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It was pointed out by E. Lau that Definition 3.1 and Proposition 3.8 in [?] need
to be corrected as follows:

(1) In the definition of Dieudonné crystal [?, Definition 3.1], the condition on
the filtration [?, Definition 3.1(3)] should be replaced by requiring Fil1 EX

to be an admissible filtration, as introduced by Grothendieck [Gro74, Ch. V,
§3]. We recall the definition below (cf. Definition 1), and verify that
the Hodge filtration for any p-divisible group G over X is admissible (cf.
Lemma 3), which makes D∗(G) a Dieudonné crystal according to the cor-
rected definition.

(2) The statement of [?, Proposition 3.8] holds for the corrected definition of
Dieudonné crystal. In §2, we explain how to correct the proof of [?, Pro-
position 3.8].

In other words, Dieudonné crystals with the corrected definition have the claimed
semilinear algebraic interpretation in terms of filtered Frobenius modules (cf. [?,
Proposition 3.8]), therefore the rest of the results of [?] hold true for the corrected
definition of Dieudonné crystals.

The author is deeply grateful to E. Lau for informing the author of this error and
directing him to [Gro74].

1. ADMISSIBLE FILTRATION: CORRECTION OF [?, Definition 3.1(3)]

Let S � R be a divided power thickening in characteristic p. Then the pth
power map ϕ : S → S factors through R, since ϕ kills any divided power ideal in
characteristic p. We let φ : R→ S denote the map factoring ϕ.

Let X be a scheme of characteristic p. For any quasi-coherent sheaf F on X we
define a crystal of quasi-coherent OX/Zp

-modules Φ∗F killed by p, as follows: for
any open affine subscheme SpecR ⊂ X and a compatible divided power thickening
S � Rwith p nilpotent, we set (Φ∗F )(S) := S/pS⊗φ,RF (R), where φ : R→ S/pS
is as defined above. (The crystal Φ∗F was denoted by ϕ∗F in [Gro74, Ch. IV,
§3.3].)

We continue to assume that X is a scheme of characteristic p, and let EX de-
note the locally free OX-module obtained from the pull back of E to the Zariski
topos. Then we have a natural isomorphism ϕ∗(E /pE ) ∼= Φ∗(EX); indeed, for any
compatible divided power thickening S � R as before, we have

ϕ∗(E /pE )(S) = S/pS ⊗ϕ,S E (S) ∼= S/pS ⊗φ,R E (R) = Φ∗(EX)(S);

cf. [Gro74, Ch. IV, §3.4].
We may clearly extend the definition of Φ∗F and the isomorphism ϕ∗(E /pE ) ∼=

Φ∗(EX) when X is a formal scheme of characteristic p.
From now on, we let X be a formal scheme over Spf Zp, and set X := X ×Spf Zp

SpecFp. Let E be a crystal of locally free OX/Zp
-modules equipped with F and V as

in [?, Definition 3.1(2)]; in particular, if X is of characteristic p, then F : ϕ∗E → E
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and V : E → ϕ∗E are such that FV = p and V F = p. Let EX denote the restriction
of EX to X.

Definition 1. (Cf. [Gro74, Ch. V, §3].) A subbundle Fil1 EX ⊂ EX over X is said
to be an admissible filtration if Φ∗(Fil1 EX) is the kernel of F : ϕ∗(E /pE ) → E /pE

under the identification ϕ∗(E /pE ) ∼= Φ∗(EX), where Fil1 EX is the restriction of
Fil1 EX to X.

Admissible filtrations have the following concrete description. For simplicity, let
us assume that X = X = SpecR. Then a filtration Fil1 EX ⊂ EX is admissible if
and only if for any divided power thickening S � R with pS = 0, the following
S-submodule

S ⊗φ,R Fil1 EX(R) ⊂ S ⊗φ,R E (R) ∼= ϕ∗E (S)

is the kernel of F : ϕ∗E (S)→ E (S), where φ : R → S is the map factoring the pth
power map on S.

Remark 2. Let X be any formal scheme over Spf Zp. It is clear that if Fil1 EX ⊂ EX

is an admissible filtration then ϕ∗ Fil1 EX is the kernel of F : ϕ∗EX → EX; in other
words, any admissible filtration satisfies [?, Definition 3.1(3)]. When X is such that
X is a scheme locally admitting a p-basis, then [?, Definition 3.1(3)] is equivalent
to admissibility by [BM90, Proposition 1.3.3]. On the other hand, admissibility is
in general stronger than [?, Definition 3.1(3)], especially when X is a non-reduced
scheme (for example, if X = Spf OK where OK is a ramified extension of Zp).
Indeed, if X = Spec k[ε]/(ε2) for a perfect field k of characteristic p, then any lift
of admissible filtration over Spec k generates the kernel of F : ϕ∗EX → EX. On
the other hand, there is at most one admissible filtration for the following reason.
Consider S := k[ epsilon]/(ε2p) with the usual divided power structure on (ε2).
Then since φ : R→ S is injective, Fil1 EX is uniquely determined by Φ∗(Fil1 EX)(S),
which is uniquely determined by F by admissibility.

Lemma 3. Let G be a p-divisible group over a formal scheme X over Spf Zp. Then the
Hodge filtration Fil1 D∗(G)X ⊂ D∗(G)X is admissible.

Proof. We may assume that X = SpecR where R is a ring of characteristic p. For
any divided power thickening S � R of characteristic p, we want to show that

S ⊗φ,R Fil1 D∗(G)(R) ⊂ ϕ∗D∗(G)(S)

is the kernel of F . When S = R, this was proved in [BBM82, Proposition 4.3.10].
The case with general S can be reduced to the case with S = R by choosing a
S-lift GS of G; here, we use the fact that the natural isomorphism D∗(GS)(S) ∼=
D∗(G)(S) ([BM90, Théorème 3.1.7]) and the Hodge filtration are functorial and
commute with base change. �

2. CORRECTION OF [?, Proposition 3.8]

The statement of [?, Proposition 3.8] holds for the corrected definition of Dieud-
onné crystal, which can be proved as follows. By the last paragraph of the proof of
[?, Proposition 3.8], it suffices to handle the case when p is nilpotent in R. (Note
that admissibility could be checked after replacing R with R/pR.) By the second
paragraph of the proof of [?, Proposition 3.8], it remains to show the following
lemma:

Lemma 4. Assume that p is nilpotent in R. Let (E , F, V,Fil1 E (R)) be a tuple satis-
fying (1) and (2) of [?, Definition 3.1], and consider (M, ϕM,Fil1M) associated to
it by the recipe of [?, Remark 3.7]. Then ϕM(Fil1M) generates pM. if the Hodge
filtration Fil1 E (R) is admissible. The converse holds when D̂ is constructed as in [?,
Remark 3.5].
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Proof. Let Fil1 ϕ∗M ⊂ ϕ∗M and Fil1 ϕ∗(M/pM) ⊂ ϕ∗(M/pM) respectively de-
note the submodules generated by the image of Fil1M. Then we claim that
ϕM(Fil1M) generates pM if and only if Fil1 ϕ∗(M/pM) is the kernel of 1 ⊗
ϕM : ϕ∗(M/pM) → M/pM; indeed, the first condition is satisfied if and only
if Fil1 ϕ∗M is the image of the map induced by V , which can be checked modulo p.
We now conclude using kerF = imV in ϕ∗(E /pE ).

The natural isomorphism ϕ∗(M/pM) ∼= D̂/pD̂ ⊗φ,R/pR E (R/pR) restricts to
Fil1 ϕ∗(M/pM) ∼= D̂/pD̂ ⊗φ,R/pR Fil1 E (R/pR). If Fil1 E (R) is admissible, then
Fil1 ϕ∗(M/pM) is the kernel of 1⊗ϕM : ϕ∗(M/pM)→M/pM, which shows the
first claim.

Now, assume that D̂ is constructed as in [?, Remark 3.5] and Fil1 ϕ∗(M/pM)
is the kernel of 1 ⊗ ϕM : ϕ∗(M/pM) → M/pM. Let S � R/pR be a divided
power thickening with pS = 0. By construction of D̂, there exists a divided power
morphism D̂/pD̂ → S lifting the natural projection onto R (cf. [?, Remark 3.5,
Lemma 2.1]), so we have a natural isomorphism E (S) ∼= S ⊗D̂ M. Since φ :

R/pR→ D̂/pD̂ factors φ : R/pR→ S, we have

S ⊗D̂/pD̂ Fil1 ϕ∗(M/pM) ∼= S ⊗φ,R/pR Fil1 E (R/pR) ⊂ ϕ∗E (S),

which is the kernel of F : ϕ∗E (S) → E (S) since Fil1 ϕ∗(M/pM) is the kernel of
F : ϕ∗E (D̂/pD̂)→ E (D̂/pD̂). In other words, Fil1 E (R) is admissible. �
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