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Abstract. LetK be a finite extension of Qp, and choose a uniformizer π ∈ K,
and put K∞ := K( p∞

√
π). We introduce a new technique using restriction to

Gal(K/K∞) to study flat deformation rings. We show the existence of defor-
mation rings for Gal(K/K∞)-representations “of height 6 h” for any positive
integer h, and we use them to give a variant of Kisin’s proof of connected com-
ponent analysis of a certain flat deformation rings, which was used to prove
Kisin’s modularity lifting theorem for potentially Barsotti-Tate representa-
tions. Our proof does not use the classification of finite flat group schemes.

This Gal(K/K∞)-deformation theory has a good positive characteristics
analogue of crystalline representations in the sense of Genestier-Lafforgue. In
particular, we obtain a positive characteristic analogue of crystalline deforma-
tion rings, and can analyze their local structure.
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1. Introduction

Since the pioneering work of Wiles on the modularity of semi-stable elliptic
curves over Q, there has been huge progress on modularity lifting. Notably, Kisin
[Kis09b, Kis09a] (later improved by Gee [Gee06, Gee09]) proved a very general
modularity lifting theorem for potentially Barsotti-Tate representations, which had
enormous impacts on this subject. (For the precise statement of the theorem, see
the aforementioned references.)

One of the numerous noble innovations that appeared in Kisin’s result is his
improvement of Taylor-Wiles patching argument. The original patching argument
required relevant local deformation rings to be formally smooth, which is a very
strong requirement. Under Kisin’s improved patching, we only need to show that
the generic fiber of local deformation rings are formally smooth with correct di-
mension, and we need to have some control of their connected components. (See
[Kis07, Corollary 1.4] for the list of sufficient conditions on local deformation rings
to prove modularity lifting.) It turns out that the most difficult part among them
(and the hurdle to proving modularity lifting for more general classes of p-adic
Galois representations) is to “control” the connected components of certain p-adic
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analogue of Fontaine’s theory.
1



2 W. KIM

deformation rings at places over p. (The relevant local deformation rings here are
“flat deformation rings”.)

The main purpose of this paper is to give another proof of the following theorem
of Kisin. Let us fix some notations. Let K be a finite extension of Qp and set GK
to be the absolute Galois group of K. Choose a complete discrete valuation ring O
whose residue field F is a finite field of characteristic p. Let ρ̄ : GK → GL2(F) be
a continuous representation, and let R2 be the framed deformation O-algebra of ρ̄
(whose existence was shown by Mazur[Maz89]). Let R2,v

cris be the unique torsion-free
quotient ofR2 whoseA-points classifies crystalline lifts of ρ̄ with “Hodge type (0, 1)”
for any finite Qp-algebra A. (See §4.4 for the definition.) By [Kis06, Corollary 2.2.6]
and [Ray74, Proposition 2.3.1], R2,v

cris differs only by p∞-torsion from the flat framed
deformation ring of ρ̄ with the deformation condition that the inertia action on the
determinant should be given by the p-adic cyclotomic character.

Theorem 1.1 (Kisin; Gee, Imai). For finite local Qp-algebras A and A′, consider
maps ξ : R2,v

cris → A and ξ′ : R2,v
cris → A′. Let ρξ and ρξ′ denote the lifts of ρ̄

corresponding to ξ and ξ′, respectively. Then ξ and ξ′ are supported on the same
connected component of SpecR2,v

cris [ 1
p ] if and only if either both ρξ and ρξ′ do not

admit a non-zero unramified quotient (i.e. non-ordinary) or both ρξ and ρξ′ admit
a rank-1 unramified quotient which lift the same (mod p) character.

Note that proving Theorem 1.1 when p = 2 is the main extra difficulty in proving
the 2-adic potentially Barsotti-Tate modularity lifting theorem (as opposed to the
p-adic modularity lifting theorem with p > 2).

Kisin’s original argument crucially uses a kind of “resolution” of flat deformation
rings constructed via the classification of finite flat group schemes1, which is proved
by Kisin [Kis09b, Corollary 2.3.6] when p > 2, and Kisin [Kis09a, Theorem 1.3.9]
for connected finite flat group schemes when p = 2.2 (This step is where the main
difficulty arises when p = 2, as opposed to when p > 2.) The remaining argument
to prove Theorem 1.1 is rather “linear-algebraic”, and is carried out in [Kis09b, §2]
with improvements by Gee [Gee06] and Imai [Ima08].3

The purpose of this paper is to give another proof of Theorem 1.1 that does not
use finite flat group schemes, and instead relies more on “linear-algebraic” tools from
p-adic Hodge Theory developed in [Kis06]. The key idea is to introduce deformation
rings of height 6 1 (Theorem 2.3) and compare it with flat deformation rings
(Corollary 4.2.1). Another motivation for removing finite flat group schemes from
the proof is that it would be a sensible first step for the modularity lifting theorem
with higher weight where no reasonable analogue of finite flat group schemes for
torsion representations is available. (We do not claim, however, that our proof gives
any indication towards this generalization.)

We point out that our technique is motivated by the author’s study of posi-
tive characteristic analogue of crystalline deformation rings (using the theory of

1In fact, the construction of the resolved deformation space could be carried out using a slightly
weaker statement.

2This classification of finite flat group schemes when p = 2 is now proved in [Kim10] without the
connectedness assumption, but in order to prove Theorem 1.1 it is enough to know the classification
of connected finite flat group schemes which was already proved by Kisin [Kis09a, Theorem 1.3.9].

3The most of the proof appears in Kisin [Kis09b, §2] while he only completed the proof when
the residue field of K is Fp. Gee [Gee06] then made some technical improvement and proved
Theorem 1.1 assuming ρ̄ ∼

(
1 0
0 1
)
, and Imai [Ima08] removed the final assumption. Note that for

proving a modularity lifting theorem we may always assume ρ̄ ∼
(

1 0
0 1
)
, so Gee’s improvement

suffices for this purpose.
The papers [Gee06, Ima08] were written under the assumption that p > 2, but the same

computations work when p = 2.
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Genestier-Lafforgue [GL10] and Hartl [Har10, Har09]). We include a section (§5)
to sketch this positive characteristic deformation theory.

1.2. Structure and overview of the paper. Let K be a finite extension of Qp,
K∞ = K( p∞

√
π) for a chosen uniformizer π ∈ K, GK := Gal(K/K) and GK∞ :=

Gal(K/K∞). It was observed (first by Breuil) that a certain class GK∞-representations
(more precisely, GK∞-representations of height 6 1, defined in Definition 2.1.3)
plays an important role in classifying finite flat group schemes and p-divisible
groups over OK . In this paper, instead of using the classification of finite flat
group schemes, we directly work with “GK∞ -deformations of height 6 1” (defined
in §2.2).

In §2 we prove that the “GK∞-deformation functor of height 6 1” is repre-
sentable. (See §2.4 for an explanation why this is not an “obvious” theorem.) In §3
we study the structure of this GK∞-deformation ring of height 6 1 by “resolving”
the deformation space via an analogue of moduli of finite flat group schemes (as
in Kisin [Kis09b, §2]). In §4, we relate the “Barsotti-Tate deformation ring” and
the “GK∞-deformation ring of height 6 1”, and deduce Theorem 1.1. The main
input in §4 is Proposition 4.3.1, which can be read off from the literature when
p > 2, and is proved when p = 2 by the author in [Kim10, Proposition 5.6]. In the
last section §5, we explain the positive characteristic analogue of this deformation
theory, which inspired the author to study the p-adic GK∞ -deformations of height
6 1.

Acknowledgement. The author deeply thanks his thesis supervisor Brian Conrad
for his guidance. The author especially appreciates his careful listening of my results
and numerous helpful comments. The author thanks Tong Liu for his helpful advice
and the anonymous referees for their comments on the presentations and suggesting
improvements of the original argument of the previous version.

2. Deformation rings of height 6 h

Let k be a finite extension of Fp, W (k) its ring of Witt vectors, and K0 :=
W (k)[ 1

p ]. Let K be a finite totally ramified extension of K0 and let us fix its
algebraic closure K. We fix a uniformizer π ∈ K. and choose π(n) ∈ K so that
(π(n+1))p = π(n) and π(0) = π. Put K∞ :=

⋃
nK(π(n)), GK := Gal(K/K), and

GK∞ := Gal(K/K∞). We refer to [Kis06] for the motivation of considering K∞.

2.1. Etale ϕ-modules and Kisin modules. Let us consider a ring R equipped with
an endomorphism σ : R → R. (We will often assume that σ is finite flat.) By
(ϕ,R)-module (often abbreviated as a ϕ-module, if R is understood), we mean a
finitely presented R-module M together with an R-linear morphism ϕM : σ∗M →
M , where σ∗ denotes the scalar extension by σ. A morphism between to (ϕ,R)-
modules is a ϕ-compatible R-linear map. For any R-algebra R′ equipped with an
endomorphism σ′ over σ, the “scalar extension” M ⊗R R′ has a natural (ϕ,R′)-
module structure.

Let S := W (k)[[u]] where u is a formal variable. Let OE be the p-adic completion
of S[ 1

u ], and E := OE [ 1
p ]. Note that OE is a complete discrete valuation ring with

uniformiser p and OE/(p) ∼= k((u)).4 We extend the Witt vectors Frobenius to S,
OE , and E by sending u to up, and denote them by σ. (We write σS instead, if
we need to specify that it is an endomoprhism on S, for example.) Note that σ is
finite and flat. We denote by σ∗(·) the scalar extension by σ. We fix an Eisenstein

4We should view the residue field k((u)) as the norm field for the extension K∞/K. See [Win83]
for more details.
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polynomial P(u) ∈W (k)[u] with P(π) = 0 and P(0) = p, and view it as an element
of S.

Definition 2.1.1. An étale ϕ-module is a (ϕ,OE)-module (M,ϕM ) such that ϕM :
σ∗M

∼−→ M is an isomorphism. We say an étale ϕ-module M is free (respectively,
torsion) if the underlying OE -module is free (respectively, p∞-torsion).

For a non-negative integer h, a ϕ-module of height 6 h is a (ϕ,S)-module such
that the underlying S-module M is free and coker(ϕM) is killed by P(u)h. A torsion
ϕ-module of height 6 h is a (ϕ,S)-module such that the underlying S-module M
is p∞-torsion with no non-zero u-torsion and coker(ϕM) is killed by P(u)h.

Note that a nonzero p∞-torsion S-module is of projective dimension 6 1 if and
only if it has no non-zero u-torsion, and by [Kis06, Lemma 2.3.4] any torsion ϕ-
module of height 6 h is obtained as a ϕ-equivariant quotient of ϕ-module of height
6 h.

Let ÔEur denote the p-adic completion of strict henselization of OE . By the
universal property of strict henselization, ÔEur has a natural GK∞ -action and a
ring endomorphism σ. For a finitely generated Zp-module T with continuous GK∞-
action, define
(2.1.2a) DE(T ) := (T ⊗OE ÔEur)GK∞ ,

equipped with the ϕ-structure induced from σ on ÔEur . For an étale ϕ-module M ,
define
(2.1.2b) T E(M) := (M ⊗OE ÔEur)ϕ=1,

viewed as a GK∞-module via its natural action on ÔEur .
By Fontaine [Fon90, §A 1.2], T E and DE define quasi-inverse exact equivalences

of categories between the categories of étale ϕ-modules and the category of finitely
generated Zp-module with continuous GK∞ -action, which respects all the natural
operations and preserves ranks and lengths whenever applicable.

Let M denote either a ϕ-module of height 6 h or a torsion ϕ-module of height
6 h. Then M⊗SOE is an étale ϕ-module5, so we may associate GK∞-representation
to such M as follows:
(2.1.2c) T6h

S (M) := T E(M⊗S OE)(h),
where T (h) denotes the “Tate twist”; i.e., twisting the GK∞ -action on T by χhcyc|GK∞ .
It is a non-trivial theorem of Kisin [Kis06, Proposition 2.1.12] that this functor T6h

S

from the category of ϕ-module of height 6 h to the category of GK∞ -representations
is fully faithful. Note that T6h

S is not in general fully faithful on the category of
torsion ϕ-module of height 6 h

Definition 2.1.3. A Zp-lattice GK∞-representation6 T is of height 6 h if there exists
a ϕ-module M of height 6 h such that T ∼= T6h

S (M).
A p-adic GK∞ -representation V is of height 6 h if there exists a GK∞ -stable

Zp-lattice which is of height 6 h (or equivalently by [Kis06, Lemma 2.1.15]7, if any
GK∞ -stable Zp-lattice which is of height 6 h).

A torsion GK∞-representation8 T is of height 6 h if there exists a torsion ϕ-
module M of height 6 h such that T ∼= T6h

S (M). (We say that such M is a
S-module model of height 6 h for T .)

5Note that P(u) is a unit in OE .
6i.e., a finite free Zp-module with continuous GK∞ -action
7In fact, we need a slight refinement of [Kis06, Lemma 2.1.15]; namely, replacing “finite height”

in the statement by “height 6 h”. The proof can be easily modified to prove this refinement.
8i.e., a finite torsion Zp-module with continuous GK∞ -action
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The motivation of this definition is Kisin’s theorem [Kis06, Proposition 2.1.5]
which asserts that the restriction to GK∞ of a p-adic semi-stable GK-representation
with Hodge-Tate weights in [0, h] is of height 6 h.

Lemma 2.1.4. A torsion GK∞-representation T is of height 6 h if and only if
T ∼= T̃ /T̃ ′ for some T̃ and T̃ ′ which are Zp-lattice GK∞-representations of height
6 h.

Proof. Note that for any exact sequence (†) : 0 → M̃′ → M̃ → M → 0 with
M̃, M̃′ ∈ ModS(ϕ)6h and M ∈ (Mod /S)6h, the sequence T6h

S (†) is exact; This is
a consequence of the exactness of T E defined in (2.1.2b), which is proved in [Fon90,
§A 1.2]. The “if” direction now follows from this.

To show the “only if” direction, one needs to show that any M ∈ (Mod /S)6h

can be put in some exact sequence (†) as above, but this could be done by the
essentially same proof of [Kis06, Lemma 2.3.4].9 �

2.2. Deformations of height 6 h. Let F be a finite field of characteristic p, and
ρ̄∞ : GK∞ → GLd(F) a representation. Let O be a p-adic discrete valuation ring
with residue field F. Let ARO be the category of artin local O-algebras A whose
residue field is F, and let ÂRO be the category of complete local noetherian O-
algebras with residue field F.

Let D∞, D2
∞ : ÂRO → (Sets) be the deformation functor and framed defor-

mation functor for ρ̄∞. For the definition, see the standard references such as
[Maz97, Maz89, Gou01]. Contrary to local and global deformation functors we
usually consider, these functors cannot be represented by complete local noether-
ian rings since the tangent spaces D∞(F[ε]) and D2

∞(F[ε]) are infinite dimensional
F-vector spaces. See §2.4 for more details.

We say that a deformation ρ∞,A over A ∈ ARO is of height 6 h if it is a torsion
GK∞ -representation of height 6 h as a torsion Zp[GK∞ ]-module; or equivalently, if
there exists M ∈ (Mod /S)6h and an isomorphism T6h

S (M) ∼= ρ∞,A as Zp[GK∞ ]-
modules. For A ∈ ÂRO , we say that ρ∞,A is of height 6 h if ρ∞,A ⊗ A/mn

A is a
deformation of height 6 h for n � 1.10 When A ∈ ARO , both definitions clearly
coincide. When A is finite flat over Zp, a deformation ρ∞,A over A is of height 6 h
if and only if ρ∞,A is of height 6 h as a Zp-lattice GK∞-representation (in the sense
of Definition 2.1.3), by [Liu07, Theorem 2.4.1].

Let D6h
∞ ⊂ D∞ and D2,6h

∞ ⊂ D2
∞ respectively denote subfunctors of deforma-

tions and framed deformations of height 6 h. The following theorem is one of the
main result of this paper:

Theorem 2.3. The functor D6h
∞ always has a hull. If EndGK∞ (ρ̄∞) ∼= F then

D6h
∞ is representable (by R6h

∞ ∈ ÂRO). The functor D2,6h
∞ is representable (by

R2,6h
∞ ∈ ÂRO) with no assumption on ρ̄∞. Furthermore, the natural inclusions

D6h
∞ ↪→ D∞ and D2,6h

∞ ↪→ D2
∞ of functors are relatively representable by surjective

maps in ÂRO .

We call R2,6h
∞ the universal framed deformation ring of height 6 h and R6h

∞ the
universal deformation ring of height 6 h if it exists. We prove this theorem for the
rest of this section beginning §2.4.

9We will only need this result when h = 1 which is proved in [Kis06, Lemma 2.3.4]. In general,
one just need to modify the proof as follows: using the same notation as in loc.cit., take L̃ to be
a finite free S/P(u)h-module which admits a S/P(u)h-surjection L̃� L := coker(1⊗ ϕM).

10By Lemma 2.4.1, it is equivalent to require that ρ∞,A ⊗ A/mnA is a deformation of height
6 h for each n.
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Remark 2.3.1. Let A be any finite algebra over Frac O, and ρ∞,A : GK∞ → GLd(A)
be any lift of ρ̄∞ (i.e., there exists some finite O-subalgebra A◦ ⊂ A and GK∞ -stable
A◦-lattice in ρ∞,A which lifts ρ̄∞. Then, by [Liu07, Theorem 2.4.1] ρA,∞ arises as
a pull back of the universal (framed) deformation of height 6 h if and only if ρA,∞
is of height 6 h as a Qp-representation.

2.4. Resumé of Mazur’s and Ramakrishna’s theory. Schlessinger [Sch68, Thm 2.11]
gave a set of criteria (H1) – (H4) for a functor D : ARO → (Sets) to be repre-
sentable. For a profinite group Γ and a continuous F-linear Γ-representation ρ̄,
Mazur [Maz89, §1.2] showed that the framed deformation functor D2

ρ̄ of ρ̄ satisfies
all the Schlessinger criteria except the finiteness of the “tangent space” D2

ρ̄ (F[ε]),
and the same for the deformation functor Dρ̄ if EndΓ(ρ̄) ∼= F. When Γ is either
an absolute Galois group for a finite extension of Qp, or a certain quotient of the
absolute Galois group of any finite extension of Q, Mazur obtained the finiteness of
the tangent space from so-called p-finiteness [Maz89, §1.1], but it is very unlikely
to hold for more general class of Γ.

Unfortunately, GK∞ does not satisfy the p-finiteness, and in fact the tangent
space D∞(F[ε]) is infinite even when ρ̄∞ is 1-dimensional. To see this, note that
D∞(F[ε]) ∼= Homcont(GK∞ ,F) when ρ̄∞ is 1-dimensional, This is infinite from the
norm field isomorphism GK∞ ∼= Gal(k((u))sep/k((u))) and the existence of infinitely
many Artin-Schreier cyclic p-extensions of k((u)). For a finite dimensional ρ̄∞, one
sees that the deformation and framed deformation functors D∞ and D2

∞ never sat-
isfies (H3) from deforming the determinant11, and in particular these ‘unrestricted’
deformation functors are never represented by a complete local noetherian ring.

Now, let us look at the subfunctors D6h
∞ ⊂ D∞ and D2,6h

∞ ⊂ D2
∞ which consist

of deformations of height 6 h (as defined in §2.2). We first state the following
lemma:

Lemma 2.4.1. Any subquotients and direct sums of torsion GK∞-representations of
height 6 h is of height 6 h.

Proof. The assertion about direct sums is obvious. Now consider a short exact
sequence 0→M ′ →M →M ′′ → 0 of p∞-torsion étale ϕ-modules and assume that
there is a ϕ-sbable S-submodule M ∈ (Mod /S)6h in M such that M⊗S OE = M .
Let M′′ be the image of M by M � M ′′ and M′ the kernel of the natural map
M → M′′. One can check that M′ and M′′ are objects in (Mod /S)6h such that
M′ ⊗S OE = M ′ and M′′ ⊗S OE = M ′′. Now the proposition follows from the
exactness of DE and T E . �

Lemma 2.4.1 implies that the condition of being of height 6 h is closed under
fiber products. It immediately follows (cf. the proof of [Ram93, Theorem 1.1])
that the functor D2,6h

∞ satisfies all the Schlessinger’s criteria except the finiteness
of D2,6h

∞ (F[ε]); and the same for D6h
∞ if we have EndGK∞ (ρ̄∞) ∼= F. So to prove

the representability assertion of Theorem 2.3 it remains to check the finiteness12 of
D6h
∞ (F[ε]) and D2,6h

∞ (F[ε]). Before doing this, let us digress to show the relative
representability of the subfunctor D6h

∞ ⊂ D∞, which “essentially” follows from
Lemma 2.4.1.

11For any F[ε]-deformation det(ρ̄∞) + ε ·c of det(ρ̄∞) (where c : GK → F is a cocycle), the

deformation ρ̄∞ + ε·c̃ with c̃ :=

c 0 · · ·
0 0
...

. . .

 has determinant det(ρ̄∞) + ε·c.

12Even though D2
∞(F[ε]) is infinite, one can hope that the subspace D2,6h

∞ (F[ε]) is finite.
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Proposition 2.5. The subfunctor D6h
∞ ⊂ D∞ is relatively representable by surjective

maps in ÂRO . In other words, for any given deformation ρA over A ∈ ÂRO , there
exists a universal quotient A6h of A over which the deformation is of height 6 h.

Proof. Consider a functor hA : ARO → (Sets) defined by hA(B) := HomO(B,A)
for B ∈ ARO , and a subfunctor h6h

A ⊂ hA defined as below:

h6h
A (B) := {f : B → A such that ρA ⊗A,f B is of height 6 h} ,

where B ∈ ARO . Since hA is prorepresentable and the subfunctor h6h
A is closed

under subquotients and direct sums, it follows that h6h
A is prorepresentable, say by

a quotient A6h of A. It is clear that A6h satisfies the desired properties. (cf. the
proof of [Ram93, Theorem 1.1].) �

Now let us verify (H3) for D6h
∞ and D2,6h

∞ , thus prove the representability as-
sertion of Theorem 2.3.

Proposition 2.6. The tangent spaces D6h
∞ (F[ε]) and D2,6h

∞ (F[ε]) are finite-dimensional
F-vector spaces.

Proof. Let us first fix the notation.
2.6.1. Notations and Definitions. Let A be a p-adically separated and complete
topological ring13, (for example, finite Zp-algebras or any ring A with pN · A = 0
for some N). Set SA := S⊗̂ZpA := lim←−α S⊗̂ZpA/Iα where {Iα} is a basis of open
ideals in A. We define a ring endomorphism σ : SA → SA (and call it the Frobenius
endomorphism) by A-linearly extending the Frobenius endomorphism σS. We also
put OE,A := OE⊗̂ZpA := lim←−α OE⊗̂ZpA/Iα and similarly define an endomorphism
σ : OE,A → OE,A.

Let (ModFI /S)6h
A be the category of finite free SA-modules MA equipped with

a SA-linear map ϕMA
: σ∗(MA) → MA such that P(u)h annihilates coker(ϕMA

).
If A is finite artinean Zp-algebra, then MA ∈ (ModFI /S)6h

A is precisely a torsion
(ϕ,S)-module of height 6 h equipped with a ϕ-compatible A-action such that MA

is finite free over SA.
Let (ModFI /OE)ét

A be the category of finite free OE,A-modules MA equipped
with a OE,A-linear isomorphism ϕMA

: σ∗(MA) ∼−→ MA. If A is finite artinean
Zp-algebra, then one can check that T E and DE , defined in (2.1.2), induce rank-
preserving quasi-inverse exact equivalences of categories between the category of
A-representations of GK∞ and (ModFI /OE)ét

A .14

Lemma 2.6.2. Let F be a finite extension of Fp, and ρ̄ a GK∞-representation over
F which is of height 6 h as a torsion GK∞-representation (in the sense of Defini-
tion 2.1.3). Then there exists MF ∈ (ModFI /S)6h

F such that ρ̄ ∼= T6h
S (MF).

Proof. Put M := D6h
E (ρ̄(−h)) and let MF := M+ ⊂ M be the maximal S-

submodule of height 6 h, which exists by [CL09, Proposition 3.2.3]. Then the
ϕ-compatible F-action on M (induced by the scalar multiplication on ρ̄) induces a
ϕ-compatible F-action on MF, which makes MF a projective SF-module. (Note that
SF is a product of copies of a discrete valuation ring.) To show MF ∈ (ModFI /S)6h

F
it is left to show that MF is free over SF, but this follows because the endomorphism
σ : SF → SF transitively permutes the orthogonal idempotents of SF. �

13For us topological rings are always linearly topologized. Later we need to consider coefficient
rings that are not finite Zp-algebras such as A = F[t], especially for analyzing the connected
components of the generic fiber of a deformation ring.

14The relevant freeness follows from length consideration and Nakayama lemma.
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Remark 2.6.3. Lemma 2.6.2 does not fully generalize to a GK∞ -representation ρA
of height 6 h over a finite artinean Zp-algebra A. Assume that he > p where e
is the absolute ramification index of K, and consider F[ε] where ε2 = 0. Let M
be a rank-1 free OE,F[ε]-module equipped with ϕM (σ∗e) = (P(u)h + 1

uε)e for an
OE,F[ε]-basis e ∈M . Let M be a SF-span of {e, 1

uεe} in M . Then M ⊂M is a S-
submodule of height 6 h (using that he > p), but one can check that there cannot
exist a S-submodule of height 6 h which is rank-1 free over SF[ε].15 Note also
that M above is the maximal S-submodule of height 6 h and has a ϕ-compatible
F[ε]-action induced from M , but M is not projective over SF[ε]. This is where the
proof of Lemma 2.6.2 fails.

Now we can begin the proof of Proposition 2.6. Since D2,6h
∞ (F[ε]) is a torsor of

ĜLd(F[ε])/(1 + εAd(ρ̄∞)GK∞ ) over D6h
∞ (F[ε]) (where ĜLd is the formal completion

of GLd at the identity section), it is enough to show that the set D6h
∞ (F[ε]) is finite.

2.6.4. Setup. LetM := DE(ρ̄∞(−h)) and consider (M, ι), whereM ∈ (ModFI /OE)ét
F[ε]

and ι : M ∼= M ⊗F[ε] F is a ϕ-compatible OE,F-linear isomorphism. Two such lifts
(M, ι) and (M ′, ι′) are equivalent if there exists an isomorphism f : M ∼−→M ′ with
(f mod ε)◦ ι = ι′. Fontaine’s theory of étale ϕ-modules [Fon90, §A 1.2] implies that
T E(·)(h) and DE(·(−h)) induce inverse bijections between D∞(F[ε]) and the set of
equivalent classes of (M, ι).

Now assume that there is a ϕ-stable SF-lattice M ⊂M of height 6 h. (Note that
we do not require M to be a SF[ε]-submodule.) By Lemma 2.6.2, the set of equiv-
alence classes of (M, ι) admitting such M ⊂ M exactly corresponds to D6h

∞ (F[ε])
via the bijections in the previous paragraph. So Proposition 2.6 is equivalent to the
following claim:

Claim 2.6.5. There exists only finitely many equivalence classes of (M, ι) where M
admits a ϕ-stable SF-lattice which is of height 6 h.

2.6.6. Strategy and Outline. One possible approach to prove Claim 2.6.5 is to fix a
OE,F-basis for M and a lift to an OE,F[ε]-basis for each deformation M once and for
all, and identifyM with the “ϕ-matrix” with respect to the fixed basis and interpret
the equivalence relations in terms of the “ϕ-matrix.” Then the problem turns into
showing the finiteness of equivalence classes of matrices with some constraints –
namely, having some “integral structure”; more precisely, having a ϕ-stable SF-
lattice with height 6 h (but not necessarily a SF[ε]-lattice; cf. Lemma 2.6.2 and
Remark 2.6.3). So the fixed basis has to “reflect” the integral structure.

This approach faces the following obstacles. Firstly, the deformations M we
consider do not necessarily allow any ϕ-stable SF[ε]-lattice with height 6 h as we
have seen at Remark 2.6.3. In other words, we cannot expect, in general, to find a
OE,F[ε]-basis {ei} for M in such a way that {ei, εei} generates a SF-lattice of height
6 h. In §2.6.7–§2.6.9 we show that a weaker statement is true. Roughly speaking,
we show that there is an OE,F[ε]-basis {ei} for M so that there exists a ϕ-stable
SF-lattice with height 6 h with a SF-basis only involving “uniformly” u-adically
bounded denominators as coefficients relative to the OE,F-basis {ei, ε·ei} of M .

Secondly, we may have more than one ϕ-stable SF-lattice with height 6 h for
M or for M , especially when he is large. In particular, a fixed SF-lattice for M
may not be nicely related to any ϕ-stable SF-lattice with height 6 h for some lift
M ∈ (ModFI /OE)ét

F[ε]. We get around this issue by varying the basis for M among
finitely many choices. This step is carried out in §2.6.11. In fact, we only need

15One way to see this is by directly computing the “ϕ-matrix” for any OE,F[ε]-basis e′ ∈ M ,
and show that it cannot divide P(u)h.
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finitely many choices of bases because there are only finitely many SF-lattices of
height 6 h for a fixed M , thanks to [CL09, Proposition 3.2.3].

Once we get around these technical problems, we show the finiteness by a σ-
conjugacy computation of matrices. This is the key technical step and crucially uses
the assumption that the F[ε]-deformations we consider (or rather, the corresponding
étale ϕ-module M) admits a ϕ-stable SF-lattice in M with height 6 h. See Claim
2.6.12 for more details.
2.6.7. Let M correspond to some F[ε]-deformation of height 6 h. Even though
there may not exist any ϕ-stable SF[ε]-lattice with height 6 h for M , we can find a
ϕ-stable SF-lattice M with height 6 h such that M is stable under multiplication
by ε.16 In fact, the maximal S-submodule M+ ⊂ M among the ones with height
6 h does the job. (The existence of M+ is by [CL09, Proposition 3.2.3].)
2.6.8. For a SF-lattice M ⊂ M of height 6 h which is stable under the ε-
multiplication, we can find a SF-basis which can be “nicely” written in terms of
some OE,F[ε]-basis of M , as follows. Let M be the image of M→M induced by the
natural projection M → M , which is a ϕ-stable SF-lattice in M with height 6 h.
Now, consider the following diagram:

0 // N //
� _

��

M //
� _

��

M //
� _

��

0

0 // ε·M // M // MF // 0,

where N := ker[M�M] is a ϕ-stable SF-lattice with height 6 h in M . We choose
a SF-basis {e1, · · · , en} of M. Viewing them as a OE,F-basis ofM , we lift {ei} to an
OE,F[ε]-basis of M (again denoted by {ei}). By the assumption from the previous
step, we have

⊕n
i=1 SF ·(εei) ⊂ N, where both are SF-lattices of height 6 h for

ε·M . It follows that ( 1
uri ε)ei form a SF-basis of N for some non-negative integers

ri. Therefore, {ei, ( 1
uri ε)ei} is a SF-basis of M.

2.6.9. In this step, we find an upper bound for the non-negative integers ri only
depending on M and the choice of SF-basis of M. Since N is a ϕ-stable submodule,
it contains

(2.6.10) ϕM

(
σ∗
(

1
uri

εei
))

=
(

1
upri

ε

)
·ϕM(σ∗ei) = 1

upri
ε·

n∑
j=1

αijej ,

where αij ∈ SF satisfy ϕM(σ∗ei) =
∑n
j=1 αijej . Note that we obtain the first

identity because ϕM (σ∗ei) lifts ϕM(σ∗ei) and the ε-multiple ambiguity in the lift
disappears when we multiply against ε. Since any element of N is a SF-linear
combination of ( 1

uri ε)ei, we obtain inequalities ordu(αij) − pri ≥ −rj for all i, j
from the above equation (2.6.10). Let r := maxj{rj} and we obtain pri ≤ r +
minj{ordu(αij)} for all i. (Note that the right side of the inequality is always
finite.) Now, by taking the maximum among all i, we obtain

r ≤ 1
p− 1 max

i

{
min
j
{ordu(αij)}

}
<∞

This shows that the non-negative integers ri has an upper bound which only de-
pends on the matrices entries for ϕM with respect to the SF-basis of M.

16This means that M is a ϕ-module over SF[ε] and is projective over SF, but M does not have
to be a projective SF[ε]-module. Hence, such M may not be an object in (ModFI /S)6h

F[ε]. This
actually occurs: M ∼= SF ·e⊕SF ·( 1

u
εe) discussed in Remark 2.6.3 is such an example.
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2.6.11. Recapitulation. Let {M(a)} denote the set of all the SF-lattices of height
6 h in M . This is a finite set by [CL09, Proposition 3.2.3]. For each M

(a), we fix a
SF-basis {e(a)

i } and let α(a) = (α(a)
ij ) ∈ Matn(SF) be the “ϕ-matrix” with respect

to {e(a)
i }; i.e., ϕM

(a)(σ∗e(a)
i ) =

∑n
i=1 α

(a)
ij e(a)

j . We also view {e(a)
i } as a OE,F-basis

for M and (α(a)
ij ) is the matrix for ϕM with respect to {e(a)

i }. Note that (α(a)
ij ) is

invertible over OE,F since M = M
(a)[ 1

u ] is an étale ϕ-module. We pick an integer
r(a) ≥ 1

p−1 maxi
{

minj{ordu(αij)}
}
, for each index a.

For anyM which corresponds to a deformation of height 6 h, we may find a SF-
lattice M ⊂ M of height 6 h which is stable under ε-multiplication. (See §2.6.7.)
Then the image of M inside M is equal to one of M

(a). Pick such M
(a), and lift

the chosen basis {e(a)
i } to an OE,F[ε]-basis for M . Then M admits a SF-basis of

form {e(a)
i , ( 1

uri ε)e
(a)
i } for some integers ri ≤ r(a) (§2.6.8–§2.6.9).

Let us consider the matrix representation of ϕM with respect to the basis {e(a)
i }.

We have ϕM (e(a)
i ) =

∑
i(α

(a)
ij + εβ

(a)
ij )e(a)

j for some β(a) = (β(a)
ij ) ∈ Matn(OE,F)

because ϕM lifts ϕM . Furthermore we have that β ∈ 1
ur

(a) ·Matn(SF) since M ⊂M
is ϕ-stable. We say two such matrices β and β′ are equivalent if there exists a
matrix X ∈ Matn(OE,F) such that β′ = β + (α(a) ·σ(X) −X ·α(a)). This equation
is obtained from the following:

(α(a) + εβ′) = (Idn +εX)−1 ·(α(a) + εβ)·σ(Idn +εX),

which defines the equivalence of two étale ϕ-modules whose ϕ-structures are given
by (α(a) + εβ) and (α(a) + εβ′), respectively.

Now, the theorem is reduced to the verification of the following claim: for each
a, there exist only finitely many equivalence classes of matrices β ∈ 1

ur
(a) ·Matn(SF).

Indeed, by varying both a and the equivalence classes of β, we cover all the possible
lifts M of “height 6 h” up to equivalence, hence the theorem is proved.

From now on, we fix a and suppress the superscript (·)(a) everywhere. For
example, M := M

(a), r := r(a), and α := α(a). Proving the following claim is the
last step of the proof.

Claim 2.6.12. For any X ∈ uc Matn(SF) with c > 2he, the matrices β and β + X
are equivalent.17

This claim provides a surjective map from
( 1
ur ·Matn(SF)

)
/ (uc ·Matn(SF)) onto

the set of equivalence classes of β’s, and the former is a finite set18, thus we conclude
the proof of Proposition 2.6.

We prove the claim by “successive approximation.” Let γ = uhe ·α−1. Note that
γ ∈ Matn(SF) since M is of height 6 h and P(u) has image in SF ∼= (k⊗Fp F)[[u]]
with u-order e. We set Y (1) := 1

uhe
· (Xγ), which is in uc−he Matn(SF ) by the

assumption on X. Then β +X is equivalent to

(β +X) + (α·σ(Y (1))− Y (1)α) = β + α·σ(Y (1)) =: β +X(1)

with X(1) ∈ uc
(1) ·Matn(SF), where c(1) := p(c − he) > c. Now for any positive

integer i, we recursively define the following

Y (i) := 1
uhe
·(X(i−1)γ), X(i) := α·σ(Y (i)), c(i) := p(c(i−1) − he).

17The inequality c > 2he is used to ensure p(c− he) > c. So c = 2he also works unless p = 2.
18We crucially used the fact that we can bound the denominator.
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One can check that c(i) > c(i− 1)(> 2he), X(i) ∈ uc
(i) ·Matn(SF), and Y (i) ∈

uc
(i−1)−he Matn(SF). Since c(i) → ∞ as i → ∞, it follows that the infinite sum

Y :=
∑∞
i=1 Y

(i) converges and X(i) → 0 as i→∞. Therefore we see that β +X is
equivalent to

(β +X) + (α·σ(Y )− Y ·α) = (β +X) +
(
α·σ

( ∞∑
i=1

Y (i))− ( ∞∑
i=1

Y (i))·α)
= lim

i→∞
(β +X(i)) = β,

so we are done. �

3. Generic fibers of deformation rings of height 6 1

Let ρ̄∞ be a GK∞-representation over F and let R2,61
∞ denote the framed de-

formation ring of height 6 1. In this section we study the generic fiber R2,61
∞ [ 1

p ],
such as formal smoothness, dimension, and connected components. The main idea
is to “resolve” R2,61

∞ via some suitable closed subscheme of affine grassmannian
which parametrize certain “nice” S-module models of height 6 1 for framed de-
formations of ρ̄∞. This technique is inspired by Kisin’s construction of moduli of
finite flat group schemes [Kis09b, §2] (and also [Kis08, §1]). In fact, it is even
possible to summarize this section by “repeating [Kis09b, §2] for our setting”, due
to the similarities of linear algebraic structures involved. (For this reason, we try
to state minimal number of definitions and results enough to indicate the flavor of
the argument, and give references for proofs.19) Note, however, that we “resolve”
a framed GK∞ -deformation ring R2,61

∞ instead of a framed flat deformation ring.
With some extra work, many results in this section generalize to (framed) GK∞-

deformation rings of height 6 h for any h, possibly except the connectedness of
non-ordinary loci. See [Kim09, §11] for the statements and proofs. All the results
apply to (unframed) GK∞-deformation rings if they exist.

3.1. Definition: moduli of S-modules of height 6 h. Let h be a positive integer,
and we will later specialize to the case when h = 1. Consider a deformation ρR
of ρ̄∞ over R ∈ ÂRO which is of height 6 h (i.e. ρR ⊗R R/mn

R is of height 6 h
for each n). The main examples to keep in mind are universal framed or unframed
deformation of height 6 h.

We use the notation introduced in §2.6.1. Put MR := lim←−Mn where Mn ∈
(ModFI /OE)ét

R/mn
R

is such that T E(Mn)(h) ∼= ρR ⊗R R/mn
R for each n. For any

R-algebra A, we viewMR⊗RA as an étale ϕ-module by A-linearly extending ϕMR
.

For a complete local noetherian ring R, let AugR be the category of pairs (A, I)
where A is an R-algebra and I ⊂ A is an ideal with IN = 0 for some N which
contains mR·A. Note that an artin local R-algebra A can be viewed as an element in
AugO by setting I := mA. A morphism (A, I)→ (B, J) in AugR is an R-morphism
A → B which takes I into J . We define a functor D6h

S,ρR
: AugR → (Sets) by

putting D6h
S,ρR

(A, I) the set of ϕ-stable SA-lattices inMR⊗RA which are of height
6 h. In [Kis08] this functor is denoted by L6h

ρR .

Proposition 3.2. There exists a projective R-scheme G R6h
ρR and a S ⊗Zp OG R6h

ρR

-

lattice M6h
ρR
⊂MR ⊗R OG R6h

ρR

of height 6 h which represents D6h
S,ρR

in the follow-

ing sense: there exists a natural isomorphism G R6h
ρR

∼−→ D6h
S,ρR

such that for any

19Some references are written under the assumptions that p > 2, but this will not be used in
the proof we cite later.
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(A, I) ∈ AugR it sends an A-point η ∈ G R6h
ρR (A) to η∗(M6h

ρR
) ∈ D6h

S,ρR
(A, I). (We

call M6h
ρR

a universal S-lattice of height 6 h for ρR.)
Moreover, for any map R → R′ of complete local noetherian rings, there exists

a unique isomorphism G R6h
ρR ⊗R R

′ ∼−→ G R6h
ρR⊗RR′ , which pulls back M6h

ρR⊗RR′ to
M6h
ρR
⊗R R′ inside of (MR ⊗R OG R6h

ρR

)⊗R R′.

This proposition is proved in [Kis08, Proposition 1.3; Corollary 1.5.1; Corol-
lary 1.7] possibly except the base change assertion which is straightforward, so we
omit the proof.

3.3. Generic Fiber of G R6h
ρR . For a finite Qp-algebra A, we define (ModFI /S)6h

A to
be the category of ϕ-modules MA such that for some finite Zp-subalgebra A◦ ⊂ A
there exists MA◦ ∈ (ModFI /S)6h

A◦ with MA◦ [ 1
p ] ∼= MA. For such MA, we define

T6h
S (MA) := T6h

S (MA◦) ⊗A◦ A, which is naturally an A-representation of height
6 h. Note that T6h

S (MA) is independent of the choice of MA◦ .
Let A be a local R-algebra with residue field E which is finite over Qp, and let A+

denote the preimage of OE under the natural projection A� E. By the valuative
criterion, any R-map SpecA → G R6h

ρR factors through SpecA+, so in turn, it
factors through SpecA◦ where A◦ is an R-subalgebra in A+ which is finite over O
and such that A◦[ 1

p ] = A. This implies that G R6h
ρR (A) is naturally isomorphic to

the set of ϕ-stable SA-lattices MA of MR ⊗R A such that MA ∈ (ModFI /S)6h
A .

Proposition 3.4. The structure morphism G R6h
ρR ⊗Zp Qp → Spec(R ⊗Zp Qp) is an

isomorphism. If the map Spf R → D6h
∞ of functors on ARO defined by a defor-

mation ρR is formally smooth, then R[ 1
p ] is formally smooth over Frac(O). In

particular, R2,6h
∞ [ 1

p ] is formally smooth over Frac(O).

Proof. The first assertion is a direct consequence of [Kis08, Proposition 1.6.4]. For
the second assertion, it is enough to check the formal smoothness at each maximal
ideal because the formal smoothness locus is open. (cf. [Gro67, 0IV, (22.6.6)].)
Using the assumption on R, we are reduced to showing that for any square-zero
thickening A � A of finite Qp-algebra and any MA ∈ (ModFI /S)6h

A
, there exists

MA ∈ (ModFI /S)6h
A which lifts MA. When h = 1 this readily follows from [Kis06,

Proposition 2.2.2] and [Kis09b, Lemma 2.3.9]. In general, we can proceed as follows.
Choose finite Zp-subalgebras A◦ ⊂ A and A◦ ⊂ A, so that A◦ is a square-zero

thickening of A◦, and there exists a ϕ-stable SA◦ -lattice MA◦ ∈ (ModFI /S)6h

A◦
of

MA. We will lift MA◦ to some MA◦ ∈ (ModFI /S)6h
A◦ . Put ω := coker(ϕM

A◦
), and

the proof of [Kis09b, Lemma 1.2.2(2)] can be adapted to show that ω is projective
over A◦. Now consider a projective A-module ω which lifts ω, a free SA◦ -module
MA◦ which lifts MA◦ , and a A◦-linear surjection MA◦/(P(u)h) � ω which lifts
MA◦/(P(u)h) � ω. Let N denote the kernel of the natural projection MA◦ �
ω. Then since ω is A-flat, N surjects onto the image of ϕM

A◦
under the natural

projection MA◦ � MA◦ ; so in turn, the surjective map σ∗MA◦ � σ∗MA◦
∼−→

ϕM
A◦

(σ∗MA◦) can be lifted to a map σ∗MA◦ � N. (Note that ϕM
A◦

is injective.
cf. [Kis09b, Lemma 1.2.2(1)].) By post-composing it with the natural inclusion,
we obtain a SA◦ -map ϕMA◦ : σ∗MA◦ → MA◦ which lifts ϕM

A◦
, and its image

contains P(u)hMA◦ by construction. �

3.5. Hodge type and local structure. From now on, we assume that h = 1 and ρ̄∞
is 2-dimensional. Consider a lift ρR of ρ̄∞ over R ∈ ÂRO as a GK∞-representation.
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Define a subfunctor Dv
S,ρR

⊂ D61
S,ρR

as follows: for any (A, I) ∈ AugR the sub-
set Dv

S,ρR
(A, I) consists of all MA’s with the property that im(ϕMA

)/P(u)MA ⊂
MA/P(u)MA is its own annihilator under some OK⊗ZpA-linear symplectic pairing
on MA/P(u)MA. This notion does not depend on the choice of the pairing. The
following lemma follows from the same argument as the proof of [Kis09a, Theo-
rem 2.3.9(1)].

Lemma 3.5.1. The subfunctor Dv
S,ρR

⊂ D61
S,ρR

can be represented by a closed sub-
scheme G Rv

ρR ⊂ G R61
ρR .

Remark 3.5.2. With a little more work, one can show that SpecRv[ 1
p ] ⊂ SpecR[ 1

p ]
is an equi-dimensional union of connected components, and when R = R2,61

∞ , then
the dimension of Rv[ 1

p ] = R2,v
∞ [ 1

p ] is 4 + [K : Qp]. We do not use this result later.

The following is a consequence of [Kis09a, Lemma 2.3.4].

Lemma 3.5.3. Let SpecRv denote the scheme-theoretic image of G Rv
ρR in SpecR.

Then for any finite Qp-algebra A, a Zp-morphism ξ : R→ A factors through Rv if
and only if det(ρR ⊗R,ξ A)|IK∞ = χcyc|IK∞ .

Let G Rv
ρR,0 denote the fiber over the closed point of SpecR under the structure

morphism G Rv
ρR → SpecR. For a scheme X, we let H0(X) denote the set of

connected components of X.

Proposition 3.5.4. Assume that the morphism Spf R → D61
∞ induced by ρR is for-

mally smooth. Then the natural maps below
H0(G Rv

ρR ⊗Zp Qp)→ H0(G Rv
ρR)← H0(G Rv

ρR,0)
are bijective.

We only indicate the main idea and references as the proof is not very different
from the situation considered in Kisin [Kis09b]. We first show that G Rv

ρR is O-flat
and G Rv

ρR ⊗O O/mO is reduced under the assumption of the proposition. This
can be proved by constructing a local model diagram (for smooth topology) with
“Deligne-Pappas local model” as in the proof of [Kis07, Proposition 2.7] or [Kis09a,
Theorem 2.3.9]. Now one can apply the same proof of [Kis09b, Corollary 2.4.10]
(which uses the theorem on formal functions) to deduce the proposition.

3.6. Let M be an object either in(Mod /S)61 or in (ModFI /S)61
A where A is

either p-adically separated and complete or finite over Qp. Note that there exists
a unique map ψM : M → σ∗M such that ψM ◦ ϕM and ϕM ◦ ψM are given by
multiplication by P(u). We say M is étale if ϕM is an isomorphism, and of Lubin-
Tate type (of height 1) if ψM is an isomorphism. When M ∈ (ModFI /S)61

A is of
SA-rank 2, we say that M is ordinary if M is an extension of a rank-1 Lubin-Tate
type (ϕ,SA)-module MLT by a rank-1 étale (ϕ,SA)-module Mét.

Assume that ρR is a GK∞ -representation of R-rank 2 with height 6 1, as before.
We define the following subfunctor Dord

S,ρR
⊂ Dv

S,ρR
by requiring that MA should

be ordinary, and let Dss
S,ρR

⊂ Dv
S,ρR

be the complement of Dord
S,ρR

(where the
superscript ‘ss’ stands for ‘supersingular’).

The following proposition is a direct consequence of Proposition 3.5.4 and the
semilinear algebraic statement [Kis09b, Proposiiton 2.4.14] applied to the universal
S-lattice of height 6 1.

Proposition 3.7. The subfunctors Dord
S,ρR

, Dss
S,ρR

⊂ Dv
S,ρR

are represented by G Rord
ρR

and G Rss
ρR , respectively, which are unions of connected components of G Rv

ρR .

Finally, we state the main result of this section.
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Proposition 3.8. Assume that the morphism Spf R→ D61
∞ induced by ρR is formally

smooth. Then SpecRss[ 1
p ] is geometrically connected. Furthermore SpecRord[ 1

p ]
is geometrically connected unless ρ̄∞ ∼ ψ̄1 ⊕ ψ̄2 where ψ̄1 and ψ̄2 are distinct
unramified characters. In the exceptional case there are exactly two components
(which are geometrically connected), and two lifts are in the same component if
and only if the GK∞-stable lines on which IK∞ act via χcyc|IK∞ reduce to the same
character (either ψ̄1 or ψ̄2).

Idea of the proof. Since the statement is insensitive of O and the setting is compat-
ible with scalar extension of O by its finite integral extension, it is enough to show
the connectedness instead of the geometric connectedness. By Proposition 3.4 and
Proposition 3.5.4, the theorem follows from the corresponding connectedness asser-
tions on G Rord

ρR,0 and G Rss
ρR,0 (using the notation of Proposition 3.5.4). To show the

connectedness of G Rss
ρR,0, one explicitly constructs a chain of rational curves that

connects any two closed points via the same affine grassmannian computation done
in Kisin [Kis09b, Proposition 2.5.6] (improved by Gee [Gee06] and Imai [Ima08]);
note that the linear algebra involved in G Rss

ρR,0 is very similar to that of moduli of
finite flat group schemes.

The scheme G Rord
ρR,0 can be computed by exactly the same method as [Kis09b,

Proposition 2.5.15], possibly except that we need to prove the following asser-
tion: For any finite F-algebra A and a GK∞-stable A-line LA in ρ̄∞ ⊗F A such
that LA(−1) is unramified, there exists at most one ϕ-stable S-submodule MA ⊂
DE(ρ̄∞(−1))⊗F A which is ordinary torsion ϕ-module height 6 1 and whose étale
submodule corresponds to LA. To prove this, we first observe that the set of such
M’s is partially ordered by inclusion, so there exist maximal and minimal objects
M+ and M− by [CL09, Proposition 3.2.3]. Since M− and M+ are extensions
of common torsion ϕ-modules20 and the inclusion M− ↪→ M+ respects the ex-
tension, it is an isomorphism by 5-lemma (applied to the abelian category of S-
modules). �

4. Application to “Barsotti-Tate deformation rings”

In this section, we finally relate GK∞-deformation rings and crystalline defor-
mation rings. The main result of this section is Corollary 4.2.1 which shows that
a “Barsotti-Tate deformation ring” are isomorphic to a suitable GK∞-deformation
ring of height 6 1 via the map defined by “viewing GK-deformations as GK∞-
deformations”.

4.1. crystalline and semi-stable deformation rings. Let Rep[0,h]
cris,Qp(GK) (respectively,

Rep[0,h]
st,Qp(GK)) denote the category of p-adic crystalline (respectievly, semi-stable)

GK-representations V such that grwD∗dR(V ) = 0 for w /∈ [0, h]. Let Rep[0,h]
cris,Zp(GK)

(respectively, Rep[0,h]
st,Zp(GK)) denote the category of Zp-lattice GK-representations

T such that T [ 1
p ] ∈ Rep[0,h]

cris,Qp(GK) (respectively, T [ 1
p ] ∈ Rep[0,h]

st,Qp(GK)).
Let Rep[0,h]

cris,tor(GK) (respectively, Rep[0,h]
st,tor(GK)) denote the category of finite

p∞-torsion GK-modules T which admit a GK-equivariant surjection T̃ � T where
T̃ ∈ Rep[0,h]

cris,Zp(GK) (respectively, T̃ ∈ Rep[0,h]
st,Zp(GK)). Note that the subcategories

Rep[0,h]
cris,tor(GK) and Rep[0,h]

st,tor(GK) are obviously closed under subquotients and di-
rect sums inside the category of all finite p∞-torsion GK-modules.

20Namely, both M− and M+ are extensions of a unique Lubin-Tate type torsion S-module
model for (ρ̄∞ ⊗F A)/LA by a unique étale torsion S-module model for LA.
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Let ρ̄ : GK → GLd(F) be a representation. Define a subfunctor D2,[0,h]
cris of the

framed deformation functor D2 of ρ̄ by requiring that a framed deformation ρA
over A ∈ ARO is in D

2,[0,h]
cris (A) if and only if ρA ∈ Rep[0,h]

cris,tor(GK) as a torsion
Zp[GK ]-module (i.e., ignoring the A-action). By repeating the argument in §2.4,
we obtain the universal quotient R2,[0,h]

cris of the universal framed deformation ring
R2 which represents D2,[0,h]

cris . We can similarly define a subfunctor D2,[0,h]
st ⊂ D2

using Rep[0,h]
st,tor(GK) and obtain the universal quotient R2,[0,h]

st or R2. Note also
that one can define subfunctors D[0,h]

cris , D[0,h]
st ⊂ D, which turn out to be relatively

representable.
The following is a difficult theorem of Tong Liu [Liu07]:

Theorem 4.1.1. Let ξ : R2 → A be an O-algebra map where A is an finite algebra
over Frac O, and let ρξ := ρ2⊗R2,ξA where ρ2 is the universal framed deformation.
Then ξ factors through the quotient R2,[0,h]

cris (respectively, R2,[0,h]
st ) if and only if

ρξ ∈ Rep[0,h]
cris,Qp(GK), where ρξ is viewed as a p-adic GK-representation by forgetting

the A-action.

Remark 4.1.2. If ρ ∈ Rep[0,1]
cris,Qp(GK), then there exists a p-divisible groupG over OK

such that Vp(G) ∼= ρ. (This is proved by Breuil [Bre00, Théorème 1.4] when p > 2
and by Kisin [Kis06, Corollary 2.2.6] when p = 2.) Combining T. Liu’s theorem
(Theorem 4.1.1), we see that D2,[0,1]

cris (A) is same as the flat (framed) deformation
functor.

Set ρ̄∞ := ρ̄|GK∞ . Let R2,6h
∞ be the universal framed deformation ring of ρ̄∞

with height 6 h.

Lemma 4.1.3. Restricting to GK∞ induces the following natural morphisms:

res6h
cris : R2,6h

∞ → R
2,[0,h]
cris , and res6h

st : R2,6h
∞ → R

2,[0,h]
st .

Furthermore, res6h
cris⊗Qp induces surjections on the completions at each maximal

ideal of R2,6h
∞ ⊗Zp Qp. The same holds for deformation rings (without framing) if

EndGK∞ (ρ̄∞) ∼= F.

Proof. Let us first show that the GK∞ -restriction of any T ∈ Rep[0,h]
st,tor(GK) is a

torsion GK∞ -representation of height 6 h. Choose a presentation T ∼= T̃ /T̃ ′ such
that T̃ , T̃ ′ ∈ Rep[0,h]

st,Zp(GK). Kisin [Kis06, Proposition 2.1.5, Lemma 2.1.15] showed
that T̃ and T̃ ′ are of height 6 h, so it follows from Lemma 2.1.4 that T |GK∞ is a
torsion representation of height 6 h. Finally, the assertion on res6h

cris⊗Qp directly
follows from the full faithfulness of the GK∞ -restriction on the category of p-adic
crystalline GK-representations [Kis06, Corollary 2.1.14]. �

Let Rep61
tor(GK∞) denote the the category of torsion GK∞ -representations of

height 6 1 (Definition 2.1.3). The following theorem and its immediate corollary
(Corollary 4.2.1) is the key step for connecting Proposition 3.8 and Theorem 1.1,
which is done in §4.4:

Theorem 4.2. Restricting the GK-action to GK∞ induces an equivalence of cate-
gories Rep[0,1]

cris,tor(GK)→ Rep61
tor(GK∞).

Corollary 4.2.1. The natural map res61
cris : SpecR2,[0,1]

cris → SpecR2,61
∞ (defined in

Lemma 4.1.3) is an isomorphism. The same holds for unframed deformation rings
if they exist.
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Remark 4.2.2. Note that res6h
cris : SpecR2,[0,h]

cris → SpecR2,6h
∞ is not in general an

isomorphism (even after inverting p); the dimensions of the source and the target
are not same at a maximal ideal of R2,[0,h]

cris [ 1
p ] which corresponds to a lift which has

two Hodge-Tate weights that differ at least by 2. See [Kis08, Theorem 3.3.8] and
[Kim09, Corollary 11.3.11] for the dimension formulas.

4.3. Proof of Theorem 4.2. Theorem 4.2 can be easily deduced from the following
proposition:

Proposition 4.3.1. If V ∈ Rep[0,1]
cris,Qp(GK) then any GK∞-stable Zp-lattice in V is

GK-stable.

Sketch of the proof. This proposition when p > 2 can be read off from the literature
(cf. [Kis06, Theorem 2.2.7]), and when p = 2 this proposition is the main arithmetic
ingredient of [Kim10] (as opposed to geometric ingredients). So we only sketch the
idea, and for the full details we refer to [Kim10, §5] or the references cited below.

For V ∈ Rep[0,1]
cris,Qp(GK) as in the statement, consider a GK∞ -stable Zp-lattice

T ⊂ V . By [Kis06, Lemma 2.1.15] there exists M ∈ ModS(ϕ)61 such that T ∼=
T61

S (M)∗(1).21 On the other hand, we can associate, to M, a GK-stable lattice
T ′ in V via Breuil’s theory of strongly divisible modules. To explain, let S be the
p-adically completed divided powers envelop ofW (k)[u] with respect to (P(u)). By
the recipe given in [Kis06, §2.2.3] and [Bre00, Proposition 5.1.3]22, we can view
S⊗σ,S M as a strongly divisible module. (cf. Definition 2.2.1 and Theorem 2.2.3 in
[Bre02].) Now, we obtain a GK-stable Zp-lattice T ′ := T ∗st(S ⊗σ,S M) in V , where
T ∗st is defined below Definition 2.2.4 in [Bre02].

When p > 2, we can show that T = T ′ (so T is GK-stable). This is proved in
the first paragraph of the proof of [Kis06, Theorem 2.2.7]. When p = 2, we only
have T ⊆ T ′ which can be proper inclusion, but we can show that T is a GK-stable
sublattice in T ′. This is proved in [Kim10, Proposition 5.6]. �

Using Proposition 4.3.1, let us prove Theorem 4.2; i.e., the GK∞-restriction func-
tor Rep[0,1]

cris,tor(GK)→ Rep61
tor(GK∞) is an equivalence of categories. By Lemma 2.1.4,

torsion GK∞ -representations of height 6 h are precisely those that can be written
as T ∼= T̃ /T̃ ′ where T̃ and T̃ ′ are Zp-lattice GK∞-representations of height 6 1.
Set V := T̃ [ 1

p ] = T̃ ′[ 1
p ]. By [Kis06, Proposition 2.2.2], V can be uniquely extended

to a crystalline representation (denoted by the same letter V ) which satisfies the
condition in Proposition 4.3.1. This shows the essential surjectivity.

It is left to show that for T, T ′ ∈ Rep[0,1]
cris,tor(GK), any GK∞-equivariant map

f : T → T ′ is GK-equivariant. It is enough to handle the case when f is surjective;
once we show this, then any injective GK∞-map T ′′ → T is GK-equivariant since
T � T/T ′′ is GK-equivariant, and any map f can be factored as a composition of a
surjective map and an injective map Now, assume that f is surjective, and choose a
GK-stable lattice T̃ in V as in Proposition 4.3.1 such that there is a GK-surjection
T̃ � T . Set T̃ ′ := ker[T̃ � T

f
� T ′] which is a GK∞ -stable Zp-lattice in V . Then

by Proposition 4.3.1, the T̃ ′ is also GK-stable in V , hence f is GK-equivariant.

4.4. Deducing Theorem 1.1 from Theorem 4.2. Let R2,v
cris denote the O-flat quotient

of R2,[0,1]
cris such that for any finite Frac O-algebra A, a crystalline A-deformation ρA

21Note that T61
S (M)∗(1) = TE(M⊗S OE)∗ is the usual contravariant version of the functor,

which is more convenient here.
22Although p > 2 is assumed through the paper [Bre00], the statement and proof of Proposi-

tion 5.1.3 is valid even when p = 2.
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defines an A-point of R2,v
cris if and only if ρA defines an A-point of R2,[0,1]

cris and the
following additional condition is satisfied:

(4.4.1a) det ρA|IK ∼ χcyc|IK .

Indeed, the condition (4.4.1a) for A ∈ ARO defines a universal quotient of R2,v
cris ,

and we further quotient out all p∞-torsion to obtain R2,v
cris .

Note that the condition (4.4.1a) for a finite Qp-algebra A is equivalent to the
following:

(4.4.1b) det ρA|IK∞ ∼ χcyc|IK∞ ,

since a p-adic crystalline IK-representation is uniquely determined by its restriction
to IK∞ by Kisin [Kis06, Corollary 2.1.14]. Therefore, it follows from Theorem 4.2
and Lemma 3.5.3 that the map rescris induces an isomorphism R2,v

∞
∼−→ R2,v

cris (where
R2,v
∞ is defined in Lemma 3.5.3).
Now, in order to obtain Theorem 1.1 (granting Theorem 4.2), we are left to

show that the “ordinarity” and “supersingularity” (which will be defined below)
are preserved by GK∞ -restriction. Let us first recall the definitions. Let A be finite
flat over either Zp or Qp, and let TA be a free A-module of rank 2 equipped with
continuous GK∞-action which is of height 6 1 and such that IK∞ acts on detTA
via χcyc|IK∞ . We say that such TA is ordinary if it admits a non-zero unramified
quotient (necessarily unique and of rank 1), and is supersingular otherwise. When
A is finite over Qp, a GK∞ -representation TA over A is ordinary if and only if the
unique MA ∈ (ModFI /S)61

A that gives rise to TA is ordinary in the sense of §3.6.
For A as above, let TA be a free A-module of rank 2 equipped with continuous

GK-action such that TA[ 1
p ] ∈ Rep[0,1]

cris,Qp(GK) as a p-adic representation and IK acts
on detTA via χcyc|IK . We similarly define ordinary and supersingular represen-
tations, and the definition can be interpreted in terms of the associated filtered
ϕ-module.

Set R2,ord
cris := R

2,[0,1]
cris ⊗

R
2,61
∞

R2,ord
∞ and R2,ss

cris := R
2,[0,1]
cris ⊗

R
2,61
∞

R2,ss
∞ .

Proposition 4.4.2. Let A be a finite Qp-algebra. Then a map ξ : R2,[0,1]
cris → A

factors through R2,ord
cris (respectively, R2,ss

cris ) if and only if the corresponding framed
A-deformation ρξ is an ordinary GK-representation (respectively, ρξ is a supersin-
gular GK-representation).

By this proposition, the statement of Theorem 1.1 is clearly reduced to Theo-
rem 4.2 and Proposition 3.8.

Proof. By definition, ξ : R2,[0,1]
cris → A a map factors through the quotient R2,ord

cris
(respectively, R2,ss

cris ) if and only if ρξ|GK∞ is ordinary (respectively, ρξ|GK∞ is su-
persingular). By [Kis06, Corollary 2.1.14], we have det ρξ|IK ∼= χcyc|IK if and only
if det ρξ|IK∞ ∼= χcyc|IK∞ . Now the proposition follows from Lemma 4.4.3. �

Lemma 4.4.3. Let A be a finite local Qp-algebra, and VA an A-representation of
GK such that VA ∈ Rep[0,1]

cris,Qp(GK) as a p-adic representation. Then the maximal
unramified A[GK∞ ]-quotient V ét

A of VA is free over A and is a GK-equivariant
quotient. (So V ét

A is also the maximal unramified GK-quotient.)

Proof. By [Kis06, Proposition 2.2.2] the natural projection VA � V ét
A is GK-

equivariant, so it remains to show that V ét
A is free over A.

It follows from [Kis08, Corollary 1.6.3] (cf. Proposition 3.4) that there exist
a Zp-subalgebra A◦ ⊂ A with A◦[ 1

p ] = A and MA◦ ∈ (ModFI /S)61
A◦ such that

TA◦ [ 1
p ] ∼= VA|GK∞ where TA◦ := T61

S (MA◦). Then the image of TA◦ in V ét
A is free
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over A◦ by [Kis09b, Proposition 1.2.11], and its A-span is V ét
A . This proves that

V ét
A is free over A. �

Remark 4.4.4. Indeed, Lemma 4.4.3 still holds when VA ∈ Rep[0,h]
st,Qp(GK) as a p-adic

representation, so Proposition 4.4.2 can be generalized to this setting (with suitable
the definitions of ordinary and supersingular representations of GK and GK∞).
For the statements and the proofs see Lemma 11.4.19 and Proposition 11.4.18 in
[Kim09].

5. Positive characteristic analogue of crystalline deformation rings

In this section, we introduce a class of Gal(k((u))sep/k((u)))-representation with
coefficients in some equi-characteristic local field which could be thought of as an
analogue of crystalline representations, and develop a deformation theory for them.
Such representations are (implicitly) introduced by Genestier-Lafforgue [GL10], and
its torsion version also appeared in Abrashkin [Abr09]. A useful observation is that
the linear algebra objects that give rise to such Galois representations have very
similar structure to various (ϕ,S)-modules we saw in Kisin theory. Considering the
norm field isomorphism GK∞ ∼= Gal(k((u))sep/k((u))) [Win83], it is not too surpris-
ing that the GK∞-deformation theory has an analogue in positive characteristic.

5.1. Notations/Definitions. Let O0 := Fq[[π0]] be a complete discrete valuation ring
of characteristic p. For this section, let K := k((u)) and OK := k[[u]] where k is a
finite extension of Fq. (So K is no more a finite extension of Qp.) We fix a finite
map ι : O0 → OK over Fq. Roughly speaking, O0 will play the role of Zp, and
π0 ∈ O0 will play the role of p.

Put GK := Gal(Ksep/K). We will study a certain class of GK-representations
over O0, Frac(O0), or finite algebras thereof. It is defined in terms of linear-algebraic
objects called (effective) local shtukas over OK , which we introduce below. Local
shtukas have many analogous features to (ϕ,S)-modules of finite height in Kisin
theory, so we use similar notations to Kisin theory to emphasize the analogy.

Let S := OK [[π0]] and OE := K[[π0]]. We define a partial q-Frobenius endo-
morphism σ for each of these rings so that it acts as the qth power map on K and
σ(π0) = π0. This σ lifts the qth power map modulo π0, and fixes O0. We also set
E := K((π0)) and extend σ on E . Then σ fixes Frac(O0)

Let u0 := ι(π0) 6= 0 where ι : O0 → OK is the map we fixed earlier. Put
P(u) := π0 − u0 ∈ S and let e := ordu(u0). Clearly we have S/(P(u)) ∼= OK ,
which is a totally ramified ring extension of k[[π0]]. This shows that P(u) is a
S×-multiple of some Eisenstein polynomial in k[[π0]][u] with degree e.
5.1.1. An étale ϕ-module is a (ϕ,OE)-module23 (M, ϕM ) such that ϕM is an iso-
morphism.The main motivation for considering étale ϕ-modules is that we have an
equivalence of categories between the category of étale ϕ-modules and the category
of GK-representations . Let ÔEur := Ksep[[π0]], and we let GK act on it through
the coefficients, and define the partial q-Frobenius endomorphism σ so that it acts
as the qth power map on Ksep and σ(π0) = π0. For an étale ϕ-module M we define

(5.1.2) T E(M) := (M ⊗OE ÔEur)ϕ=1.

This induces an exact equivalence of categories between the category of étale ϕ-
modules and the category of finitely generated O0-module with continuous GK-
action. One can define the quasi-inverse DE in a similar fashion to (2.1.2a). Fur-
thermore, they respect all the natural operations, and they preserve rank and length

23The notion of ϕ-module is defined in §2.1. Note that we use OE defined in §5.1, not the one
in §2.1.
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whenever applicable. The proof is identical to the proof of the p-adic case [Fon90,
§A 1.2].24

Definition 5.1.3. Consider the following étale ϕ-module MLT := OE ·e equipped
with ϕMLT (σ∗e) = P(u)−1e. Let χLT : GK → O×0 denote the character that
defines the GK-action on T E(MLT ). For any O0[GK ]-module V , we let V (n) the
O0[GK ]-module whose GK-action is twisted by χnLT .

This character χLT is equivalent to the character obtained from the π0-adic Tate
module of the Lubin-Tate formal O0-module over OK . See [And93] for the proof.
Note that when K is a finite extension of Qp, we can obtain χcyc|GK∞ from the étale
ϕ-module defined analogously as above. Compare with [Kis09a, Lemma 2.3.4].
5.1.4. For a non-negative integer h, an effective local shtuka (over OK) of height 6 h
is a finite free S-module M equipped with a S-linear morphism ϕM : σ∗M → M
such that coker(ϕM) is killed by P(u)h. The original definition of effective local
shtuka (over OK) requires coker(ϕM) to be flat over OK , but this is automatic
because it is a P(u)-power torsion S-module of projective dimension 6 1. Note that
effective local shtukas can be defined over any O0-scheme (not just over Spf OK),
and there are more general objects called local shtukas which are defined by allowing
ϕM to have a pole at P(u). See [GL10, Definition 0.1] or [Har10, Definition 2.1.1]
for more general definition.

Since P(u) is a unit in OE , the scalar extension M ⊗S OE is naturally an étale
ϕ-module. So we can associate a GK-representation to an effective local shtuka M
of height 6 h as follows:

(5.1.5) T6h
S (M) := T E(M⊗S OE)(h)

We state the following fundamental and non-trivial result on this functor T6h
S .

Compare with [Kis06, Proposition 2.1.12, Lemma 2.1.15].

Proposition 5.1.6.
(1) The functor T6h

S from the category of effective local shtukas of height 6 h
to the category of O0-representations of GK is fully faithful.

(2) Let V := T6h
S (M)[ 1

π0
], then for any GK-stable O0-lattice T ′ ⊂ V there

exists an effective local shtuka M′ of height 6 h such that T ′ ∼= T6h
S (M′).

Proof. The proof of (1) is very similar to the proof of its p-adic analogue [Kis06,
Proposition 2.1.12], except that one needs to work with “weakly admissible isocrys-
tals with Hodge-Pink structure” instead of filtered ϕ-modules, and apply [GL10,
Théorème 7.3] instead of [Kis06, Lemma 1.3.13]. The detail is worked out in [Kim09,
Theorem 5.2.3].

The claim (2) easily follows from [GL10, Lemme 2.3] by the same way as its
p-adic analogue [Kis06, Lemma 2.1.15] is proved. �

A finite free O0-module equipped with continuous GK-action is called O0-lattice
GK-representation. A finitely generated π∞0 -torsion O0-module equipped with con-
tinuous GK-action is called π∞0 -torsion GK-representation.

Definition 5.1.7. Let h be a non-negative integer. An O0-lattice GK-action T is
called of height 6 h if there exists an effective local shtuka M of height 6 h such
that T ∼= T6h

S (M). A continuous GK-representation V over Frac(O0) is called of
height 6 h if it admits a GK-stable O0-lattice T ⊂ V which is of height 6 h; or
equivalently by Proposition 5.1.6(2), any GK-stable O0-lattice T ⊂ V is of height

24See [Kim09, §5.1] for the full proof, but the positive characteristic version of the theory of
étale ϕ-modules must have been known for a while



20 W. KIM

6 h. A π∞0 -torsion GK-representation T is called of height 6 h if there exist
O0-lattice GK-representations T̃ ′ ⊂ T̃ of height 6 h such that T ∼= T̃ /T̃ ′.

It easily follows from Definition 5.1.3 that χrLT for 0 6 r 6 h is of height6 h. It is
not difficult to show that any unramified GK-representation is of height 6 0 (hence,
of height 6 h for any non-negative h). See, for example, [Kim09, Proposition 5.2.10]
for the proof.

Proposition 5.1.6 suggests that GK-representations of height 6 h should enjoy
similar properties to those enjoyed by GK∞-representation of height 6 h in the
setting of Kisin theory. On the other hand, GK-representations of height 6 h can
also be regarded as a positive characteristic analogue of crystalline representations
with Hodge-Tate weights in [0, h], for the following reasons.25 Effective local shtukas
arise naturally by completing global objects at “places of good reduction” such as
t-motives, elliptic sheaves, and Drinfeld shtukas. (See [Har10, Example 2.1.2] for
more details.) It has been known for experts that there exists a natural anti-
equivalence of categories between the category of effective local shtukas of height
6 1 and the category of strict π0-divisible groups (using the terminology of [Fal02]),
and if M is the effective local shtuka of height 6 1 which corresponds to a strict
π0-divisible group G then (T61

S (M))∗(1) is naturally isomorphic to the π0-adic
Tate module of G. This is generalized by Hartl [Har09, §3] to any effective local
shtukas.26 See [Kim09, §7.3] for the proof.
5.1.8. For a non-negative integer h, a torsion shtuka of height 6 h is a finitely gener-
ated π∞0 -torsion u-torsion-free S-module M equipped with an S-linear morphism
ϕM : σ∗M → M such that coker(ϕM) is killed by P(u)h. We let (Mod /S)6h

denote the category of torsion shtukas of height 6 h with the obvious notion of
morphisms. There is a natural analogue of Cartier duality. (See [Kim09, §8.3] for
more details.)

Let M be a torsion shtuka of height 6 h. Since M ⊗S OE is a π∞0 -torsion
étale ϕ-module, one can associate a π∞0 -torsion GK-representation T6h

S (M) :=
T E(M ⊗S OE)(h). The same proof as in [Kis06, Lemma 2.3.4] shows that any
torsion shtuka of height 6 h can be obtained as the cokernel of an isogeny M̃′ → M̃

of effective local shtukas of height 6 h. Now, exactness of T6h
S implies that any

π∞0 -torsion GK-representation T is of height 6 h (in the sense of Definition 5.1.7)
comes from a torsion shtuka of height 6 h.
5.1.9. We finally remark that the analogue of the “limit theorem” holds; i.e., an
O0-lattice GK-representation obtained as a limit of π∞0 -torsion GK-representation
of height 6 h is again of height 6 h (as an O0-lattice GK-representation). The
proof is “identical” to the proof of its p-adic analogue [Liu07, Theorem 2.4.1].

5.2. Deformation theory. Let F be a finite extension of Fq (which is the residue
field of O0), and ρ̄ : GK → GLd(F) a representation. Let O be a finite extension
of O0 with residue field F. Let ARO be the category of artin local O-algebras A
whose residue field is F, and similarly let ÂRO be the category of complete local
noetherian O-algebras with residue field F.

Let D,D2 : ÂRO → (Sets) be the deformation functor and framed deformation
functor for ρ̄. Since the tangent spaces of these functors are infinite-dimensional
(as explained in §2.2), they cannot be represented by complete local noetherian
O-algebras.

25We remark that in positive characteristic K∞ := K( q∞
√
u) is a purely inseparable field

extension of K, so the gap between GK and GK∞ collapses.
26Note that not all the π0-divisible groups come from effective local shtukas – the π0-divisible

groups that come from effective local shtukas are called divisible Anderson modules in [Har09, §3].
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We say that a deformation ρA over A ∈ ARO is of height 6 h if it is a π∞0 -
torsion GK-representation of height 6 h as a π∞0 -torsion GK-representation; or
equivalently, if there exist M ∈ (Mod /S)6h and an O0[GK ]-isomorphism ρA ∼=
T6h

S (M). For A ∈ ÂRO , we say that ρA is of height 6 h if ρA ⊗ A/mn
A is a

deformation of height 6 h for each n. When A ∈ ARO , both definitions are
compatible because the condition of being height 6 h is closed under subquotient.
(The proof is the same as Lemma 2.4.1.) When A is finite flat over O0, a deformation
ρA over A is of height 6 h if and only if ρA is of height 6 h as a O0-lattice GK-
representation, as remarked in §5.1.9.

Let D6h ⊂ D and D2,6h ⊂ D2 respectively denote subfunctors of deformations
and framed deformations of height 6 h. In this setting, we have the analogue of
Theorem 2.3:

Theorem 5.2.1. The functor D6h has a hull, and if EndGK (ρ̄) ∼= F then D6h is
representable (by R6h ∈ ÂRO). The functor D2,6h is representable (by R2,6h ∈
ÂRO) with no assumption on ρ̄. Furthermore, the natural inclusions D6h ↪→ D
and D2,6h ↪→ D2 of functors are relatively representable.

We call R2,6h the universal framed deformation ring of height 6 h and R6h the
universal deformation ring of height 6 h if it exists.

The proof of Theorem 2.3 can easily be adapted. The main step is to show the
finiteness of the tangent space, but the same proof of Proposition 2.6 works if we
replace S, OE , (Mod /S)6h by their positive characteristic analogues as introduced
in §5.1 and the pth power map is replaced by the qth power map in suitable places.
See [Kim09, §11.7] for the full details.

5.3. Moduli of torsion shtukas of height 6 h. Let h be a positive integer, and let
A be a π0-adically separated and complete topological O0-algebra, (for example,
finite O0-algebras or any O0-algebra A with πN0 ·A = 0 for some N). We can define
SA, foE,A, (ModFI /S)6h

A , and (ModFI /OE)ét
A in a manner similar to §2.6.1 but

using S and OE defined in §5.1.
Consider a deformation ρR of ρ̄ over R ∈ ÂRO which is of height 6 h (i.e.

ρR ⊗R R/mn
R is of height 6 h for each n). The main examples to keep in mind

are universal framed deformation of height 6 h. Put MR := lim←−Mn where Mn ∈
(ModFI /OE)ét

R/mn
R

is such that T E(Mn)(h) ∼= ρR ⊗R R/mn
R for each n. For any

R-algebra A, we viewMR⊗RA as an étale ϕ-module by A-linearly extending ϕMR
.

For a complete local noetherian ring R, let AugR be the category of pairs (A, I)
where A is an R-algebra and I ⊂ A is an ideal with IN = 0 for some N such that
mR ·A ⊆ I. Note that an artin local R-algebra A can be viewed as an element in
AugO by setting I := mA. A morphism (A, I)→ (B, J) in AugR is an R-morphism
A → B which takes I into J . We define a functor D6h

S,ρR
: AugR → (Sets) by

putting D6h
S,ρR

(A, I) the set of ϕ-stable SA-lattices in MR ⊗R A which are objects
in (ModFI /S)6h

A .
With this setting, we have an analogue of Proposition 3.2.

Proposition 5.3.1. The functor D6h
S,ρR

can be represented by a projective R-scheme
G R6h

ρR and a S ⊗Zp OG R6h
ρR

-lattice M6h
ρR
⊂ MR ⊗R OG R6h

ρR

. (We call M6h
ρR

a
universal S-lattice of height 6 h for ρR.) Moreover, the formation of G R6h

ρR and
M6h
ρR

commute with scalar extension R→ R′.

Indeed, the proof of its p-adic analogue (Proposition 3.2) works verbatim in the
positive characteristic setting. The proof is also worked out in Proposition 11.1.9,
Corollary 11.1.11 of [Kim09] for the positive characteristic setting.
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The discussions in §3 also applies to this positive characteristic setting. For
example, the structure morphism G R6h

ρR → SpecR becomes an isomorphism after
inverting π0 (Proposition 3.4, also using Proposition 5.1.6(1)); R2,6h[ 1

π0
] is formally

smooth (Proposition 3.4); and in the rank-2 case the condition of having “ordinary”
local shtuka model defines a union of connected components in R2,6h[ 1

π0
] (Propo-

sition 3.7).
When ρ̄ is 2-dimensional and h = 1, one can define the O-flat quotient R2,v

of R2,61 in the similar fashion to §3.527, whose generic fiber classifies lifts such
that IK acts via χLT on the determinant. (cf. [Kis09a, Lemma 2.3.4].) Then the
direct analogue of the connected component result (Proposition 3.8) holds for the
positive characteristic deformation ring R2,v[ 1

π0
]. Furthermore, the argument in

[Kis08, §3] can be adapted to show that R2,v[ 1
π0

] is equi-dimensional of dimension
4 + [K : Fq((u0))], which is strongly analogous to the p-adic case. (Compare with
[Kis08, Theorem 3.3.8] and [Kim09, §11.3.17].) All these results can be generalized
to the case with h > 1 except the connectedness of the “supersingular locus” in
SpecR2,v[ 1

π0
] (with the suitable definition of R2,v).
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