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ABSTRACT

We construct a correlation-based biological network from a data set containing temporal expressions of 517
fibroblast tissue genes at transcription level. Four relevant and meaningful connected subgraphs of the network,
namely: minimal spanning tree, maximal spanning tree, combined graph of minimal and maximal trees, and
planar maximally filtered graph are extracted and the subgraphs’ geometrical and topological properties are
explored by computing relevant statistical quantities at local and global level. The results show that the subgraphs
are extracting relevant information from the data set by retaining high correlation coefficients. The design
principle of the underlying biological functions is reflected in the topology of the graphs.

1. INTRODUCTION

Real complex systems such as acquaintance networks, World-Wide-Web and metabolisms are made of many
interacting elements connected through a system of links which possesses common properties such as scale-free
degree distribution and small-worldness (small average path length) despite of the differences in their nature.1

The use of network approaches to study real complex systems has enabled scientists to gather insights into
biological networks such as metabolic pathway networks2 and protein networks.3 In particular, large-scale data
for genomes of simple organisms such as E.coli and S.cerevisae have accumulated sufficient enough information
to retrieve the global structure and properties of the networks regulating many genes interacting via complicated
chemical reactions.4,5

In this paper, we approach the study of biological data sets by taking an opposite direction. Given no prior
information on the underlying biological or chemical links, we analyze the correlations in the temporal expressions
to construct connected graphs representing the most meaningful and relevant information of the data set. We
show that, by doing so, one can partially retrieve geometrical and topological properties of the underlying
biological network.
Four different graphs are constructed in order to perform this analysis. In particular, two trees: minimal spanning
tree (Γmin) and maximal spanning tree (Γmax) are constructed as the most skeletal graphs to extract the relevant
information. These trees, Γmin and Γmax, are then combined to give Γtrees. Furthermore, the planar maximally
filtered graph (ΓP ) is constructed to provide richer information by selectively accepting highly weighted edges
which contain meaningful information with less strict constraints than the minimal spanning tree. In this paper,
ΓP is applied to a biological data set for the first time. The technique has already been shown to successfully
retrieve relevant information in a financial data set.6 Though the financial data set is different in nature in
comparison to the biological data set, we show that the generality in network approach enables one to unveil
the most core information in the biological data set as well. In Section 2 the biological data set is described, in
Section 3 the filtered graphs algorithms are constructed and several statistical quantities computed in the graphs
are introduced. The results are reported in Section 4 and conclusions in Section 5.
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2. THE DATA SET

Fibroblast tissues are known to play important roles in physiology of wound healing. They participate in cell
cycle and proliferation, angiogenesis, re-epithelialization, cytoskeletal reorganization etc.7 Vishwanath et al.7

have extracted from about 8,600 distinct human fibroblast genes a subset of 517 human fibroblast genes which
showed significant responses under stimulation by Fetal Bovine Serum (FBS). The serum stimulation signifies a
signal to notify detection of an wound within a human body.7

The responses were observed by using a microarray technique. The genes were first induced to enter quiescent
state by depriving serum then stimulated by FBS. The responses were observed at 12 time points ranging from
15 min to 24 hrs. Including the first time point before the stimulation, the data set contains N = 517 genes’
responses at 13 time points. Expression levels are observed relatively to the initial time point by normalizing with
the expression level at the first time point. The entire information is encapsulated in the following 517×13 matrix.

Λfibro =

⎛
⎜⎜⎜⎜⎝

ṽ1

...

...
ṽN

⎞
⎟⎟⎟⎟⎠

where ṽi = [x1 . . . xk . . . x13] is a row vector representing an expression profile of the genes.

3. METHODOLOGIES

3.1 Metric distance

The metric distance between any two expression profiles is computed by8

dij =
√

2(1 − ρij) (1)

where ρij = Cor(ṽi, ṽj) is the correlation coefficient between the profiles i and j. Since the correlation coefficient
measures similarity between two profiles, this can be taken as the similarity index so that similar profiles possess
small distances accordingly. Two genes whose expression profiles obtain a high correlation coefficient
(ρij ∼ 1), hence a small distance, are very likely to be involved in a same role in the physiology of
wound healing. Conversely, two genes whose expression profiles obtain a highly negative correlation coefficient
(ρij ∼ −1), hence a large distance, are very likely to be involved in two opposite roles.

3.2 Construction of skeletal correlation-based connected graphs

3.2.1 Necessity to construct skeletal graphs

Applying Eq. 1 to every pair of gene expression profiles yields to a complete graph, Gcom, with 517 nodes
and 517(517 − 1)/2 = 133, 386 undirected edges whose weights are assigned by the distances function or the
correlation coefficients. Fig. 1 shows the probability distribution of correlation coefficients ρij in the complete
graph generated by the data set. The P (ρij) shows that there are approximately as many edges whose ρij are
close to 1 or -1 as well as around 0. This means there is as much meaningful information as not meaningful
information. Therefore, the relevant information must be ‘distilled’ so that an effective inference on the data set
can be performed.
In this paper, the ‘distilling process’ takes place by constructing a connected skeletal subgraph of Gcom enforcing

topological constraint to control how skeletal the constructed subgraph is. Specifically, the following two types
of topological constraints are employed:

1. Generate trees which span all the nodes (spanning trees) and the sum over the distances over the connected
nodes is minima (Γmin) or maximal (Γmax).

2. Generate planar graphs (whose edges can be embedded on a spherical surface without edge crossings) with
minimal sum of the distances over the connected nodes.
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Figure 1. Probability distribution of correlation coefficients ρijs for Gcom.

3.2.2 Construction of a Minimal Spanning Tree

A spanning tree, T , is defined as a tree∗ which connects all the nodes in Gcom. Minimal Spanning trees have been
thoroughly studied in diverse fields such as invasion percolation1 and information structured graphs.9 In network
theory, they have been suggested as skeletal subgraphs which are representative of the original graphs.10,11 The
Γmin of Gcom is constructed by using a greedy algorithm called Prim’s algorithm †. The resulting tree possesses
516 edges connecting 517 nodes and is unique for the Gcom.

3.2.3 Construction of a Maximal Spanning Tree

Edges with highly negative correlation coefficients are just as significant in terms of genetics as those with
positive correlation coefficients. Indeed, gene expressions suppressing others by inducing itself or inducing others
by suppressing itself are just as meaningful.12 These will be referred as ‘switching on and off’ activities in the
data set as the profiles involved in an edge with a high negative ρij behave opposite to the other. The same
algorithm for constructing Γmin has been applied to construct a ‘Maximal Spanning Tree’, Γmax containing edges
with most negative ρijs. The resulting tree possesses 516 edges connecting 517 nodes and is unique for the Gcom.

3.2.4 Construction of a Planar Maximally Filtered Graph

Realizing a subgraph of Gcom as a triangulation of a hyperbolic surface with genus‡ g has been recognized as
an effective tool for extracting relevant information of Gcom with complexity controlled by g.13 The algorithm
we use connects edges from a ordered list from the lowest to the largest distances accepting the connection if
and only if it does not cross another edge already embedded.6 When g = 0, the resulting subgraph of Gcom is
called the Planar Maximally Filtered Graph of Gcom, ΓP , and it has 3(N − 2) = 1, 545 edges where N = 517 is
the number of genes involved. This method is here applied to biological data for the first time. The graph ΓP

includes Γmin as a subgraph of its own.6

3.3 Explored quantities

The following quantities are computed to explore topological and geometrical properties of the extracted skeletal
subgraphs.

1. Weight distribution, P (ρij) is the probability distribution of the correlation coefficients ρij in the extracted
subgraphs. It is appropriate to choose ρij as ‘weight’ of an edge because ρij represents the likelihood of
how closely two genes are related and ρij is high when two genes are closely related so that it scales in the
right direction with common intuition having high weight when an edge is important.

∗A graph with no cycles.
†A greedy algorithm navigates with local information only. Γmin is not obtained by the entire information of Gcom at

once.
‡That is, a spherical surface with g handles.
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2. Acceptance function, A(ρij), is the probability of an edge with weight ρij in Gcom to be involved in a
subgraph.

3. Degree distribution, P (k), is the probability distribution for the gene connectivity (‘degree’). The degree
distributions of the skeletal subgraphs, P (k)s, are explored to see how each subgraph gives different varieties
of degrees. Genes involved in a large number of meaningful interactions are expected to have high degrees.

4. Node correlation, r: Assortative mix in each skeletal subgraph is measured by using the correlation coeffi-
cients:14

r =
〈kikj〉 − 〈ki〉〈kj〉√〈(ki − 〈ki〉)2〉

√〈(kj − 〈kj〉)2〉
(2)

where ki, kj denote for degrees of nodes at both ends of an edge in the graph and the averages are over
the whole set of edges in the graph.

5. Node strength as a function of degree, s(k): Node strength of ith node is defined as:

si =
∑

j

ρij . (3)

Then s(k) is defined as average of node strengths of nodes with degree k. This is useful for detecting
correlation between node strength and degree. If there are no correlations, then s(k) = Ak with A = 〈ρij〉.
Otherwise, s(k) = Akα with A �= 〈ρij〉 and α not necessarily equal to 1.15

6. Disparity as a function of degree, Y (k): Disparity of ith node is defined as:

Yi =
∑

j

[
ρij

si

]2

. (4)

This measure is particularly useful for detecting presence of edges with dominant weight(s) at node. If all
weights are comparable, then Yi ∼ 1/ki. Conversely, if there is a dominant weight, then Yi ∼ 1.
Y (k) is then defined as average of disparities of nodes with degree k. This is useful for detecting homogeneity
of weights within the whole skeletal subgraph. If the majority of edges have comparable weights, then,
Y (k) ∼ 1/k. If not, Y (k) ∼ 1.15

4. RESULTS

Acceptance functions of the subgraphs, A(ρij)s, and assortative mix within each subgraphs are explored. A
random data set containing 517 random walk profiles with each walk generated by a normalized Gaussian
distribution§ was artificially generated and analyzed in the same fashion as the real data set. In order to
establish if the results obtained from the real data set are meaningful we have compared these results to the null
case results by generating a random data set.

In Figs. 2, 3, 4 and 5 are reported the behaviors of the acceptance function calculated for Γmin, Γmax, ΓP for
both the real data set and the random data set. The linear trends in the log-normal plots reveal that A(ρij) is
mainly characterized by an exponential behavior A(ρij) = a exp(−ζρij). In Table 1, we report the best fit values
for the coefficients ζ. The fitting curves are also shown in the Figs. 2 to 5.

Distinctions between the real data set and artificial random data set were found in the exponent ζ. A(ρij)s
of subgraphs from the real data set have higher exponents than the A(ρij)s of corresponding subgraphs from the
random data set so that acceptance of edges in Gcom of the real data set favors higher weight edges than that
of the random data set. This indicates that the subgraphs from the real data contain more information than

§A Gaussian distribution with mean=0 and standard deviation=1.
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Figure 2. Probability of accepting an edge with weight ρij in Γmin, A(ρij), has been plotted for the real data set in (a)-1.
The A(ρij) has been fitted with an exponential in (a)-2. Similarly, A(ρij) of Γmax of real data set is plotted in (b)-1, and
the fitted exponential function is shown in (b)-2.
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Figure 3. (a) Probability of accepting an edge with ρij in Gcom, A(ρij), in ΓP for the real data set. The corresponding
exponential fit is displayed in (b).

Real data set ζ
Γmin 34.0245
Γmax 24.8413
ΓP 21.4915

Random data set ζ
Γmin 11.1697
Γmax 11.8190
ΓP 8.6633

Table 1. Fitted exponent for A(ρij)s in the subgraphs Γmin, Γmax, ΓP from both data sets.

independent random walks.
The exponential for any subgraphs favors high weight edges. Thus, the subgraphs have extracted from the both
data sets highly correlated and anti-correlated profiles. A(ρij)s of a ΓP accepts more edges than the Γmin of
the same data set indeed it has Γmin as its own subgraph6 and it is especially generous in accepting more edges
in the tail region than the Γmin. This is reflected in the smaller value of the exponent and in the fact that ΓP

is decaying slower than exponential in the tail. This allows ΓP to include more diverse disparities and node
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Figure 4. Probability of accepting an edge with ρij in Gcom, A(ρij), in (a) Γmin and (b) Γmax of the random data set.
The exponential fits are displayed in (c) (Red plots for Γmax, Blue plots for Γmin).
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Figure 5. Probability of accepting an edge with ρij in Gcom, A(ρij), in ΓP of the random data set is plotted in (a). The
exponential fit is displayed in (b).

strengths than a Γmin.
One can note from Table 1 that, the fitted exponents for Γmin and Γmax for the random data set have values
close to each other with opposite signs. This is a consequence of the symmetry about ρij = 0 so that finding
positively correlated profiles is equivalent to finding negatively correlated profiles. This yields to symmetric Γmin

and Γmax in terms of A(ρij). Such symmetry is not observed in the real data set. The fitted exponent in Table 1
shows that A(ρij) for Γmax has fatter tail than that of Γmin. This suggests there is some meaningful restriction
which limits Γmax to have less high weighted edges than Γmin.

4.1 Common Results obtained from ΓP and Γmin

Though ΓP has richer information than Γmin, we have found that they also share some common properties.

4.1.1 Homogeneity in P (ρij) and P (ki)

The probability distributions of the P (ρij)s of both graphs show exponential decay for both real and random
data sets (Figs. 6, 7). The distributions also have high means close to |ρij | = 1. This implies that the subgraphs
have the majority of edge weights concentrated close to |ρij | = 1 so that each subgraph has a homogeneous
weight distribution.
The degree distributions in the subgraphs, P (ki)s, have also exponential tails in both of Γmin and ΓP for real and
random data sets (see Figs. 8, 9). The fitting of the cumulative distributions in a log-normal scale are repeated in
Figs. 8 and 9. These plots also indicate a homogeneous degree distribution. The homogeneity in each subgraph
is well reflected in behavior of Y (k) which has been well fitted with Y (k) ∼ 1/k in Fig. 11.
The above results indicate that the real data set contains information on the underlying central interactions
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which are rather homogeneous. Indeed, the data set is a collection of significant results obtained from a pre-
filtered gene set from about 8,600 genes,7 which would be likely to collect only central and strong interactions
between the genes. The interactions filtered by the subgraphs are likely to be the strongest interactions among
those present in the entire genome of a fibroblast tissue. This omits contributions of weak interactions which
would contribute to the heterogeneity of the underlying network.
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Figure 6. Probability distribution of correlation coefficients, P (ρij), of (a) ΓP (b) Γmin and Γmax for the random data
set. (c) Complementary cumulative distributions of ρij and fitted exponential distributions.
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Figure 7. Probability distribution of correlation coefficients, P (ρij), of (a) ΓP (b) Γmin and Γmax for the real data set.
(c) Complementary cumulative distributions of ρij and fitted exponential distributions.

4.1.2 Correlation between si and ki

Though the results are homogeneous, we see that the subgraphs have captured some distinct characteristics of
the real data set. The fitting of s(k) with a linear law s(k) = ak gives values for the weight a (see Table 2) which
are larger than the mean weight in both subgraphs and this indicates that a larger degree node obtains larger
weight per edge than a smaller degree node. This suggests presence of hub nodes with strongest interactions
with neighboring genes.

Γmin Γmax ΓP

Fitted coef. a1 = 0.9476 a2 = −0.8889 ap = 0.9258
〈ρij〉 0.9179 -0.8828 0.8825

Table 2. Linear functions have been fitted to node strength as a function of degree for various subgraphs and the fitted
coefficients are displayed in the top row. Subscript ’1’ reserved for Γmin, ’2’ for Γmax, ’P’ for ΓP . Each coefficient is
compared to the mean weight, 〈ρij〉, within each subgraph which are listed in the bottom row.

4.1.3 Insignificant node correlation

Eq. 2 has been used to detect assortative mix within each subgraph. The amount of assortative mix in the
trees of the random data set has been calculated to see if the trees from the real data set have any significant
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Figure 8. Probability distribution of degree, P (ki), of (a) Γmin (b) Γmax (c) Γtrees and (d) ΓP of the random data set.
(e) Complementary cumulative distributions of k and fitted exponential distributions.
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Figure 9. Probability distribution of degree, P (ki), of (a) Γmin (b) Γmax (c) Γtrees and (d) ΓP of the real data set. (e)
Complementary cumulative distributions of k and fitted exponential distributions.

amount of assortative mix. Table 3 shows that Γmin and ΓP of the real data set do not obtain significant mix
in comparison to those of the random graphs as they differ by only ∼ 0.01. The only significant coefficient was
detected in Γmax which shows fairly large amount of disassortative mix in node degree for the real data set. This
indicates that repressions (or inductions) of genes with high degrees in Γmax take place efficiently to induce (or
repress) the neighboring genes with low degrees.

Random data set Real data set
Γmin -0.1307 -0.1893
Γmax -0.1571 -0.5072
ΓP -0.0198 -0.0095

Table 3. Node correlation coefficients computed for Γmin, Γmax and ΓP of the real data set (left column) and the random
data set (right column). Eq. 2 has been used for the computation. Bold number is to emphasize significant degree mix
within the corresponding subgraph.

4.2 Assortative mix of degrees between Γmin and Γmax

Both trees have been combined into a single subgraph, Γtrees, to observe correlation between node degrees in
Γmin and in Γmax. Since these two trees possess either all positive or negative edge weights, they have disjoint
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edges sets sharing a common node set, so Γtrees consists of 516× 2 = 1, 032 edges and 517 nodes. Denoting node
degrees in Γmin as kmin

i and those in Γmax as kmax
j , two aspects of node degree correlation are investigated:

• Assortative mix at the nodes to detect any preference of a node with kmin
i in Γmin to have a certain degree

kmax
i in Γmax. We denote this correlation coefficient as rnode.

• Assortative mix via the edges to detect any preference of edges to attach a node with kmin
i to some degree

node kmax
j via edges of Γmin or vice versa. We denote these correlation coefficients for assortative mix via

edges in Γmin as rmin
edge and via edges in Γmax as rmax

edge .

These correlation coefficients have been obtained by computing the Pearson correlation coefficients for each case.
The computation is based on the correlation function which measures the amount of departure from the null
correlation by:

〈kmin
i kmax

j 〉 − 〈kmin
i 〉〈kmax

j 〉. (5)

The correlation coefficients are normalized by the maximal value in each case, which represents the most assor-
tative mix and is given by standard deviations:

rnode =
〈kmin

i kmax
i 〉node − 〈kmin

i 〉node〈kmax
i 〉node√

〈(kmin
i − 〈kmin

i 〉)2〉node

√〈(kmax
i − 〈kmax

i 〉)2〉node

(6)

rmin
edge =

〈kmin
i kmax

j 〉min
edge − 〈kmin

i 〉min
edge〈kmax

j 〉min
edge√

〈(kmin
i − 〈kmin

i 〉min
edge)2〉min

edge

√
〈(kmax

j − 〈kmax
j 〉min

edge)2〉min
edge

(7)
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rmax
edge =

〈kmin
i kmax

j 〉max
edge − 〈kmin

i 〉max
edge〈kmax

j 〉max
edge√

〈(kmin
i − 〈kmin

i 〉max
edge)2〉max

edge

√
〈(kmax

j − 〈kmax
j 〉max

edge)2〉max
edge

. (8)

In terms of adjacency matrix, the means are computed by:

〈f(ki)〉node =
1
N

∑
i

f(ki)

〈f(ki, kj)〉min
edge =

1
2(N − 1)

∑
i,j

amin
i,j f(ki, kj)

〈f(ki, kj)〉max
edge =

1
2(N − 1)

∑
i,j

amax
i,j f(ki, kj)

where N is the number of nodes in both graphs, amin
i,j and amax

i,j are the adjacency matrices of Γmin and Γmax.

Real data set Random data set
rnode 0.0851 0.4818
rmin
edge 0.0127 -0.0020

rmax
edge 0.1306 0.0512

Table 4. Correlation coefficients to indicate any assortative mix between kmin
i and kmax

j in Γtrees.

Table 4 lists the computed coefficients for both the real data set and the random data set. The differences
are evident from rnode showing that the real data set has no significant correlation between kmin

i and kmax
j at

nodes while the random data set has large correlation. This large rnode can be explained by the fact that a node
which obtains a high degree in one tree is likely to obtain a high degree in the other tree since Γmin and Γmax

are symmetric. It is because the random walk diffusion takes place symmetric in both directions. The low rnode

in Γtrees of the real data set can be interpreted as there is almost no relation between genetic role of a gene in
Γmin and another genetic role of the gene in Γmax and vice versa.
The data for rmax

edge shows that significant assortative mix via edges from Γmax is present in Γtrees for the real
data set. The significant rmax

edge indicates that high degree nodes in Γmax tend to connect to high degree nodes in
Γmin. Recalling that the edges in Γmax represent switching on or off activities within the genome of a fibroblast
tissue in response to the serum stimulation, these results suggest that the switching processes take place on high
degree nodes in Γmin to effectively transmit the signal to activate genetic activities related to the physiology of
wound healing.

5. CONCLUSION

There have been various attempts to construct biological networks from microarray data sets. Boolean net-
works,16 differential equations,17 and Bayesian networks18 are general approaches usually taken in Bioinformat-
ics. In this paper, without any prior knowledge on the genetics of the corresponding genome, the geometrical
and topological properties of gene interactions have been detected by constructing different types of skeletal
correlation-based networks.
The construction of subgraphs of Gcom such as Γtrees and ΓP has been proven to be a valid instrument to
capture some of the biological information contained in the expressions of genes in the data set despite of the
large amount of filtering applied onto the information from the genome of interest. In particular, the less strict
constraint to construct a ΓP improved A(ρij) to favor high weights as well as generous acceptance for lower
weight edges in ρij ∈ [0.5, 0.85] respect to Γmin.
It has been found that high degree nodes in Γmin tend to have larger edge weights than low degree nodes,
and high degree nodes in Γmax tend to connect to high degree nodes in Γmin. This suggests that the genetic
transcription activities of genes from human fibroblast tissue respond to the detection of wound to efficiently
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transmit the signal through highly efficient ‘switches’ (that is, high degree nodes in Γmax) acting on high degree
nodes in Γmin which are very effective in activating several genetic activities.
The detected properties are not only meaningful topologically, but also verified in terms of known genes interac-
tions in wound healing.
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