3.10]; indeed, the proof of [18, Proposition 2.3.11] works in the
more general setting of ours.

7.3. Weil descent datum. Let (G, [b], {µ−1}) denote the integral Hodge-type local
Shimura datum associated to (G, b). The following definition is the local analogue
of the reflex field for a Shimura datum. (Cf. [39, §1.31].)

Definition 7.3.1. The (local) reflex field or (local) Shimura field for (G, [b], {µ−1}) is
the subfield E = E(µ) ⊂ K0 which is the field of definition of the G(K0)-conjugacy
class of the cocharacter µ. Note that E is a finite unramified extension of Qp (as µ
descends over some finite subextension of Qp in K0).

Put d := [E : Qp], and let q = pd be the cardinality of the residue field of E. Let
τ = σd ∈ Gal(K0/E) denote the q-Frobenius element (i.e., the lift of the qth power
map on Fp).

Remark 7.3.2. Since G is split over W , it follows that the sheaf of conjugacy classes
of cocharacters is a constant sheaf on SpecW (via the interpretation in terms of the
associated root datum). In particular, for µ ∈ {µ}, µτ is G(W )-conjugate of µ, as
this is the case over K0.

For any formal scheme X over Spf W , we write Xτ := X ×Spf W,τ Spf W . We
similarly define X τ for an adic space over (K0,W ).

Definition 7.3.3. Let X be a formal scheme over Spf W . A Weil descent datum on
X over OE is an isomorphism over Spf W :

Φ : X
∼−→ Xτ .

Similarly, we define a Weil descent datum over E for a rigid analytic space X over
K0 as an isomorphism Φ : X

∼−→X τ over K0.

For any positive integer r, let Er ⊂ K0 denote the (unramified) subextension of
degree r over E. Then for any Weil descent datum Φ over OE for X, we can define
a Weil descent datum over OEr as follows:

(7.3.4) Φr : X
Φ−→
∼

Xτ
Φτ−−→
∼
· · · Φτ

r−1

−−−−→
∼

Xτ
r

.

The same construction works for rigid analytic spaces over K0.
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Let X0 be a formal scheme over Spf OE , and X := X0 ×Spf OE Spf W . Then there
exists a natural Weil descent datum over OE on X. We say that a Weil descent
datum Φ over OE is effective if there exists a formal scheme X0 over OE such that
Φ is isomorphic to the one naturally associated to X0. We similarly define effective
Weil descent data over E for adic spaces X over K0.

Let X be a formal scheme locally formally of finite type over Spf W , equipped
with a Weil descent datum Φ over OE . Then on the adic space generic fibre X :=
Xrig we obtain a Weil descent datum Φrig : X

∼−→ X τ induced by Φ. If Φ is
effective, then so is Φrig.

We define a Weil descent datum over OE on RZG,b by restricting the natural Weil
descent datum on RZX, which we now recall. For R ∈ NilpW with the structure
morphism f : W → R, we define Rτ ∈ NilpW to be R as a ring with structure
morphism f ◦ τ . Then we have RZτG,b(R) = RZG,b(R

τ ). The following definition is
taken from [39, §3.48].

Definition 7.3.5. For any (X, ι) ∈ RZX(R), we define (XΦ, ιΦ) ∈ RZX(Rτ ), where
XΦ is X viewed as a p-divisible group over Rτ , and ιΦ is defined as follows:

ιΦ : XRτ/p = (τ∗X)R/p
Frob−d

99K XR/p
ι
99K XR/p = XΦ

R/p,

where Frobd : X → τ∗X is the relative q-Frobenius (with q = pd). This defines a
Weil descent datum Φ : RZX

∼−→ RZτX over OE .
Note that for x = (Xx, ιx) ∈ RZG,b(Fp), we have xΦ := (Xφ

x , ι
Φ
x ) ∈ RZG,b(F

τ

p);
indeed, Definition 4.6(3) is satisfied for (XΦ

x , ι
Φ
x ) by Remark 7.3.2. Then it is clear

from the construction that for x ∈ RZG,b(Fp), the morphism Φ : (RZX)x̂
∼−→ (RZτX)x̂Φ

induces Φ : (RZG,b)x̂
∼−→ (RZτG,b)x̂Φ . Therefore we have (XΦ, ιΦ) ∈ RZG,b(R

τ ) for
any R ∈ NilpW by definition of RZG,b (cf. Definition 5.1), so we get a Weil de-
scent datum Φ : RZG,b

∼−→ RZτG,b over OE defined by sending (X, ι) ∈ RZG,b(R) to
(XΦ, ιΦ) ∈ RZG,b(R

τ ).

Although the Weil descent datum for RZG,b is not effective, it induces a natural
action of the Weil group WE on the `-adic cohomology of RZrig

G,b. Alternatively, one
can “complete” the components of RZG,b so that the Weil descent datum would
become effective (cf. [39, Theorem 3.49]).

The Weil descent datum commutes with the natural action of Jb(Qp), as the
relative q-Frobenius Frobd : X → τ∗X commutes with any quasi-isogenies. In
particular, we have a WE × Jb(Qp)-action on the `-adic cohomology of RZrig

G,b.

7.4. Étale Tate tensors and rigid analytic tower. For any open compact subgroup
K ⊂ G(Zp), we will construct a finite étale cover RZKG,b of RZrig

G,b that naturally fits
into a G(Qp)-equivariant tower {RZKG,b} with Galois group G(Zp).

For any geometric point x̄ of RZ
rig
G,b we let πfét

1 (RZrig
G,b, x̄) denote the algebraic

fundamental group of the connected component of RZrig
G,b containing x̄.

Let XG,b denote the universal p-divisible group over RZG,b. By Theorem 7.1.6,
we have a morphism of lisse Zp-sheaves

tα,ét : 1→ T (XG,b)
⊗

corresponding to each tα.

Proposition 7.4.1. Let x̄ be a geometric point of RZrig
G,b supported at a classical point

x. Then the following Zp-scheme

Pét,x̄ := isomZp
(
[Λ, (sα)], [T (XG,b)x̄, (tα,ét,x̄)]

)
is a trivial G-torsor. (Here, we view Λ and T (XG,b)x̄ as vector bundles over SpecZp.)
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Proof. Note that any G-torsor over Zp is trivial; indeed, since Zp is a henselian local
ring, a G-torsor over Zp is trivial if its special fibre is trivial. But any G-torsor over
a finite field is trivial if G is connected and reductive.

It remains to show that Pét,x̄ is a G-torsor. Let K be the residue field at x, and κ
the residue field of K. Then, it suffices to show that Pét,x̄,W is a (trivial) G-torsor
over W . By [29, Proposition 1.3.4], we have a W -linear isomorphism

W ⊗Zp T (XG,b)x̄ ∼= D(Xx0)(W )∗

matching (1 ⊗ tα,ét,x̄) and (tα,x0
(W )), where Xx0

is the pull-back of XG,b by x0 :

Specκ → Spf OK
x−→ RZG,b. Therefore, Pét,x̄,W is isomorphic to the G-torsor PW

defined using (D(Xx0
)(W ), (tα,x0

(W ))). �

Let K(0) := G(Zp) and K(i) := ker(G(Zp)→ G(Z/pi)) for any i > 0.

Definition 7.4.2. We set RZK
(0)

G,b := RZ
rig
G,b. For any i > 0 we define the following

rigid analytic covering of RZrig
G,b:

RZK
(i)

G,b = isom
RZ

rig
G,b

(
[Λ/piΛ, (sα)], [XG,b[p

i]rig, (tα,ét)],
)
;

i.e., for an analytic space (or adic space) X over K0, its X -point u classifies iso-
morphisms of Z/pi-local systems matching tensors after pulling back to X . Here,
we use the identification XG,b[p

i]rig ∼= T (XG,b)/(p
i) to view the mod pi reduction

of (tα,ét) as tensors of XG,b[p
i]rig. Since RZK

(i)

G,b is an open and closed subspace of

isom
RZ

rig
G,b

(Λ/piΛ, XG,b[p
i]rig), one can see that RZK

(i)

G,b is a finite étale Galois cover

of RZrig
G,b. This definition is compatible with the definition of level structure when

G = GL(Λ).
We let the finite group G(Z/pi) = K(0)/K(i) act on the right on RZK

(i)

G,b as follows:

an element g ∈ G(Z/pi) acts as ς 7→ g−1 ◦ ς on sections of RZK
(i)

G,b . This makes RZK
(i)

G,b

an étale Galois cover of RZrig
G,b with Galois group G(Z/pi). When G = GL(Λ), this

action is compatible with the natural action as defined in [39, §5.34].
For any open subgroup K ⊂ K(0) which contains K(i) for some i > 0, we set

RZKG,b = RZK
(i)

G,b /(K/K
(i)).

This definition is independent of the choice of i � 0. The Jb(Qp)-action and the
Weil descent datum over E on RZ

rig
G,b pull back to RZKG,b.

Let us now define the “right G(Qp)-action” of the rigid analytic tower {RZKG,b}
(i.e., Hecke correspondences). We follow [39, §5.34] and [18, §2.3.9.3]. Let
g ∈ G(Qp), and choose K ⊂ G(Zp) so that g−1Kg ⊂ G(Zp). For a fixed g, the
assumption on K can be arranged by replacing K by some finite index open sub-
group; indeed, for an open compact subgroup K0 ⊂ G(Zp), K := K0 ∩ gK0g

−1

satisfies this assumption. By a (right) G(Qp)-action on the tower {RZKG,b}, we mean
a collection of isomorphisms

[g] : RZKG,b
∼−→ RZ

g−1Kg
G,b ,

for any g ∈ G(Qp) and K ⊂ G(Zp) with g−1Kg ⊂ G(Zp), which commutes with the
map RZK

′

G,b � RZKG,b for K′ ⊂ K, and we have [g′] ◦ [g] = [gg′] for any g, g′ ∈ G(Qp)
whenever it makes sense.

Let us first describe the map [g] on K-points, where K is a finite extension of
K0. Recall that RZrig

G,b(K) = Hom(Spf OK , RZG,b), so a point u ∈ RZKG,b(K) can be
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interpreted as a p-divisible group Xu := u∗XG,b over OK , a quasi-isogeny ι : X 99K
Xu,Fp , and a Gal(K/K)-stable right coset ũK of isomorphisms

ũ : Λ
∼−→ T (Xu)η̄,

where η̄ : Spa(K̂,O
K̂

)→ Spa(K,OK) is a geometric point. Since ũK is Gal(K/K)-
stable, the Gal(K/K)-action on Λ via ũ has its image in K.

Since we assumed that g−1Kg ⊂ G(Zp), it follows that gΛ ⊂ Λ[ 1
p ] is stable under

the action of K, so ũ(gΛ) ⊂ V (Xu)η̄ is Gal(K/K)-stable. This means that we can
find a p-divisible group Xu·g over OK with quasi-isogeny g : Xu 99K Xu·g such that
gΛ is the image of the following map

(7.4.3) T (Xu·g)η̄ ↪→ V (Xu·g)η̄
∼←−
∗g
V (Xu)η̄

∼←−̃
u

Λ[ 1
p ].

Indeed, for n so that pnΛ ⊂ gΛ, gΛ/pnΛ corresponds to the geometric generic fibre
of some finite flat OK -subgroup G of Xu[pn]. We set Xu·g := Xu/G and

(7.4.4) g : Xu
p−n

99K Xu � Xu/G =: Xu·g.

Then the pair (Xu·g, g) satisfies the desired property (7.4.3). Now we obtain the
following K-valued point of RZrig

X :

(7.4.5) (Xu·g, g,Fp ◦ ι) ∈ HomW (Spf OK , RZX) ∼= RZ
rig
X (K).

Lemma 7.4.6. In the above setting, let us write (X, ι) := (Xu, ι) and (X ′, ι′) :=
(Xu·g, g,Fp ◦ ι); cf. (7.4.5). Then (X ′, ι′) corresponds to a Spf OK -point of RZG,b.

Proof. By construction, we have étale Tate tensors (t′α,ét) ⊂ T (X ′)⊗ and an iso-
morphism Λ

∼−→ T (X ′)η̄ matching (t′α,ét) and (sα). Now choose W [u] � OK
and let S be its p-adically completed PD hull. Then by Kisin theory, one associate
(t′α(S)) ⊂ D(X ′)(S)⊗ from (t′α,ét), such that its pointwise stabiliser is isomorphic
to GS and the image (tα(OK)) ⊂ D(X ′)(OK) lies in the 0th filtration with respect
to the Hodge filtration; indeed, (t′α(S)) can be constructed using Theorems 1.2.1
and 1.4.2 in [29], and the assertion on the pointwise stabiliser follows from [29,
Proposition 1.3.4].

From this, we have x′0 := (X ′Fp
, ι′Fp

) ∈ RZG,b(Fp), since the image of (t′α(S)) in

D(X ′Fp
)(W )⊗ = D(X ′)(S)⊗S W defines Tate tensors. Then [29, Proposition 1.5.8]

shows that the map Spf OK → (RZX)x̂′0 , defined by (X ′, ι′), factors through (RZG,b)x̂′0 .
�

Now we can lift (Xu·g, g,Fp ◦ ι) ∈ RZ
rig
X (K) to RZ

g−1Kg
G,b (K) by adding the level

structure corresponding to the right g−1Kg-coset of the isomorphism:

(7.4.7) Λ
∼−→
g
gΛ

∼−−−−→
(7.4.3)

T (Xu·g)η̄.

By construction, the associated right g−1Kg-coset is Gal(K/K)-stable, so we obtain
a map [g] : RZKG,b(K) → RZ

g−1Kg
G,b (K). If g ∈ G(Zp) then this action clearly recovers

the natural “Galois action” of the covering.
The construction (7.4.5) and (7.4.7) can be generalised to X -valued points

in a functorial way for topologically finite-type K0-analytic space (or adic space)
X . Then the p-divisible group Xu is defined over some formal model X of X .
By replacing X with some admissible blow up if necessary, we can find a finite
flat group scheme G of Xu whose rigid analytic generic fibre gives the local sys-
tem corresponding to gΛ/pnΛ; cf. [6]. Now by rigid analytic Yoneda lemma [11,
Lemma 7.1.5], we obtain a morphism [g] : RZKG,b → RZ

rig
X , which factors through
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RZ
rig
G,b by considering the image of classical points (cf. Lemma 7.4.6). And by consid-

ering the suitable generalisation of (7.4.7), we obtain a map [g] : RZKG,b → RZ
g−1Kg
G,b .

Assume furthermore that g′−1Kg′ ⊂ G(Zp) for some g′ ∈ G(Qp). (This can be
arranged by shrinking K further if necessary.) Then we can show that the map
[g′] : RZKG,b → RZ

g′−1Kg′

G,b is equal to the composition

RZKG,b
[g]−→ RZ

g−1Kg
G,b

[g′g−1]−−−−→ RZ
g′−1Kg′

G,b .

By taking g′ to be the identity, it follows that the map [g] : RZKG,b → RZ
g−1Kg
G,b is an

isomorphism.
Now the following proposition is immediate from the construction:

Proposition 7.4.8. The assignment g 7→ ([g] : RZKG,b → RZ
g−1Kg
G,b ) defines a right

G(Qp)-action on the tower {RZKG,b} extending the Galois action of G(Zp), which com-
mutes with the natural Jb(Qp)-action and the Weil descent datum over E.

This shows that on the “`-adic” cohomology of the tower {RZKG,b}, we have a
natural action of WE × Jb(Qp)×G(Qp).

7.5. Period morphisms. Set EG,b := D(XG,b)RZG,b , which is a vector bundle on
RZG,b equipped with a filtration Fil1XG,b . From the universal Tate tensors tα : 1 →
E⊗G,b, we get morphisms of rigid analytic F -isocrystals trigα : 1 → (E rig

G,b)
⊗. Note

that the (universal) quasi-isogeny ιred : (X)(RZG,b)red
99K (XG,b)(RZG,b)red

induces an
isomorphism of vector bundles on RZ

rig
G,b

E rig
G,b

∼−→ O
RZ

rig
G,b
⊗Zp Λ

which matches (trigα ) with the maps (1 7→ 1 ⊗ sα); indeed, the rigid analytic F -
isocrystal E rig

G,b only depends on D((XG,b)(RZG,b)red
)[ 1
p ], as explained in [11, §5.3].

Let FlG,{µ} denote the projective rigid analytic variety over K0 obtained from

the analytification of FlK0⊗Λ∗,(1⊗sα)
GK0

,{µ} (cf. §2.2). It follows that (Fil1XG,b)
rig ⊂ E rig

G,b

defines a natural map

(7.5.1) π : RZrig
G,b → FlG,{µ},

which we call the period map. By letting Jb(Qp) act on FlG,{µ} via embedding
Jb(Qp) ⊂ G(K0) the period map π is Jb(Qp)-equivariant. In order to have compat-
ibility with Weil descent data, one has to modify the target of the period map as in
the case of (P)EL Rapoport-Zink spaces. Indeed, for ∆ := HomZ(X∗(G)Gal(Qp/Qp),Z),
we obtain the map ℵ : RZG,b → ∆ from [8, Lemma 2.2.9], generalising the
(P)EL case [39, §3.52]; indeed, the aforementioned result gives a functorial map
HomW (Spf A, RZG,b) → π1(G) for formally smooth formally finitely generated W -
algebraA (noting that for a maximal torus T ⊂ GW , the natural projectionX∗(T )�
π1(G) defines a map π1(G) → ∆ via evaluation).36 We then define a Weil descent
datum on FlG,{µ}×∆ using the same formula as in [39, §5.43]. One can show that
(π,ℵ) is compatible with the Weil descent datum, generalising the (P)EL case [39,
§5.46].

Proposition 7.5.2. The period map π is étale in the sense that there exist open affinoid
coverings {Ui} of RZrig

G,b and {Vi} of FlG,{µ} such that for each i we have π(Ui) ⊂ Vi

36One can explicitly describe ℵ on Fp-point as follows: it is the map that sends gG(W ) ∈ XG(b) to
the homomorphism [χ 7→ ordp χ(g)] where χ : GQp → Gm is a homomorphism over Qp and g is any
representative of gG(W ).
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and π : Ui → Vi is given by an étale ring map of the corresponding affinoid algebras
(cf. [39, §5.9]).

Proof of Proposition 7.5.2. The proof is almost the same as the proof of [39, Propo-
sition 5.15], using Corollary 5.2.2 in the place of the Grothendieck-Messing defor-
mation theory.

As in the case of schemes of finite type over a field, étaleness can be checked via
infinitesimal lifting property for nilpotent thickenings supported at classical points
by [39, Proposition 5.10]. To unwind this criterion, let A′ � A be a square-zero
thickenings of local K0-algebras which are finite dimensional over K0. Let A◦ ⊂ A
and A′◦ ⊂ A′ respectively denote the subrings of power-bounded elements [42,
Definition 2.1.1]. Then we claim that the dotted arrow in the commutative diagram
below can be uniquely filled:

Spa(A,A◦) //
� _

��

RZ
rig
G,b

π

��

Spa(A′, A′◦) //

∃!
88

FlG,{µ}

Let us translate this diagram in more concrete terms. Let Fil1A′ ⊂ A′ ⊗Zp Λ be a
{µ}-filtration such that for a finite flat W -subalgebra R0 ⊂ A there exists a map
f : Spf R0 → RZG,b such that the isomorphism

(7.5.3) A⊗R0 D(X)(R0)
∼−−−→

D(ι)A
A⊗Zp Λ,

takes the Hodge filtration A ⊗R0 Fil1X to A ⊗A′ Fil1A′ , where (X, ι) is the pull-back
of the universal object (XG,b, ι) by f , and D(ι)A is the isomorphism induced by
ι. The existence of the dotted arrow translates as the existence of a finite flat W -
subalgebra R′ ⊂ A′ and a map f ′ : Spf R′ → RZG,b lifting f in some suitable sense,
such that the Hodge filtration A′⊗R′ Fil1X′ corresponds to Fil1A′ by the isomorphism
D(ι′)A′ , where (X ′, ι′) is the pull-back of (XG,b, ι) by f ′. (Note that the uniqueness
of the dotted arrow follows from the Grothendieck-Messing deformation theory.)

We choose a finite flat W -subalgebra R′ ⊂ A′, and let R ⊂ A denote the image
of R′ in A. Assume that R contains R0. Note that the pull-back of the universal
quasi-isogeny induces an isomorphism

(7.5.4) A′ ⊗R′ D(XR)(R′)
∼−−−−→

D(ι)A′
A′ ⊗Zp Λ,

where we give the square-zero PD structure on R′ � R.
By increasing R′ if necessary, we may assume that the intersection

Fil1R′ := Fil1A′ ∩D(XR)(R′)

is a {µ}-filtration with respect to (tα(R′)), where (tα) is the pull-back of the uni-
versal Tate tensors over RZG,b. To see this, note that A′◦ is the preimage of the
valuation ring of the residue field of A′. Then by valuative criterion for properness
applied to the projective R′-scheme Fl

D(XR)(R′),(tα(R′))
G,{µ} , it follows that the A′-point

corresponding to Fil1A′ uniquely extends to an A′◦-point, so this A′◦-point has to be
defined over some finite R′-subalgebra R′′ ⊂ A′◦. We rename R′′ to be R′. Now,
the existence of (X ′, ι′) lifting (XR, ι) follows from Corollary 5.2.2. �

Remark 7.5.5. One defines étale maps for adic spaces to be maps locally of finite
presentation satisfying the usual infinitesimal lifting property for formal étale-ness
using any affinoid (K0,W )-algebras as test objects; cf. [23, Definition 1.6.5]. By
[23, Example 1.6.6(ii)] and [39, Proposition 5.10], this definition coincides with
the definition of étale morphisms given in Proposition 7.5.2.
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7.6. Infinite-level Rapoport-Zink spaces. In this section, all the rigid analytic
spaces are regarded as adic spaces in the sense of [42, Definition 2.1.5].

Since we will not directly work with the definitions of (pre)perfectoid spaces,
we refer to [42, §2.1] for basic definitions. Roughly speaking, a preperfectoid space
over Spa(K0,W ) is an adic space over Spa(K0,W ) which becomes a perfectoid
space after base change over any perfectoid extension (K,K+) of (K0,W ) and
take the “p-adic completion”; cf. [42, Definition 2.3.9]. In particular, preperfectoid
spaces may be non-reduced as explained in [42, Remark 2.3.5].

Scholze and Weinstein [42, Theorem D] constructed a preperfectoid space RZ∞X
over RZ

rig
X , which can be viewed as the “infinite-level” Rapoport-Zink space. (In

[42] RZ∞X is denoted as M∞.) By definition, RZ∞X parametrises Zp-equivariant
morphism over RZrig

X
Λ→ (lim←−XRZX [pn])ad

(K0,W )

which induces an isomorphism Λ
∼−→ (lim←−XRZX [pn])ad

(K0,W )(K,K
+) of Zp-modules

on the fibres at each point Spa(K,K+)→ RZ
rig
X . Here, the target is the generalised

adic space over (K0,W ) associated to a formal scheme over W admitting a finitely
generated ideal of definition [42, §2.2], which extends the rigid analytic generic
fibre construction.

For any open compact subgroup K′ ⊂ GLZp(Λ)(Zp), there exists a natural pro-
jection RZ∞X → RZK

′

X respecting the tower. It may not be known whether RZ∞X
represents the projective limit of RZK

′

X as sheaves (or even, whether one should ex-
pect this)37. In other words, although any map Spa(A,A+) → RZ∞X gives rise to
an isomorphism Λ

∼−→ T (XRZX)(A,A+) of lisse Zp-sheaves on Spa(A,A+), obtained
from the natural maps RZ∞X � RZK

′

X , it is not known whether the “converse” holds.
Instead of working with a problematic notion of projective limit, Scholze and

Weinstein [42, Theorem 6.3.4] showed that a weaker notion of equivalence RZ∞X ∼
lim←− RZK

′

X holds, where ∼ is defined in [42, Definition 2.4.1]. To simplify the de-
scription of the equivalence, note that any projection RZ∞X → RZK

′

X has the property
that there exists an affinoid open cover {Spa(Aξ, A

+
ξ )} of RZ∞X whose image in RZK

′

X
is an affinoid open cover {Spa(AK′,ξ, A

+
K′,ξ)} for each K′. (This follows from the

cartesian square in the first paragraph of the proof of [42, Theorem 6.3.4].) By the
equivalence RZ∞X ∼ lim←− RZK

′

X we mean that:

• The natural map on the topological space |RZ∞X | → lim←−|RZ
K′

X | is a homeo-
morphism.

• Using the notation introduced above the image of lim−→AK′,ξ in Aξ is dense
for each ξ.

Let K(i) ⊂ G(Zp) and K′(i) ⊂ GLZp(Λ)(Zp) respectively denote the kernel of
reduction modulo pi. We define RZ∞G,b to be the “projective limit” of RZ∞X ×RZK

′(i)
X

RZK
(i)

G,b ; more concretely, we let RZ∞G,b be the closed adic subspace of RZ∞ cut out by

the equations defining RZ∞X ×RZK
′(i)

X
RZK

(i)

G,b for all i.

Note that the natural projection RZ∞X � RZK
′(i)

X restricts to RZ∞G,b � RZK
(i)

G,b , which
factors as

RZ∞G,b ↪→ RZ∞X ×RZK
′(i)

X
RZK

(i)

G,b � RZK
(i)

G,b .

Therefore, a morphism Spa(A,A+) → RZ∞G,b gives rise to an isomorphism Λ
∼−→

T (XG,b)(A,A+) of lisse Zp-sheaves on Spa(A,A+), which matches (sα) and (tα,ét),
where XG,b is the universal p-divisible group over RZG,b.

37Indeed, taking projective limits of adic spaces is problematic as explained in [42, §2.4].
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Proposition 7.6.1. The adic space RZ∞G,b is a preperfectoid, and we have RZ∞G,b ∼
lim←−K

RZKG,b.

Proof. Since any closed subspace of a preperfectoid space is a preperfectoid space
([42, Proposition 2.3.11]) it remains to show RZ∞G,b ∼ lim←−K

RZKG,b.
On the underlying topological space we clearly have a natural homeomorphism.

|RZ∞G,b|
∼−→ lim←−

K

|RZKG,b|.

To verify the other condition, let {Spa(Aξ, A
+
ξ )} be an affinoid open covering of RZ∞X

whose image in RZK
′(i)

X is an affinoid open cover {Spa(Ai,ξ, A
+
i,ξ)}. Let Spa(Bξ, B

+
ξ ) ⊂

RZ∞G,b be the pull-back of Spa(Aξ, A
+
ξ ), and we similarly define Spa(Bi,ξ, B

+
i,ξ) ⊂

RZK
(i)

G,b . Then we have the following commutative diagram

lim−→Ai,ξ //

����

Aξ

����

lim−→Bi,ξ // Bξ

,

where the right vertical arrow is a quotient map and the upper horizontal arrow
has a dense image. It thus follows that the lower horizontal arrow also has a dense
image. This shows RZ∞G,b ∼ lim←−K

RZKG,b. �

Remark 7.6.2. As remarked in the introduction of [42], it should be possible to
obtain an “infinite-level Rapoport-Zink space” RZ∞G,b for (G, b) (or at least, an adic
space equivalent to RZ∞G,b) directly without going through finite levels, and obtain
an “explicit description” of RZ∞G,b using the theory of vector bundles on Fargues-
Fontaine curves (in the spirit of [42, Theorem D]). Such a construction should
work for more general class of “local Shimura data” (G, [b], {µ−1}).

8. DIGRESSION ON CRYSTALLINE COMPARISON FOR p-DIVISIBLE GROUPS

The goal of this section is to prove Theorem 7.1.6, for which we need to recall
the basic constructions and crystalline comparison theory for p-divisible groups.
We will use the notation and setting as in §7.1. and we additionally assume that
X = Spf R is a connected formal scheme which is formally smooth and formally of
finite type over W , Ω̂R/W is free over R, and one can take an R-basis dui such that
ui ∈ R× for all i. The choice of R is more general than [7] (where various natural
properties of (relative) period rings are proved), but one can rather easily deduce
the properties of crystalline period rings that are relevant for us.38

In this section we allow p = 2. Although all the results hold when κ is a perfect
field (instead of an algebraically closed field) with little modification in the proofs,
we continue to assume that κ is algebraically closed for the notational simplicity.

8.1. Crystalline period rings. Choose a separable closure E of Frac(R), and define
R to be the union of normal R-subalgebras R′ ⊂ E such that R′[ 1

p ] is finite étale

over R[ 1
p ]. Set R̂ := lim←−nR/(p

n). (When R is a finite extension of W , we have R =

OK0
.) We let η̄ denote the geometric generic point of any of SpecR[ 1

p ], SpecR[ 1
p ],

and Spec R̂[ 1
p ].

38The properties of Bcris(R) that will be used can be rather easily deduced by the same proof as in
[7]. More subtle properties which require refined almost étaleness, such as R[ 1

p
]-flatness and the π1-

invariance, will not be used in this paper, although they are obtained in [25, §5] by slightly extending
refined almost étaleness and repeating the proof of [7].
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Let us briefly discuss the relation between the étale fundamental group of SpecR[ 1
p ]

and the algebraic fundamental group of (Spf R)rig. For any finite étale R[ 1
p ]-algebra

A, let RA be the normalisation of R in A. Since R is excellent39, RA is finite over
R. By construction, (Spf RA)rig is finite étale over (Spf R)rig, so we obtain a functor
SpecA  (Spf RA)rig from finite étale covers of SpecR[ 1

p ] to finite étale covers of
(Spf R)rig. This induces a natural map of profinite groups

(8.1.1) πfét
1 ((Spf R)rig, x̄)→ πét

1 (SpecR[1/p], x̄),

for any geometric closed point x̄ of SpecR[1/p], which can also be viewed as a
“geometric point” of (Spf R)rig.

Remark 8.1.2. In the case we care about (such as T (X)x̄ for a p-divisible group X
over R), the action of πfét

1 ((Spf R)rig, x̄) factors through πét
1 (SpecR[1/p], x̄).

We set40

R
[

:= lim←−
x7→xp

R/(p),

which is a perfect O[
K0

-algebra equipped with a natural action of πét
1 (SpecR[ 1

p ], η̄).

For any (xn)n∈Z>0
∈ R[, define

x(n) := lim
m→∞

(x̃m+n)p
m

for any lift x̃m+n ∈ R̂ of xm+n ∈ R/(p). Note that x(n) is well-defined and inde-
pendent of the choices involved. Consider the following W -algebra map:

(8.1.3) θ : W (R
[
)→ R̂ , θ(a0, a1, · · · ) :=

∞∑
n=0

pna(n)
n .

which is over the classical map W (O[
K0

) � O
K̂0

. The kernel of θ (8.1.3) is a

principal ideal generated by an explicit element p − [p[], where p[ = (an) with
an =“p1/n mod p”. This claim follows from Lemma 8.1.4 below, since p − [p[] also
generates the kernel of W (O[

K0
)� O

K̂0
.

We consider the R-linear extension θR : R ⊗W W (R
[
) � R̂ of θ, and define

Acris(R) to be the p-adic completion of the PD envelop of R⊗WW (R
[
) with respect

to ker(θR). (Note that the notation is incompatible with Acris(R) for f-semiperfect
ring R introduced in §5.3. In this section, Acris(R) as in §5.3 will not appear.) We

let Fil1Acris(R) denote the kernel of Acris(R)� R̂, which is an PD ideal.
By choosing a lift of Frobenius σ : R→ R (which exists by the formal smoothness

of R), one defines a lift of Frobenius σ on R⊗W W (R
[
), which extends to Acris(R).

The universal continuous connection d : R → Ω̂R/W extends (by usual divided
power calculus) to a p-adically continuous connection ∇ : Acris(R) → Acris(R) ⊗R
Ω̂R/W . Finally Acris(R) has a natural πét

1 (SpecR[ 1
p ], η̄)-action, which extends the

natural action on R
[

and fixes R.

Lemma 8.1.4. The natural map

(R⊗̂WW (R
[
))⊗̂W (O[

K0
)Acris(W )→ Acris(R)

39Note that R is a quotient of some completion of a polynomial algebra over W by [11,
Lemma 1.3.3], and such a ring is known to be excellent (cf. [43, Theorem 9]).

40Perhaps, (R̂)[ would be a more precise notation as (R̂[ 1
p

], R̂) is a perfectoid affinoid Ŵ -algebra,

but the notation R[ would cause no confusion.
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is an isomoprhism, where ⊗̂ denote the p-adically completed tensor product.

Proof. We want to show that the above map is an isomorphism modulo pm for each
m. Since Acris(R)/pm is the PD envelop of (θR mod pm) over W/pm, it suffices to

show that R⊗WWm(R
[
) is flat over Wm(O[

K0
) for each m by [5, Proposition 3.21].

By local flatness criterion, it suffices to show that R
[

is flat over O[
K0

. (Note that R

is flat over W .) Since O[
K0

is a valuation ring (of rank 1), O[
K0

-flatness is equivalent

to torsion-freeness, but clearly R
[

has no nonzero O[
K0

-torsion. �

Lemma 8.1.4 allows us to deduce explicit descriptions of Acris(R) from Acris(W ),
which is well-known; cf. [19, §5].

SinceAcris(R) is anAcris(W )-algebra, the element t ∈ Acris(W ), which is “Fontaine’s
p-adic analogue of 2πi”, can be viewed as an element of Acris(R). We define

B+
cris(R) := Acris(R)[ 1

p ], Bcris(R) := B+
cris(R)[ 1

t ] = Acris(R)[ 1
t ].

The Frobenius endomorphism σ and the connection ∇ extends to B+
cris(R) and

Bcris(R). We define the filtration Filr B+
cris(R) (for r > 0) to be the ideal generated

by the rth divided power ideal of Acris(R), and set

Filr Bcris(R) :=
∑
i>−r

t−i Fili+r B+
cris(R),

for any r ∈ Z.

Lemma 8.1.5. We have

Zp = Acris(R)σ=1;∇=0;

Qp = (Fil0Bcris(R))σ=1;∇=0.

Idea of the proof. One may repeat the proof of [7, Corollaire 6.2.19]. Indeed, the
main ingredient of the proof is an explicit description of Acris(R) in terms of “t-adic
expansions” [7, Proposition 6.2.13], which can be deduced, via Lemma 8.1.4, from
the classical result on Acris(W ) in [19, §5.2.7]. �

8.2. Crystalline comparison for p-divisible groups. Now, let X be a p-divisible
group over R, and let η̄ : R→ E denote the geometric generic point, where E is the
separable closure of FracR that contains R. We can consider T (X) as a lisse Zp-
sheaf on either SpecR[ 1

p ] or (Spf R)rig. (This will not lead to any serious confusion
as observed in Remark 8.1.2.)

Then we have

(8.2.1) T (X)η̄ ∼= Hom
R̂

(Qp/Zp, X
R̂

),

which defines a natural map

(8.2.2) ρX : T (X)η̄ → Hom(D(X
R̂

)(Acris(R)), Acris(R))

by sending f ∈ T (X)η̄ to the pull-back morphism f∗ : D(X
R̂

) → 1 = D(Qp/Zp)
evaluated at Acris(R). First, note that D(X)(Acris(R)) is naturally isomorphic to
Acris(R)⊗RD(X)(R), and this identification respects the Frobenius endomorphism
and the connections. So for any f ∈ T (X)η̄, the morphism ρX(f) : D(X)(R) →
Acris(R) respects both the Frobenius action F and the connections ∇, and ρX(f)
maps the Hodge filtration Fil1X ⊂ D(X)(R) into Fil1Acris(R). Furthermore, ρX is
equivariant under the natural πét

1 (SpecR[ 1
p ], η̄)-action, where it acts on Acris(R) by

the usual action.
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To summarise, the following map can be obtained by Bcris(R)-linearly extending
ρX and dualising it:

(8.2.3) Bcris(R)⊗R D(X)(R)→ Bcris(R)⊗Qp V (X)∗η̄.

Furthermore, this map respects the naturally defined Frobenius-actions, connec-
tions, filtrations, and πét

1 (SpecR[ 1
p ], η̄)-action. (Here, we declare that V (X)∗η̄ is hor-

izontal, is fixed by the Frobenius action, and lies in the 0th filtration, and D(X)(R)
carries the trivial πét

1 (SpecR[ 1
p ], η̄)-action.)

Let x : R→ OK be a map where OK is a complete discrete valuation W -algebra
with residue field κ, and choose a “geometric point” x̄ : R → OK ↪→ O

K̂
. We can

extend x̄ to R̂→ O
K̂

, also denoted by x̄.
We can repeat the construction of (8.2.3) for the p-divisible group Xx over

OK , although OK is not necessarily formally smooth over W (i.e., absolutely un-
ramified). Recall that we have a natural isomorphism of isocrystals D(Xx)[ 1

p ] ∼=
D((Xx,κ)OK/p)[

1
p ] induced by

D(Xx) ∼= D(Xx,OK/p)
FrobrOK/p←−−−−−− D(σr∗(Xx,OK/p))

∼= D((σr∗Xx,κ)OK/p)
Frobrκ−−−−→ D((Xx,κ)OK/p),

lifting the identity map on D(Xx,κ)[ 1
p ], where r is chosen so that the maximal ideal

of OK/p is killed by prth power, and FrobrOK/p and Frobrκ respectively denote the
rth iterated relative Frobenius morphisms forXx,OK/p andXx,κ. With this choice of
r, we have σr∗(Xx,OK/p)

∼= (σr∗Xx,κ)OK/p. The resulting isomorphism D(Xx)[ 1
p ] ∼=

D((Xx,κ)OK/p)[
1
p ] is independent of the choice of r.

From this we get a natural isomorphism:

(8.2.4) D(Xx)(Acris(W ))[ 1
p ] ∼= B+

cris(W )⊗W D(Xx,κ)(W ).

We also have a natural Gal(K/K)-isomorphism

(8.2.5) T (Xx)x̄ ∼= Hom
K̂

(Qp/Zp, Xx̄).

Now, by repeating the construction of the map (8.2.3) we obtain

(8.2.6) Bcris(W )⊗W D(Xx,κ)(W )→ Bcris(W )⊗Qp V (Xx)∗x̄,

which respects the naturally defined Frobenius action, connection, filtration, and
Gal(K/K)-action.

Theorem 8.2.7. The maps (8.2.3) and (8.2.6) are isomorphisms.

More general version of this theorem is proved in [25, Theorem 5.3].

Idea of the proof. By Theorem 7 in [17, §6], it follows that (8.2.6) is an isomor-
phism. To prove that (8.2.3) is an isomorphism, we repeat the proof of [17, Theo-
rem 7] to show that the following map

Acris(R)⊗R D(X)(R)→ Acris(R)⊗Qp V (X)∗η̄,

induced by ρX (8.2.2), is injective with cokernel killed by t. One first handles
the case when X = µp∞ either by considering the PD completion of Acris(R) as
originally done by Faltings41 or by some explicit computation with the Artin-Hasse
exponential map as in [42, §4.2]. Now one deduces the general case from this by
some Cartier duality argument, as explained in [17, §6]. �

41See the footnote in the proof of [25, Theorem 6.3] for slightly more details.
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Let us now show that the (relative) crystalline comparison isomorphism (8.2.3)
interpolates the crystalline comparison isomorphisms at classical points (8.2.6).
For x as before, we set x̄ : R

x−→ OK ↪→ O
K̂

, and choose an extension x̄ : R̂ → K̂.
(Indeed, we can lift the geometric point R[ 1

p ] → K to R[ 1
p ] → K, and R maps to

OK . We then take the p-adic completion.)
By (8.2.1) and (8.2.5), we get an isomorphism

(8.2.8) T (X)η̄
∼−→ T (X)x̄ ∼= T (Xx)x̄,

sending Qp/Zp → X
R̂

to its fibre at x̄ : R̂→ O
K̂

.

Note that x̄ induces a map x̄[ : R
[ → O[

K̂
. Choose x0 : R → W such that x0

and x induce the same κ-point of R (which is possible as R is formally smooth over
W ). Then the map x0 ⊗W (x̄[) : R ⊗W W (R

[
) → W (O[

K̂
) extends to Acris(R) →

Acris(W ), respecting all the extra structure possibly except σ; indeed, x0 : R → W
may not respect σ.

Lemma 8.2.9. The following diagram commutes

Bcris(R)⊗R D(X)(R)
∼

(8.2.3)
//

��

Bcris(R)⊗Qp V (X)∗η̄

(8.2.8)
��

Bcris(W )⊗W D(Xx,κ)(W )
∼

(8.2.6)
// Bcris(W )⊗Qp V (X)∗x̄

,

where the left vertical arrow is induced from

B+
cris(W )⊗Acris(R) D(X)(Acris(R))

∼= D(Xx)(Acris(W ))[1/p] ∼= B+
cris(W )⊗W D(Xx,κ)(W ).

Here, the second isomorphism is (8.2.4).

Proof. Clear from the construction. �

We extend the isomorphism (8.2.3) to the following isomorphism:

(8.2.10) Bcris(R)⊗RD(X)(R)⊗
∼−→ Bcris(R)⊗Qp(V (X)∗η̄)⊗ = Bcris(R)⊗QpV (X)⊗η̄ ,

respecting all the extra structures. Now, given t : 1→ D(X)⊗ as in Theorem 7.1.6,
the element

t(Acris(R)) = 1⊗ t(R) ∈ Acris(R)⊗R D(X)(R)⊗ ⊂ Bcris(R)⊗R D(X)(R)⊗

is fixed by the Frobenius and πét
1 (SpecR[ 1

p ], η̄)-action, is killed by the connection,
and lies in the 0th filtration. By the isomorphism (8.2.10) and Lemma 8.1.5, the
above element 1 ⊗ t(R) corresponds to an element tét,η̄ ∈ V (X)⊗η̄ fixed by the
πét

1 (SpecR[ 1
p ], η̄)-action. Therefore, by the usual dictionary there exists a unique

map of lisse Qp-sheaves

(8.2.11) tét : 1→ V (X)⊗

such that it induces the map 1 7→ tét,η̄ on the fibre at η̄. By Lemma 8.2.9, tét,x̄
interpolates the étale Tate tensors associated to the fibre of t at classical points.

We want to show that tét is “integral”; i.e., it restricts to tét : 1 → T (X)⊗. For
this, it suffices to show that tét,x̄ ∈ T (X)⊗x̄ for some geometric point x̄. (Note that R
is assumed to be a domain.) By formal smoothness, we may choose x̄ that lies over
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x : R → W . In the next section, we verify the integrality claim using the theory of
Kisin modules.42

8.3. Review of Kisin theory. For simplicity43, we assume that OK = W . We follow
the treatment of §1.2 and §1.4 in [29]. Let S := W [[u]] and define σ : S → S by
extending the Witt vectors Frobenius by σ(u) = up.

Definition 8.3.1. By Kisin module we mean a finitely generated free S-module M
equipped with a σ-linear map ϕ : M → M[ 1

p−u ] whose linearisation induces an
isomorphism 1⊗ ϕ : σ∗M[ 1

p−u ]→M[ 1
p−u ].

For i ∈ Z we define Fili(σ∗M[ 1
p ]) := (1 ⊗ ϕ)−1((p − u)iM[ 1

p ]). There is a good
notion of subquotients, direct sums, ⊗-products, and duals.

We choose p[ ∈ O[
K0

and define S→W (O[
K0

)(⊂ Acris(W )) by sending u to [p[].
The following can be extracted from the main results of [28]:

Theorem 8.3.2. There exists a covariant rank-preserving fully faithful exact functor
M : L 7→ M(L) from the category of Gal(K0/K0)-stable Zp-lattices of some crys-
talline representations to the category of Kisin modules, respecting ⊗-products and
duals. Furthermore, the functor M satisfies the following additional properties:

(1) We have natural ϕ-equivariant isomorphisms

Bcris(W )⊗Zp L
∼= Bcris(W )⊗σ,S M(L)

∼= Bcris(W )⊗σ,W M(L)/uM(L),

which identifies Dcris(L[ 1
p ]) ∼= σ∗(M(L)/uM(L))[ 1

p ].
(2) We have a natural filtered isomorphism

DdR(L[1/p]) ∼= (σ∗M(L)[ 1
p ])/(u− p),

where on the target we take the image filtration of Fil•(σ∗M(L)[ 1
p ]).

(3) For two Zp-lattice crystalline Gal(K0/K0)-representations L and L′, let f :
M(L) → M(L′) be an ϕ-equivariant map. Then there exists at most one
Gal(K0/K0)-equivariant map f : L → L′ with M(f) = f, and such f exists
if and only if the map

Bcris(W )⊗σ,S M(L)
1⊗f−−→ Bcris(W )⊗σ,S M(L′)

is Gal(K0/K0)-equivariant, in which case f [ 1
p ] is obtained from the ϕ-invariance

of the 0th filtration part of the isomorphism above.

Proof. The theorem follows from the statement and the proof of [28, Proposi-
tion 2.1.5]. Seel also [29, Theorem 1.2.1], where (1) and (2) are deduced from
[28]. �

We continue to assume that OK = W , so we have Dcris(L[ 1
p ]) = DdR(L[ 1

p ]) as
K-modules.

We clearly have that M(1) = (S, σ) (where 1 denotes Zp equipped with the
trivial Gal(K0/K0)-action). If there is no risk of confusion, we let 1 also denote the
Kisin module (S, σ).

42The integral refinement of (8.2.10) a la Fontaine-Laffaille does not work in general unless t factors
through a factor of D(Xx)⊗ with the gradings concentrated in [a, a+ p− 2].

43The rest of the discussion can be modified for OK that are (finitely) ramified.
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Corollary 8.3.3. For M := M(L), the isomorphisms in Theorem 8.3.2(1) induce

L[1/p]Gal(K0/K0) ∼= σ∗M[1/p]ϕ=1 ∼= Fil0DdR(L[1/p]) ∩Dcris(L[1/p])ϕ=1,

which restrict to

LGal(K0/K0) ∼= (σ∗M)ϕ=1 ∼= Fil0DdR(L[1/p]) ∩ (W ⊗σ,S M)ϕ=1.

Proof. The first isomorphism is obtained by taking Gal(K0/K0)- and ϕ- invariance
to the 0th filtration part of the isomorphisms in Theorem 8.3.2(1). Indeed, we have
(σ∗M[ 1

p ])ϕ=1 ⊂ Fil0(σ∗M[ 1
p ]) by definition of Fil0(σ∗M[ 1

p ]).

Let us show the last integrality assertion. Note that we have 1⊗ϕ : (σ∗M)ϕ=1 ∼−→
Mϕ=1. Now Theorem 8.3.2(3) shows that the following map

LGal(K0/K0) = HomGal(K0/K0)(1, L)→ HomS,ϕ(1,M(L)) = Mϕ=1,

sending f : 1 → L to M(f) : 1 → M, is an isomorphism, and it induces the
isomorphism L[ 1

p ]Gal(K0/K0) ∼−→ σ∗M[1/p]ϕ=1 ∼−−−→
1⊗ϕ

M[ 1
p ]ϕ=1 that we have just

proved.
To show that the mod u reduction (σ∗M)ϕ=1 → Fil0DdR(L[1/p]) ∩ (W ⊗σ,S

M)ϕ=1 is an isomorphism, note that the natural inclusion LGal(K0/K0) → L corre-
sponds to the following inclusion of Kisin modules

S⊗Zp L
Gal(K0/K0) ∼= S⊗Zp M

ϕ=1 ↪→M.

The image of this map is a direct factor as a S-module since LGal(K0/K0) → L
is a direct factor as a Zp-module. Then, it is not difficult to show the Qp-linear
isomorphism σ∗M[1/p]ϕ=1 ∼= Fil0DdR(L[1/p])∩Dcris(L[1/p])ϕ=1 matches the given
Zp-lattices, as desired. �

Theorem 8.3.4. For any p-divisible group Y overW , the isomorphismDcris(V (Y )∗) ∼=
D(Y )(W )[ 1

p ] restricts to an isomorphism of F -crystals

W ⊗σ,S M(T (Y )∗) ∼= D(Y )(W ).

If we invert p, then the Hodge filtration on the right hand side induces the the image
filtration of Fil• σ∗M(T (Y )∗)[ 1

p ] on the left hand side.

Proof. If p > 2 or X∨ is connected, then this is a result of Kisin (cf. [29, Theo-
rem 1.4.2]. The remaining case when p = 2 follows from [27, Proposition 4.2(1)].

�

Proof of Theorem 7.1.6. Let us first show Theorem 7.1.6 when X is a p-divisible
group over R, where R is as in the beginning of §8. For t : 1 → D(X)⊗ as in
Theorem 7.1.6, let tét : 1 → V (X)⊗ denote its étale realisation as constructed in
(8.2.11). We choose x : R → W and a “geometric point” x̄ supported at x. Set
Mx := M(T (Xx)∗x̄) and Mx := D(Xx)(W ). By Theorem 8.3.4 we have a natural
F -equivariant isomorphism

(8.3.5) W ⊗σ,S Mx
∼= Mx.

Let tS,x̄ ∈ (M⊗x [ 1
p ])ϕ=1 be the tensor corresponding to tét,x̄ ∈ (V (X)⊗x̄ )Gal(K0/K0)

by Corollary 8.3.3.
We want to show that tét is integral, for which it suffices to show that tS,x̄ ∈

(M⊗x )ϕ=1 by Corollary 8.3.3. Recall that tét,x̄ is constructed so that it corresponds to
the morphism tx : 1→ D(Xx)⊗ by the crystalline comparison isomorphism. It now
follows from Theorem 8.3.2(1) and (8.3.5) that the following natural isomorphism

K0 ⊗σ,S[1/p] M
⊗
x [ 1

p ] ∼= M⊗x [ 1
p ]
( ∼= Dcris(V (X)∗x̄)⊗

)
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matches 1⊗ tS,x̄ with tx(W ). But since tx(W ) ∈ Fil0 M⊗x (not just in M⊗x ), we ob-
tain tS,x̄ ∈ (M⊗x )ϕ=1 from Corollary 8.3.3 and (8.3.5). This shows Theorem 7.1.6
when X = Spf R.

To prove Theorem 7.1.6 in general, note that that X admits a Zariski open cover-
ing {Uξ} where each Uξ = Spf Rξ satisfies the assumption as in the beginning of §8.
We have just proved that there exists a morphism tét|Urig

ξ
: 1 → T (XUξ)

⊗ for each

ξ that satisfies the condition in the theorem, and these morphisms should coincide
at each overlap by uniqueness. So the locally defined tensors {tét|Urig

ξ
} glue to give

a tensor tét on X , which concludes the proof. �
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