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ABSTRACT

In the recent years, a new wave of interest spurred the involvement of complexity in finance which might provide
a guideline to understand the mechanism of financial markets, and researchers with different backgrounds have
made increasing contributions introducing new techniques and methodologies. In this paper, Markov-switching
multifractal models (MSM) are briefly reviewed and the multi-scaling properties of different financial data are
analyzed by computing the scaling exponents by means of the generalized Hurst exponent H(q). In particular
we have considered H(q) for price data, absolute returns and squared returns of different empirical financial time
series. We have computed H(q) for the simulated data based on the MSM models with Binomial and Lognormal
distributions of the volatility components. The results demonstrate the capacity of the multifractal (MF) models
to capture the stylized facts in finance, and the ability of the generalized Hurst exponents approach to detect
the scaling feature of financial time series.

1. INTRODUCTION

The concept of complex system has progressively become popular in economics, and recent developments suggest
that non-traditional approaches, based on the tools of statistical and nonlinear physics, coupled with methods
from computation intelligence, could provide novel ideas to direct studies in financial economics.1 One of the
most dynamic topics in this direction is the multi-scaling modelling in finance. As extended, Mandelbrot (1997)2

translates the multi-scaling terminology from physics into finance by introducing the multifractal model of asset
returns, and provides a fundamentally new class of stochastic processes in finance. The application of the scaling
concept to financial markets has largely increased also in consequence of the abundance of available data.3–5

As one variant of multifractal (MF) processes, Markov-switching multifractal models (MSM) with simple
specifications are revisited in this paper (Section 2); In order to see how well the estimated multifractal models
capture the scaling property of financial time series, we estimate and compare the scaling exponents H(q) by
using the generalized Hurst exponent approach (reviewed in Section 3) for both empirical data and simulated
data of the estimated MSM models with Binomial and Lognormal volatility components. Section 4 reports the
empirical and simulation based results. A summary and concluding remarks are given in Section 5.

2. MARKOV-SWITCHING MULTIFRACTAL MODELS

Financial asset returns have traditionally been modelled based on the normal distribution. However, the empirical
returns are characterized by stylized facts that imply non-normality. Multifractal processes in finance provide
us with a new model with attractive stochastic properties, which takes into account the following stylized facts
of financial markets: fat tails, volatility clustering, long-term dependence and multi-scaling.

However, the practical applicability of earlier versions of multifractal models suffers from the combinatorial
nature and from its non-stationarity due to the restriction to a bounded interval. These limitations have been
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overcome by introducing iterative versions of MF models, which preserve the multifractal and stochastic prop-
erties, making econometric analysis applicable. In the Markov-switching multifractal model, asset returns are
modelled as:6,7

rt = σt · ut (1)

with innovations ut drawn from the standard Normal distribution N(0, 1) and instantaneous volatility being
determined by the product of k volatility components or multipliers M

(1)
t , M

(2)
t ..., M

(k)
t and a constant scale

factor σ:

σ2
t = σ2

k∏

i=1

M
(i)
t , (2)

Each volatility component is renewed at time t with probability γi depending on its rank within the hierarchy
of multipliers and it remains unchanged with probability 1 − γi. The transition probabilities are specified by
Calvet and Fisher6 as:

γi = 1 − (1 − γk)(b
i−k) i = 1, . . . k, (3)

with parameters γk ∈ [0, 1] and b ∈ (1,∞). Different specifications of Eq. (3) can be arbitrarily imposed (cf.7

and its earlier versions). By fixing b = 2 and γk = 0.5, we arrive to a relatively parsimonious specification:

γi = 1 − (0.5)(2
i−k) i = 1, . . . k. (4)

For the choice of volatility components, a discrete version of MF process adopts the binomial distribution:
M

(i)
t ∼ {m0, 2 − m0} with 1 ≤ m0 < 2, and the binomial MF model is, therefore characterized by binomial

random draws taking two discrete values with equal probability. Lux (2007) further introduces a continuous
version of multi-fractal process by specifying the volatility components to be random draws from a Lognormal
distribution (LN) with parameters λ and σm, i.e.

M
(i)
t ∼ LN(−λ, σ2

m). (5)

In contrast to the combinatorial settings, (cf.2,8), a normalisation of the expectation value of M
(i)
t , that is,

E[M (i)
t ] = 1 is imposed to prevent non-stationarity without assigning additional components, and it leads to

exp(−λ + 0.5σ2
m) = 1 ⇒ σm =

√
2λ. (6)

Note that the admissible parameter space for the location parameter λ is λ ∈ [0,∞) where in the borderline
case λ = 0 the volatility process collapses to a constant (the same when m0 = 1 in the Binomial case).

Using the iterative version of the multifractal model instead of its combinatorial predecessor and confining
attention to unit time intervals, the resulting dynamics of Eq. (1) can also be seen as a particular version of
a stochastic volatility model. With the rather parsimonious approach, this pertinent MF process preserves the
hierarchical structure of MMAR while dispensing with its restriction to a bounded interval. In particular, the
model captures some properties of financial time series, e.g. the power-law behaviour of the autocovariance
function:

〈(|rt|q − 〈|rt|q〉) · (|rt+τ |q − 〈|rt+τ |q〉)〉 ∝ τ2d(q)−1, (7)

for each qth moment and time lag τ , and d(q) is a scaling function depending on q (for the detailed proof,
cf.6). In contrast to other volatility models with long-term dependence,9 MSM models allow for multi-scaling
rather than uni-scaling with varying decay exponents for all powers of absolute values of returns.
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3. GENERALIZED HURST EXPONENT

The scaling properties in time series have been studied in the literature by means of several techniques, such as
the seminal work of Hurst (1951) on rescaled range10 statistical analysis R/S and the modified R/S analysis of
Lo (1991),11 the multi-affine analysis (Peng et al., 1994),12 the detrended fluctuation analysis,13,14 etc. Scaling
in data gives useful information on the underlying process, and the Hurst exponent analysis examines if some
statistical properties of time series X(t) (with t = v, 2v, ..., T ) scale with the observation period (T ) and the time
resolution v. Such a scaling is characterized by an exponent H which is commonly associated with the long-term
statistical dependence of the signal.

The generalized Hurst exponent (GHE) method aims to extend the traditional scaling exponent methodology,
and this approach provides a natural, unbiased, statistically and computationally efficient estimator able to
capture the scaling features of financial fluctuations.15–17 It is essentially a tool to study directly the scaling
properties of the data via the qth order moments of the distribution of the increments. The qth order moments
appear to be less sensitive to the outliers than maxima/minima and different exponents q are associated with
different characterizations of the multi-scaling behaviour of the signal X(t). We consider the q-order moment of
the distribution of the increments of a time series X(t):

Kq(τ) =
〈| X(t + τ) − X(t) |q〉

〈| X(t) |q〉 , (8)
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Figure 1. Kq(τ) as a function of τ on a loglog scale for AU with X(t) = log(pt). Simulations are based on the Binomial
model with k = 5, 10, 15, 20 (from up-left, up-right, low-left, low-right).
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where the time interval τ varies between v = 1 day and τmax days. The generalized Hurst exponent H(q) is
then defined from the scaling behavior of Kq(τ), which can be assumed to follow the relation:

Kq(τ) ∼
(τ

v

)qH(q)

. (9)

Within this framework, for q = 1, H(1) describes the scaling behavior of the absolute values of the increments;
for q = 2, H(2) is associated with the scaling of the autocorrelation function.
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Figure 2. Kq(τ) as a function of τ on a loglog scale for AU with X(t) =
∑t

t′=1
|rt′ |. Simulations are based on the Binomial

model with k = 5, 10, 15, 20 (from up-left, up-right, low-left, low-right).

4. RESULTS FROM EMPIRICAL AND SIMULATED STUDIES

In this paper, we consider daily data for foreign exchange rates of Australian Dollar to U.S. Dollar (AU) over
the period from March 1973 to February 2004, and U.S. 1-year treasury constant maturity bond rates (TB1) in
the period from June 1976 to October 2004. The daily prices are denoted as pt, and returns are calculated as
rt = ln(pt) − ln(pt−1) for AU and as rt = pt − pt−1 for TB1.

We have computed the q-order moments Kq(τ) (Eq. (8)) of X(t) = log(pt) for AU and X(t) = pt for
TB1 with τ in the range between τ = 1 day and τmax days. We have verified its scaling behavior with τ ,
and the results for the empirical data and other type of data have been reported in.18–20 In this paper, we
present results for the simulated time series by means of Markov-switching multi-fractal (MSM) model6,7 whose
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Figure 3. Kq(τ) as a function of τ on a loglog scale for AU with X(t) =
∑t

t′=1
r2

t′ . Simulations are based on the Binomial
model with k = 5, 10, 15, 20 (from up-left, up-right, low-left, low-right).

parameters estimates have been done via Generalized Method of Moments (GMM) approach7 for both discrete
and continuous specifications of the volatility components: the Binomial and Lognormal distributions.18–20

In Figures 1 - 3, we report the Kq(τ) curves for the simulated time series of AU for X(t) = log(pt), X(t) =∑t
t′=1 |rt′ | and X(t) =

∑t
t′=1 r2

t′ , respectively. Each graph within these figures corresponds to the Binomial
model simulations with different values k = 5, 10, 15, 20. From these figures it emerges that Eq. (9) holds for
all simulated time series with different X(t). Similar scaling behaviors have been also found for TB1. Figure
4 presents the plots of simulated Kq(τ) curves based on the Lognormal model for AU and TB1, and we find
similar behaviors with the ones based on the Binomial model. Binomial and Lognormal distributions for the
volatility components produce similar results.

Figure 5 further reports the τ(q) = qH(q) as a function of q (Eq. (9)) for empirical time series and simulated
data with k = 5, 10, 15, 20 based on the Binomial model; the left and right panels are corresponding to the case
of X(t) =

∑t
t′=1 |rt′ | for AU and TB1, respectively. We find that the curves are bending below their linear

trend across each scenario, which verifies the multi-scaling property exhibited by the data. For small values of
q the model gives a better agreement with the empirical curves. Moreover the case k = 5 seems to give good
agreement in both cases. Similar studies with other financial time series have also been conducted and we skip
them here for the brevity. We have also computed H(1) and H(2) from different empirical financial markets
data for X(t) = log(pt), as shown in Di Matteo et. al (2007).20

In order to test the robustness of our results, for each series we have analyzed the scaling properties varying
τmax between 5 and 19 days. We have computed the 99% confidence intervals of all the exponents using different
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Figure 4. Kq(τ) as a function of τ on a loglog scale for AU . Simulations are based on the Lognormal model with k = 5
(left) and k = 20 (right) for the stochastic variable X(t) = log(pt), X(t) =

∑t

t′=1
|rt′ | and X(t) =

∑t

t′=1
r2

t′ (from up to
down).

τmax values. The resulting exponents computed using different τmax are stable in their values within a range
of 10%. The empirical scaling exponents H(1) and H(2) are varying with different type of data, they are all
different among each other and different from 0.5; The results are consistent with studies on high-frequency
data.4,16 H(1) values based on simulated time series are different from 0.5, and they vary among different time
series; H(2) from simulated data are more homogenous and all close to 0.5 across different k. The fact that

Proc. of SPIE Vol. 6802  68021A-6



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

q

τ (
q)

empirical
k=5
k=10
k=15
k=20

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

q

τ (
q)

empirical
k=5
k=10
k=15
k=20

Figure 5. Plots of τ(q) = qH(q) as a function of q for empirical and simulated data with k = 5, 10, 15, 20. Simulations
based on the Binomial model for AU (left) and TB1 (right) with X(t) =

∑t

t′=1
|rt′ |.

H(2) from simulations for X(t) = log(pt) does not change with k and is always equal to 0.5 might be explained
by the fact that MSM model is reminiscent of the scaling property for the moments of absolute value of return
(price changes) rather than the price pt itself. Therefore, we have performed studies of GHE with the stochastic
variable X(t) in Eq. (8) to be

∑t
t′=1 |rt′ | and we have found that the scaling exponent H(2) in this case is

varying across different financial assets and different k; both the empirical data and the simulated MSM models
are characterized by estimates of H(1) and H(2) larger than 0.5; in particular there is a jump between the case
k = 5 and others with larger k values for simulated time series. Finally we have also conducted comparisons
by using MSM process with Lognormal specification, and there is not much difference observed for the results
based on the Binomial and Lognormal models.

5. SUMMARIES AND CONCLUDING REMARKS

In this paper, we have reviewed the Markov-switching multifractal models (MSM) and the generalized Hurst
exponent (GHE) approach. Based on the empirical estimates of MSM models with different financial markets
data, we compared the scaling behavior of empirical and simulated data by using the generalized Hurst exponent
approach. Our results show that MSM models are able to replicate the scaling property of absolute returns
and squared returns, but not price data itself, and we have also found that there are very similar behaviors
comparing the results from the models by using Binomial and Lognormal specifications of volatility components.
By computing and comparing the scaling exponents for empirical and simulated data, the results show that the
generalized Hurst exponent approach is a powerful tool to detect the scaling property of financial markets data
for different stochastic variables, and it is a good tool to test the reliability of models such as MSM.
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