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ABSTRACT. We show that the integral canonical models of Hodge-type Shimura
varieties at odd good reduction primes admits “p-adic uniformisation” by Rapoport-
Zink spaces of Hodge type constructed in [15].
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1. INTRODUCTION

Shimura varieties have many interesting structures and symmetries which en-
code arithmetic information. It is now a standard folklore conjecture that the co-
homology of Shimura varieties should realise the global Langlands correspondence.
It is natural to look for a purely local analogue of Shimura varieties, whose cohomo-
logy should realise the local Langlands correspondence, and ask how the local-
global compatibility is encoded geometrically. For example, Carayol [5] showed
that the (height-2) Lubin-Tate tower plays the role of “local Shimura varieties”
and the identification of the Lubin-Tate tower with the completion of the modu-
lar tower at a supersingular point (by Serre-Tate deformation theory) encodes the
local-global compatibility.

Many interesting examples of Shumura varieties can be understood as mod-
uli spaces of certain polarised abelian varieties equipped with the action of some
semi-simple algebra and level structure. Such Shimura varieties are called of PEL
type, and examples include modular curves, Siegel modular varieties, and unitary
Shimura varieties. The purely local analogue of PEL Shimura varieties was con-
structed by Rapoport and Zink [30], which are now called Rapoport-Zink spaces
of EL or PEL type. In the good reduction case, Rapoport-Zink spaces are mod-
uli spaces of p-divisible groups with some action of semi-simple algebra (and pos-
sibly with polarisation), up to rigidification (by quasi-isogeny). Furthermore, they
showed the relationship between certain Rapoport-Zink spaces of (P)EL type and
PEL Shimura varieties in a way that is analogous to the complex analytic uniform-
isation of Shimura varieties and generalises some known examples (of modular
and Shimura curves via Lubin-Tate and Drinfeld towers); cf. [30, Ch.6]. We call
this result the Rapoport-Zink uniformisation of PEL Shimura varieties.
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There is a more general class of Shimura varieties which, over C, parametrise
abelian varieties with certain Hodge cycles. They are called Shimura varieties of
Hodge type. An example naturally comes up in relation to the construction of an
abelian variety associated to a polarised complex K3 surfaces (due to Kuga and
Satake). Although such moduli spaces are essentially defined only in character-
istic 0 (as Hodge cycles are defined using singular cohomology with Q-coefficients),
recent developments in integral p-adic Hodge theory allow us to study certain “nat-
ural” integral models of such Shimura varieties at odd good reduction primes. See
Kisin [17] and Vasiu [31, 32, 33] for the statement and the proof.

In the author’s previous work [15], the local analogue of Hodge-type Shimura
varieties for p > 2 (called Rapoport-Zink spaces of Hodge type) was constructed un-
der a certain unramifiedness assumption, generalising the construction of Rapoport-
Zink spaces of (P)EL type; loosely speaking, Rapoport-Zink spaces of Hodge type
can be thought of as moduli spaces of p-divisible groups with Tate tensors (instead
of endomorphisms and polarisation) up to rigidification by quasi-isogeny. In this
paper, we prove the Hodge-type generalisation of the Rapoport-Zink uniformisation
for odd good reduction prime.

To simplify the statement, we recall the theorem in the basic case, although we
obtain the Rapoport-Zink uniformisation in the non-basic case as well. Let (G,H)
be a Shimura datum of Hodge type (with G connected), and assume that G admits
a reductive Z(p)-model for p > 2, also denoted as G. Let E := E(G,H) denote
the reflex field, and we choose a prime p over p, which is necessarily unramified.
Then the aforementioned result of Vasiu and Kisin produces an “integral canonical
model” SK of ShK(G,H), where K = KpK

p with Kp = G(Zp) and Kp ⊂ G(Apf ) is a
“small enough” open compact subgroup.

Let W := W (Fp) and K0 := FracW , viewed as a OE,p-algebra. Let b ∈ G(K0)

be a basic element (in the sense of Definition 2.6.6) which come from an Fp-point
of SK, and let RZG,b denote the Rapoport-Zink space of Hodge type [15] associated
to (G, b); see §4.1 for the details. Let SK,[b] denote the (basic) Newton stratum
indexed by the σ-conjugacy class [b] of b (cf. Theorem 4.10.1).

Theorem 1 (cf. Theorems 4.11 and 5.4). There exists an isomorphism of formal
schemes over W

Θφ : Iφ(Q)\RZG,b ×G(Apf )/Kp → (SK,W )/SK,[b]
,

where Iφ(Q) is the group of self quasi-isogenies of abelian varieties with tensors com-
ing from a closed point of SK,[b]. The target of the isomorphism is the completion of
SK,W at the basic Newton stratum SK,[b]. Furthermore, the isomorphism Θφ nat-
urally descends over OE,p, and on the rigid analytic generic fibres the isomorphism
extends to a G(Af)-equivariant isomorphism of towers on the both sides.

When b is not basic, we still obtain some variant of the theorem where the target
of the isomorphism is replaced by a more complicated formal scheme (cf. The-
orem 4.7).

Let us make a remark on the proof. Unlike the PEL case, SK does not have a
good moduli interpretation and this causes number of additional difficulties.

First, it is not trivial to construct the morphism RZG,b → ŜK,W , where the target
is the p-adic completion of SK,W . To overcome this problem, we use a deformation-
theoretic trick, exploiting that the completions of ŜK,W at closed points are well-
understood by construction, and the work of Chen, Kisin and Viehmann [6] which
allows us to control the connected components of RZG,b. See Proposition 4.3 and
subsequent remarks for more details.
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At this stage, one can repeat the proof of Theorems 6.21 and 6.23 in [30] to ob-
tain some preliminary version of Rapoport-Zink uniformisation (Theorem 4.7). In
order to promote it to Theorem 1, we need to show that the basic Newton stratum
SK,[b] contains only one isogeny class (Proposition 4.10.3), and the source of the
isomorphism Θφ descends over OE,p (Corollary 4.9.3). To deal with these prob-
lems, we use Kisin’s result of CM lifting of mod p points of SK [18, §2], and its
corollaries. In particular, the aforementioned Kisin’s theorem shows that the quasi-
isogeny group Iφ(Q) is the group of Q-points of the inner form Iφ of G which is
trivial outside p and∞, IφQp = Jb (2.6.4), and Iφ(R) is compact modulo centre.

Recently, Ben Howard and George Pappas [12] gave another construction (us-
ing global techniques) of Hodge-type Rapoport-Zink spaces that come from global
Hodge-type Shimura data, in such a way that the Rapoport-Zink uniformisation
holds by construction. Indeed, their construction relies on the existence of integral
canonical models of Hodge-type Shimura varieties and the Rapoport-Zink uniform-
isation for Siegel modular varieties, and the Hodge-type Rapoport-Zink uniformisa-
tion is obtained by pulling back the Siegel case of Rapoport-Zink uniformisation.
Note that some of the ideas in this paper are used in [12] for the construction
of Hodge-type Rapoport-Zink spaces. Our approach is to construct Hodge-type
Rapoport-Zink spaces by purely local means in [15], and separately obtain the link
with the global theory (i.e., Rapoport-Zink uniformisation).

We have excluded the case of p = 2 because Rapoport-Zink spaces of Hodge type
at p = 2. (Note that the 2-adic integral canonical models were constructed in [16].)
But once we have Rapoport-Zink spaces of Hodge type when p = 2 (which is the
author’s work in progress) then the Rapoport-Zink uniformisation can be extended.

The Rapoport-Zink uniformisation is more interesting in the bad reduction case,
but we do not consider this case as the construction of Rapoport-Zink spaces in
[15] has not been generalised in the bad reduction case. On the other hand, the
recent work of Kisin and Pappas on integral models of Hodge-type Shimura varieties
with parahoric level structure [19] suggests that the uniformisation result can be
generalised to some bad reduction cases.

In §2 and §3 we review basic notions and set up the notation – §2 is for general
notions, and §3 is for Shimura varieties and Rapoport-Zink spaces of Hodge type. In
§4 we obtain the Rapoport-Zink uniformisation at the hyperspecial maximal level
at p, and in §5 we extend the uniformisation to rigid analytic towers.

Acknowledgement. The author would like to thank George Pappas for his careful
reading and providing comments.

2. NOTATION AND PRELIMINARIES

2.1. For any ring R, an R-module M , and an R-algebra R′, we write MR′ :=
R′ ⊗R M . Similarly, if R is a noetherian adic ring and X is a formal scheme over
Spf R, then for any continuous morphism of adic rings R → R′ we write XR′ :=
X×Spf R Spf R′.

2.2. For definitions in category theory, see [35] and references therein. Let C be
a pseudo-abelian1 symmetric tensor category such that arbitrary (infinite) direct
sum exists. Let 1 denote the identity object for ⊗-product in C (which exists by the
axioms of tensor categories).

1Pseudo-abelian categories are defined in the same way as abelian categories, except that we only
require the existence of kernel for idempotent morphisms instead of requiring the existence of kernel
and cokernel for any morphism. In practice, the pseudo-abelian categories that we will encounter are
the category of filtered or graded objects in some abelian category.
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Let D be a full subcategory of C which is stable under direct sums, tensor
products, and direct factors. Assume furthermore that D is rigid; i.e., every ob-
ject of D has a dual. (For example, C can be the category of R-modules filtered
by direct factors, and D can be the full subcategory of finitely generated projective
R-modules.) Then for any object M ∈ D, we let

M⊗ ∈ C
denote the direct sum of any (finite) combination of tensor products, symmetric
products, alternating products, and duals of M . Note that we naturally have

M⊗ = (M∗)⊗.

2.3. Let S be a (not necessarily connected) scheme, and x̄ a geometric point of S.
Then πét

1 (S, x̄) denotes the étale fundamental group of the connected component
of S containing x̄.

2.4. Abelian Schemes. For any abelian scheme f : A → S (where S is any
scheme), we define

VdR(A)
(

= VdR(A/S)
)

:= H1
dR(A/S)∗;(2.4.1a)

VAf
(A)
(

= VAf
(A/S)

)
:=
∏
` 6=∞

′
(R1fét∗Q`)∗,(2.4.1b)

where
∏′ is the restricted product with respect to {(R1fét∗Z`)∗}. Note that (if S

is connected then) for any geometric point x̄ of S the fibre VAf
(A)x̄ has a natural

continuous action of πét
1 (S, x̄).

For any prime p, we can define the p-component VQp(A) := (R1fét∗Qp)∗ and the
prime-to-p component VApf (A) with

(2.4.1c) VAf
(A) = VApf (A)× VQp(A).

With suitably chosen C and D, we can form VdR(A)⊗, VAf
(A)⊗, etc., as in §2.2.

Definition 2.4.2. Let A be an abelian scheme over some scheme S. A de Rham
tensor on A is a filtered OS-morphism tdR : 1→ VdR(A)⊗, where 1 is OS equipped
with the filtration whose grading is concentrated in 0. We will often abuse the
notation and denote by tdR ∈ Γ(S,VdR(A)⊗) the image of 1 ∈ Γ(S,OS) by tdR :
1→ VdR(A).

An étale tensor on A is an Af -linear morphism tét : 1→ VAf
(A)⊗ of étale sheaves

on S, where 1 is the constant Af -local system of rank 1. We similarly define a prime-
to-p étale tensor tpét : 1→ VApf (A)⊗ and a p-adic étale tensor tét,p : 1→ VQp(A)⊗.

If S is a smooth variety over C, then we can also define the following Q-local
system

(2.4.3) V(A)
(

= V(A/S)
)

:= (R1fan
∗ Q)∗,

and we have natural isomorphisms Af ⊗Q V(A) ∼= VAf
(A) and OS ⊗Q V(A) ∼=

VdR(A). By classical Hodge theory, we obtain a variation of Q-Hodge structures.
With suitably chosen C and D, we can form V(A)⊗ as in §2.2. Given a Q-linear

morphism of locally constant sheaves tB : 1 → V(A)⊗ (where 1 is the constant
sheaf Q on S), we define the étale and de Rham components tét and tdR of tB as
follows:

tét : 1
Af⊗tB−−−−→ Af ⊗Q V(A)⊗

∼−→ VAf
(A)⊗(2.4.4a)

tdR : 1
OS⊗tB−−−−−→ OS ⊗Q V(A)⊗

∼−→ VdR(A)⊗.(2.4.4b)

Clearly tét is an étale tensor, and we are often interested in t such that tdR is a
de Rham tensor. Such tB can be thought of as a “family of Hodge tensors”.
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2.5. Group theory preliminaries. Throughout this section, let R be either a field
of characteristic zero or a discrete valuation ring of mixed characteristic. In prac-
tice, R will be one of Q, Z(p), and Zp. Let G be a reductive group over R; i.e., an
affine smooth group scheme over R such that all the fibres are reductive groups.
Let M be a free R-module of finite rank, and we fix a closed immersion of group
schemes G ↪→ GLR(M). Let M⊗ be as defined in §2.2, where C is the category of
R-modules and D is the category of locally free R-modules of finite rank.

Proposition 2.5.1. In the above setting, here exists a finitely many elements sα ∈M⊗
such that G is the pointwise stabiliser of (sα); i.e., for any R-algebra R′, we have

G(R′) = {g ∈ GLR(M)(R′); g(sα) = sα ∀α}.

Proof. The case when R is a field is proved in [9, Proposition 3.1], and the case of
discrete valuation rings is proved in [17, Proposition 1.3.2]. �

Example 2.5.2. If G is a “classical group” then one can often explicitly write down
(sα) that define G in the sense of Proposition 2.5.1. For example, for a perfect
alternating form ψ : M ⊗ M → R on a projective R-module M , we can find a
tensor sψ ∈ M⊗ whose pointwise stabiliser is GSp(M,ψ), which is explained in
[15, Example 2.1.4].

Definition 2.5.3. Let X be an R-scheme2. For a cocharacter µ : Gm → GLR(M)X,
we say that a grading gr•(OX⊗RM) is induced from µ if the Gm-action onOX⊗RM
via µ leaves each grading stable, and the resulting Gm-action on gra(OX ⊗RM) is
given by

Gm
z 7→z−a−−−−−→ Gm

z 7→z id−−−−→ GL(gra(OX ⊗RM)).

We additionally fix finitely many (sα) ⊂ M⊗ defining G ⊂ GLR(M). Let E be
a vector bundle on X. Then we can form E⊗ in the categogy of quasi-coherent
sheaves. For (finitely many) global sections (tα) ⊂ Γ(X,E⊗), we define the follow-
ing scheme over X

(2.5.4) PX := isomOX

(
[E , (tα)], [OX ⊗RM, (1⊗ sα)]

)
⊂ isomOX

(
E ,OX ⊗RM

)
,

which classifies isomorphisms of vector bundles over X which match (tα) and (1⊗
sα). There is a natural left GX-action on PX through its natural action onOX⊗RM .
Note that PX is a trivial G-torsor if and only if there exists an isomorphism ς : E

∼−→
OX⊗RM which matches (tα) and (1⊗sα). Indeed, such ς defines a section X→ PX

and any other sections are translates by the G-action.
For a cocharacter µ : Gm → GX and g ∈ Γ(X, G), we write gµ := gµg−1 and let

{µ} := { gµ : g ∈ G(W )} denote the G(W )-conjugacy class of µ. The following
terminology of “{µ}-filtrations” was introduced in [15, Definition 2.2.3].

Definition 2.5.5. Let E be a vector bundle over X, with (tα) ⊂ Γ(X,E⊗).
First, assume that PX, defined in (2.5.4), is a trivial G-torsor. Then a filtration

Fil• E of E is called a {µ}-filtration (with respect to (tα)) if there exists an isomorph-
ism ς : E

∼−→ OX ⊗RM , matching (tα) and (1⊗ sα), that takes Fil• E to a filtration
of OX ⊗RM induced by gµ for some µ ∈ {µ} and g ∈ Γ(X, G).

When PX is a G-torsor, a filtration Fil• E of E is called a {µ}-filtration (with
respect to (tα)) if it is étale-locally a {µ}-filtration; in other words, there exists an
étale covering f : Y → X such that PY is a trivial G-torsor and (Fil• E )Y is a
{µ}-filtration with respect to (f∗tα).

2It is often convenient and natural to allow X to be an analytic space or a formal scheme. But it will
be quite obvious how to adapt the subsequent discussion to these cases.



6 W. KIM

Note that Γ(X, G) naturally acts on the set of {µ}-filtrations. In practice (i.e.,
when E comes from a suitable cohomology sheaf for an abelian scheme), it is too
much to expect that PX is a trivial G-torsor – for example, E may not necessarily
be a free OX-module. But it is certainly reasonable to impose that PX is a G-torsor;
i.e., that (E , (tα)) étale-locally looks like (M, (sα)).

When G = GLR(M), then a filtration Fil• E of E is a {µ}-filtration for some
cocharacter µ if and only if associated grading gr• E is of constant rank, and the
conjugacy class of µ is uniquely determined by the rank of each grading.

Let us fix G ⊂ GLR(M), (sα), and {µ} as before, and consider a vector bundle E

on X and (tα) ⊂ Γ(X,E⊗). Let FlE ,(tα)
G,{µ} denote the functor on schemes on X, which

associates to Y
f−→ X the set of {µ}-filtration of f∗E with respect to (f∗tα). We

write FlE
{µ} := Fl

E ,∅
GL(M),{µ}, and we use the same letter to denote the the scheme

representing the functor, which is relative projective and smooth over X.

Lemma 2.5.6. The natural inclusion Fl
E ,(tα)
G,{µ} ↪→ FlE

{µ} can be represented by a closed
immersion of schemes over X. Furthermore, if PX (as in (2.5.4)) is a G-torsor, then
Fl

E ,(tα)
G,{µ} is representable by a (non-empty) connected scheme which is relatively pro-

jective smooth over X.

Proof. This follows from étale descent of closed immersions; cf. the proof of [15,
Lemma 2.2.6]. �

2.6. Review on G-isocrystals.

Definition 2.6.1. Let D be a pro-torus with character group X∗(D) = Q; i.e., D =
lim←−Gm where the transition maps is the N th power maps ordered by divisibility.

For any morphism ν : D→ GL(n)K0 we obtain a Q-grading of Kn
0 by the weight

decomposition. More explicitly, choose an integer r such that rν factors through
Gm. Then the (d/r)th grading of Kn

0 is the subspace where the action of (rν)(z)
for z ∈ Gm(K0) coincides with the scalar multiplication of zd.

Proposition 2.6.2 (Kottwitz [21]). Let G be a connected reductive group over Qp,
and K0 = W (Fp)Q. Then, for each b ∈ G(K0), there exists a unique homomorphism

νb : D→ GK0

such that for any representation ρ : GK0 → GL(n)K0 the Q-grading associated to
ρ ◦ νb is the slope decomposition for (Kn

0 , bσ). The G(K0)-conjugacy class of νb only
depends on the σ-conjugacy class of b in G(K0).

Furthermore, any σ-conjugacy class ofG(K0) contains an element b ∈ G(K0) which
satisfy the following “decency equation” for some r ∈ Z:

(2.6.3) (bσ)r = (rνb)(p)σ
r,

where the equality takes place in 〈σ〉nG(K0).

It follows (from the uniqueness assertion) that for any g, b ∈ G(K0) we have
νgbσ(g)−1 = gνbg

−1.
Consider the following group valued functor Jb = JG,b defined as follows:

(2.6.4) Jb(R) := {g ∈ G(R⊗Qp K0)| gbσ(g)−1 = b}
for any Qp-algebra R. Note that for any g, b ∈ G(K0) we have Jgbσ(g)−1(R) =

gJb(R)g−1 as a subgroup of G(R⊗QpK0); in particular, Jb essentially depends only
on the σ-conjugacy class of b in G(K0).

Proposition 2.6.5. Assume that b ∈ G(K0) satisfies the decency equation (2.6.3) for
r ∈ Z. Then we have (rνb)(p) ∈ G(Qpr ) ∩ Jb(Qp), where the intersection takes place
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in G(K0), and Jb is representable by an inner form of the centraliser G(rνb)(p), which
is a Levi subgroup of G. (In particular, (rνb)(p) lies in the centre of Jb(Qp).)
Proof. See [30, Corollaries 1.9, 1.14] for the proof. �

Definition 2.6.6. We say that b ∈ G(K0) is basic if the following equivalent condi-
tions are satisfied:

(1) The slope morphism νb factors through the centre of G.
(2) The group Jb is an inner form of G.

(The equivalence is clear from Proposition 2.6.5.) The definition only depends on
the σ-conjugacy class of b in G(K0).

2.7. Review of Dieudonné crystals. Let X be a formal scheme over Spf Zp, and
consider the crystalline site (X/Zp). By an isocrystal over X, we mean an object in
the isogeny category of crystals of quasi-coherent O(X/Zp)-modules. For any crystal
of quasi-coherent O(X/Zp)-modules D, we let D[ 1

p ] denote the associated isocrystal.
For a p-divisible group X over X, we have a contravariant Dieudonné crystal3

D(X) equipped with a filtration (LieX)∗ ∼= Fil1X ⊂ D(X)X by a subvector bundle,
where D(X)X is the pull-back of D(X) to the Zariski site of X. We call Fil1X the
Hodge filtration for X. If X = Spf R, then we can regard the Hodge filtration
as a filtration on the R-sections Fil1X ⊂ D(X)(R). From the relative Frobenius
morphism F : XX → σ∗XX, we obtain the Frobenius morphism F : σ∗D(X) →
D(X). On tensor products of D(X)’s, we naturally extend the Frobenius structure
and filtration.

If X = A[p∞] for some abelian scheme f : A → X, then we have D(X) ∼=
R1fCRIS,∗O(A/Zp), where the Frobenius morphism F on D(X) matches with the
crystalline Frobenius on the right hand side. Furthermore, restricting the isomorph-
ism to the Zariski site, we obtain a filtered isomorphism between the vector bundle
D(X)X and the de Rham cohomology H1

dR(A/X) = V(A)∗ (both equipped with the
Hodge filtration).

Let 1 := D(Qp/Zp) and 1(−1) := D(µp∞). We set
• 1(−c) := 1(−1)⊗c if c > 0;
• 1(−c) := (1(−1)∗)⊗|c| if c < 0;
• 1(0) := 1.

We will often use the same notation 1(−c) for the isocrystal associated to it. Note
that the underlying crystal of 1(−c) is the structure sheaf OX/Zp with F = pc id

(identifying σ∗1(−c) with OX/Zp as well)4. The Hodge filtration on 1(−c)X is con-
centrated at degree c.

We now define D(X)⊗ as in §2.2 by letting C the category of crystals of quasi-
coherent O(X/Zp)-modules and D ⊂ C be the full subcategory of finitely generated
locally free objects. Then the Hodge filtration on D(X)X induces a natural filtra-
tion on D(X)⊗X , and the Frobenius morphism on D(X) induces an isomorphism of
isocrystals F : σ∗D(X)⊗[ 1

p ]
∼−→ D(X)⊗[ 1

p ].

Definition 2.7.1. Let X be a p-divisible group over a formal scheme X over Spf Zp.
For a morphism of crystals t : 1 → D(X)⊗, we let tdR : 1 → D(X)⊗X denote
the pull-back of t to the Zariski site. By abuse of notation, we also denote by
tdR ∈ Γ(X,D(X)⊗X) the image of 1 ∈ Γ(X,OX) by tdR.

Definition 2.7.2. Let X be a p-divisible group over a formal scheme X over Spf Zp.
A crystalline Tate tensor on X is a morphism of crystals t : 1 → D(X)⊗, which
satisfies the following properties:

3See [25], [24], or [1] for the construction of D(X) and the extra structure.
4Note that such F is only defined up to isogeny if c < 0
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(1) The map on isocrystals 1→ D(X)⊗[ 1
p ], induced t, is F -equivariant.

(2) The map tdR is a de Rham tensor; i.e., the section tdR ∈ Γ(X,D(X)⊗X) lies
in the 0th filtration with respect to the filtration induced by Fil1X ⊂ D(X)X.

Let X be a formal scheme over Spf Zp, and f : A → X be an abelian scheme.
Then a crystalline Tate tensor on A is a morphism of crystals

(2.7.3) t : 1→ (R1fCRIS,∗OA/Zp)⊗ = D(A[p∞])⊗,

which is a crystalline Tate tensor on A[p∞].

Example 2.7.4. Given an endomorphism of p-divisible groups f : X → X we ob-
tain a morphism of crystals D(f) : D(X)→ D(X), which gives rise to the following
crystalline Tate tensor:

tf : 1→ D(X)⊗ D(X)∗ ⊂ D(X)⊗.

To a principal polarisation λ : X
∼−→ X∨ one can associate a crystalline Tate

tensor tλ : 1→ D(X)⊗ by the same recipe as in [15, Example 2.1.4].

3. REVIEW ON SHIMURA VARIETIES OF HODGE TYPE

We review basic results on Shimura varieties of Hodge type and their integral
models in the good reduction case. Our notation is a global analogue of the notation
introduced in [15, §2]. In §4 we recall the main results of [15].

3.1. Review of Shimura varieties of Hodge type in characteristic 0. Consider a
2g-dimensional Q-vector space V , equipped with a nondegenerate alternating bi-
linear form (i.e., a symplectic form) ψ : V × V → Q. Consider the symplectic
similitude group GSp(V, ψ) which is a connected reductive group. One can find an

R-basis of VR so that the matrix representation of VR is J :=
(

idg
− idg

)
, which

identifies GSp(V, ψ)R with GSp2g/R defined by (R2g, J). Let S± be the set of
GSp2g(R)-conjugates of the cocharacter h : ResC/R Gm → GSp2g/R which induces
the following on the R-points:

C× → GSp2g(R); a+ bi 7→
(
a idg b idg
−b idg a idg

)
.

Then (GSp(V, ψ),S±) is a Shimura datum, often referred to as a Siegel Shimura
datum. Its reflex field is Q.

Definition 3.1.1. A Shimura datum (G,H) is called of Hodge type if there is an
embedding of Shimura data

(G,H) ↪→ (GSp(V, ψ),S±)

for some rational symplectic vector space (V, ψ).

Clearly, (GSp(V, ψ),S±) is of Hodge type. More generally, PEL-type Shimura
data (cf. [8, §4], [22, §4]) are of Hodge type.

3.1.2. Let (G,H) be a Shimura datum of Hodge type. To simplify the notation, let
E := E(G,H) denote the reflex field and we write ShK := ShK(G,H) to denote the
canonical model over E. We fix an embedding (G,H) ↪→ (GSp(V, ψ),S±), and let
K ⊂ G(Af) and K′ ⊂ GSp(V, ψ)(Af) be “small enough” open compact subgroups
with K ⊂ K′ such that the natural map ShK(G,H) → ShK′(GSp(V, ψ),S±)E(G,H)

is a closed immersion. (Indeed, up to replacing K ⊂ G(Af) with some finite-index
open subgroup it is always possible to find K′ as above; cf. [8, Proposition 1.15].)

Recall that ShK′(GSp(V, ψ),S±) can be interpreted as a moduli space of polar-
ised complex abelian varieties with level structure, so we have a universal abelian
scheme AK′,Q → ShK′(GSp(V, ψ),S±) defined up to isogeny. By restriction, we
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obtain an abelian scheme f : AK,E → ShK(G,H). Pulling back by E ↪→ C, we
can explicitly write down a “universal abelian scheme (up to isogeny)” f : AK,C →
ShK(G,H)C in terms of the associated variation of Q-Hodge structures. First, the
first Betti homology can be obtained as follows:

(3.1.3) V(AK,C) = G(Q)\(V × H×G(Af))/K, cf. (2.4.3),

where G(Q) acts diagonally and K acts only on G(Af). To define the Hodge fil-
tration, consider the following filtration Fil•H of V × H whose fibre at h ∈ H is
given by grading induced from the cocharacter µh : Gm → GC (in the sense of
Definition 2.5.3), where µh is as below:

(3.1.4) µh : Gm
z 7→(z,1)−−−−−→ Gm ×Gm ∼= SC

hC−→ GC.

Then Fil•H descends to a holomorphic filtration Fil•K of OShK,C ⊗Q V(AK,C). This
define a variation of Q-Hodge structures that defines AK,C.

Lemma 3.1.5. Let s ∈ V ⊗ be an element fixed by G. Then the morphism 1 → V ⊗

defined by 1 7→ s induce a morphism tuniv
B : 1→ V(AK,C)⊗ of “variations of Q-Hodge

structures”5. Furthermore, such tuniv
B is compatible under the natural projection maps

of the tower {ShK(G,H)C}K⊂G(Af ), and are invariant under the natural G(Af)-action.

Proof. If s is fixed by G, then the global section s ∈ Γ(H, V ⊗ × H) induce a global
section s of V(AK,C). Therefore we obtain a Q-linear morphism of locally constant
sheaves tuniv

B : 1 → V(AK,C)⊗. To show that the image of this map is in the 0th
filtration, it suffices to show the claim over H, but by definition of the filtration
Fil•H the global section s has to lie in the 0th filtration (as s is fixed by G). The
last assertion (on the compatibility with the tower and the Hecke G(Af)-action) is
clear. �

Lemma 3.1.6. Let s ∈ V ⊗ be an element fixed by G, and tuniv
B : 1 → V(AK,C)⊗ be

the morphism constructed from s by the recipe in Lemma 3.1.5. Then the de Rham
component tuniv

dR : 1 → VdR(AK,C)⊗ of tuniv
B (cf. (2.4.4b)) descends to a de Rham

tensor tuniv
dR : 1 → VdR(AK,E)⊗, and the étale component tuniv

ét : 1 → VAf
(AK,C)⊗ of

tuniv
B (cf. (2.4.4a)) descends to an étale tensor tuniv

ét : 1→ VAf
(AK,E)⊗.

Proof. This lemma is essentially proved in Lemma 2.2.1 and Corollary 2.2.2 in [17],
by choosing a finitely many tensors (sα) ⊂ V ⊗ such that their pointwise stabiliser
is G and one of sα is s. We now explain how to deduce the lemma from loc. cit.

The existence of the de Rham tensor tuniv
dR on AK,E is proved in [17, Corol-

lary 2.2.2]. Let us now prove the assertion on the étale components. Let η be a gen-
eric point of ShK, and η̄ be a geometric point supported at η. By [17, Lemma 2.2.1],
the fibre tuniv

ét,η̄ is invariant under the action of Gal(η̄/η).

Let {η} ⊂ ShK be the connected component of ShK containing η. Since πét
1 ({η}, η̄)

is a quotient of Gal(η̄/η) by normality, it follows tuniv
ét,η extends over {η}. Hence we

obtain tuniv
ét over ShK by repeating this process for each of the generic points. �

3.2. “Universal” abelian schemes over Hodge-type Shimura varieties (in char-
acteristic 0). We fix finitely many elements (sα) ⊂ V ⊗ whose pointwise stabiliser
is G ⊂ GLQ(V ); cf. Proposition 2.5.1. Consider tuniv

α,B : 1 → V(AK,C)⊗ associ-
ated to (sα) by Lemma 3.1.5, which produce tuniv

α,dR and tuniv
α,ét defined over ShK by

Lemma 3.1.6. We now list the properties and extra structures possessed by AK,E .

5To be precise, there is a finite-rank direct factor in V(AK,C)⊗ which is a variation of Q-Hodge
structures, such that tunivB factors through and induces a morphism of variations of Q-Hodge structures.
The subscript in tunivB stands for Betti.
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3.2.1 (G-torsor). Consider the following closed subscheme of the isom scheme over
ShK

PK,E ⊂ isomShK

(
VdR(AK,E),OShK

⊗Q V
)
,

defined by the condition of matching (tuniv
α,dR) ⊂ Γ(ShK,VdR(AK,E)⊗) with (sα) ⊂

V ⊗ for each α. Then PK,E is a G-torsor. Indeed, it suffices to show that PK,C is
a G-torsor over ShK,C. On the other hand, PK,C splits under the complex analytic
topology (which can be seen from the natural isomorphism VdR(AK,C) ∼= OShK,C ⊗Q
V(AK,C) and the explicit construction of V(AK,C)), so PK,C → ShK,C is flat with
non-empty fibre everywhere and the natural G-action is simple and transitive.

3.2.2 (The Hodge filtration is a {µ}-filtration.). Let µ : Gm → GE be the cochar-
acter such that µC belongs to a conjugacy class associated to some h ∈ H by
(3.1.4). (Such a µ exists by definition of E = E(G,H).) Then the Hodge fil-
tration Fil0(VdR(AK,E)) is a {µ}-filtration with respect to (tuniv

α,dR) in the sense of
Definition 2.5.5. Indeed, since ShK is reduced and of finite type, it suffices (by
Lemma 2.5.6) to show that at each closed point x ∈ ShK(C) the fibre

Fil0(VK,x) ⊂ VdR(AK,E)x ∼= H1
dR(AK,x/C)∗

defines a point in Fl
VdR(AK,E),(tunivα,dR)

G,{µ} over x ∈ ShK(C). Indeed, this is clear from the
definition, as the Hodge filtration at x is given by the cocharacter µh associated to
some h ∈ H.

3.2.3 (Level Structure). For an open compact subgroup K ⊂ G(Af), we will define
a universal global section

ηK ∈ Γ
(
ShK, isom

[
(VAf

, (1⊗ sα)), (VAf
(AK,E), (tuniv

α,ét ))
]
/K
)
,

where VAf
:= Af⊗QV . Note that ηK only depends on the isogeny class of (AK,E , (t

univ
α,ét ));

i.e., AK,E up to isogeny respecting (tuniv
α,ét ).

For a geometric point x ∈ ShK(C), let πét
1 (ShK, x) and πét

1 (ShK,C, x) to denote
the étale fundamental group of the component containing x. Then defining ηK is
equivalent to giving, for a point x ∈ ShK(C) on each connected component, an
isomorphism

ηx : VAf

∼−→ VAf
(AK,E)x,

matching (1 ⊗ sα) and (tuniv
α,,ét,x), such that the right coset ηxK is stable under the

action of πét
1 (ShK, x).

Note that the pull-back of VK to H × G(Af) is a trivial local system. We first
define η̃ : VAf

× H × G(Af) → VAf
× H × G(Af) by (v, h, g) 7→ (gv, h, g). Given a

point x ∈ ShK(C), we pick a lift (h, g) ∈ H×G(Af) of x and set

ηx := η̃|VAf×{(h,g)} : VAf
→ VAf

.

We now show that the right coset ηxK only depends on x, not on the choice of lift
(h, g), where g′ ∈ K acts as ηx 7→ ηx ◦ g′.

Firstly, for any g′ ∈ K we obtain another lift (h, gg′) ∈ H×G(Af) of x. Then we
have

η̃(v, h, gg′K) = (gg′v, h, gg′K) = η̃(g′v, h, gK) ∈ VAf
× H×G(Af)/K;

i.e., we have η̃(h,gg′K) = η(h,gK) ◦ g′.
Secondly, for any γ ∈ G(Q) we obtain another lift (γh, γg) ∈ H × G(Af) of x.

Then we have

η̃(v, γh, γgK) = (γgv, γh, γgK) = (γ, γ, γ) ◦ η̃(v, h, gK).

Now, recall that VK = G(Q)\(V ×H×G(Af))/K where G(Q) acts diagonally. There-
fore, we obtain the same map ηx if we replace (h, g) with (γh, γg).
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This shows that the right coset ηxK is stable under the action of πét
1 (ShK,C, x). We

now show that ηxK is stable under the action of πét
1 (ShK, x). Clearly, we may replace

K with a finite-index open normal subgroup, so we may assume that there exists a
“small enough” open compact subgroup K′ ⊂ GSp(V, ψ)(Af) containing K such that
ShK → ShK′(GSp(V, ψ),S±)E is a closed immersion. Then ηxK′ defines a universal
level structure onAK′,C, so it “descents” to a level structure onAK′,E (by the univer-
sal property of AK′,E). In particular, ηxK′ is stable under the action of πét

1 (ShK, x).
But since ShK, (C) → ShK′(GSp(V, ψ),S±)(C) is injective, ηxK is the only right
K-coset contained in ηxK

′ whose elements match (1 ⊗ sα) and (tuniv
α,ét,x). (Indeed,

if there were any other K-coset ηyK ⊂ ηxK
′ with this property, then ηxK and ηyK

define C-points of ShK which map to the same point in ShK′(GSp(V, ψ),S±).) Since
(tuniv
α,ét,x) are invariant under the action of πét

1 (ShK, x) by Lemma 3.1.6, it also follows
that ηxK is stable under the action of πét

1 (ShK, x).

3.2.4 (Hecke action). For any K ⊂ G(Af), the right translation by g ∈ G(Af) on
H×G(Af) descends to an isomorphism

[g] : ShgKg−1,C
∼−→ ShK,C .

By the standard rigidity result (cf. [27, Theorem 13.6]), this map is defined over
the reflex field

[g] : ShgKg−1
∼−→ ShK .

We can describe the pull-back by [g] of the universal abelian scheme and the level
structure (AK, ηK) as follows. The isogeny class of [g]∗(AK, (t

univ
α,ét )) coincides with

(AgKg−1 , (tuniv
α,ét )), and [g]∗ηK corresponds to (η′xg)K for any x ∈ ShgKg−1(C) where

η′x : VAf

∼−→ VAf
(AgKg−1)x is a representative of the fibre of ηgKg−1 at x. (These

claims can be explicitly verified over C.)

3.3. Integral canonical models. In this section, we review the basic properties of
integral canonical models of Hodge-type Shimura varieties in the good reduction
case, constructed independently by Kisin [17] and Vasiu [31, 32, 33]. We refer to
the aforementioned references for the full details including the definition of integral
canonical model.

3.3.1 (Good Reduction Hypothesis). From now on, we fix a prime p. Let (G,H) be
a Hodge-type Shimura datum, and assume that G admits a reductive Z(p)-model
GZ(p)

. Then we can choose the following extra data:

(1) We choose an embedding of Shimura data (G,H) ↪→ (GSp(V, ψ),S±), and
a ψ-stable Z(p)-lattice ΛZ(p)

⊂ V such that the closed immersion G ↪→
GSp(V, ψ) ↪→ GL(V ) over Q extends to a closed immersion GZ(p)

↪→
GL(ΛZ(p)

) of reductive groups over Z(p). If p > 2 then for any embed-
ding (G,H) ↪→ (GSp(V, ψ),S±) there exists a lattice ΛZ(p)

with the above
property by [17, Proposition 2.3.1].6

(2) We choose finitely many elements (sα) ⊂ Λ⊗Z(p)
such that the pointwise sta-

biliser of (sα) in GL(ΛZ(p)
) is GZ(p)

, which is possible by Proposition 2.5.1.
We do not require ψ to be a perfect alternating form on ΛZ(p)

, although by Zarhin’s
trick it is possible to arrange (V, ψ) so that ψ induces a perfect alternating form on
some choice of ΛZ(p)

.

The following lemma is proved in [26, Corollary 4.7]:

6Indeed, [17, Proposition 2.3.1] asserts that for any G(Zp)-stable Zp-lattice Λ ⊂ Qp⊗QV , ΛZ(p)
:=

Λ∩ V satisfies the desired property. Note that [17, Proposition 2.3.1] also proves the claim when p = 2
and GQ has no normal subgroup isomorphic to SO2n+1.
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Lemma 3.3.2. Let (G,H) be any Shimura datum. Assume that G is unramified
at p; i.e., there exists a reductive Z(p)-model of G. Then the reflex field E(G,H) is
unramified at any prime p over p.

Recall that we fix a reductive Z(p)-model of G, also denoted by G, which is a
closed subgroup of GL(ΛZ(p)

). Set Kp := G(Zp) ⊂ G(Qp), which is a hyperspecial
maximal compact subgroup. Choose an open compact subgroup Kp ⊂ G(Apf ) so
that the product KpKp ⊂ G(Af) is “small enough”. From now on, we always assume
that K := KpK

p with the hyperspecial maximal compact subgroup Kp, in which case
we expect that ShK should admit a smooth integral model over OE,(p) for any prime
p of E := E(G,H) over p. Here, OE,(p) is the (uncompleted) localisation of OE at
p, which is an unramified extension of Z(p) by Lemma 3.3.2.

Let us recall the main result and basic properties on integral canonical models:

Theorem 3.3.3 (Vasiu, Kisin). Assume that p > 2.7 Then for any small enough
Kp there exists an integral canonical OE,(p)-model SKpKp of ShKpKp in the follow-
ing sense: The G(Apf )-equivariant tower {ShKpKp}Kp extends to a G(Apf )-equivariant
tower {SKpKp}Kp of smooth OE,(p)-schemes with finite étale transition maps, and the
tower satisfies the (uniquely characterising) extension property formulated by Milne
(cf. [28, §3]).

Furthermore, the following additional properties hold:
(1) Choose a ψ-stable Z-lattice ΛZ ⊂ ΛZ(p)

. Then the universal abelian scheme
AKpKp,E → ShKpKp , corresponding to the choice of Z-lattice ΛZ, extends to
an abelian scheme AKpKp → SKpKp .

(2) The de Rham tensors (tuniv
α,dR) on AKpKp,E , associated to (sα) ⊂ Λ⊗Z(p)

by
Lemma 3.1.6, extends over the integral canonical model tuniv

α,dR : 1→ VdR(AKpKp)⊗.
Furthermore, the formation of tuniv

α,dR respects the natural projections and the
natural G(Ap)-action on the tower {SKpKp}Kp .

Proof. Vasiu ([31], [32, 33]) and Kisin [17] constructed an integral canonical model
SK = SK(G,H) of ShK by normalising ShK in a certain integral model of ShK′(GSp(V, ψ),S±)
(for a suitable choice of K′ ⊂ GSp(V, ψ)(Af)) constructed from a Mumford moduli
scheme. (The main content is to verify that this construction yields an integral ca-
nonical model.) The existence of AKpKp → SKpKp follows from the construction.
For (2), see [17, Corollary 2.3.9] �

Remark 3.3.4. The discussion on Hecke action in §3.2.4 can be extended to the
prime-to-p Hecke action (i.e., the G(Apf )-action) on the integral canonical models,
which we explain now. Let K := KpK

p be as before, and pick a geometric point x of
ShK, viewed also as a geometric point of SK. As SK is normal, the open immersion
ShK ↪→ SK induces a (surjective) quotient morphism πét

1 (ShK, x)→ πét
1 (SK, x).

Note that the lisse sheaf VApf (AK,E) on ShK extends to a lisse sheaf VApf (AK) on
SK. By considering the monodromy action at geometric points, it now follows that
the prime-to-p étale tensors tuniv,p

α,ét : 1 → VApf (AK,E)⊗ on the generic fibre extend
to the integral canonical model:

tuniv,p
α,ét : 1→ VApf (AK)⊗.

Furthermore, the prime-to-p part of the level structure ηKp (i.e., the image of ηK in
isom(VApf ,VApf (AK,E)) extends to the integral canonical model:

(3.3.5) ηKp ∈ Γ(SK, isom
[
(VApf , (sα)), (VApf (AK), (tuniv,p

α,ét ))
]
/Kp),

7Note that the construction of integral canonical models is claimed by Vasiu [32, 33] for any p.
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which only depends on the prime-to-p isogeny class of (AK, (t
univ,p
α,ét )). Now for any

g ∈ G(Apf ), Theorem 3.3.3 gives an isomorphism [g] : SgKg−1
∼−→ SK extending the

map on the generic fibre described in §3.2.4. Then, we have [g]∗(AK, (t
univ,p
α,ét )) =

(AgKg−1 , (tuniv,p
α,ét )) as prime-to-p isogeny classes, and the pull-back [g]∗ηKp over the

integral canonical model has exactly the same description as in §3.2.4.

Let us now move on to the p-adic part of the (co)homology of AK and tensors
thereof. Since the p-adic lisse sheaf VQp(AK,E) on ShK does not extend over SK,
we cannot extend the p-adic étale tensor tuniv

α,ét,p : 1 → VQp(AK,E)⊗ to the integral
canonical model. Instead, one would expect that tuniv

α,ét,p should give rise to a natural
crystalline Tate tensor by p-adic Hodge theory.

Let ŜK denote the p-adic completion of SK (i.e., the formal completion of SK at
the special fibre), and f̂ : ÂK → ŜK the p-adic completion of f : AK → SK. Then
we have a natural isomorphism H1

dR(ÂK/ŜK) ∼= (R1f̂CRIS,∗OÂK/Zp)
ŜK

, where the
right hand side is the pull-back of the crystal to the Zariski site. In particular, the
de Rham tensor (tuniv

α,dR) on AK induce an O
ŜK/Zp -linear morphisms of crystals:

(3.3.6) tuniv
α : 1→ (R1f̂CRIS,∗OÂK/Zp)⊗ = D(ÂK[p∞])⊗.

By construction, tuniv
α,dR coincides with the de Rham tensor associated to tuniv

α by
Definition 2.7.1.

Proposition 3.3.7. The morphisms (tuniv
α ) in (3.3.6) are crystalline Tate tensors on

ÂK in the sense of Definition 2.7.2. Furthermore, the p-adic comparison isomorphism
matches (tuniv

α ) with (tuniv
α,ét,p).

Proof. This is essentially a corollary of relative crystalline comparison for p-divisible
groups and the theorem of Blasius and Wintenberger; cf. [3, Theorem 0.3].

Consider the p-adic étale tensor

tuniv
α,ét,p : 1→ VQp(AK,E)⊗.

Then the relative comparison isomorphism provides an F -equivariant morphism of
isocrystals

tα : 1→ (D(AK[p∞])∗)
⊗

[1/p] = D(AK[p∞])⊗[1/p].

Indeed, the argument [10, §6] can be generalised to prove this; see [?, The-
orem 5.3] for the precise statement, which globalise to show the claim.

It remains to show that tα = tuniv
α , which can be extracted from the construction

of SK (cf. the proof of Proposition 2.3.5 and Corollary 2.3.9 in [17]). One can also
extract a direct argument from loc. cit. as follows. By smoothness of SK, both tα
and tuniv

α are determined by the induced sections on H1
dR(AK/Ŝ

rig
K )⊗, so the claim

tα = tuniv
α can be verified on the fibres at a Zariski dense set of points of Ŝ rig

K .
Indeed, the (classical) points of Ŝ rig

K which come from Q-points of SK is Zariski
dense in Ŝ rig

K , and the fibres of tα and tuniv
α (at Q-points) coincide by the theorem

of Blasius and Wintenberger [3, Theorem 0.3]. �

We fix an embedding κ(p) ↪→ Fp, and set W := W (Fp) and K0 = FracW . Let σ
denote the Witt vectors Frobenius endomorphism on W and K0.

For K = KpK
p with Kp = G(Zp), we consider x̃ : SpecW → SK, and let x denote

the Fp-point induced by x̃. Let AK,x̃ and AK,x respectively denote the pull-back of
AK.

The following result was originally conjectured by Milne and was proved by
Vasiu and Kisin (independently) in the course of constructing SK (i.e., proving
Theorem 3.3.3):
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Proposition 3.3.8. There is a W -linear isomorphism

W ⊗Z(p)
Λ∗Z(p)

∼= D(AK,x̃[p∞])(W )

matching (1 ⊗ sα) and (tuniv
α,dR,x̃). In particular, the pointwise stabiliser of (tuniv

α,dR,x̃) in
GL(D(AK,x[p∞])(W ) is isomorphic to GW .

Proof. We first show that there exists an isomorphism

Zp ⊗Z(p)
ΛZ(p)

∼= Tp(AK,x̃)

which matches (1 ⊗ sα) and (tuniv
α,ét,p). Indeed, by fixing an embedding τ : W ↪→ C

we obtain an isomorphism

Tp(AK,x̃) ∼= H1(τ∗AK,x̃,Zp)

matching (tuniv
α,ét,p) and the “Betti tensors” (tuniv

α,B ) constructed in Lemma 3.1.5. Now
by construction, there exists an isomorphism Zp ⊗Z(p)

ΛZ(p)
∼= H1(τ∗AK,x̃,Zp)

matching the tensors.
Now it remains to show the existence of an isomorphism

(3.3.9) W ⊗Zp Tp(AK,x̃)∗ ∼= D(AK,x[p∞])(W )

matching (1 ⊗ tuniv
α,ét,p) and (tuniv

α ). Since these étale and crystalline tensors are
related by the p-adic comparison isomorphism by Proposition 3.3.7, the existence
of such an isomorphism was proved by Vasiu and Kisin in the course of constructing
integral canonical models; cf. [17, Proposition 1.3.4], [34]. �

We now extend the G-torsor PK,E over ShK (§3.2.1) to the integral canonical
model SK. Consider the following closed subscheme of the isom scheme over SK

PK ⊂ isomSK

(
VdR(AK),OSK

⊗Z(p)
ΛZ(p)

)
,

defined by the condition of matching (tuniv
α,dR) ⊂ Γ(SK,VdR(AK)⊗) with (sα) ⊂ Λ⊗Z(p)

for each α. Then we have PK,E = PK ×Spec OE,(p)
SpecE, which is a G-torsor over

ShK.

Lemma 3.3.10. The scheme PK above is a G-torsor over SK.

Proof. It follows from the construction of SK (cf. [18, Proposition 1.3.9(1)]) and
Proposition 3.3.8 that PK pulls back to a G-torsor over the completion of SK at any
Fp-point. This proves the claim. �

Let us now consider the Hodge filtration for AK. We first need the following
lemma:

Lemma 3.3.11. Let (G,H) be any Shimura datum such that G is unramified at p
(i.e., G admits a reductive Z(p)-model). Write E := E(G,H), and choose a prime
p ⊂ OE over p. Then there exists a cocharacter µ : Gm → GOE,(p)

such that µC = µh
for some h ∈ H (by the recipe given in (3.1.4)).

Proof. By unramifiedness, GQp is quasi-split. Then by [20, Lemma 1.1.3(a)], there
exists a cocharacter µ′ : Gm → GE over E with µ′C = µh for some h ∈ H. Let
S ⊂ GE be a maximal E-split torus containing the image of µ′. Since any maximal
E-split tori are G(E)-conjugate to each other (cf. [4, Theorem 20.9(ii)]), there
exists g ∈ G(E) such that gS := gSg−1 is the generic fibre of a maximal split torus
in GOE,(p)

. We set µ := gµ′, which extends over OE,(p). �

Corollary 3.3.12. The Hodge filtration for AK → SK is a {µ}-filtration with respect
to (tα,dR), where {µ} is the G(W )-conjugacy class of µ as in Lemma 3.3.11.
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Proof. By Lemmas 3.3.10 and 3.3.11, {µ}-filtrations in VdR(AK)∗ form a smooth
closed subscheme of a certain grassmannian over SK (cf. Lemma 2.5.6). Since
the Hodge filtration for AK,E → ShK is a {µ}-filtration (cf. §3.2.2), to prove the
corollary it suffices to show that the Hodge filtration of AK becomes a {µ}-filtration
after pulling back by any morphism x̃ : SpecR → SK, where R is a p-adic discrete
valuation ring. But this follows from the valuative criterion for properness (applied
to the grassmannian of {µ}-filtrations over SK). �

3.3.13. We fix x ∈ SK(Fp) and x̃ ∈ SK(W ) as before, and write X := AK,x[p∞] and
X̃ := AK,x̃[p∞]. We choose a W -isomorphism D(X)(W ) ∼= W ⊗Z(p)

Λ∗Z(p)
matching

(tuniv
α,x̃ ) and (1⊗ sα), as in Proposition 3.3.8. Then we obtain b ∈ GL(K0⊗Z(p)

ΛZ(p)
)

such that F = b(σ⊗id). Since each of (tuniv
α,x̃ ) is fixed by F , it follows that b fixes each

of (1⊗ sα); i.e., we have b ∈ G(K0). By Corollary 3.3.12, the Hodge filtration Fil1X̃
is induced by gµ for some g ∈ G(W ) where µ is a cocharacter as in Lemma 3.3.11.

Lemma 3.3.14. In the above setting, we have b ∈ G(W )(p−1)σ
∗µG(W ).

Proof. This lemma follows from [15, Lemma 2.5.7(2)], which can be applied thanks
to Corollary 3.3.12 and Proposition 3.3.8. �

4. RAPOPORT-ZINK UNIFORMISATION VIA FORMAL SCHEMES

In this section, we relate Rapoport-Zink spaces of Hodge type constructed in
[15] with a certain completion of SK (cf. Theorem 4.7), generalising (the un-
ramified case of) Rapoport-Zink uniformisation of PEL Shimura varieties (cf. [30,
Theorem 6.23]).

Using Kisin’s theorem on quasi-isogeny groups of abelian varieties with tensors
(which we recall in Theorem 4.8), we refine the uniformisation; namely, we des-
cend the uniformisation over OE,p (§4.9)8, and simplify the statement in the “basic
case” (Theorem 4.11)9.

From now on, we always assume that p > 2 without mentioning it.

4.1. Review of Rapoport-Zink spaces of Hodge type. We recall the definitions
and main results in [15]. We work in the setting of §3.3.13.

Let NilpW be the category of W -algebras where p is nilpotent. For b ∈ G(K0)
and X0 as in §3.3.13, we define a functor RZb : NilpW → (Sets) so that RZb(R) is
the set of isomorphism classes of pairs (X, ι) where X is a p-divisible group over
R and ι : XR/p 99K XR/p is a quasi-isogeny (i.e., an invertible global section of
Hom(XR/p, XR/p)[

1
p ]). Note that RZb only depends, up to isomorphism, on the σ-

conjugacy class of b in GL(K0⊗ΛZ(p)
). By [30, Theorem 2.16], RZb is representable

by a formal scheme which is locally formally of finite type and formally smooth over
W . We will also let RZb also denote the representing formal schemes.

Remark 4.1.1. For any p-divisible group X over R ∈ ARW which lifts X, there
exists a unique quasi-isogeny XR/p 99K XR/p lifting the identification X ∼−→ XFp .
This identifies the universal deformation space of X with the completion of RZb at
the point (X, id) ∈ RZb(Fp); cf. [30, Proposition 3.33]

Let sα,D(:= tuniv
α,x ) : 1 → D(X)⊗ be the crystalline Tate tensors induced from

(tuniv
α ) on ÂK; i.e., we have sα,D(W ) = 1 ⊗ sα under the identification as in Pro-

positiion 3.3.8, where (sα) ⊂ Λ⊗ define G. Then, for any (X, ι) ∈ RZb(R) with

8See [30, Proposition 6.16] for the PEL case.
9See [30, Theorem 6.30] for the PEL case.
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R ∈ NilpW , we have a Frobenius-equivariant morphism of isocrystals sα,D : 1 →
D(X)⊗[ 1

p ] which uniquely lifts

(4.1.2) sα,D : 1
(sα,D)R/p−−−−−−→ D(X0,R/p)

⊗[ 1
p ]

D(ι)−1

−−−−→ D(XR/p)
⊗[ 1

p ];

alternatively, one may uniquely lift ι to ι̃ : X̃R 99K X and obtain sα,D from the
tensor on X̃.

In general, there may not exist any morphism of (integral) crystals giving rise
to sα,D. On the other hand, there is a natural closed formal subscheme of RZb over
which (sα,D) is induced from crystalline Tate tensors.

Theorem 4.1.3 ([15, Theorem 4.9.1]). Assume that p > 2. Then there exists a
closed formal subscheme RZG,b ⊂ RZb, which is formally smooth over W , with the
following universal property: Let R be a formally smooth formally finitely generated
algebra over either W or W/pm, and consider a morphism f : Spf R→ RZb. Let X be
a p-divisible group over SpecR which pulls back to f∗XRZb over Spf R. Then f factors
through RZG,b if and only if there exists a crystalline Tate tensors tα : 1→ D(X)⊗ for
each α such that

(1) For some ideal of definition J of R containing p, the pull-back of tα over R/J
induces the map of isocrystals sα,D : 1→ D(XR/J)⊗[ 1

p ].

(2) Let R̃ be a p-adic lift of R which is formally smooth over W . Then the R̃-
scheme

PR̃ := isomR̃

[
(D(X)(R̃), (tα(R̃))], [R̃⊗Zp Λ∗, (1⊗ sα)]

)
,

defined as in (2.5.4), is a G-torsor.
(3) The Hodge filtration Fil1X ⊂ D(X)(R) is a {µ}-filtration with respect to

(tα,dR) ⊂ D(X)(R)⊗.
The closed formal subscheme RZG,b ⊂ RZb is independent of the choice of (sα).

4.1.4. Let f : Spf R → RZG,b be as in Theorem 4.1.3 and we use the notation as
above. Then (tα) are uniquely determined by f (cf. [15, Lemma 4.6.4]). Therefore,
applying the universal property to an open affine covering of RZG,b we obtain a
“universal family” of crystalline Tate tensors

tα : 1→ D((XRZb)|RZG,b)⊗.

Let us recall the description of RZG,b(Fp) and the formal completion R̂ZG,b,y at
y ∈ RZG,b(Fp) from [15, §4.8].

If we fix an isomorphism [D(X)(W ), (sα,D)] ∼= [W ⊗Zp Λ∗, (1⊗ sα)], then (X, ι) ∈
RZG,b(Fp), the quasi-isogeny ι induces a map g ∈ G(K0) on W ⊗Zp Λ∗. Since the
choice of the isomorphism [D(X)(W ), (sα,D)] ∼= [W ⊗Zp Λ∗, (1⊗sα)] admits a simply
transitive G(W )-action, we get an injective map RZG,b(Fp) ↪→ G(K0)/G(W ). And
its image is given by the following affine Deligne-Lusztig set (cf. [15, Proposi-
tion 2.5.9]):

(4.1.5) RZG,b(Fp)
∼−→ {g ∈ G(K0)| g−1bσ(g) ∈ G(W )bG(W )}/G(W ).

Now, given y ∈ RZG,b(Fp), one can identify the formal completion R̂ZG,b,y with
the explicit deformation space with Tate tensors constructed by Faltings; cf. [15,
§4.8]. Instead of recalling the precise description, let us record the following con-
sequence which will be used later.

Let ŜK,x denote the completion of SK at x : SpecFp → SK. We also view
x = (X, id) ∈ RZG,b(Fp). As observed in Remark 4.1.1, we have a morphism
ŜK,x → R̂Zb,x given by rigidity of quasi-isogeny, which is a closed immersion of
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formal schemes by Serre-Tate deformation theory [13, Theorem 1.2.1]. Further-
more, this closed immersion factors through R̂ZG,b,x by the universal property of
RZG,b (Theorem 4.1.3). Indeed, the crystalline Tate tensors (tuniv

α ) on ÂK induce
the required (tα), which satisfy (1) by taking J to be the maximal ideal and the
remaining conditions by Corollary 3.3.12.

Proposition 4.1.6. The morphism of formal schemes ŜK,x → R̂ZG,b,x, defined above,
is an isomorphism.

Proof. Note that both completions as well as the deformations of X over them have
the same explicit description, and the morphism we constructed match them; cf.
[15, Theorem 4.9.1] and [18, Proposition 1.3.9(1)]. �

4.1.7. Assume that there is another embedding (G,H) ↪→ (GSp(V ′, ψ′),S ′±) of
Shimura data and a Z(p)-lattice Λ′Z(p)

⊂ V ′ as in §3.3.1. This choice gives rise to

another abelian scheme A′K over SK. We set X′ := A′K,x for x ∈ SK(Fp) and let
RZ′G,b ⊂ RZ′b denote the moduli spaces constructed using X′ instead. Then the func-
toriality part of [15, Theorem 4.9.1] shows that there exists a unique isomorphism
RZG,b ∼= RZ′G,b respecting the description of Fp-points and the completions thereof
given in (4.1.5) and Proposition 4.1.6.

We recall some of the extra structures that RZG,b possesses.

4.1.8. By classical Dieudonné theory, Jb(Qp) (2.6.4) can be identified with the
group of quasi-isogenies of X that preserve the crystalline Tate tensors (sα,D). It
turns out to be a Qp-point of an inner form of a Levi subgroup of G; cf. [30,
Corollary 1.14]. We define the left action of Jb(Qp) on RZG,b as follows. For any
(X, ι) ∈ RZG,b(R) and g ∈ Jb(Qp), we set

g(X, ι) = (X, ι ◦ g−1).

4.1.9. Put d := [Ep : Qp], and let q = pd be the cardinality of the residue field
of Ep. Let τ = σd ∈ Gal(K0/Ep) denote the q-Frobenius element (i.e., the lift
of the qth power map on Fp). For any formal scheme X over Spf W , we write
Xτ := X ×Spf W,τ Spf W . For any R ∈ NilpW , note that Xτ (R) = X(Rτ ), where
Rτ is R viewed as a W -algebra via τ . By Weil descent datum over OE,p we mean
an isomorphism Φ : X → Xτ . Note that if there exists an OE,p-formal scheme X0

with (X0)W ∼= X, then X has a Weil descent datum over OE,p. Such a Weil descent
datum is called effective.

We define a Weil descent datum Φ : RZb
∼−→ RZτb over OE,p, sending (X, ι) ∈

RZG,b(R) to (XΦ, ιΦ) ∈ RZG,b(R
τ ), where XΦ is X viewed as a p-divisible group

over Rτ , and ιΦ is the following quasi-isogeny:

ιΦRτ/p : XRτ/p = (τ∗X)R/p
Frob−d

99K XR/p
ι
99K XR/p = XΦ

R/p,

where Frobd : X → τ∗X is the relative q-Frobenius (with q = pd). One can check
that Φ restricts to a Weil descent datum Φ : RZG,b

∼−→ RZτG,b over OE,p (by looking
at Fp-points and the formal completions thereof; cf. [15, Definition 7.3.5]).

Clearly the Jb(Qp) action commutes with the Weil descent datum Φ. Note that
Φ is not an effective Weil descent datum for RZG,b.

4.1.10. Over the rigid analytic generic fibre of RZG,b we can naturally define a tower
of étale coverings with Galois group G(Zp) equipped with a natural G(Qp)-action.
The Jb(Qp)-action and the Weil descent datum naturally lifts to each layer of the
tower in a compatible way. We will give a brief review when we use it (§5.2), and
see [15, §7.4] for the details.
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4.2. Isogeny classes of mod p points. We continue to work in the setting of
§3.3.13. Let ι : A 99K A′ be a quasi-isogeny of abelian schemes over R ∈ NilpW ;
i.e., an invertible global section of Hom(A,A′)⊗Z Q. Then ι induces the following
isomorphisms:

D(A[p∞])[1/p]
∼← D(A′[p∞])[1/p];(4.2.1a)

VApf (A)
∼−→ VApf (A′).(4.2.1b)

Definition 4.2.2. We define an equivalence relations x ∼ x′ for x, x′ ∈ SK(Fp) if
there exists a quasi-isogeny ι : AK,x 99K AK,x′ such that the isomorphisms (4.2.1)
induced by ιmatches (tuniv

α,x ) with (tuniv
α,x′ ), and (tuniv,p

α,ét,x ) with (tuniv,p
α,ét,x′). An equivalence

class φ containing x ∈ SK(Fp) is called an isogeny class of x.

Let (X, ι) ∈ RZG,b(R) for R ∈ NilpW , and for the choice of the W -lift X̃ as in
§3.3.13 let ι̃ : X̃R 99K X denote the unique lift of ι. Assume that pnι̃ : X̃R → X is
an isogeny, and let A := (AK,x̃)R/ ker(pnι̃) be an abelian scheme over R. Note that
A[p∞] = X by construction, and we have a quasi-isogeny

ι̃ : (AK,x̃)R
p−n
//(AK,x̃)R // //A .

Note that ι̃ induces crystalline Tate tensors tα : 1 → D(A[p∞])⊗[ 1
p ], and an iso-

morphism of Apf -local systems

VApf (ι̃) : VApf ((AK,x̃)R)
∼−→ VApf (A).

Via this isomorphism, (tuniv
α,ét,x̃) induces prime-to-p étale tensors on A as follows

tpα := VApf (ι̃) ◦ tuniv
α,ét,x̃,

and the prime-to-p level structure x̃∗ηKp (3.3.5) induces

(4.2.3) ηp = V(ι̃) ◦ (x̃∗ηKp) ∈ Γ(SpecR, isom
[
(VApf , (sα)), (VApf (A), (tpα))

]
/Kp).

The next aim is to construct a morphism of formal schemes RZG,b → ŜK where
the target is the p-adic completion of SK.

Proposition 4.3. In the above setting, there exists a unique map f : SpecR → ŜK,
depending on (X, ι) ∈ RZG,b(R), such that

f∗(AK, (t
univ
α ), ηKp) ∼= (A, (tα), ηp),

where ηp is defined in (4.2.3).
In particular, we obtain a morphism of formal schemes

Θφ : RZG,b → ŜK,W ,

which commutes with the Weil descent data over OE,p = W (κ(p)). Furthermore, Θφ

is independent of the auxiliary choice of ΛZ(p)
and (sα).

Proof. The unique existence of Θφ(Fp) : RZG,b(Fp)→ SK(Fp), as well as independ-
ence of choice, follows from [18, Proposition 1.4.4]10, which was proved using the
main result of [6]. Considering the case when R is an artin local ring with residue
field Fp, it follows that Θφ should induce the isomorphism R̂ZG,b,y

∼−→ ŜK,Θφ(y) for
any y ∈ RZG,b(Fp). Note that this isomorphism is independent of the choice of ΛZ(p)

and (sα). This shows Θφ is uniquely defined and independent of auxiliary choice if
it is defined.

10To obtain the map map RZG,b(Fp) → SK(Fp) from [18, Proposition 1.4.4], note that RZG,b(Fp)

can be identified with a certain affine Deligne-Lusztig set by [15, (4.8.1)].
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It remains to show the existence of Θφ using some suitable choice of ΛZ(p)
. In-

deed, by Zarhin’s trick we may assume that GZ(p)
⊂ GSp := GSp(ΛZ(p)

, ψ) where ψ
is a perfect alternating form on ΛZ(p)

. Then we may choose an open compact sub-
group K′ = K′pK

′p ⊂ GSp(Af) such that K′p = GSp(Zp) and we have a natural closed
immersion ShK ↪→ ShK′,E (with the obvious notation); cf. [17, Lemma 2.1.2]. Since
K′p is hyperspecial maximal, we have an integral canonical model SK′ of ShK′ , and
SK is the normalisation of ShK in SK′ .

Given x ∈ SK(Fp), we let x ∈ SK′(Fp) also denote its image. Then we also
obtain RZGSp,b ⊂ RZb by working with GSp instead of G, and clearly RZG,b is a
closed formal subscheme of RZGSp,b. Now, the desired map for GSp instead of G

RZGSp,b → ŜK′,W

was already constructed in [30, Theorem 6.21]. We want to show that the restric-
tion RZG,b → ŜK′,W factors through ŜK,W . For this, it suffices to verify the claim
on the level of the Fp-points and the completions thereof. This can be seen from
the fact that the inclusion RZG,b ↪→ RZGSp,b has the expected effect on the Fp-points
and the completions thereof.

To show that Θφ commutes with the Weil descent data, note that it suffices to
check this for Θφ

Fp
, in which case the claim is more or less clear from the definition.

Cf. the proof of [30, Theorem 6.21]. �

Remark 4.3.1. In some sense, the proof of [18, Proposition 1.4.4] essentially proves
Proposition 4.3, except that RZG,b was not defined in [18] and some ad hoc notion
for RZG,b(R) was used instead. So Proposition 4.3 can be proved by “repeating” the
proof [18, Proposition 1.4.4] in the following way (taking [6] as the main input).
By the argument in [18, §1.4.10], the map can be extended to RZ◦G,b → ŜK,W ,
where RZ◦G,b is the connected component containing x = (X, id). Now, it follows
from the main result of [6] that the Hecke action at p transitively permutes the
connected components of RZG,b; cf. [18, Proposition 1.2.22].

Corollary 4.3.2. The map Θφ : RZG,b → ŜK in Proposition 4.3 extends to

Θφ : RZG,b ×G(Apf )/Kp → ŜK,W

so that on points over R ∈ NilpW we have (X, ι, gKp) 7→ (A, (tα), ηpg). This morph-
ism commutes with the Weil descent data over OE,p.

Definition 4.4. Let Iφ(Q) be the group of quasi-isogenies AK,x 99K AK,x which
preserves (tuniv

α,x ) and (tuniv,p
α,ét,x ). Note that Iφ(Q) only depends on φ, not on the

individual x. We view Iφ(Q) naturally as a subgroup of Jb(Qp) and G(Apf ). We let
Iφ(Q) act on RZG,b ×G(Apf )/Kp via left translation.

Remark 4.4.1. In the general Hodge-type (non-PEL) setting, it is a non-trivial the-
orem of Kisin that Iφ(Q) is the Q-points of an inner form of some Levi subgroup
of G with explicit description at each place of Q.11 We state this result in The-
orem 4.8, and it will be used to prove the stronger statement of Rapoport-Zink
uniformisation; cf. §4.9, §4.10.

Lemma 4.4.2. The subgroup Iφ(Q) ⊂ Jb(Qp)×G(Apf ) is discrete.

Proof. (Compare with the proof of Theorem 6.23 in [30, p.289].) Note that Jb(Qp)
has an open compact subgroup consisting of isomorphisms of X; namely, Jb(Qp) ∩
GL(W ⊗ Λ). Let U ⊂ Jb(Qp)×G(Apf ) be an open subgroup such that the image in
G(Apf ) stabilises

∏
` 6=p T`(AK,x) and the image in Jb(Qp) is contained in the open

11This result can be proved much more easily in the PEL case.
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compact subgroup of isomorphisms. This is always possible to arrange by replacing
U with an open subgroup of finite index. Then Iφ(Q)∩U is a finite group since it is
a subgroup of the automorphism group of polarised abelian variety (AK,x, λ). �

Proposition 4.5. Assume that Kp is “small enough”. Then the quotient

Iφ(Q)\RZG,b ×G(Apf )/Kp

is representable by a formal scheme which is locally formally of finite type and formally
smooth over W , and the Weil descent datum Φ of RZG,b induces a Weil descent datum
on this quotient.

The morphism Θφ : RZG,b×G(Apf )/Kp → ŜK, defined in Corollary 4.3.2, is invari-
ant under the Iφ(Q)-action and the induced morphism of formal schemes

Θφ : Iφ(Q)\RZG,b ×G(Apf )/Kp → ŜK,W

is a monomorphism of functors on NilpW .

Proof. Let us first show that the quotient Iφ(Q)\RZG,b ×G(Apf )/Kp is representable
by a formal algebraic space. Note that

(4.5.1) Iφ(Q)\RZG,b ×G(Apf )/Kp =
∐
Γ

Γ\RZG,b

where Γ ⊂ Jb(Qp) runs over discrete subgroups of the form Iφ(Q) ∩ gKpg−1 for
g ∈ G(Apf ). Such a group Γ is separated with respect to the profinite topology
and discrete by Lemma 4.4.2. Also Γ is torsion-free if Kp is “small enough” (more
precisely, if Kp fixes the n-torsion points of AK,x for some n > 3; cf. the proof of
Theorem 6.23 in [30, p.289–290].) Then, the Γ-action on RZG,b has no fixed point
since the Γ-action on RZb has no fixed point by [30, Corollary 2.35]. We then show
that Γ\RZG,b is representable by a formal algebraic space by repeating the proof
of [30, Proposition 2.37]. (Alternatively, one may apply [30, Proposition 2.37]
to show that the quotient Γ\RZb is representable by a formal algebraic space and
observe that RZG,b is a Γ- stable closed formal subscheme of RZb.)

It is clear that Θφ : RZG,b × G(Apf )/Kp → ŜK,W is invariant under the Iφ(Q)-
action. We now show that the induced map of formal algebraic spaces

Θφ : Iφ(Q)\RZG,b ×G(Apf )/Kp → ŜK,W

is a monomorphism of functors on NilpW . Indeed, the injectivity on Fp-points is
clear from Proposition 4.3, and Θφ induces an isomorphism on the completions at
any Fp-point (by Proposition 4.1.6). The claim now follows from descent and direct
limit consideration.

Note that any algebraic space which is separated and locally quasi-finite over
a scheme is a scheme (cf. [23, Théorème (A.2)]). This shows that any closed
algebraic subspace of Iφ(Q)\RZG,b × G(Apf )/Kp is a scheme12, which shows that
Iφ(Q)\RZG,b ×G(Apf )/Kp can be represented by a formal scheme.

The assertion on the Weil descent datum follows since Iφ(Q) act on RZG,b via
Iφ(Q) ↪→ Jb(Qp) whose action commutes with the Weil descent datum Φ of RZG,b.
This concludes the proof. �

We finish by identifying Iφ(Q)\RZG,b × G(Apf )/Kp as the completion of ŜK,W

at a (possibly infinite) chain of closed subschemes. We first recall the following
definition:

12For example, the image of RZG,b(h)m,n × G(Apf ) in Iφ(Q)\RZG,b × G(Apf )/Kp is a scheme for
each (m,n), where RZG,b(h)m,n is introduced in [15, §6.1]
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Definition 4.6. Let X be a formal scheme and Z := {Zi}i∈I where Zi ⊂ |X| is
a closed subset such that for each i ∈ I there are only finitely many j ∈ I with
Zi ∩ Zj 6= ∅.

We define the completion X/Z of X along Z to be the following formal scheme.
The underlying topological space is

|X/Z | :=
⋃
i∈I

Zi

with the direct limit topology. For each x ∈ |X/Z |, we consider the open subset of
|X/Z |:

Z(x) :=

( ⋃
x∈Zi

Zi

)
\

 ⋃
x/∈Zi

Zi

 ,

which is also a locally closed subset of X. We give a formal scheme structure on
Z(x) as the completion of X along Z(x). The formal scheme X/Z is obtained by
glueing these formal schemes on Z(x) as we vary x ∈ |X/Z |.

Note that if the index set I is finite (i.e., Z :=
⋃
i∈I Zi is a Zariski-closed subset

of |X|) then X/Z is the completion of X along Z.

Example 4.6.1. We give an example ofZ = I φ for X = ŜK,W . For an isogeny class
φ, set I φ := {Zi}i∈I, where I be the set of Iφ(Q)-orbits of irreducible components
of RZG,b × G(Apf )/Kp, and Zi ⊂ |ŜK,W | for i ∈ I is the image by Θφ of the Iφ(Q)-
orbit of irreducible components corresponding to i ∈ I. To see that Zi is a closed
subset, note that any irreducible component of RZred

G,b is projective. One can check
that any Zi intersects with only finitely many Zj ’s from (4.5.1). Therefore we can
define (ŜK,W )/I φ as in Definition 4.6.

The following theorem is a Hodge-type generalisation of the unramified case of
[30, Theorem 6.23].

Theorem 4.7. The morphism Θφ, obtained in Proposition 4.5, induces an isomorph-
ism of formal schemes respecting the natural Weil descent datum over OE,p:

Θφ : Iφ(Q)\RZG,b ×G(Apf )/Kp
∼−→ (ŜK,W )/I φ .

Proof. Note that Θφ in the statement is a formally étale surjective monomorphism
which induces a proper morphism on the underlying reduced schemes. Such a
morphism between locally noetherian formal schemes is an isomorphism; see the
proof of Theorem 6.23 in [30, p.290]. �

For the remainder of the section, we prove some refinements of Theorem 4.7;
namely, we descend the isomorphism Θφ in Theorem 4.7 over OE,p (not just over
W = W (Fp)), and simplify the statement of Theorem 4.7 in the “basic” case. For
this, we need the following theorem of Kisin (which is highly non-trivial in the
non-PEL case):

Theorem 4.8 (Kisin). The group Iφ(Q) as in Definition 4.4 is the Q-points of reduct-
ive Q-group Iφ, which is an inner form of some Levi subgroup of G. More precisely,
there exists an element γ0 ∈ G(Q) such that Iφ is an inner form of the centraliser
Gγ0 ⊂ G of γ0.

Furthermore, Iφ(R) is compact modulo centre, and we have IφQp = Jb and IφQ`
∼=

(Gγ0)Q` for ` 6= p,∞, which naturally recovers the embedding Iφ(Q) ⊂ Jb(Qp) ×
G(Apf ) .
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Proof. This is a direct consequence of Corollaries 2.3.1 and 2.3.5 in [18]. Note that
the assertion on IφQv for all places v of Q can be deduced from the properties of γ0

in [18, Corollary 2.3.1]. �

4.9. Effectivity of Weil descent. Although the Weil descent datum Φ on RZG,b
is not effective, we will show that Φ induces an effective Weil descent datum on
Iφ(Q)\RZG,b ×G(Apf )/Kp. In particular, by Theorem 4.7 (ŜK,W )/I φ descends over
Spf OE,p; cf. Corollary 4.9.3. In the PEL case, this result can be obtained from
Theorem 3.49 and Proposition 6.16 in [30].

By Kottwitz’ theorem (Proposition 2.6.2), we may assume that b ∈ G(K0) sat-
isfies the equation (bσ)r = (rνb)(p)σ

r by replacing b up to σ-conjugacy in G(K0).
Viewing (rνb)(p) ∈ Jb(Qp) as a quasi-isogeny of X0 (cf. Proposition 2.6.5), the
height of (rνb)(p) is precisely r dimX0.13 Therefore, we have an isomorphism

〈(rνb)(p)〉\RZG,b ∼=
r dimX0−1∐

h=0

RZG,b(h),

where RZG,b(h) is a quasi-compact open and closed formal subscheme defined by
requiring the height of the quasi-isogeny to be h ∈ Z.

Since (rνb)(p) is in the centre of Jb(Qp) (cf. Proposition 2.6.5), the natural left
action of Jb(Qp) on RZG,b descends to the quotient, and the Weil descent datum Φ
on RZG,b induces a Weil descent datum on this quotient.

Proposition 4.9.1. The Weil descent datum Φ on 〈(rνb)(p)〉\RZG,b is effective for any
r ∈ Z such that rνb : D → GK0

factors through Gm (via the natural projection
D� Gm.

Proof. Note that the closed immersion RZG,b ↪→ RZb commutes with the Weil des-
cent datum Φ over OE,p, so it suffices to prove the claim for RZb instead of RZG,b.
The case of RZb was already handled in [30, Theorem 3.49]. �

Next, we would like to approximate a suitable power of (rνb)(p) to a global
element. Let us introduce some notation. Let Zφ ⊂ Iφ denote the centre. Note
that Zφ(Qp) is precisely the centre of Jb(Qp), so we view (rνb)(p) as an element of
Zφ(Qp), which is contained in Zφ(Af).

Set Uφ,p = Zφ(Apf )∩Kp where the intersection is taken inside G(Apf ), and choose
an open compact subgroup Uφp ⊂ Zφ(Qp) so that it is contained in the open compact
subgroup of Jb(Qp) consisting of automorphisms of X. Since Uφ := Uφp U

φ,p is an
open compact subgroup of Zφ(Af), the following abelian group

Zφ(Q)\Zφ(Af)/U
φ

is finite. We may assume that (rνb)(p) ∈ Zφ(Q) · Uφ by replacing r with a suitable
integer multiple of r. Therefore, we may (and do) choose r ∈ Z, so that there exists
z ∈ Zφ(Q) with z ≡ (rνb)(p) mod Uφ.

We have just proved the following proposition, which generalises [30, Proposi-
tion 6.16]:

Proposition 4.9.2. The map Θφ : RZG,b ×G(Apf )/Kp → ŜK,W (cf. Corollary 4.3.2)
factors through 〈(rνb)(p)〉\RZG,b ×G(Apf )/Kp, where r is chosen as above.

The following Corollary is straightforward from Propositions 4.9.1 and 4.9.2:

Corollary 4.9.3. The Weil descent datum Φ on Iφ(Q)\RZG,b ×G(Apf )/Kp is effective.

13Note that we work with contravariant Dieudonné theory, while the formula in [30, §3.41] is
deduced via covariant Dieudonné theory.
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4.10. The basic case. We continue to work in the setting of §3.3.13 and §4.2.
Recall the following result of Rapoport and Richartz:

Theorem 4.10.1 ([29, Theorem 3.6]). Let SK,[b] ⊂ SK(Fp) be the set of points y
such that there exists an isogeny of p-divisible groups AK,x[p∞]→ AK,y[p∞] matching
(tuniv
α,x ) and (tuniv

α,y ). Then SK,[b] is a locally closed subset, which is closed if [b] is basic.

We will often regard SK,[b] as a locally closed reduced subscheme of SK,Fp , and
call it a Newton stratum. If [b] is basic, then we call SK,[b] a basic Newton stratum.

The following is a corollary of Kisin’s theorem on Iφ (Theorem 4.8):

Corollary 4.10.2. Let Iφ be the reductive group where Iφ(Q) is the quasi-isogeny
group of (AK,x, (t

univ
α,x )), which exists by Kisin’s theorem (Theorem 4.8). If x is in a

basic Newton stratum SK,[b], then Iφ is an inner form of G.

Proof. By Kisin’s theorem, Iφ is an inner form of a Levi subgroup ofGwith IφQp = Jb.
But by [30, Corollary 1.14] it follows that Jb is an inner form ofGQp if b is basic. �

Proposition 4.10.3. If [b] is basic then all Fp-points of SK,[b] are isogenous; i.e., there
exists a unique isogeny class φ consisting of all Fp-points in SK,[b].

In the PEL case, see the proof of Theorem 6.30 in [30, p.293–294] or [11, Pro-
position 3.1.8].

Proof. As Iφ is an inner form of G, it follows that γ0 is in the centre of G(Q). It
follows without difficulty from the definition that any isogeny class φ occurring in
a basic Newton stratum SK,[b] gives rise to a unique equivalence class of Kottwitz
triples k = (γ0, (γ`) 6̀=p, b). See [18, §4.3.1] for the definitions of Kottwitz triple
and the equivalence relations, and [18, Corollary 2.3.1] for the construction of the
equivalence class of Kottwitz triple from an isogeny class φ. (In the PEL case, this
assertion can be extracted from [30, Lemma 6.28], as observed in the proof of [11,
Proposition 3.1.8].)

It now follows from [18, Proposition 4.4.13] that there exists only one isogeny
class φ occurring in SK,[b]. Indeed, [18, Proposition 4.4.13] asserts that the set of
isogeny classes which give rise to the Kottwitz triple k is in bijection with XG(Q, Iφ)
(see §4.4.9 and §4.4.7 in [18] for the definition of XG(Q, Iφ)), which is clearly a
singleton if b is basic (as Iφ is an inner form of G). �

Theorem 4.11. Let φ be the unique isogeny class occurring in SK,[b]. Then the fol-
lowing map of formal schemes

(4.11.1) Θφ : Iφ(Q)\RZG,b ×G(Apf )/Kp → (ŜK,W )/SK,[b]

is an isomorphism. In particular, I φ consists of finitely many irreducible components
of SK,[b], and we have (ŜK,W )/I φ = (ŜK,W )/SK,[b]

.
Furthermore, the Weil descent datum Φ on the left hand side of (4.11.1) is effective.

In the PEL case, this theorem was proved in [30, Theorem 6.30].

Proof. It suffices to show that Θφ (4.11.1) is an isomorphism, for which it suffices
to show that it is surjective on the underlying topological spaces since the map Θφ

(4.11.1) is a monomorphism by Theorem 4.7. The Θφ is clearly surjective on the
set of Fp-points, so we use induction on the height.

Choose two points y, η ∈ SK,[b] such that {y} is contained in {η} as a codimention-
1 subset, and assume that y is in the image of Θφ. We want to show that η is also
in the image of Θφ. For this, it suffices to show that the following map

f : S := Specκ[[u]]→ SK,[b]
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factors through Θφ, where κ is an algebraically closed field, fSpecκ lands in y, and
f |Specκ((u)) lands in η.

Note that there exists a unique isomorphism of “F -isocrystals with tensors”:

(4.11.2) (D(AK,y[p∞])[1/p])S ∼= (D(AK,S [p∞])[1/p].

Indeed, the existence was proved by Katz [14, §2.7], and the uniqueness was
proved in [29, Lemma 3.9].14

By the induction hypothesis on y, fκ can be lifted to (f̃κ, gK
p) : S → RZG,b ×

G(Apf )/Kp, where f̃κ corresponds to (AK,y[p∞], ιy) ∈ RZG,b(κ) for some quasi-
isogeny ιy. So we obtain a quasi-isogeny of p-divisible groups

ιS =  ◦ (ιy)S : (AK,x)S [p∞] 99K AK,S [p∞],

where  : (AK,y)S 99K AK,S is the unique p-power order quasi-isogeny giving rise to
the isomorphism (4.11.2), which exists by [2, Théorème 4.1.1] (cf. [7, Main The-
orem 1]). It now follows that (AK,S [p∞], ιS) defines a map f : S → RZb.

We next show that the map f factors through RZG,b; indeed, the completion
f̂ : Ŝ → RZb factors through RZG,b (where Ŝ := Spf κ[[u]]) since Θφ induces an
isomorphism R̂ZG,b,y

∼−→ ŜK,Θφ(y), and this proves the claim as RZG,b is a closed
formal subscheme of RZb.

Let f̃ : S → RZG,b denote the map corresponding to (AK,S [p∞], ιS). Then the
composed map

S
(f̃ ,gK)

//RZG,b ×G(Apf )/Kp
Θφ //(ŜK,W )/SK,[b]

coincides with f , which can be seen by passing to the completion at y. �

5. RAPOPORT-ZINK UNIFORMISATION VIA RIGID GEOMETRY

We continue to assume that (G,H) is a Hodge-type Shimura datum such that G
is unramified at p. Using our results in §4 for hyperspecial maximal level at p we
can obtain a rigid analytic uniformisation result for other levels at p (Theorem 5.4),
generalising the unramified case of [30, Theorem 6.36].

We continue to assume that p > 2 without mentioning it.

5.1. Level structures at p for Hodge-type Shimura varieties in characteristic 0.
In §3.2.3 and §3.2.4, we described level structures at p andG(Qp)-action for Hodge-
type Shimura varieties in characteristic 0, working with abelian varieties up to iso-
geny. Here, we reformulate them only using prime-to-p isogeny classes (so that we
can relate it to the rigid analytic tower over RZ

rig
G,b). We assume that (G,H) is of

Hodge-type with G unramified at p, and make auxiliary choices as in §3.3.1.
Let Kp be an open compact subgroup of G(Zp). For example, we may consider

K
(0)
p := G(Zp) and K

(i)
p := ker(G(Zp) → G(Z/pi)) for i > 0. Let K := KpK

p, and
consider (AK,E , ηK) where AK,E is viewed up to isogeny and ηK is as in §3.2.3. We
can decompose ηK into the prime-to-p part ηKp (3.3.5) and the p-part

(5.1.1) ηKp ∈ Γ(Sh
K

(i)
p Kp

, isom
[
(VQp , (sα)), (VQp(A

K
(i)
p Kp,E

), (tuniv
α,ét,p))

]
/Kp).

In the isogeny class ofAK,E , consider the pull-back of the abelian schemeA
K

(0)
p Kp,E

,
up to prime-to-p isogeny, that extends to the integral canonical model. We also de-
note it by AK,E . Then ηKp can be viewed as a right Kp-coset of isomorphisms

14A posteriori the isomorphism (4.11.2) matches (tunivα,y ) and (tunivα,S ). This can also be seen directly,
as the formation of the isomorphism is functorial and commutes with subquotient, ⊗-products, and
duals, and also with morphisms between them; cf. [29, p.174–175].
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Λ
∼−→ Tp(AK,E) matching tensors. With such identification, we obtain the following

description of ShKpKp :

(5.1.2) ShKpKp
∼−→ isomSh

K
(0)
p Kp

(
[ΛZp , (sα)], [Tp(AK

(0)
p Kp,E

), (tuniv
α,ét,p)]

)
/Kp,

where the morphism is defined by restricting ηKp to ΛZp .
When Kp = K

(i)
p for some i, then (5.1.2) can be interpreted as follows:

(5.1.3) Sh
K

(i)
p Kp

∼−→ isomSh
K
(0)
p Kp

(
[ΛZ(p)

/pi, (sα)], [A
K

(0)
p Kp,E

[pi], (tuniv
α,ét,p)]

)
.

For g ∈ G(Qp), assume that gKp ⊂ G(Zp). (This can be arranged by replacing Kp
by a finite-index open subgroup; namely, G(Zp) ∩ gKp.) In §3.2.4, we showed that
pulling back by [g] : ShgKpKp

∼−→ ShKpKp , we have [g]∗AKpKp ∼ AgKpKp up to isogeny,
and changes the level structure at p by “right translation by g”. To translate this in
terms of the level structure at p described as in (5.1.2), the prime-to-p isogeny class
of [g]∗AKpKp is the unique one in the isogeny class of AgKpKp which matches the
Zp-lattices ΛZp and Tp([g]∗AKpKp) via [g]∗ηKp , and then [g]∗ηKp defines a section of
the right hand side of (5.1.2).

5.2. Rigid analytic tower of Hodge-type Rapoport-Zink spaces. Since RZG,b is
locally formally of finite type over Spf W , it is possible to associate the “rigid ana-
lytic generic fibre”, denoted by RZ

rig
G,b.

We use the notation from §5.1, such as K
(i)
p ⊂ G(Zp), and set RZ

K(0)
p

G,b := RZ
rig
G,b.

For any Kp ⊂ K
(0)
p , we now define, in a way analogous to (5.1.2), the following

rigid analytic étale cover of RZrig
G,b:

(5.2.1) RZ
Kp
G,b := isom

RZ
rig
G,b

(
[ΛZp , (sα)], [Tp(XG,b), (t

univ
α,ét,p)]

)
/Kp,

whereXG,b is the universal p-divisible group over RZG,b, and Tp(XG,b) = {XG,b[p
n]rig}

is the Zp-local system over RZKpG,b; i.e., the Tate module of XG,b

When Kp = K
(i)
p for some i, then we have

(5.2.2) RZ
K(i)
p

G,b := isom
RZ

rig
G,b

(
[ΛZ(p)

/pi, (sα)], [XG,b[p
i], (tuniv

α,ét,p)]
)
.

It is possible to extend the Galois action of G(Zp) on the tower {RZKpG,b}Kp natur-
ally to a G(Qp)-action in a way that is analogous to the case of Shimura varieties
as discussed in §5.1; cf. [15, §7.4].

5.3. Rigid analytic Rapoport-Zink uniformisation. We write K := KpK
p with

Kp = G(Zp). For an isogeny class φ of Fp-points of SK, we set

(5.3.1) Shrig
K (φ) :=

(
(ŜK,W )/I φ

)rig

.

If I φ is a finite collection of irreducible subvarieties of SK,Fp (e.g., if φ is an isogeny

class in a basic Newton stratum), then Shrig
K (φ) is the tube of I φ in ŜK,W . In

general, Shrig
K (φ) is a union of tubes of the irreducible subvarieties Z ∈ I φ.

Since the construction of rigid analytic generic fibre is functorial, we obtain the
following maps of rigid analytic spaces over K0 from Theorem 4.7 for K := K

(0)
p Kp:

(5.3.2) Θφ,rig : Iφ(Q)\RZrig
G,b ×G(Apf )/Kp

∼−→ Shrig
K (φ)

Furthermore, the rigid analytic spaces and the maps in (5.3.2) descend over Ep by
Corollary 4.9.3.
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From now on, assume that K := KpK
p ⊂ G(Af) such that Kp ⊂ K

(0)
p = G(Zp),

and K ⊂ G(Af) is a “small enough”. We let Shrig
K,K0

and Shrig
K,Ep

respectively denote

the rigid analytifications of ShK,K0
and ShK,Ep

.15

Definition 5.3.3. We let Shrig
K (φ) denote the preimage of Shrig

K
(0)
p Kp

(φ) via the natural

projection map Shrig
KpKp,K0

→ Shrig

K
(0)
p Kp,K0

. Equivalently, by (5.1.2) we have

Shrig
KpKp

(φ) ∼= isomShrig

K
(0)
p Kp

(φ)

(
[ΛZp , (sα)], [Tp(AK

(0)
p Kp

), (tuniv
α,ét,p)]

)
/Kp.

Since Shrig

K
(0)
p Kp

(φ) is defined overEp (by Corollary 4.9.3), it follows that Shrig
KpKp

(φ)

is also defined over Ep.

By matching the definitions of the coverings Shrig
KpKp

(φ) → Shrig

K
(0)
p Kp

(φ) (Defini-

tion 5.3.3) and RZ
Kp
G,b → RZ

rig
G,b (5.2.1), we obtain the following theorem:

Theorem 5.4. Assume that K := KpK
p ⊂ G(Af) such that Kp ⊂ K

(0)
p = G(Zp).

Then, we can lift Θφ,rig (5.3.2) to

Θφ
K : Iφ(Q)\RZKpG,b ×G(Apf )/Kp

∼−→ Shrig
K (φ),

which also descends over Ep. Furthermore, by varying Kp and Kp, the isomorphism
{Θφ

K} is equivariant for theG(Af)-action. (On the left hand side,G(Qp) acts naturally
on {RZKpG,b}Kp , and G(Apf ) acts by left translation on {G(Apf )/Kp}Kp . On {Shrig

K (φ)}K,
the G(Af)-action is the restriction on the natural G(Af)-action on {ShK}K.)
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