GALOIS DEFORMATION THEORY FOR NORM FIELDS
AND FLAT DEFORMATION RINGS

WANSU KIM

ABSTRACT. Let K be a finite extension of Qp, and choose a uniformizer = € K,
and put Ke := K(?°/7). We introduce a new technique using restriction to
Gal(K/Koo) to study flat deformation rings. We show the existence of defor-
mation rings for Gal(K /Ko )-representations “of height < h” for any positive
integer h, and we use them to give a variant of Kisin’s proof of connected com-
ponent analysis of a certain flat deformation rings, which was used to prove
Kisin’s modularity lifting theorem for potentially Barsotti-Tate representa-
tions. Our proof does not use the classification of finite flat group schemes.

This Gal(K /Koo )-deformation theory has a good positive characteristics
analogue of crystalline representations in the sense of Genestier-Lafforgue. In
particular, we obtain a positive characteristic analogue of crystalline deforma-
tion rings, and can analyze their local structure.
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1. INTRODUCTION

Since the pioneering work of Wiles on the modularity of semi-stable elliptic
curves over Q, there has been huge progress on modularity lifting. Notably, Kisin
[KisO9bl [Kis09a] (later improved by Gee [Gee(6l, [GeeQ9]) proved a very general
modularity lifting theorem for potentially Barsotti-Tate representations, which had
enormous impacts on this subject. (For the precise statement of the theorem, see
the aforementioned references.)

One of the numerous noble innovations that appeared in Kisin’s result is his
improvement of Taylor-Wiles patching argument. The original patching argument
required relevant local deformation rings to be formally smooth, which is a very
strong requirement. Under Kisin’s improved patching, we only need to show that
the generic fiber of local deformation rings are formally smooth with correct di-
mension, and we need to have some control of their connected components. (See
[KisOT, Corollary 1.4] for the list of sufficient conditions on local deformation rings
to prove modularity lifting.) It turns out that the most difficult part among them
(and the hurdle to proving modularity lifting for more general classes of p-adic
Galois representations) is to “control” the connected components of certain p-adic
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2 W. KIM

deformation rings at places over p. (The relevant local deformation rings here are
“flat deformation rings”.)

The main purpose of this paper is to give another proof of the following theorem
of Kisin. Let us fix some notations. Let K be a finite extension of Q, and set Gk
to be the absolute Galois group of K. Choose a complete discrete valuation ring &
whose residue field F is a finite field of characteristic p. Let p : G — GLa(F) be
a continuous representation, and let R be the framed deformation ¢-algebra of p
(whose existence was shown by Mazur[Maz89]). Let R_;Y be the unique torsion-free
quotient of R” whose A-points classifies crystalline lifts of p with “Hodge type (0,1)”
for any finite Qp-algebra A. (See for the definition.) By [Kis06, Corollary 2.2.6]
and [Ray74), Proposition 2.3.1], Rr’i‘s’ differs only by p*°-torsion from the flat framed
deformation ring of p with the deformation condition that the inertia action on the
determinant should be given by the p-adic cyclotomic character.

Theorem 1.1 (Kisin; Gee, Imai). For finite local Qp-algebras A and A’, consider
maps € : Royy — A and £ : Ry — A'. Let pe and per denote the lifts of p
corresponding to & and &', respectively. Then & and &' are supported on the same
connected component of Spec Rfr’i‘s'[%] if and only if either both p¢ and pe do not

admit a non-zero unramified quotient (i.e. non-ordinary) or both pe and pe admit
a rank-1 unramified quotient which lift the same (mod p) character.

Note that proving Theorem [I.I]when p = 2 is the main extra difficulty in proving
the 2-adic potentially Barsotti-Tate modularity lifting theorem (as opposed to the
p-adic modularity lifting theorem with p > 2).

Kisin’s original argument crucially uses a kind of “resolution” of flat deformation
rings constructed via the classification of finite flat group schemeaEI, which is proved
by Kisin [Kis09b, Corollary 2.3.6] when p > 2, and Kisin [Kis09al Theorem 1.3.9]
for connected finite flat group schemes when p = 2E| (This step is where the main
difficulty arises when p = 2, as opposed to when p > 2.) The remaining argument
to prove Theorem is rather “linear-algebraic”, and is carried out in [Kis09bl §2]
with improvements by Gee [Gee06] and Imai [Ima08}E|

The purpose of this paper is to give another proof of Theorem [I.I] that does not
use finite flat group schemes, and instead relies more on “linear-algebraic” tools from
p-adic Hodge Theory developed in [Kis06]. The key idea is to introduce deformation
rings of height < 1 (Theorem and compare it with flat deformation rings
(Corollary [£.2.1)). Another motivation for removing finite flat group schemes from
the proof is that it would be a sensible first step for the modularity lifting theorem
with higher weight where no reasonable analogue of finite flat group schemes for
torsion representations is available. (We do not claim, however, that our proof gives
any indication towards this generalization.)

We point out that our technique is motivated by the author’s study of posi-
tive characteristic analogue of crystalline deformation rings (using the theory of

n fact, the construction of the resolved deformation space could be carried out using a slightly
weaker statement.

2This classification of finite flat group schemes when p = 2 is now proved in [Kim10] without the
connectedness assumption, but in order to prove Theoremit is enough to know the classification
of connected finite flat group schemes which was already proved by Kisin [Kis09a, Theorem 1.3.9].

3The most of the proof appears in Kisin [Kis09bl §2] while he only completed the proof when
the residue field of K is Fp,. Gee [Gee06] then made some technical improvement and proved
Theorem assuming p ~ ((1) (1)), and Imai [Ima08| removed the final assumption. Note that for

proving a modularity lifting theorem we may always assume p ~ ((1) (1)), so Gee’s improvement

suffices for this purpose.
The papers [Gee06, Tma08] were written under the assumption that p > 2, but the same
computations work when p = 2.
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Genestier-Lafforgue [GL10] and Hartl [Harl0, [Har09]). We include a section (§5)
to sketch this positive characteristic deformation theory.

1.2. Structure and overview of the paper. Let K be a finite extension of Q,,
K. = K(73/m) for a chosen uniformizer 7 € K, Gx := Gal(K/K) and G =
Gal(K/K). It was observed (first by Breuil) that a certain class G x__-representations
(more precisely, G, -representations of height < 1, defined in Definition
plays an important role in classifying finite flat group schemes and p-divisible
groups over O . In this paper, instead of using the classification of finite flat
group schemes, we directly work with “Gy__-deformations of height < 1”7 (defined
in §2.2)).

In §2| we prove that the “Gp_ -deformation functor of height < 17 is repre-
sentable. (See for an explanation why this is not an “obvious” theorem.) In
we study the structure of this G, -deformation ring of height < 1 by “resolving”
the deformation space via an analogue of moduli of finite flat group schemes (as
in Kisin [Kis09b, §2]). In we relate the “Barsotti-Tate deformation ring” and
the “Gg_-deformation ring of height < 17, and deduce Theorem [I.I} The main
input in §4] is Proposition [£:3.1] which can be read off from the literature when
p > 2, and is proved when p = 2 by the author in [Kim10l Proposition 5.6]. In the
last section we explain the positive characteristic analogue of this deformation
theory, which inspired the author to study the p-adic G _ -deformations of height
<1

Acknowledgement. The author deeply thanks his thesis supervisor Brian Conrad
for his guidance. The author especially appreciates his careful listening of my results
and numerous helpful comments. The author thanks Tong Liu for his helpful advice
and the anonymous referees for their comments on the presentations and suggesting
improvements of the original argument of the previous version.

2. DEFORMATION RINGS OF HEIGHT < h

Let k be a finite extension of F,,, W (k) its ring of Witt vectors, and Ky :=
W(k:)[%] Let K be a finite totally ramified extension of Ky and let us fix its

algebraic closure K. We fiz a uniformizer 7 € K. and choose 7(") eﬁ? so that
()P = 70 and 70 = 7. Put Ko := U, K(7™), G = Gal(K/K), and
Gr.. = Gal(K/K.). We refer to [Kis06] for the motivation of considering K.

2.1. Etale p-modules and Kisin modules. Let us consider a ring R equipped with
an endomorphism o : R — R. (We will often assume that o is finite flat.) By
(¢, R)-module (often abbreviated as a p-module, if R is understood), we mean a
finitely presented R-module M together with an R-linear morphism ¢y; : 60*M —
M, where o* denotes the scalar extension by o. A morphism between to (¢, R)-
modules is a ¢-compatible R-linear map. For any R-algebra R’ equipped with an
endomorphism ¢’ over o, the “scalar extension” M ®p R’ has a natural (¢, R')-
module structure.

Let & := W (k)[[u]] where u is a formal variable. Let @¢ be the p-adic completion
of 6[1], and € := ﬁg[%}. Note that O¢ is a complete discrete valuation ring with
uniformiser p and Og/(p) = k((u))ﬁ We extend the Witt vectors Frobenius to &,
O¢, and & by sending u to uP, and denote them by o. (We write og instead, if
we need to specify that it is an endomoprhism on &, for example.) Note that o is
finite and flat. We denote by o*(-) the scalar extension by . We fix an Eisenstein

4We should view the residue field k((w)) as the norm field for the extension Koo /K. See [Wing3|
for more details.
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polynomial P(u) € W (k)[u] with P(7) = 0 and P(0) = p, and view it as an element
of G.

Definition 2.1.1. An étale p-module is a (p, Og)-module (M, @pr) such that @p :
o*M = M is an isomorphism. We say an étale p-module M is free (respectively,
torsion) if the underlying c-module is free (respectively, p>-torsion).

For a non-negative integer h, a @-module of height < h is a (¢, &)-module such
that the underlying &-module 91 is free and coker(pan) is killed by P(u)". A torsion
p-module of height < h is a (¢, &)-module such that the underlying G-module It
is p>-torsion with no non-zero u-torsion and coker(ypgy) is killed by P(u)".

Note that a nonzero p*°-torsion G-module is of projective dimension < 1 if and
only if it has no non-zero u-torsion, and by [Kis06, Lemma 2.3.4] any torsion ¢-
module of height < h is obtained as a g-equivariant quotient of ¢-module of height
< h.

Let Ogu denote the p-adic completion gf strict henselization of &¢. By the
universal property of strict henselization, Ogur has a natural Gx_ -action and a
ring endomorphism o. For a finitely generated Z,-module 7" with continuous G _ -
action, define

(2.1.2a) De(T) = (T ®p, Ogur)9%,

equipped with the @-structure induced from o on ﬁgur. For an étale p-module M,
define

(212b) Ig(M) = (M Qo ég“r)w:17

viewed as a Gi_ -module via its natural action on ﬁAgur.

By Fontaine [Fon90l §A 1.2], T'x and D, define quasi-inverse exact equivalences
of categories between the categories of étale p-modules and the category of finitely
generated Z,-module with continuous Gg__-action, which respects all the natural
operations and preserves ranks and lengths whenever applicable.

Let 9t denote either a p-module of height < h or a torsion p-module of height
< h. Then MRe O¢ is an étale cp—moduleﬂ so we may associate G i__-representation
to such 9 as follows:

(2.1.2¢) TS (M) = T (M e O¢)(h),
where T'(h) denotes the “Tate twist”; i.e., twisting the G x__-action on T by XéLyc G s -

It is a non-trivial theorem of Kisin [Kis06, Proposition 2.1.12] that this functor Iéh
from the category of ¢p-module of height < h to the category of G i -representations
is fully faithful. Note that Iéh is not in general fully faithful on the category of
torsion p-module of height < h

Definition 2.1.3. A Z,-lattice Gk __ -representatiorﬂT is of height < h if there exists
a ¢-module M of height < h such that T = zéh(zm).

A p-adic G _-representation V is of height < h if there exists a G__-stable
Zy-lattice which is of height < h (or equivalently by [Kis06, Lemma 2.1.15]'} if any
G k. -stable Zy-lattice which is of height < h).

A torsion G Koc—representatiorﬁ T is of height < h if there exists a torsion -
module 9 of height < h such that T = Iéh(ﬂﬁ). (We say that such 9 is a
S-module model of height < h for T'.)

5Note that P(u) is a unit in .
6i.c., a finite free Zp-module with continuous G __-action

"In fact, we need a slight refinement of [Kis06, Lemma 2.1.15]; namely, replacing “finite height”
in the statement by “height < h”. The proof can be easily modified to prove this refinement.

8i.c., a finite torsion Zy-module with continuous Gk -action
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The motivation of this definition is Kisin’s theorem [Kis06, Proposition 2.1.5]
which asserts that the restriction to G of a p-adic semi-stable G i-representation
with Hodge-Tate weights in [0, h] is of height < h.

Lemma 2.1.4. A torsion G _ -representation T is of height < h if and only if
T =T/T for some T and T" which are Z,-lattice Gk -representations of height
< h.

Proof. Note that for any exact sequence (f) : 0 — M — M — M — 0 with
MM € Modg ()" and 9t € (Mod /&)S", the sequence Iéh(T) is exact; This is
a consequence of the exactness of T’z defined in , which is proved in [Fon90),
§A 1.2]. The “if” direction now follows from this.

To show the “only if” direction, one needs to show that any 9 € (Mod /&)S"
can be put in some exact sequence (f) as above, but this could be done by the
essentially same proof of [Kis06, Lemma 2.3.4]E| O

2.2. Deformations of height < h. Let F be a finite field of characteristic p, and
Poo : Gk, — GL4(F) a representation. Let & be a p-adic discrete valuation ring
with residue field F. Let AR5 be the category of artin local &-algebras A whose
residue field is F, and let Q/li)\‘{@ be the category of complete local noetherian -
algebras with residue field F.

Let Dy, D3 : ARy — (Sets) be the deformation functor and framed defor-
mation functor for p.,. For the definition, see the standard references such as
[Maz97, Maz89, [Gou01]. Contrary to local and global deformation functors we
usually consider, these functors cannot be represented by complete local noether-
ian rings since the tangent spaces Do, (F[e]) and D3 (F[e]) are infinite dimensional
F-vector spaces. See for more details.

We say that a deformation po 4 over A € AR4 is of height < h if it is a torsion
G k. -representation of height < h as a torsion Z,[G i |-module; or equivalently, if
there exists MM € (Mod /&)<" and an isomorphism T8"(9M) 2 po 4 as Z,[Gr.]-
modules. For A € Q/(Q\%ﬁ, we say that peo 4 is of height < h if poo,.a ® A/m7 is a
deformation of height < h for n > IH When A € 20014, both definitions clearly
coincide. When A is finite flat over Z,,, a deformation p 4 over A is of height < h
if and only if poo, 4 is of height < h as a Z,-lattice Gk -representation (in the sense
of Definition [2.1.3)), by [Liu07, Theorem 2.4.1].

Let DS" C Do, and DLS" € DI respectively denote subfunctors of deforma-
tions and framed deformations of height < h. The following theorem is one of the
main result of this paper:

Theorem 2.3. The functor DS always has a hull. If Endg, (pss) = F then
DSl is representable (by RS € Q/li)\‘iﬁ). The functor DLS" is representable (by
RLSh € Q/li)\%ﬁ) with no assumption on pss. Furthermore, the natural inclusions
D" < Do, and DLS" «— DY of functors are relatively representable by surjective
maps in Q@ﬁ.

We call R2:S" the universal framed deformation ring of height < h and RS" the
universal deformation ring of height < h if it exists. We prove this theorem for the
rest of this section beginning

IWe will only need this result when h = 1 which is proved in [Kis06} Lemma 2.3.4]. In general,
one just need to modify the proof as follows: using the same notation as in loc.cit., take L to be
a finite free G/P(u)"-module which admits a &/P(u)"-surjection L—>L:= coker(1 ® o).

10By Lemma it is equivalent to require that poo,4 ® A/m’; is a deformation of height
< h for each n.
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Remark 2.3.1. Let A be any finite algebra over Frac €, and peo, 4 : G, — GL4(A)
be any lift of poo (i.e., there exists some finite &-subalgebra A° C A and G __-stable
A°-lattice in poo 4 which lifts po. Then, by [Liu07, Theorem 2.4.1] p4 o arises as
a pull back of the universal (framed) deformation of height < h if and only if p4 o
is of height < h as a Q,-representation.

2.4. Resumé of Mazur’s and Ramakrishna’s theory. Schlessinger [Sch68, Thm 2.11]
gave a set of criteria (H1) — (H4) for a functor D : 2AR4s — (Sets) to be repre-
sentable. For a profinite group I' and a continuous F-linear I'-representation p,
Mazur [Maz89, §1.2] showed that the framed deformation functor D7 of p satisfies
all the Schlessinger criteria except the finiteness of the “tangent space” D7 (F[e]),
and the same for the deformation functor Dj if Endr(p) = F. When T is either
an absolute Galois group for a finite extension of Q,, or a certain quotient of the
absolute Galois group of any finite extension of Q, Mazur obtained the finiteness of
the tangent space from so-called p-finiteness [Maz89) §1.1], but it is very unlikely
to hold for more general class of T'.

Unfortunately, G, does not satisfy the p-finiteness, and in fact the tangent
space D, (IF[e]) is infinite even when po, is 1-dimensional. To see this, note that
D (Fle]) 2 Homeont (G k., F) when po is 1-dimensional, This is infinite from the
norm field isomorphism Gg_ = Gal(k((v))**P/k((v))) and the existence of infinitely
many Artin-Schreier cyclic p-extensions of k((u)). For a finite dimensional p.., one
sees that the deformation and framed deformation functors Do, and DS never sat-
isfies (H3) from deforming the determinandﬂ7 and in particular these ‘unrestricted’
deformation functors are never represented by a complete local noetherian ring.

Now, let us look at the subfunctors D" C Do, and DLS" ¢ DY which consist
of deformations of height < h (as defined in §2.2). We first state the following
lemma:

Lemma 2.4.1. Any subquotients and direct sums of torsion G __ -representations of
height < h is of height < h.

Proof. The assertion about direct sums is obvious. Now consider a short exact
sequence 0 — M’ — M — M" — 0 of p®™-torsion étale p-modules and assume that
there is a @-sbable &-submodule M € (Mod /&)S" in M such that MRe O = M.
Let 9 be the image of M by M — M” and 9 the kernel of the natural map
I — M”. One can check that M’ and IM” are objects in (Mod /&)S" such that
M ®g O = M’ and M’ ®s O = M". Now the proposition follows from the
exactness of D¢ and Tg. d

Lemma implies that the condition of being of height < h is closed under
fiber products. It immediately follows (c¢f. the proof of [Ram93, Theorem 1.1])
that the functor DI S" satisfies all the Schlessinger’s criteria except the finiteness
of DS;S"(Fle]); and the same for DS if we have Endg, (ps) = F. So to prove
the representability assertion of Theorem it remains to check the ﬁnitenesleI of
D5 (Fle]) and DL S (F[e]). Before doing this, let us digress to show the relative
representability of the subfunctor DS" C D, which “essentially” follows from

Lemma 2411

HFor any Fle]-deformation det(poo) + €-c of det(poo) (where ¢ : G — F is a cocycle), the
c 0 -
deformation poo + €-¢ with ¢ := 00 has determinant det(poo) + €-c.

12Even though D2, (F[e]) is infinite, one can hope that the subspace D55S"(F[e]) is finite.
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Prop051t10n 2.5. The subfunctor D" C Dy, is relatively representable by surjective

maps in Qli)‘{,ﬁ In other words, for any given deformation pa over A € Qli)‘ig, there
exists a universal quotient A<h of A over which the deformation is of height < h.

Proof. Consider a functor b, : ARe — (Sets) defined by h4(B) := Homg(B, A)
for B € AR, and a subfunctor f)f‘h C h4 defined as below:

hjh (B) :={f:B — Asuch that ps ®4, 5 B is of height < h},

where B € 2ANR4. Since h4 is prorepresentable and the subfunctor bjh is closed
under subquotients and direct sums, it follows that bih is prorepresentable, say by
a quotient AS" of A. Tt is clear that AS" satisfies the desired properties. (cf. the
proof of [Ram93, Theorem 1.1].) d

Now let us verify (H3) for DS and DLS", thus prove the representability as-
sertion of Theorem 2.3

Proposition 2.6. The tangent spaces DS (F[e]) and DLSM(Fle]) are finite-dimensional
F-vector spaces.

Proof. Let us first fix the notation.

2.6.1. Notations and Definitions. Let A be a p-adically separated and complete
topological rlnﬂ for example finite Zj, algebrab or any ring A with pV - A =0
for some N). Set G4 := G®y, A = lim 6®Z A/I, where {I,} is a basis of open
ideals in A. We define a ring endomorphlsm 0: 64 — 64 (and call it the Frobenius
endomorphism) by A-linearly extending the Frobenius endomorphism og. We also
put Og 4 = ﬁg@zpz‘l = liina ﬁg@ZpA/Ia and similarly define an endomorphism
[ ﬁ&A — ﬁ&A.

Let (ModFI /G)Eh be the category of finite free & 4-modules M4 equipped with
a & a-linear map o, : 0*(M4) — M4 such that P(u)" annihilates coker(pgn, ).
If A is finite artinean Z,-algebra, then M4 € (ModFI /G)Eh is precisely a torsion
(¢, ©)-module of height < h equipped with a p-compatible A-action such that 9t 4
is finite free over G 4.

Let (ModFI/0¢) be the category of finite free 0¢ s4-modules M4 equipped
with a Og g-linear isomorphism ¢as, : 0*(Ma) = My, If A is finite artinean
Zy-algebra, then one can check that T¢ and D, defined in (2.1.2)), induce rank-
preserving quasi-inverse exact equivalences of categories between the category of
A-representations of G and (ModFI /ﬁg)fﬂﬂ

Lemma 2.6.2. Let F be a finite extension of Fp, and p a Gk -representation over
F which is of height < h as a torsion Gk __-representation (in the sense of Defini-
tion . Then there exists My € (ModFI /G)th such that p = zéh(smm).

Proof. Put M := Ds"(p(—h)) and let My := MT C M be the maximal &-
submodule of height < h, which exists by [CL09, Proposition 3.2.3]. Then the
p-compatible F-action on M (induced by the scalar multiplication on p) induces a
p-compatible F-action on My, which makes My a projective Sp-module. (Note that
Gr is a product of copies of a discrete valuation ring.) To show My € (ModFI /6)1§h
it is left to show that 9 is free over G, but this follows because the endomorphism

o : 6 — Gp transitively permutes the orthogonal idempotents of Gp. O

L3For us topological rings are always linearly topologized. Later we need to consider coefficient
rings that are not finite Zp-algebras such as A = F[t], especially for analyzing the connected
components of the generic fiber of a deformation ring.

14The relevant freeness follows from length consideration and Nakayama lemma.
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Remark 2.6.3. Lemma does not fully generalize to a G __-representation p4
of height < h over a finite artinean Z,-algebra A. Assume that he > p where e
is the absolute ramification index of K, and consider F[e] where €2 = 0. Let M
be a rank-1 free Og pjg-module equipped with ¢u(c*e) = (P(u)" + Le)e for an
O¢ ple-basis e € M. Let M be a Gp-span of {e, %ee} in M. Then M C M is a &-
submodule of height < h (using that he > p), but one can check that there cannot
exist a G-submodule of height < h which is rank-1 free over GFHE Note also
that 9T above is the maximal G-submodule of height < h and has a ¢-compatible
[Fle]-action induced from M, but 9 is not projective over &grg. This is where the
proof of Lemma [2.6.2] fails.

Now we can begin the proof of Proposition Since DL S"(F[e]) is a torsor of
@(F[e])/(l +€eAd(poo)9%) over DS (F[e]) (where GLy is the formal completion
of GLg4 at the identity section), it is enough to show that the set DS/ (F[e]) is finite.
2.6.4. Setup. Let M := Dg(poo(—h)) and consider (M, 1), where M € (ModFI /ﬁg)ff[d
and o : M =M ®p[q F is a p-compatible Og p-linear isomorphism. Two such lifts
(M, 1) and (M’,1') are equivalent if there exists an isomorphism f : M — M’ with
(f mod €)or = ¢/. Fontaine’s theory of étale p-modules [Fon90], §A 1.2] implies that
Te(-)(h) and Dg(-(—h)) induce inverse bijections between Do, (F[e]) and the set of
equivalent classes of (M, ¢).

Now assume that there is a p-stable Gg-lattice 9t C M of height < h. (Note that
we do not require 9 to be a Gpj-submodule.) By Lemma the set of equiv-
alence classes of (M, 1) admitting such 9 C M exactly corresponds to DS"(F[e])
via the bijections in the previous paragraph. So Proposition [2.6]is equivalent to the
following claim:

Claim 2.6.5. There exists only finitely many equivalence classes of (M, 1) where M
admits a p-stable Gg-lattice which is of height < h.

2.6.6. Strategy and Outline. One possible approach to prove Claim [2.6.5]is to fix a
O¢ p-basis for M and a lift to an O¢ r[q-basis for each deformation M once and for
all, and identify M with the “p-matrix” with respect to the fixed basis and interpret
the equivalence relations in terms of the “p-matrix.” Then the problem turns into
showing the finiteness of equivalence classes of matrices with some constraints —
namely, having some “integral structure”; more precisely, having a (-stable Gg-
lattice with height < h (but not necessarily a Spjq-lattice; cf. Lemma and
Remark . So the fixed basis has to “reflect” the integral structure.

This approach faces the following obstacles. Firstly, the deformations M we
consider do not necessarily allow any (-stable Sp[q-lattice with height < h as we
have seen at Remark In other words, we cannot expect, in general, to find a
O¢ mjq-basis {e;} for M in such a way that {e;, ee;} generates a Gp-lattice of height
< h. In we show that a weaker statement is true. Roughly speaking,
we show that there is an Og p-basis {e;} for M so that there exists a -stable
Gr-lattice with height < h with a Gp-basis only involving “uniformly” u-adically
bounded denominators as coefficients relative to the O p-basis {e;,e-e;} of M.

Secondly, we may have more than one (-stable Gp-lattice with height < h for
M or for M, especially when he is large. In particular, a fixed Gp-lattice for M
may not be nicely related to any y-stable Gp-lattice with height < A for some lift
M € (ModFI/ ﬁg)%t[s]. We get around this issue by varying the basis for M among
finitely many choices. This step is carried out in In fact, we only need

50ne way to see this is by directly computing the “@-matrix” for any ﬁg’F[e]-basis e e M,
and show that it cannot divide P (u)".



GALOIS DEFORMATION THEORY 9

finitely many choices of bases because there are only finitely many Gp-lattices of
height < h for a fixed M, thanks to [CL09, Proposition 3.2.3].

Once we get around these technical problems, we show the finiteness by a o-
conjugacy computation of matrices. This is the key technical step and crucially uses
the assumption that the F[e]-deformations we consider (or rather, the corresponding
étale p-module M) admits a @-stable Gp-lattice in M with height < h. See Claim
[2.6.12] for more details.

2.6.7. Let M correspond to some F[e]-deformation of height < h. Even though
there may not exist any ¢-stable Gpq-lattice with height < h for M, we can find a
p-stable Gp-lattice 9 with height < A such that 91 is stable under multiplication
by GH In fact, the maximal &-submodule M+ C M among the ones with height
< h does the job. (The existence of M* is by [CLO9, Proposition 3.2.3].)

2.6.8. For a Gg-lattice M C M of height < h which is stable under the e-
multiplication, we can find a Gg-basis which can be “nicely” written in terms of
some Og p|-basis of M, as follows. Let M be the image of M — M induced by the
natural projection M — M, which is a ¢-stable Gp-lattice in M with height < h.
Now, consider the following diagram:

| T \T \f

0 eM M My
where 91 := ker[9 — 9] is a ¢-stable Sp-lattice with height < h in M. We choose
a Gp-basis {e1, - ,e,} of M. Viewing them as a Og p-basis of M, we lift {e;} to an
U¢ wjq-basis of M (again denoted by {e;}). By the assumption from the previous
step, we have @, Gr-(ce;) C N, where both are Sp-lattices of height < h for
e-M. Tt follows that (-1-€)e; form a Gp-basis of 91 for some non-negative integers
r;. Therefore, {e;, (-3-€)e;} is a Gp-basis of M.
2.6.9. In this step, we find an upper bound for the non-negative integers r; only

depending on M and the choice of Gp-basis of M. Since N is a p-stable submodule,
it contains

(2.6.10) oM <a* <

0,

1 1 . 1<
e ) | = e “sr(ore;) = o e-z aij€;,
j=1

where «;; € GF satisfy ggr(0*e;) = Z?:1 a;;e;. Note that we obtain the first
identity because pyr(0*e;) lifts pg5r(0*e;) and the e-multiple ambiguity in the lift
disappears when we multiply against €. Since any element of 91 is a Gp-linear
combination of (ﬁe)ei, we obtain inequalities ord,(a;;) — pr; > —r; for all 4,3
from the above equation (2.6.10). Let r := max;{r;} and we obtain pr; < r +
min;{ord, ()} for all i. (Note that the right side of the inequality is always
finite.) Now, by taking the maximum among all i, we obtain

1
r< o= max {minfordy(ai;)}} < o0
— i J

This shows that the non-negative integers 7; has an upper bound which only de-
pends on the matrices entries for g with respect to the Gp-basis of 9.

16T his means that M is a -module over &g and is projective over &y, but 9t does not have
to be a projective Sp[-module. Hence, such 901 may not be an object in (ModFI/G);Z. This
actually occurs: M Gp-e G Sp- (%ee) discussed in Remark is such an example.
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2.6.11. Recapitulation. Let {ﬁ(a)} denote the set of all the Gp-lattices of height
< hin M. This is a finite set by [CL09, Proposition 3.2.3]. For each m'®
Gr-basis {el(-a)} and let o®) = (ozg;-l)) € Mat, (SF) be the “p-matrix” with respect
to {e{}; i.c., Pt (07el”) = > ag)ega). We also view {e!”} as a O g-basis

for M and (a%l)) is the matrix for @57 with respect to {el”}. Note that (ozl(»?)) is

, we fix a

invertible over O since M = ﬁ(a)[%] is an étale p-module. We pick an integer
r(@ > p%l max; { minj{ordu(ozij)}}, for each index a.
For any M which corresponds to a deformation of height < h, we may find a Gg-

lattice MM C M of height < h which is stable under e-multiplication. (See §2.6.7})
Then the image of 9 inside M is equal to one of M. Pick such MM, and lift
the chosen basis {ega)} to an Og p|q-basis for M. Then 9 admits a Sp-basis of
form {ega), (%e)ega)} for some integers r; < (@) (

Let us consider the matrix representation of ¢ys with respect to the basis {ez(-a)}.
We have goM(ez(-a)) = Zi(al(-;) + eﬂi(;))e;a) for some 3(*) = (ﬁz(ja)) € Mat,(0¢ r)
because ¢y lifts @57 Furthermore we have that 3 € ﬁ-Matn(GF) since M C M

is p-stable. We say two such matrices 8 and 3 are equivalent if there exists a
matrix X € Mat, (g ) such that 8/ = 3+ (a(*).0(X) — X-a®). This equation
is obtained from the following:

(P +ef) = (Id, +€X) 1 ('Y + €8)-0(Id,, +eX),

which defines the equivalence of two étale p-modules whose @-structures are given
by (a® + ¢3) and (a(®) + ¢3'), respectively.

Now, the theorem is reduced to the verification of the following claim: for each
a, there exist only finitely many equivalence classes of matrices B € ﬁ-Matn(GF).
Indeed, by varying both a and the equivalence classes of 3, we cover all the possible
lifts M of “height < A” up to equivalence, hence the theorem is proved.

From now on, we fix a and suppress the superscript (~)(“) everywhere. For
example, I := ﬁ(a), r =7 and a := o(¥. Proving the following claim is the
last step of the proof.

Claim 2.6.12. For any X € u®Mat, (Sr) with ¢ > 2he, the matrices § and 8+ X
are equivalent["”|

This claim provides a surjective map from (-1 -Mat, (Sg)) / (u®-Mat, (Sr)) onto
the set of equivalence classes of 3’s, and the former is a finite setﬂ thus we conclude
the proof of Proposition [2.6]

We prove the claim by “successive approximation.” Let v = u"¢-a~!. Note that
7 € Mat,, (&) since M is of height < h and P(u) has image in G = (k @r, F)|[[u]]
with u-order e. We set Y1) := —= - (X7), which is in u*~"® Mat, (&) by the
assumption on X. Then 8+ X is equivalent to

B+X)+ (oY) —YWDa) =3+ ac(¥YV) =g+ xB

with X € ye' -Mat,, (&F), where ¢(V) := p(c — he) > ¢. Now for any positive
integer 7, we recursively define the following

4 1 , , . . 4
Y= — (X0 Dy), XD imao(YD), e = p(cD) — he).
u

" The inequality ¢ > 2he is used to ensure p(c — he) > ¢. So ¢ = 2he also works unless p = 2.
18ywe crucially used the fact that we can bound the denominator.
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One can check that ¢® > c(i —1)(> 2he), X@ € u°” - Mat, (Sy), and YO €
ue " —he Mat,,(SF). Since ¢V — oo as i — oo, it follows that the infinite sum
Y := 3, Y converges and X — 0 as i — oco. Therefore we see that 8+ X is
equivalent to

B+X)+(vo(Y)=Y-a) = (B+X)+ (a-U(ZY(i)) — (ZY“U-@)

=1 =1

lim (B +X®) = 3,

11— 00

so we are done. O

3. GENERIC FIBERS OF DEFORMATION RINGS OF HEIGHT < 1

Let poo be a G -representation over F and let RS denote the framed de-
formation ring of height < 1. In this section we study the generic fiber REC;@[%],
such as formal smoothness, dimension, and connected components. The main idea
is to “resolve” RLS! via some suitable closed subscheme of affine grassmannian
which parametrize certain “nice” &-module models of height < 1 for framed de-
formations of po,. This technique is inspired by Kisin’s construction of moduli of
finite flat group schemes [Kis09b, §2] (and also [KisO8, §1]). In fact, it is even
possible to summarize this section by “repeating [Kis09b, §2] for our setting”, due
to the similarities of linear algebraic structures involved. (For this reason, we try
to state minimal number of definitions and results enough to indicate the flavor of
the argument, and give references for proofsB) Note, however, that we “resolve”
a framed G__-deformation ring RS;S! instead of a framed flat deformation ring.

With some extra work, many results in this section generalize to (framed) G __-
deformation rings of height < h for any h, possibly except the connectedness of
non-ordinary loci. See [Kim09, §11] for the statements and proofs. All the results
apply to (unframed) Gk __-deformation rings if they exist.

3.1. Definition: moduli of G-modules of height < h. Let h be a positive integer,
and we will later specialize to the case when h = 1. Consider a deformation pr
of po Over R € Q/l‘,)\‘iﬁ which is of height < h (i.e. pr ®r R/mY is of height < h
for each n). The main examples to keep in mind are universal framed or unframed
deformation of height < h.

We use the notation introduced in §2.6.1 Put My := lim M,, where M, €
(ModFI/ﬁg)%/m% is such that T¢(M,)(h) = pr ®r R/m}, for each n. For any
R-algebra A, we view Mp®pr A as an étale p-module by A-linearly extending ¢z,

For a complete local noetherian ring R, let 2ugy be the category of pairs (4, I)
where A is an R-algebra and I C A is an ideal with IV = 0 for some N which
contains mg-A. Note that an artin local R-algebra A can be viewed as an element in
Aug, by setting I := m4. A morphism (A4,I) — (B, J) in Augp is an R-morphism
A — B which takes I into J. We define a functor DéflpR : Augrp — (Sets) by

putting DéprR (A, I) the set of p-stable & 4-lattices in Mr ® g A which are of height

< h. In [KisO8] this functor is denoted by LS/

Proposition 3.2. There exists a projective R-scheme %%’f: and a & ®z, O <n-
PR

lattice @fg C Mr®r Og%% of height < h which represents DéflpR in the follow-

, ) . . <h o~ <
ing sense: there exists a natural isomorphism %%’p\g — DghpR such that for any

19S0me references are written under the assumptions that p > 2, but this will not be used in
the proof we cite later.
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(A, 1) € Augp it sends an A-point n € g%f:(/l) to n*(ﬂpﬁf) € Déﬁm (A, I). (We
call @E}g a universal G-lattice of height < h for pgr.)
Moreover, for any map R — R’ of complete local noetherian rings, there exists

~

a unique isomorphism g%f: ®Qr R = %%f}iL@RR,, which pulls back %§:®RRl to
ﬂfﬁ ®pr R inside of (Mg ®gr Ogﬂfg) ®r R'.

This proposition is proved in [KisO8, Proposition 1.3; Corollary 1.5.1; Corol-
lary 1.7] possibly except the base change assertion which is straightforward, so we
omit the proof.

3.3. Generic Fiber ofg%’f:. For a finite Q,-algebra A, we define (ModFI /6)§h to
be the category of ¢p-modules M4 such that for some finite Z,-subalgebra A° C A

there exists Mo € (ModFI /&) with Eon[%] >~ M,. For such My, we define

Iéh(ﬁﬁA) = Iéh(DﬁAo) ® a0 A, which is naturally an A-representation of height
< h. Note that Iéh(DﬁA) is independent of the choice of M 4o.

Let A be alocal R-algebra with residue field E which is finite over Q,, and let A™*
denote the preimage of &g under the natural projection A — E. By the valuative
criterion, any R-map Spec A — %%flg factors through Spec A*, so in turn, it
factors through Spec A° where A° is an R-subalgebra in A* which is finite over &
and such that AO[%] = A. This implies that %%’flf(A) is naturally isomorphic to
the set of p-stable & 4-lattices M4 of Mg @r A such that M4 € (ModFI /G)Eh.
Proposition 3.4. The structure morphism g%f: ®z, Qp — Spec(R ®z, Q) is an
isomorphism. If the map Spf R — DS of functors on ANRe defined by a defor-
mation pr is formally smooth, then R[%] is formally smooth over Frac(0). In
particular, Rgdgh[%] is formally smooth over Frac(0).

Proof. The first assertion is a direct consequence of [KisO8, Proposition 1.6.4]. For
the second assertion, it is enough to check the formal smoothness at each maximal
ideal because the formal smoothness locus is open. (c¢f. [Gro67, Ory, (22.6.6)].)
Using the assumption on R, we are reduced to showing that for any square-zero
thickening A — A of finite Q,-algebra and any M5 € (ModFI / 6)2}1, there exists

M4 € (ModFI /&)5" which lifts M. When h = 1 this readily follows from [Kis06,
Proposition 2.2.2] and [Kis09bl, Lemma 2.3.9]. In general, we can proceed as follows.

Choose finite Z,-subalgebras A° C A and A° C A, so that A° is a square-zero
thickening of A°, and there exists a ¢-stable Gz-lattice M-z € (ModFI / G)j? of
M. We will lift M= to some M 4o € (ModFI /6)§? Put @ := coker(¢m—_), and
the proof of [Kis09bl Lemma 1.2.2(2)] can be adapted to show that @ is projective
over A . Now consider a projective A-module w which lifts W, a free & 40o-module
M 4o which lifts M-z, and a A°-linear surjection M 4o /(P(u)") — w which lifts
Ms/(P(u)") — w. Let N denote the kernel of the natural projection Mo —
w. Then since w is A-flat, 91 surjects onto the image of P under the natural

~

projection M40 — M—z; so in turn, the surjective map o*Mao — ™" Mypm —
@mF(U*DﬁA—O) can be lifted to a map c*M 40 — N. (Note that Pon— is injective.
¢f. [Kis09b, Lemma 1.2.2(1)].) By post-composing it with the natural inclusion,
we obtain a &go-map @on,, : 0"M40 — Mo which lifts PM—s and its image

contains P(u)"M 4o by construction. O

3.5. Hodge type and local structure. From now on, we assume that h =1 and po,
is 2-dimensional. Consider a lift pr of ps over R € ARy as a G -representation.
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Define a subfunctor D, C DélpR as follows: for any (A,I) € Augp the sub-
set DE ,. (A, I) consists of all M4’s with the property that im(pon,)/P(u)Ma C
M a/P(u)M 4 is its own annihilator under some Ok ®z, A-linear symplectic pairing
on My /P(u)M4. This notion does not depend on the choice of the pairing. The
following lemma follows from the same argument as the proof of [Kis09a, Theo-

rem 2.3.9(1)].

Lemma 3.5.1. The subfunctor DY C DélpR can be represented by a closed sub-

<1 S,pr

scheme GR#,, C YK, -
Remark 3.5.2. With a little more work, one can show that Spec RV[%] C Spec R[%}
is an equi-dimensional union of connected components, and when R = RZ;S!, then
the dimension of R"[%] = REC;V[%] is 4+ [K : Qp]. We do not use this result later.

The following is a consequence of [Kis09al, Lemma 2.3.4].
Lemma 3.5.3. Let Spec RV denote the scheme-theoretic image of Y%} . in Spec R.
Then for any finite Qp-algebra A, a Zyp-morphism £ : R — A factors through RY if
and only if det(pr ®R.¢ A)\IKOO = XCYC|IKOO .

Let 9%}, o denote the fiber over the closed point of Spec R under the structure
morphism 9%} — Spec R. For a scheme X, we let Ho(X) denote the set of
connected components of X.

Proposition 3.5.4. Assume that the morphism Spf R — D! induced by pg is for-
mally smooth. Then the natural maps below

Ho(g%ZR ®Zp @p) — Ho(g%;;R) — Ho(gz%v )

PR,0
are bijective.

We only indicate the main idea and references as the proof is not very different
from the situation considered in Kisin [Kis09b]. We first show that 4%} is O-flat
and %%’ZR ®g O/mg is reduced under the assumption of the proposition. This
can be proved by constructing a local model diagram (for smooth topology) with
“Deligne-Pappas local model” as in the proof of [Kis07, Proposition 2.7] or [Kis09al,
Theorem 2.3.9]. Now one can apply the same proof of [Kis09b, Corollary 2.4.10]
(which uses the theorem on formal functions) to deduce the proposition.

3.6. Let M be an object either in(Mod /&)S! or in (ModFI/&)S" where A is
either p-adically separated and complete or finite over Q,. Note that there exists
a unique map gy @ M — o*IM such that Yon o Yo and @on o Yoy are given by
multiplication by P(u). We say I is étale if gy is an isomorphism, and of Lubin-
Tate type (of height 1) if 1gy is an isomorphism. When 9 € (ModFI/G)il is of
G 4-rank 2, we say that 9 is ordinary if 9N is an extension of a rank-1 Lubin-Tate
type (p, & 4)-module M7 by a rank-1 étale (¢, & 4)-module MEL.

Assume that pr is a Gi_ -representation of R-rank 2 with height < 1, as before.
We define the following subfunctor D¥Y c DY by requiring that 9t should

S,pr S,pr
be ordinary, and let DF , C Dg be the complement of D‘g,‘;R (where the

G,
superscript ‘ss’ stands for ‘supersinggfar’).

The following proposition is a direct consequence of Proposition [3.5.4] and the
semilinear algebraic statement [KisO9b, Proposiiton 2.4.14] applied to the universal
G-lattice of height < 1.

Proposition 3.7. The subfunctors D‘gim, Dg ,. € D§ ,, are represented by gﬂﬁ;d

and %%;SR, respectively, which are unions of connected components of g,@ZR.

Finally, we state the main result of this section.
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Proposition 3.8. Assume that the morphism Spf R — D! induced by pg is formally
smooth. Then Spec RSS[%] is geometrically connected. Furthermore Spec Rord[%]

is geometrically connected unless pos ~ 1 ® 1o where 11 and o are distinct
unramified characters. In the exceptional case there are exactly two components
(which are geometrically connected), and two lifts are in the same component if
and only if the G __-stable lines on which Ik act via chc|1Koo reduce to the same

character (either ¥y or 1s).

Idea of the proof. Since the statement is insensitive of &' and the setting is compat-
ible with scalar extension of & by its finite integral extension, it is enough to show
the connectedness instead of the geometric connectedness. By Proposition [3.4] and
Proposition[3.5.4] the theorem follows from the corresponding connectedness asser-
tions on E%%’Of 0 and %% o (using the notation of Proposition. To show the
connectedness of GF* .0 one explicitly constructs a chain of rational curves that
connects any two closed points via the same affine grassmannian computation done
in Kisin [KisO9b, Proposition 2.5.6] (improved by Gee [Gee06] and Imai [Ima08]);
note that the linear algebra involved in 9%},  is very similar to that of moduli of
finite flat group schemes.

The scheme g%z;d,o can be computed by exactly the same method as [Kis09b),
Proposition 2.5.15], possibly except that we need to prove the following asser-
tion: For any finite F-algebra A and a Gk _-stable A-line La in pso @r A such
that La(—1) is unramified, there exists at most one p-stable S-submodule My C
De(poo(—1)) @ A which is ordinary torsion w-module height < 1 and whose étale
submodule corresponds to L. To prove this, we first observe that the set of such
IM’s is partially ordered by inclusion, so there exist maximal and minimal objects
M+ and MM~ by [CLOY, Proposition 3.2.3]. Since 9~ and T are extensions
of common torsion cp—moduleﬂ and the inclusion M~ < IMT respects the ex-
tension, it is an isomorphism by 5-lemma (applied to the abelian category of &-
modules). O

4. APPLICATION TO “BARSOTTI-TATE DEFORMATION RINGS”

In this section, we finally relate G __-deformation rings and crystalline defor-
mation rings. The main result of this section is Corollary which shows that
a “Barsotti-Tate deformation ring” are isomorphic to a suitable G _-deformation
ring of height < 1 via the map defined by “viewing G g-deformations as Gx__ -
deformations”.

4.1. crystalline and semi-stable deformation rings. Let Rep[i’ig]@p (GK) (respectively,

Rep:gg,] (GKk)) denote the category of p-adic crystalline (respectievly, semi-stable)

G k-representations V such that gr* Dir (V) = 0 for w ¢ [0, h]. Let Rep[c(i’ig’]zp (Gk)
(respectively, Repst (g K)) denote the category of Z,-lattice G i-representations
T such that T[ € Repcm@ (GK) (respectively, [%] € Repg:gp(g;{)).

Let Rep[0 4]

cris, tor(g k) (respectively, Repbt tor(g x)) denote the category of finite
p°-torsion G i-modules T" which admit a G g-equivariant surjection T — T where

T e Rep([gf]z (Gx) (respectively, T € Repg’g] (Gk)). Note that the subcategories
Repc?ng]tor(g K ) and RepBt tor(g k) are obviously closed under subquotients and di-

rect sums inside the category of all finite p*-torsion G g-modules.

2ONarnely, both 9~ and Mt are extensions of a unique Lubin-Tate type torsion G-module
model for (poo ®F A)/L 4 by a unique étale torsion S-module model for L 4.
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Let p: Gxg — GL4(F) be a representation. Define a subfunctor DM o the

Cris
framed deformation functor D of p by requiring that a framed deformation p4

over A € ANy is in DC“LO h](A) if and only if ps € Repcm tor(gK) as a torsion

Zp|G k]-module (i.e., ignoring the A-action). By repeating the argument in
[0,R]

cris

. We can similarly define a subfunctor DSDt’[O’h} c D°

using Repbt tor(g k) and obtain the universal quotient Rg[o,h] or R”. Note also

that one can define subfunctors Dglg ]7 D[O M D, which turn out to be relatively
representable.
The following is a difficult theorem of Tong Liu [Liu07]:

we obtain the universal quotlent RS
[0,h]

cris

of the universal framed deformation ring

R" which represents D

Theorem 4.1.1. Let £ : R — A be an ﬁ—algebm map where A is an finite algebra
over Frac 0, and let pg := p” @pgo ¢ A where p® is the universal framed deformation.
Then & factors through the quotient RCDr’i[SO hl (respectively, Rg 0.0, h) if and only if
pe € Rep[c(i’i:}(@p (G k), where pe is viewed as a p-adic G i -representation by forgetting
the A-action.

Remark 4.1.2. If p € RepCrlS Q, (G k), then there exists a p-divisible group G over Ok
such that V,,(G) & p. (This is proved by Breuil [Bre00, Théoréme 1.4] when p > 2
and by Kisin [Kis06, Corollary 2.2.6] when p = 2.) Combining T. Liu’s theorem
, we see that D701

(Theorem i

functor.

(A) is same as the flat (framed) deformation

Set poo := plg,. - Let RZ:S" be the universal framed deformation ring of pa
with height < h.

Lemma 4.1.3. Restricting to Gk, induces the following natural morphisms:

RD <h RD,[O,h]

<h a,<h 0,[0,A]
crls cris R - R .

res , and resg

Furthermore, resCrls ®Qp induces surjections on the completions at each mazimal

ideal of Rgfh ®z, Qp. The same holds for deformation rings (without framing) if
Endg,,_(pm) = F.

Proof. Let us first show that the Gx__-restriction of any T € Repgt):ﬁ])r(g;() is a
torsion Gk __ -representation of height < h. Choose a presentation 7' = T/ T’ such

that 7,7 € Repg:Z]P (GK). Kisin [Kis06, Proposition 2.1.5, Lemma 2.1.15] showed

that T and T' are of height < h, so it follows from Lemma that T|g x IS5 a

torsion representation of height < h. Finally, the assertion on resfr{; ®Q, directly
follows from the full faithfulness of the G __-restriction on the category of p-adic
crystalline G g-representations [Kis06, Corollary 2.1.14]. O

Let Repfoi(g k..) denote the the category of torsion Gp_-representations of
height < 1 (Definition . The following theorem and its immediate corollary
(Corollary is the key step for connecting Proposition and Theorem
which is done in §4.4}

Theorem 4 2. Restricting the G -action to Gi_ induces an equivalence of cate-
gO?”’L@S Repcrls tor(gK) - Reptor(gK )

Corollary 4 2.1. The natural map resCrls Spec Rmso A, Spec RS (defined in
Lemma is an isomorphism. The same holds for unframed deformation rings

if they exist.
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Remark 4.2.2. Note that 1"135Crls Spec Rcr’l[so’h] — Spec RLS" is not in general an
isomorphism (even after inverting p); the dimensions of the source and the target
are not same at a maximal ideal of RSH[SO h][ | which corresponds to a lift which has

two Hodge-Tate weights that differ at least by 2. See [Kis08, Theorem 3.3.8] and
[Kim09, Corollary 11.3.11] for the dimension formulas.

4.3. Proof of Theorem Theorem [4.2] can be easily deduced from the following
proposition:

Proposition 4.3.1. If V € RepCrlb (GK) then any G -stable Zp-lattice in V' is
G ik -stable.

Sketch of the proof. This proposition when p > 2 can be read off from the literature
(¢f. [Kis06l, Theorem 2.2.7]), and when p = 2 this proposition is the main arithmetic
ingredient of [Kim10] (as opposed to geometric ingredients). So we only sketch the
idea, and for the full details we refer to [Kim10, §5] or the references cited below.

For V ¢ RepCrlS Qp (Gk) as in the statement, consider a G _-stable Z,-lattice
T C V. By [Kis06, Lemma 2.1.15] there exists 9 € Modg(¢)S! such that 7' =
Tél(im)*(l) On the other hand, we can associate, to 9, a Gx-stable lattice
T’ in V via Breuil’s theory of strongly divisible modules. To explain, let S be the
p-adically completed divided powers envelop of W (k)[u] with respect to (P(u)). By
the recipe given in [Kis06, §2.2.3] and [Bre00, Proposition 5.1.3]°9 we can view
S Qs M as a strongly divisible module. (c¢f. Definition 2.2.1 and Theorem 2.2.3 in
[Bre02].) Now, we obtain a G -stable Z,-lattice T' := T}, (S o, M) in V, where
T2 is defined below Definition 2.2.4 in [Bre02].

When p > 2, we can show that T = T’ (so T is Gg-stable). This is proved in
the first paragraph of the proof of [Kis06, Theorem 2.2.7]. When p = 2, we only
have T' C T which can be proper inclusion, but we can show that T is a G k-stable
sublattice in T”. This is proved in [Kim10), Proposition 5.6]. O

Using Proposition [£.3.1] let us prove Theorem[d.2} i.e., the G __-restriction func-

tor Rep[cr’IS ior(OK) — Reptor(g K., ) is an equivalence of categories. By Lemma

torsion G -representations of height < h are precisely those that can be ertten
as T = T/f’ where T and T are Z,-lattice Gx_-representations of height < 1
Set V := T[%} = Tv’[%] By [Kis06, Proposition 2.2.2], V' can be uniquely extended
to a crystalline representation (denoted by the same letter V') which satisfies the
condition in Proposition [£:3.1] This shows the essential surjectivity.

It is left to show that for T,7T" € Repl[gli wor(GK), any Gk -equivariant map
f:T — T is Gg-equivariant. It is enough to handle the case when f is surjective;
once we show this, then any injective Gx__-map T — T is Gx-equivariant since
T — T/T" is G g-equivariant, and any map f can be factored as a composition of a
surjective map and an injective map Now, assume that f is surjective, and choose a
G i-stable lattice T in V as in Proposition such that there is a G i-surjection

T —T. Set T' := ker[T — T 4 T'] which is a G -stable Z,-lattice in V. Then
by Proposition the T is also G -stable in V, hence f is G g-equivariant.

4.4. Deducing Theorem.from Theorem. Let RZ:Y denote the &-flat quotient
of RZ%Y such that for any finite Frac &-algebra A, a crystalline A-deformation p4

cris

cris

2INote that Iél(fm)*(l) =T:(MQRg Og)* is the usual contravariant version of the functor,
which is more convenient here.

22Although p > 2 is assumed through the paper [BreQ0], the statement and proof of Proposi-
tion 5.1.3 is valid even when p = 2.
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[0,1]
cris

defines an A-point of R_; if and only if p4 defines an A-point of R and the

following additional condition is satisfied:
(4.4.1a) det palrg ~ Xeyel k-

Indeed, the condition ) for A € ANRe defines a universal quotient of R
and we further quotlent out all p>-torsion to obtain ReY.

Note that the condition (4.4.1a) for a finite Q,-algebra A is equivalent to the
following:

(441b) det ,0A|IKoo ~ chc|IK°Oa

since a p-adic crystalline I -representation is uniquely determined by its restriction
to Ik by Kisin [Kis06, Corollary 2.1.14]. Therefore, it follows from Theorem
and Lemmathat the map res® induces an isomorphism R%Y =+ R (where
RSV is defined in Lemma [3.5.3).

Now, in order to obtain Theorem (granting Theorem , we are left to
show that the “ordinarity” and “supersingularity” (which will be defined below)
are preserved by G -restriction. Let us first recall the definitions. Let A be finite
flat over either Z, or Qp, and let T4 be a free A-module of rank 2 equipped with
continuous Gk -action which is of height < 1 and such that Ix_ acts on detT4
via Xeyel Ino, We say that such T4 is ordinary if it admits a non-zero unramified
quotient (necessarily unique and of rank 1), and is supersingular otherwise. When
A is finite over Q,, a G __-representation T4 over A is ordinary if and only if the
unique M4 € (ModFI /)" that gives rise to T4 is ordinary in the sense of

For A as above, let T4 be a free A-module of rank 2 equipped with continuous

G k-action such that TA[ | € Rep[0 U

cris,Qp
on det T4 via Xeye|ry - We similarly define ordinary and supersingular represen-
tations, and the definition can be interpreted in terms of the associated filtered
p-module.

Set Ry i= R @ po.co B2 and RO = Rl @ o, R,

cris cris cris cris

cris?

(G k) as a p-adic representation and Ix acts

Proposition 4.4.2. Let A be a finite Qp algebra. Then a map £ : chs — A
factors through Rcrls (respectively, chs ) if and only if the corresponding framed
A-deformation pe is an ordinary G g -representation (respectively, pe is a supersin-
gular G i -representation).

By this proposition, the statement of Theorem [I.1]is clearly reduced to Theo-
rem and Proposition

201, 4 & map factors through the quotient RD:2™
(respectively, Ro:>

aie ) if and only if p¢lg,  is ordinary (respectively, pelg,  is su-
persingular). By [Kis06, Corollary 2.1.14], we have det p¢|r,. = Xcye|r, if and only
if det pelr, . = Xeyel1x., - Now the proposition follows from Lemma m O

Proof. By deﬁnition7 £ R,

Lemma 4.4.3. Let A be a ﬁm'te local Qp-algebra, and Va an A-representation of

Gk such that V4 € RepCrls Qp (GKk) as a p-adic representation. Then the mazimal

ét

unramified A[Gr_ ]-quotient V' of V4 is free over A and is a Gk -equivariant
quotient. (So V'

V4 is also the ma:mmal unramified G i -quotient.)

Proof. By [Kis06, Proposition 2.2.2] the natural projection V4 —» V§' is G-
equivariant, so it remains to show that V§' is free over A.

It follows from [KisO8, Corollary 1.6.3] (¢f. Proposition that there exist
a Zy-subalgebra A° C A with AO[%}] = A and M40 € (ModFI /G)Zi such that

TAO[%] = Valg,, where Tso := Iél(on). Then the image of T in V§ is free
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over A° by [Kis09bl, Proposition 1.2.11], and its A-span is V§'. This proves that
V§tis free over A. O

Remark 4.4.4. Indeed, Lemma still holds when V4 € Repg:gp(g;() as a p-adic
representation, so Proposition can be generalized to this setting (with suitable
the definitions of ordinary and supersingular representations of G and Gg_ ).

For the statements and the proofs see Lemma 11.4.19 and Proposition 11.4.18 in
[Kim09].

5. POSITIVE CHARACTERISTIC ANALOGUE OF CRYSTALLINE DEFORMATION RINGS

In this section, we introduce a class of Gal(k((u))%P/k((w)))-representation with
coefficients in some equi-characteristic local field which could be thought of as an
analogue of crystalline representations, and develop a deformation theory for them.
Such representations are (implicitly) introduced by Genestier-Lafforgue [GL10], and
its torsion version also appeared in Abrashkin [Abr09]. A useful observation is that
the linear algebra objects that give rise to such Galois representations have very
similar structure to various (¢, &)-modules we saw in Kisin theory. Considering the
norm field isomorphism Gx__ = Gal(k((w))*P/k((w))) [Win83], it is not too surpris-
ing that the Gi__-deformation theory has an analogue in positive characteristic.

5.1. Notations/Definitions. Let & := F,[[m]] be a complete discrete valuation ring
of characteristic p. For this section, let K := k((u)) and Ok := k[[u]] where k is a
finite extension of Fy,. (So K is no more a finite extension of Q,.) We fix a finite
map ¢ : Oy — Ok over F,. Roughly speaking, &y will play the role of Z,, and
my € Oy will play the role of p.

Put Gi = Gal(K*P/K). We will study a certain class of G g-representations
over 0, Frac(0)), or finite algebras thereof. It is defined in terms of linear-algebraic
objects called (effective) local shtukas over Ok, which we introduce below. Local
shtukas have many analogous features to (y, &)-modules of finite height in Kisin
theory, so we use similar notations to Kisin theory to emphasize the analogy.

Let 6 := Ok|[mo]] and O¢ := K[[m]]. We define a partial g-Frobenius endo-
morphism ¢ for each of these rings so that it acts as the gth power map on K and
o(mo) = mo. This o lifts the gth power map modulo 7y, and fixes &,. We also set
€ := K((mp)) and extend o on €. Then o fixes Frac(&y)

Let ug := t(mg) # 0 where ¢ : 0y — Ok is the map we fixed earlier. Put
P(u) := mo —up € & and let e := ord,(up). Clearly we have &/(P(u)) = Ok,
which is a totally ramified ring extension of k[[mo]]. This shows that P(u) is a
&> -multiple of some Eisenstein polynomial in k[[mg]][u] with degree e.

5.1.1. An étale p-module is a (y, ﬁg)—modulﬂ (M, o) such that ¢py is an iso-
morphism.The main motivation for considering étale p-modules is that we have an
equivalence of categories betwien the category of étale p-modules and the category
of G-representations . Let Ogur := K3P|[[m]], and we let G act on it through
the coefficients, and define the partial ¢g-Frobenius endomorphism o so that it acts
as the gth power map on K*°P and o(mg) = mg. For an étale p-module M we define

(5.1.2) Te(M) := (M ®p, Opu)?=".

This induces an exact equivalence of categories between the category of étale -
modules and the category of finitely generated €y-module with continuous G k-
action. One can define the quasi-inverse Dy in a similar fashion to (2.1.2a)). Fur-
thermore, they respect all the natural operations, and they preserve rank and length

23The notion of p-module is defined in Note that we use &g defined in §5.1} not the one
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whenever applicable. The proof is identical to the proof of the p-adic case [Fon90,
§A 1.2

Definition 5.1.3. Consider the following étale p-module M7 := Og-e equipped
with pr., (0*e) = P(u)"te. Let xz7 : Gx — Of denote the character that
defines the G-action on T'e(Mr). For any 0y[G k]-module V, we let V(n) the
00|G k]-module whose G g-action is twisted by x7s.

This character x .7 is equivalent to the character obtained from the mp-adic Tate
module of the Lubin-Tate formal Op-module over 0. See [And93] for the proof.
Note that when K is a finite extension of Q,, we can obtain xcyc|g,_ from the étale
¢-module defined analogously as above. Compare with [Kis09a, Lemma 2.3.4].

5.1.4. For a non-negative integer h, an effective local shtuka (over Ok ) of height < h
is a finite free G-module M equipped with a G-linear morphism gy : c*9 — M
such that coker(ypgy) is killed by P(u)?. The original definition of effective local
shtuka (over Of) requires coker(pon) to be flat over Ok, but this is automatic
because it is a P (u)-power torsion &-module of projective dimension < 1. Note that
effective local shtukas can be defined over any €p-scheme (not just over Spf Ok),
and there are more general objects called local shtukas which are defined by allowing
wom to have a pole at P(u). See [GL10, Definition 0.1] or [Harl0, Definition 2.1.1]
for more general definition.

Since P(u) is a unit in O¢, the scalar extension M g Of is naturally an étale
w-module. So we can associate a G g-representation to an effective local shtuka 9t
of height < h as follows:

(5.1.5) TS (M) == T (M @s Oc)(h)

We state the following fundamental and non-trivial result on this functor Iéh.
Compare with [Kis06, Proposition 2.1.12, Lemma 2.1.15].

Proposition 5.1.6.

(1) The functor Iéh from the category of effective local shtukas of height < h
to the category of Oy-representations of Gk is fully faithful.
(2) Let V := zéh(mt)[io], then for any Gy -stable Oy-lattice T' C V there

Y

exists an effective local shtuka O of height < h such that T' = zéh(sm’).

Proof. The proof of is very similar to the proof of its p-adic analogue [Kis06,
Proposition 2.1.12], except that one needs to work with “weakly admissible isocrys-
tals with Hodge-Pink structure” instead of filtered ¢-modules, and apply [GL10,
Théoreme 7.3] instead of [Kis06, Lemma 1.3.13]. The detail is worked out in [Kim09,
Theorem 5.2.3].

The claim easily follows from [GLI0, Lemme 2.3] by the same way as its
p-adic analogue [Kis06, Lemma 2.1.15] is proved. t

A finite free 0y-module equipped with continuous G k-action is called Oy-lattice
G i -representation. A finitely generated m§°-torsion &p-module equipped with con-
tinuous G g-action is called w§°-torsion G i -representation.

Definition 5.1.7. Let h be a non-negative integer. An Oy-lattice Gx-action T is
called of height < h if there exists an effective local shtuka 9t of height < h such
that T = Iéh(fm). A continuous G g-representation V' over Frac(0y) is called of
height < h if it admits a Gg-stable Op-lattice T C V which is of height < h; or
equivalently by Proposition , any G g-stable Op-lattice T' C V is of height

24gee [Kim09, §5.1] for the full proof, but the positive characteristic version of the theory of
étale p-modules must have been known for a while
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< h. A 7wi-torsion Gg-representation 1" is called of height < h if there exist
Oy-lattice G i-representations 77 C T of height < h such that T = T/T".

It easily follows from Definition[5.1.3|that x7.; for 0 < r < his of height < h. It is
not difficult to show that any unramified G i-representation is of height < 0 (hence,
of height < h for any non-negative h). See, for example, [Kim09, Proposition 5.2.10]
for the proof.

Proposition suggests that G i-representations of height < A should enjoy
similar properties to those enjoyed by Gx,_ -representation of height < A in the
setting of Kisin theory. On the other hand, G i-representations of height < h can
also be regarded as a positive characteristic analogue of crystalline representations
with Hodge-Tate weights in [0, h], for the following reasonsﬂ Effective local shtukas
arise naturally by completing global objects at “places of good reduction” such as
t-motives, elliptic sheaves, and Drinfeld shtukas. (See [Harl(O, Example 2.1.2] for
more details.) It has been known for experts that there exists a natural anti-
equivalence of categories between the category of effective local shtukas of height
< 1 and the category of strict mo-divisible groups (using the terminology of [Fal02]),
and if 9 is the effective local shtuka of height < 1 which corresponds to a strict
mo-divisible group G then (Zél(i)ﬁ))*(l) is naturally isomorphic to the mp-adic
Tate module of G. This is generalized by Hartl [Har09, §3] to any effective local
shtukas[” See [Kim09, §7.3] for the proof.

5.1.8. For a non-negative integer h, a torsion shtuka of height < h is a finitely gener-
ated m(°-torsion u-torsion-free G-module 9 equipped with an G-linear morphism
oo : "I — M such that coker(pgy) is killed by P(u)*. We let (Mod /&)S"
denote the category of torsion shtukas of height < h with the obvious notion of
morphisms. There is a natural analogue of Cartier duality. (See [Kim09) §8.3] for
more details.)

Let 9t be a torsion shtuka of height < h. Since MM ®g O¢ is a wi°-torsion
étale p-module, one can associate a m§°-torsion G g-representation Iéh(‘)ﬁ) =
T:(M @ Og)(h). The same proof as in [Kis06, Lemma 2.3.4] shows that any
torsion shtuka of height < A can be obtained as the cokernel of an isogeny N — M
of effective local shtukas of height < h. Now, exactness of Iéh implies that any
meo-torsion G -representation T is of height < h (in the sense of Definition [5.1.7)
comes from a torsion shtuka of height < h.

5.1.9. We finally remark that the analogue of the “limit theorem” holds; i.e., an
Op-lattice G -representation obtained as a limit of m{°-torsion G k-representation
of height < h is again of height < h (as an Op-lattice G -representation). The
proof is “identical” to the proof of its p-adic analogue [Liu07, Theorem 2.4.1].

5.2. Deformation theory. Let F be a finite extension of F, (which is the residue
field of 0p), and p : Gx — GL4(F) a representation. Let & be a finite extension
of 0y with residue field F. Let 2014 be the category of artin local &-algebras A
whose residue field is F, and similarly let 2/[5{5 be the category of complete local
noetherian &-algebras with residue field F.

Let D, D7 : ARy — (Sets) be the deformation functor and framed deformation
functor for p. Since the tangent spaces of these functors are infinite-dimensional
(as explained in , they cannot be represented by complete local noetherian
O-algebras.

25We remark that in positive characteristic Koo 1= K( ‘1%) is a purely inseparable field
extension of K, so the gap between G and Gg__ collapses.

26Note that not all the mo-divisible groups come from effective local shtukas — the mp-divisible
groups that come from effective local shtukas are called divisible Anderson modules in [Har09, §3].
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We say that a deformation pa over A € ARy is of height < h if it is a 7§°-
torsion G g-representation of height < h as a m§°-torsion G x-representation; or
equivalently, if there exist 91 € (Mod /&)S" and an 0)[G k]-isomorphism pa =
Iéh(i)ﬁ). For A € ARy, we say that pa is of height < h if ps ® A/m’ is a
deformation of height < h for each n. When A € AR5, both definitions are
compatible because the condition of being height < h is closed under subquotient.
(The proof is the same as Lemma ) When A is finite flat over ), a deformation
pa over A is of height < h if and only if p4 is of height < h as a Oj-lattice G-
representation, as remarked in

Let DS" ¢ D and DP'SP € DP respectively denote subfunctors of deformations
and framed deformations of height < h. In this setting, we have the analogue of
Theorem

Theorem 5.2.1. The functor DS has a hull, and if Endg,. (p) = F then DS" is
representable (by RS" € ARy ). The functor DSP s representable (by R™-SM ¢

AR5 ) with no assumption on p. Furthermore, the natural inclusions DS" — D
and DBSh — DB of functors are relatively representable.

We call RP'S" the universal framed deformation ring of height < h and RS" the
universal deformation ring of height < h if it exists.

The proof of Theorem [2.3] can easily be adapted. The main step is to show the
finiteness of the tangent space, but the same proof of Proposition works if we
replace &, O¢, (Mod /&)S" by their positive characteristic analogues as introduced
in and the pth power map is replaced by the gth power map in suitable places.
See [Kim09, §11.7] for the full details.

5.3. Moduli of torsion shtukas of height < h. Let h be a positive integer, and let
A be a mp-adically separated and complete topological Op-algebra, (for example,
finite @p-algebras or any Op-algebra A with 7}’ - A = 0 for some N). We can define
Sa, fog a, (ModFI /6)§h, and (ModFI /0¢)% in a manner similar to but
using & and O¢ defined in

Consider a deformation pr of p over R € Q/[f)\‘iﬁ which is of height < h (i.e.
pr ®r R/m’ is of height < h for each n). The main examples to keep in mind
are universal framed deformation of height < h. Put Mg := @Mn where M, €

(ModFI /O¢)% . is such that Tg(M,)(h) = pr @ R/m} for each n. For any
R
R-algebra A, we view Mr®p A as an étale p-module by A-linearly extending ¢y,
For a complete local noetherian ring R, let 2ugy be the category of pairs (A4, I)
where A is an R-algebra and I C A is an ideal with IV = 0 for some N such that
mpr-A C I. Note that an artin local R-algebra A can be viewed as an element in
Aug, by setting I := m4. A morphism (A4,1) — (B, J) in Augp is an R-morphism
A — B which takes I into J. We define a functor DéhpR : Augp — (Sets) by
putting DéhpR (A, I) the set of p-stable & 4-lattices in Mg ® g A which are objects
in (ModFI /&)$".
With this setting, we have an analogue of Proposition [3.2}
Proposition 5.3.1. The functor Dé?pR can be represented by a projective R-scheme
%.@flg and a & ®z, Off@fﬁ -lattice @fg C Mg ®r O%@fg' (We call @f: a
universal G-lattice of height < h for pr.) Moreover, the formation of %%f}f
@,i? commute with scalar extension R — R'.

and

Indeed, the proof of its p-adic analogue (Proposition works verbatim in the
positive characteristic setting. The proof is also worked out in Proposition 11.1.9,
Corollary 11.1.11 of [Kim09] for the positive characteristic setting.
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The discussions in also applies to this positive characteristic setting. For
example, the structure morphism %%f: — Spec R becomes an isomorphism after
inverting mg (Proposition also using Proposition @), RD’gh[ﬂiO] is formally
smooth (Proposition; and in the rank-2 case the condition of having “ordinary”
local shtuka model defines a union of connected components in Rm’gh[ﬂ%] (Propo-
sition .

When p is 2-dimensional and h = 1, one can define the &-flat quotient R™"Y
of R™S! in the similar fashion to whose generic fiber classifies lifts such
that I acts via xc7 on the determinant. (c¢f. [Kis09a, Lemma 2.3.4].) Then the
direct analogue of the connected component result (Proposition holds for the
positive characteristic deformation ring R%V[-L]. Furthermore, the argument in

o

IKis08| §3] can be adapted to show that RD"’[%] is equi-dimensional of dimension
4+ [K : F;((uo))], which is strongly analogous to the p-adic case. (Compare with
[Kis08| Theorem 3.3.8] and [Kim09, §11.3.17].) All these results can be generalized
to the case with h > 1 except the connectedness of the “supersingular locus” in
Spec RD"’[%O] (with the suitable definition of R™"V).
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