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2 Department of Economics, Università Politecnica delle Marche, Piaz.le Martelli 8, 60121 Ancona, Italy

Received 24 November 2004 / Received in final form 10 July 2005
Published online 28 October 2005 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2005

Abstract. From a detailed empirical analysis of the productivity of non financial firms across several
countries and years we show that productivity follows a non-Gaussian distribution with ‘fat tails’ in
the large productivity region which are well mimicked by power law behaviors. We discuss how these
empirical findings can be linked to a mechanism of exchanges in a social network where firms improve
their productivity by direct innovation and/or by imitation of other firm’s technological and organizational
solutions. The type of network-connectivity determines how fast and how efficiently information can diffuse
and how quickly innovation will permeate or behaviors will be imitated. From a model for innovation flow
through a complex network we show that the expectation values of the productivity of each firm are
proportional to its connectivity in the network of links between firms. The comparison with the empirical
distributions in France and Italy reveals that in this model, such a network must be of a scale-free type
with a power-law degree distribution in the large connectivity range.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 89.75.Hc
Networks and genealogical trees – 89.75.-k Complex systems – 89.75.Da Systems obeying scaling laws

1 Introduction

The recent availability of huge sets of longitudinal firm-
level data has generated a number of productivity studies
in the economic literature [1–7]. There are several mea-
sures of productivity [8]. In this work we consider two ba-
sic measures: labour and capital productivity. The labour
productivity is defined as value added over the amount of
employees (where value added, defined according to stan-
dard balance sheet reporting, is the difference between to-
tal revenue and cost of input excluding the cost of labour).
Although elementary, this measure has the advantage of
being accurately approximated from the available data.
The other alternative measure is the capital productiv-
ity which is defined as the ratio between value added and
fixed assets (i.e. capital). This second measure has some
weakness since the firms’ assets change continuously in
time (consider for instance the value associated with the
stock price). Usually the literature recognizes that the pro-
ductivity distribution is not normally distributed [7], and
empirically ‘fat tails’ with power law behaviors are ob-
served. But the mainstream proposed explanations can-
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not retrieve this power law tails yielding — at best — to
log-normal distributions [9,10]. In this work we approach
this problem from a different perspective by analyzing the
effect that interactions between firms have on the produc-
tivity. According to the evolutionary perspective [11,12],
firms improve their productivity implementing new tech-
nological and organizational solutions and, in this way,
upgrade their routines. The search for more efficient tech-
nologies is carried out in two ways: (1) by innovation (di-
rect search for more efficient routines); (2) by imitation
of the most innovative firms [13,14]. In practice, one can
figure out that once new ideas or innovative solutions are
conceived by a given firm then they will percolate outside
the firm that originally generated them by imitation from
other firms. In this way the innovation flows through the
network of contacts and communications between firms.
Therefore, such a network must play a decisive role in the
process. Our approach mimics such a dynamics by consid-
ering a simple type of interaction but assuming that they
take place through a complex network of contacts. The
challenge here is to understand whether such a network of
contacts could lead to the emergence of ‘fat tails’ in the
productivity distributions.
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In this paper we address this problem by first propos-
ing a model for the production and flow of innovation;
second by performing an empirical analysis for France and
Italy (based on the data set Amadeus, which records data
of over 6 million European firms from 1990 to 2002 [15]);
third by comparing the analytical results with the empir-
ical ones showing that indeed power law tails can emerge
from scale-free contact-networks and observing a good
agreement between the theoretical predictions and the em-
pirical findings.

The paper is organized as follows: Section 2 recalls the
concept of social network; Section 3 introduces the model
supporting the technological distribution, Section 4 de-
scribes some empirical findings while in Section 5 we com-
pare these empirical findings with the theoretical predic-
tion. A concluding section summarizes the main results
in the light of recent developments in the study of social
networks.

2 Contact networks in social systems

Systems constituted of many elements can be naturally
associated with networks linking interacting constituents.
Examples in natural and artificial systems are: food webs,
ecosystems, protein domains, Internet, power grids. In so-
cial systems, networks also emerge from the linkage of peo-
ple or group of people with some pattern of contacts or
interactions. Examples are: friendships between individ-
uals, business relationships between companies, citations
of scientific papers, intermarriages between families, sex-
ual contacts. The relevance of the underlying connection-
network arises when the collective dynamics of these sys-
tems is considered. Recently, the discovery that, above
a certain degree of complexity, natural, artificial and so-
cial systems are typically characterized by networks with
power-law distributions in the number of links per node
(degree distribution), has attracted a great deal of sci-
entific interest [16–18]. Such networks are commonly re-
ferred as scale-free networks and have degree distribution:
pk ∼ k−α (with pk the probability that a vertex in the
network chosen uniformly at random has degree k). In
scale-free networks most nodes have only a small number
of links, but a significant number of nodes have a large
number of links, and all frequencies of links in between
these extremes are represented. The earliest published ex-
ample of a scale-free network is probably the study of
Price [19] for the network of citations between scientific
papers. Price found that the exponent α has value 2.5
(later he reported a more accurate figure of α = 3.04).
More recently, power law degree distributions have been
observed in several networks, including other citation net-
works, the World Wide Web, the Internet, metabolic net-
works, telephone calls and the networks of human sexual
contacts [17,18,20–22]. All these systems have values of
the exponents α in a range between 0.66 and 4, with most
occurrences between 2 and 3 [23–26].

When analyzing industrial dynamics, it is quite natu-
ral to consider the firms as interacting within a network
of contacts and communications. In particular, when the

productivity is considered, such a network is the structure
through which firms can imitate each-other.

3 Innovation flow

In this section we introduce a model for the flow of innova-
tion through the system of firms. The general idea is that
the innovation, originally introduced in a given firm ‘i’ at
a certain time t, can spread by imitation across the net-
work of contacts between firms. In this way, interactions
force agents to progressively adapt to an ever changing
environment.

Let us start by describing such a production and flow
of innovation by means of the following equation which
describes the evolution in time of the productivity xl of a
given firm ‘l’:

xl(t + 1) = xl(t) + Al(t) +
∑

j∈Il

Qj→l(t)[xj(t) − xj(t − 1)]

−
t−1∑

τ=1

q
(τ)
l (t)[xl(t − τ) − xl(t − τ − 1)]. (1)

The term Al(t) is a stochastic additive quantity which ac-
counts the progresses in productivity due to innovation.
The terms Qj→l are instead exchange factors which model
the imitation between firms. These terms take into ac-
count the improvement of the productivity of the firm ‘l’
in consequence of the imitation of the processes and inno-
vations that had improved the productivity of the firm ‘j’
at a previous time. Such coefficients are in general smaller
than one because the firms tend to protect their innova-
tion content and therefore the imitation is in general in-
complete. In the following we will consider only the static
cases where these quantity are independent on t. The term
q
(τ)
l is:

q
(1)
l =

∑

j∈Il

Qj→lQl→j for τ = 1 (2)

q
(τ)
l =

∑

j∈Il

Qj→l

×
∑

h1...hτ−1

Ql→h1Qh1→h2 . . . Qhτ−1→j for τ ≥ 2. (3)

This term excludes back-propagation: firm ‘l’ imitates
only improvements of the productivity of firm ‘j’ which
have not been originated by imitation of improvements oc-
curred at the firm ‘l’ itself at some previous time. The sys-
tem described by equation (1) can be viewed as a system
of self-avoiding random walkers with sources and traps.

The probability Pt+1(y, l)dy that the firm l at the time
t + 1 has a productivity between y and y + dy is related
to the probabilities to have a set {Qj→l} of interaction
coefficients and a set of additive coefficients {Al(t)} such
that a given distribution of productivity {xj(t)} at the
time t yields, through equation (1), to the quantity y for
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the agent l at time t + 1. This is:

Pt+1(y, l) =
∫ ∞

−∞
daΛt(a, l)

t−1∏

ξ=0

∫ ∞

−∞
dx

(ξ)
1 Pt−ξ

(
x

(ξ)
1 , 1

)
· · ·

×
∫ ∞

−∞
dx

(ξ)
N Pt−ξ

(
x

(ξ)
N , N

)

× δ



y − a − x
(0)
l −

∑

j∈Il

[
x

(0)
j − x

(1)
j

]
Qj→l

+
t−1∑

τ=l

q
(τ)
l

[
x

(τ)
l − x

(τ+1)
l

])
, (4)

where δ(y) is the Dirac delta function and Λt(a, l) is the
probability density to have at time t on site l an additive
coefficient Al(t) = a. Let us introduce the Fourier trans-
formation of Pt(y, l) and its inverse

P̂t(ϕ, l) =
∫ ∞

−∞
dye+iyϕPt(y, l)

Pt(y, l) =
1
2π

∫ ∞

−∞
dϕe−iyϕP̂t(ϕ, l). (5)

In Appendix A, we show that equation (4) can be re-
written in term of these transformations, resulting in:

P̂t+1(ϕ, l) = Λ̂t(ϕ, l)P̂t(ϕ, l)
t−1∏

ξ=2

P̂t−ξ

(
(−q

(ξ)
l +q

(ξ−1)
l )ϕ, l

)

× P̂0

(
q
(t−1)
l ϕ, l

)
P̂t−1

(
−q

(1)
l ϕ, l

)

×
∏

j∈Il

P̂t (Qj→lϕ, j) P̂t−1(−Qj→lϕ, j), (6)

with Λ̂t(ϕ, l) being the Fourier transform of Λt(a, l). From
this equation we can construct a relation for the propa-
gation of the cumulants of the productivity distribution.
Indeed, by definition the cumulants of a probability dis-
tribution are given by the expression:

k
(ν)
l (t) = (−i)ν dν

dϕν
ln P̂t(ϕ, l)

∣∣∣
ϕ=0

, (7)

where the first cumulant k
(1)
l (t) is the expectation value

of the stochastic variable xl at the time t (〈xl(t)〉) and the
second cumulant k

(2)
l (t) is its variance

(
σ2

l (t)
)
. By taking

the logarithm of equation (6) and applying equation (7)
we get:

k
(ν)
l (t+1)=c(ν)(t)+k

(ν)
l (t)+

t−1∑

ξ=2

(
q
(ξ−1)
l − q

(ξ)
l

)ν

k
(ν)
l (t−ξ)

+
(
q
(t−1)
l

)ν

k
(ν)
l (0) +

(
−q

(1)
l

)ν

k
(ν)
l (t − 1)

+
∑

j∈Il

[
(Qj→l)

ν
k

(ν)
j (t) + (−Qj→l)

ν
k

(ν)
j (t − 1)

]
. (8)

In reference [27], Maddison shows that the average inno-
vation rate of change in the OECD countries since 1870
has been roughly constant. In our formalism this implies

〈Al(t + 1)〉 − 〈Al(t)〉
〈Al(t)〉 ∼ const. (9)

Therefore, the mean of the additive term in equation (1)
(〈Al(t)〉) must grow exponentially with time and conse-
quently the first cumulant (the average indeed) reads:

c(1) = c
(1)
0

(
c
(1)
1

)t

. Equivalently we assume an exponential

growth also for the other moments
(

c(ν) = c
(1)
0

(
c
(ν)
1

)t
)

.

Equation (8) can now be solved by using a mean-field,
self-consistent solution (neglecting correlations and fluc-
tuations in the interacting firms) obtaining:

k
(1)
l (t)=

1
A

c
(1)
0 c

(1)
1(

c
(1)
1 − 1

) [1 + āQzl]
(
c
(1)
1

)t

for ν = 1

k
(ν)
l (t)=

c
(ν)
0

Bν

[
1+

(
1+

(−1)ν

c
(ν)
1

)
b̄(ν)Qνzl

](
c
(ν)
1

)t

for ν >1

(10)

where

ā =
1

1 −
〈

Qzl

A

〉 1
〈A〉 (11)

b̄(ν) =
1

1 +
〈

(1+(−1)ν/c
(ν)
1 )Qνzl

Bν

〉 1
〈Bν〉 (12)

and

A = c
(1)
1 + zl

t−1∑

ξ=1

Qξ+1

(
c
(1)
1

)ξ
(13)

Bν = −1 + c
(ν)
1 − zν

l

[
(−Q2)ν

c
(ν)
1

+
t−1∑

ξ=2

(
Qξ − Qξ+1

)ν
(
c
(ν)
1

)ξ
+

(Qt)ν

(
c
(ν)
1

)t



 (14)

with Q being the average exchange factor. When this ex-
change term is small, equation (10) can be highly simpli-
fied by taking the first order in Q only, leading to:

k
(1)
l (t) ∼ c

(1)
0

c
(1)
1 − 1

[
1 + zl

Q

c
(1)
1

](
c
(1)
1

)t

k
(ν)
l (t) ∼ c

(ν)
0

c
(ν)
1 − 1

(
c
(ν)
1

)t

. (15)

Equation (10) (and its simplified form, Eq. (15)) de-
scribes a mean productivity which grows at the same rate
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Fig. 1. Frequency distributions (left) and complementary cumulative distributions (right) for the labour productivity in Italy
in the years 1996–2001. The theoretical behavior is for α = 2.7, m = 22, n = 11, σ = 10 and β = 3. The insert shows P>(x) vs.
x in log-normal scale.
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Fig. 2. Frequency distributions (left) and complementary cumulative distributions (right) for the labour productivity in France
in the years 1996–2001. The theoretical behavior is for α = 2.1, m = 30, n = 4, σ = 20 and β = 1. The insert shows P>(x) vs.
x in log-normal scale.

of the mean innovation growth (as a power of c
(1)
1 ) and

is directly proportional to the number of connections that
the firm has in the exchange network. Equation (10) also
shows that all the cumulants increase with a correspond-
ing power rate

(
(c(ν)

1 )t
)
. But, if we analyze the normalized

cumulants: λ(ν)(t) = k
(ν)
l (t)/

[
k

(2)
l (t)

]ν/2

we immediately
see that at large t they all tend to zero excepted for the
mean and the variance. Therefore the probability distri-
butions tend to Gaussians at large times.

Summarizing, in this section we have shown that, at
large t, the expectation value of the productivity level
of a given firm is proportional to its connectivity in the
network of interaction and the fluctuations around this
expectation-value are normally distributed. Each firm has
a different connectivity and therefore the aggregate prob-
ability distribution for the productivity of the ensemble
of firms is given by a normalized sum of Gaussians with
averages distributed according with the network connec-
tivity.

4 Empirical analysis

Figures 1–4 show the log–log plot of the frequency dis-
tributions (left) and the complementary cumulative dis-
tributions (right) of labour productivity and capital pro-
ductivity measured as quotas of total added value of the
firms. In these figures the different data sets correspond
to the years 1996–2001 for two different countries: France
and Italy. The frequency distributions show a very clear
non-Gaussian character: they are skewed with asymmet-
ric tails and the productivity (Figs. 1–4 (left)) exhibits
a leptokurtic peak around the mode with ‘fat tails’ (for
large productivities) which show a rather linear behav-
ior in a log–log scale. In these figures we also report, for
comparison, the linear trend corresponding to power-law
distributions (N(x) ∝ x−α with α = 2.7, 2.1, 3.8 and 4.6
respectively in Figs. 1–4). The complementary cumula-
tive distributions (P>(x), being the probability to find a
firm with productivity larger than x) also show a linear
trend at large x (in log–log scale) implying a non-Gaussian
character with the probability for large productivities well
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mimicked by a power-law behavior. The ‘fat tails’ charac-
ter of such distributions is highlighted in the inserts of
Figures 1–4 (right) where log-normal plots show that the
decay of P>(x) with x is much slower than exponential.

5 Comparison with theory

The model presented in this paper predicts that the ag-
gregate distribution for the productivity of the ensemble
of firms is given by a normalized sum of Gaussians with
averages distributed according with the connectivity in the
network of contacts/interactions among firms. Therefore,
it is the underlying network which shapes the aggregate
productivity distributions. Empirically we observe the oc-
currence of ‘fat tails’ in the productivity distributions.
Accordingly with the present model, such slow decaying
distributions must be the “consequence” [41] of special
structure of the contact/information network which must
also has slow decaying tails in its degree distribution being

therefore of “scale-free” type. Indeed, as discussed in the
Section 2, power-law-tailed degree distributions are very
common in many social and artificial networks [28–33]. It
is therefore natural to find that the contact/information
network through which firms can exchange and imitate
technological innovations must also have a degree distribu-
tion characterized by a power law in the large connection-
numbers region. Recent works [34] support this view find-
ing power-law distributions in the firms’ networks.

Comparisons between the theoretical predictions
(Eq. (15)) and the empirical findings are shown in the
Figures 1–4 (right). We find a quantitatively rather good
agreement by considering an underlying scale-free network
with degree distribution given by pk ∝ k−α exp(−β/k)
and, accordingly with equation (15), k

(1)
l = m + zln and

a variance equal to σ. We note that, although there are
several parameters, the behavior for large productivity is
controlled only by the power-law exponent −α. On the
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other hand, in the small and the middle range of the dis-
tribution the other parameters have a larger influence.

From our analysis we observe that the theoretical
curves fit the empirical findings well by assuming the
power law exponent equal to α = 2.7 and 2.1 for the labour
productivity in Italy and France respectively. These expo-
nents are in good agreement with the typical degree distri-
bution in social networks. On the other hand the capital
productivity presents much steeper decays which can be
fitted with exponents 3.8 and 4.6 respectively. However
the very high capital productivity regions show a slowing
down which could be fitted with lower exponents.

6 Conclusions and perspectives

In this paper we have shown that the productivity of non-
financial firms is: (i) fat tailed with a slow decrease in
the large productivity region which is well mimicked by a
power law behavior; (ii) this result is robust to different
measures of productivity (added value-capital and capital-
labor ratios); and (iii) it is persistent over time (from 1996
to 2001) and countries (France and Italy). We have also
shown that the empirical evidence corroborates the pre-
scription of the evolutionary approach to technical change
and demonstrated that power law distributions in produc-
tivity can be linked to a simple mechanism of exchanges
within a social network. In particular, we have presented
a simple model for innovation flow through the network of
contacts between the firms showing that the expectation
values of the productivity level of each firm are propor-
tional to the connectivity of the network. The comparison
with the empirical data for France and Italy indicates that
such a network must be of a scale-free type with a power-
law degree distribution in the large connection-numbers
region. Indeed, this yields to productivity distributions
which are in good quantitative agreement with empirical
data showing power-law kind tails characterized by the
same exponent of the degree distribution [35]. We must
stress that in the present formulation we have assumed
the simplest kind of interaction in an underlying network
which is fixed in time. This allows obtaining equilibrium
solutions. On the other hand, a more realistic analysis
should consider a non-static underlying network and a
non-linear type interaction which will therefore lead to
non-equilibrium trajectories modulated by the fluctuation
in the underlying network.

Recent developments in social network theory show
that the network of connections is a dynamical structure
where performative ties between non-previously linked
nodes can be created [37], where the absorption of in-
formation is related to the previous knowledge [38] and
where innovation flow might follow different behaviors [39]
and strategies [40]. All these effects can be included in
the present model by considering the exchange coefficients
Qj→l between two firms as dynamical variables which vary
with the time (performative ties [37]), which are functions
of the level of productivity of the firms (absorptive capac-
ity [38] and strategy [40]) and which depend on the his-
tory of the productivity in each firm (non instantaneous

adsorption of organizational practices [39]). However, the
aim of the present work is to show the specific influence
of a static network of simple interactions on the produc-
tivity distribution. We expect that the results obtained
for such a static network will hold also for a ‘quasi-static’
network where the time-scales of the variations in the net-
work structure are much slower than the characteristic
time of equilibrium in the exchanges of productivity. The
crossover between such a ‘quasi-static’ system to a (non-
equilibrium) dynamical system is left to future research.
In this paper we had a narrower goal: to show that empir-
ical evidence is very well fitted by the evolutionary view
of technical change.
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Appendix A: Cumulant propagation

By using the Fourier transformation (Eq. (5)), equa-
tion (4) becomes:

Pt+1(y, l) =

∫ ∞

−∞
da

{
Λt(a, l)

t−1∏

ξ=0

[
1

(2π)N

∫ ∞

−∞
dx

(ξ)
1 · · ·

∫ ∞

−∞
dx

(ξ)
N

×
∫ ∞

−∞
dϕ

(ξ)
1 e−ix

(ξ)
1 ϕ

(ξ)
1 P̂t−ξ

(
ϕ

(ξ)
1 , 1

)
· · ·

×
∫ ∞

−∞
dϕ

(ξ)
N e−ix

(ξ)
N ϕ

(ξ)
N P̂t−ξ

(
ϕ

(ξ)
N , N

)] ∫ ∞

−∞
dφ

× 1
2π

e
−i

(
y−a−x

(0)
l −∑ j∈Il

[
x
(0)
j −x

(1)
j

]

Qj→l+
∑ t−1

τ=l q
(τ)
l

[
x
(τ)
l −x

(τ+1)
l

])
φ

}
, (A.1)

where the Dirac delta function has been written as

δ(y − y0) =
1
2π

∫ ∞

−∞
dφe−i(y−y0)φ. (A.2)
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Equation (A.1) can be re-written as:

Pt+1(y, l) =
1

(2π)

∫ ∞

−∞
da

{
Λt(a, l)

∫ ∞

−∞
dφe−i(y−a)φ

×
t−1∏

ξ=0

[
1

(2π)N

∫ ∞

−∞
dϕ

(ξ)
l

(
P̂t−ξ(ϕ

(ξ)
l , l)

×
∫ ∞

−∞
dx

(ξ)
l e

−i
(

ϕ
(0)
l −φ

)
x
(0)
l e

−i
∑ t−1

τ=2

(
ϕ

(τ)
l +q

(τ)
l φ−q

(τ−1)
l φ

)
x
(τ)
l

e
−i
(

ϕ
(t)
l −q

(t−1)
l φ

)
x
(t)
l e

−i
(

ϕ
(1)
l −q

(1)
l φ

)
x
(1)
l

)

×
∏

j∈Il

∫ ∞

−∞
dϕ

(ξ)
j

(
P̂t−ξ

(
ϕ

(ξ)
j , j

)

×
∫ ∞

−∞
dx

(ξ)
j e

−i
[(

ϕ
(0)
j −Qj→lφ

)
x
(0)
j +

(
ϕ

(1)
j +Qj→lφ

)
x
(1)
j

])]}
.

(A.3)

The integration over the x’s yields

Pt+1(y, l) =
1
2π

∫ ∞

−∞
da
{
Λt(a, l)

∫ ∞

−∞
dφ
[
e−i(y−a)φP̂t(φ, l)

×
t−1∏

ξ=2

P̂t−ξ

((
−q

(ξ)
l + q

(ξ−1)
l

)
φ, l
)

P̂0

(
q(t−1)
q φ, l

)

× P̂t−1

(
−q

(1)
l φ, l

) ∏

j∈Il

P̂t(Qj→lφ, j)P̂t−1(−Qj→lφ, j)
]}

.

(A.4)

Its Fourier transform is:

P̂t+1(ϕ, l) =

1
2π

∫ ∞

−∞
da

{
Λt(a, l)

∫ ∞

−∞
dφ

[
eiaφ

∫ ∞

−∞
dye−iy(φ−ϕ)

× P̂t(φ, l)
t−1∏

ξ=2

P̂t−ξ

(
(−q

(ξ)
l + q

(ξ−1)
l )φ, l

)

× P̂0

(
q(t−1)
q φ, l

)
P̂t−1

(
−q

(1)
l φ, l

)]

×
∏

j∈Il

P̂t(Qj→lφ, j)P̂t−1(−Qj→lφ, j)




 . (A.5)

Equation (A.5) can be integrated over y giving the Fourier
transform of equation (4) which is equation (6) in Sec-
tion 3.
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22. Gábor Csányi, Balázs Szendroi, Phys. Rev. E 69, 036131

(2004)
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