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Summary. — We investigate the wealth evolution in a system of agents that ex-
change wealth through a disordered network in presence of an additive stochastic
Gaussian noise. We show that the resulting wealth distribution is shaped by the de-
gree distribution of the underlying network and in particular we verify that scale free
networks generate distributions with power-law tails in the high-income region. Nu-
merical simulations of wealth exchanges performed on two different kind of networks
show the inner relation between the wealth distribution and the network properties
and confirm the agreement with a self-consistent solution. We show that empirical
data for the income distribution in Australia are qualitatively well described by our
theoretical predictions.

PACS 89.65.Gh – Economics; econophysics, financial markets, business and man-
agement .
PACS 89.90.+n – Other topics in areas of applied and interdisciplinary physics .

1. – Introduction

Empirically the literature reports several behaviors for the income and wealth dis-
tributions in different countries. A century ago, the Italian social economist Pareto
suggested a power-law [1] distribution in the high-income range, namely, in terms of cu-
mulative distribution: P>(w) ∝ w−α, with α being the Pareto index [2]. On the other
hand Montroll [3] suggested a lognormal distribution with power law tail for the USA
personal income. More recently, wealth and income distributions in the USA and in
the United Kingdom have been described by an exponential distribution with power law
high-end tails [4]. Whereas, the Japanese personal income distribution appears to follow
lognormal distributions also with power law tails [5, 6]. In some recent papers Zipfs law
has also been proposed [7]. In this paper we add to the above empirical investigations
an analysis of the income distribution in Australia (Figure 1).

¿From the theoretical side, it has been shown that pure multiplicative stochastic
(MSP) processes can explain the lognormal income distribution but they fail to explain
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Fig. 1. – Complementary cumulative distributions for the Total annual income from all sources
in Australia in the years 1993− 1997.

the power law tails [8]. Power law tails can be obtained extending MSP processes by
including -for instance- additive noise and boundary constraints [9, 10, 11, 12]. These
models explain well the emergence of power law distributions, but they are incomplete,
neglecting interactions between agents. Hence, MSPs with interacting agents connected
through a network have been developed [13, 14, 15, 16]. These models retrieve power
law tails with exponents α which are related to the network properties.

In this paper, we show that distributions with power law tails can emerge also from
additive stochastic processes with interacting agents. In this case, we show that the
network of connections among agents plays a crucial role. Indeed, the resulting wealth
distribution is shaped directly by the degree distribution of the network. The original
purpose of the present work was not to construct any realistic model for the wealth
distribution. Our aim was simply to demonstrate the possibility to obtain ‘fat’ tails also
without the use of multiplicative stochastic processes. Rather surprising we find out that
the results from such an additive process are in good qualitative agreement with the
empirical data for the income distribution in Australia.

2. – Income distribution in Australia

Let us briefly start with the empirical analysis of the data for the incomes in Australia.
We analyze data from the Australian Bureau of Statistics: “Survey of Income and Hous-
ing Costs Confidentialised Unit Record Files”. In Figure 1 we report the complementary
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Fig. 2. – Comparison between the empirical data and the theoretical (complementary cumula-
tive) distribution associated with a scale-free network.

cumulative distributions (P>(w) = 1− ∫ w

−∞ p(ξ)dξ) for the Total annual income from all
sources in the years 1993−94, 1994−95, 1995−96, 1996−97. These data are compared
with two possible trends in two different regions: lognormal at low and medium incomes
and power law at high incomes. As one can see the large income region is rather well
described with power law -like tails: P>(w) ∝ w−α with exponents α respectively equal
to 2.4, 2.6, 2.4, 2.2. Whereas the small incomes region is in better agreement with a
lognormal distribution: P (w) = 1/(ws

√
2π) exp[− log2(w/x)/(2s2)] (with the values for

s and x reported in the figures). Let us now introduce the theoretical framework and
show how these behaviors can be accounted by using an additive interacting stochastic
process.

3. – Wealth distribution from interacting additive stochastic processes

Consider N agents which interact through a social network and suppose that at the
time t a given agent l has a wealth wl(t). Within the same framework of other models
proposed in the literature [14, 15, 16], let us first introduce a rather general expression
for the wealth evolution:

wl(t + 1)− wl(t) = Al(t) + Bl(t)wl(t) +
∑

j( 6=l)

wj(t)Qj→l(t)−
∑

j(6=l)

wl(t)Ql→j(t) ,(1)
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where the coefficient Al(t) is an additive noise and the factor Bl(t) is a multiplicative
noise. These are stochastic variables which reflect market and social fluctuations. In
addiction with these stochastic terms Equation 1 describes the exchanges between agents
through a network: agent l receives a faction Qj→l(t) of the wealth of agent j and
gives a fraction Ql→j′(t) of its wealth to agent j′. The MSP model mentioned above
takes into account only the multiplicative term Bl(t); their extensions introduce also the
additive noise Al(t) and the interactions Qj→l(t). Differently, in this paper we neglect the
multiplicative term and take into account only the additive noise and the interactions.
In particular we assume that: i) there are no stochastic multiplicative terms (Bl(t) = 0);
ii) the additive term Al(t) is a Gaussian noise with average zero and variance σ2

0 ; iii)
each agent distributes a portion q0 of its wealth equally among the other agents which
are in contact with it through the social network. This last assumption implies:

Qj→l(t) =

{
q0
zj

if l ∈ Ij ;
0 elsewhere.

(2)

where zj is the number of agents in contact with agent j and Ij represents the set of the
agents which exchange with agent j. Equation 1 becomes

wl(t + 1) = Al(t) + (1− q0)wl(t) +
∑

j∈Il

q0

zj
wj(t) .(3)

Note that in our case 〈Al(t)〉t = 0 and Equation 3 describes a system which conserves in
average the total wealth.

The probability Pt+1(x, l)dx that the agent l at the time t+1 has a wealth between x
and x+ dx is related to the probabilities to have a set {Qj→l(t)} of exchange coefficients
and a set of additive coefficient {Al(t)} such that a given distribution of wealth {wj(t)}
at the time t yields, through Equation 3, to the wealth x for the agent l at time t + 1.
This is:

Pt+1(x, l) =
∫ ∞

−∞
da Λt(a, l)

∫ ∞

−∞
dw1 · · ·

∫ ∞

−∞
dwNPt(wj , j)δ

(
x−a−(1−q0)wl−

∑

j′

q0

zj′
wj′

)
,

(4)
where δ(x) is the Dirac delta function and Λt(a, l) is the probability density to have at
time t on site l an additive coefficient Al(t) = a.

The Fourier transform of Equation 4 reads:

P̂t+1(ϕ, l) =
e−

σ2
0ϕ2

2√
2π

P̂t((1− q0)ϕ, l)
∏

j∈Il

P̂t(
q0

zj
ϕ, j) .(5)

By definition the cumulants of the wealth probability distribution are given by the
expression:

k
(ν)
l (t) = (−i)ν dν

dϕν
ln P̂t(ϕ, l)

∣∣∣
ϕ=0

,(6)

where the first cumulant k
(1)
l (t) is the expectation value of the stochastic variable wl at

the time t (〈wl(t)〉) and the second moment k
(2)
l (t) is its variance (σ2

l (t)).
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Fig. 3. – The two degree distributions for the two networks used in the simulations. (Left:
degree distributions, Right: complementary cumulative degree distributions).

By taking the logarithm of Equation 5 and applying Equation 6 we get:

k
(ν)
l (t + 1) = c(ν) + (1− q0)νk

(ν)
l (t) +

∑

j∈Il

(
q0

zj

)ν

k
(ν)
j (t) ,(7)

with c(2) = σ2
0 and c(ν) = 0 for any ν 6= 2. This equation describes the propagation of

the cumulants of the wealth distribution. A consequence of this equation is that the only
moments which asymptotically can be different from zero are the first (the mean) and
the second (the variance). With this last being directly proportional to σ2

0 .
We now seek for stationary solutions of Equation 7, i.e. situations in which at infinitely

large times, the cumulants do not change in time: k
(ν)
l (t) = k̄

(ν)
l .

3.1. Self-Consistent solution: crystal . – Let us first consider an ‘ideal’ social network
where every agent is connected with an equal number of other agents (zj = z̄) in a
perfectly ordered ‘crystalline’ structure. In this case, each agent is equivalent to each
other and the asymptotic wealth distribution must be the same for every one (i.e. k

(ν)
j

independent on j). ¿From Equation 7 it follows that the expectation value for the wealth
on each site is a constant and it is equal to the average wealth at t = 0:

〈wl〉 = k̄
(1)
l =

1
N

∑

j

wj(0) .(8)

Its variance is

σ2
l = k̄

(2)
l =

σ2
0

1− q2
0
z̄ − (1− q0)2

.(9)

Whereas all the other moments k̄(ν) are equal to zero for ν ≥ 3.

3.2. Self-Consistent solution: general case. – We now consider the more general case
of a non-regular network. ¿From Equation 7 it follows that a self-consistent solution for
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Fig. 4. – The wealth distributions (left) and their complementary cumulative distributions (right)
resulting from 50 simulations performed on two the different networks (1 and 2).

the average stationary wealth on each node of the network is:

〈wl〉 = k̄
(1)
l =

zl

z̄
m ,(10)

with m the average wealth on the ensemble of agents (m = 1
N

∑
j wj(t)) and z̄ the average

network connectivity (z̄ = 1
N

∑
j zj). Therefore the expectation value for the wealth of a

given agent results proportional to its number of connections in the social network. On
the other hand, we mentioned above that the only other moment which can be different
from zero is the second. Therefore, we expect that the probability to find a given wealth
on a given agent is a Gaussian distribution with average zl

z̄ m and finite variance.

3.3. Wealth distribution -analytical . – The wealth probability distribution in the en-
semble of agents is given by the sum of the distributions for each agent divided by the
total number of agents. We have seen above that each agent has a wealth within a Gaus-
sian distribution with average directly proportional to its connectivity (Equation 10)
and finite variance. The resulting wealth distribution for the ensemble of agent is there-
fore a weighted sum of Gaussian distributions with averages proportional to the network
connectivity and weights given by the degree distribution. This overall distribution is
shaped by the underlying distribution of the connectivity between agents (the degree
distribution). It has been observed that in many social systems the degree distribution
typically follows a power law behavior in the region of large number of connections [17].
This power law behavior in the social network connectivity will be therefore reflected in
the wealth distribution which will assume a power law tail terminated by an exponen-
tial cutoff (for a finite system). This behavior is qualitatively in agreement with what
observed empirically. A comparison between the empirical data and the distribution
resulting by summing a set of 3000 Gaussian distributions with averages proportional to
the connectivity x = z

z̄ x0 (with x0 = 30000, z̄ = 1.28), equal variances s = 18000 and
power law degree distribution p(z) = p0z

−a (with a = 3.2, zmin = 1, zmax = 3000 ) is
shown in Figure 2. As one can see the qualitative agreement is quite satisfactory.

3.4. Wealth distribution - numerical simulation. – We generated large networks, with
N = 30000 agents, by iteratively performing switching of neighbors in a triangulation
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Fig. 5. – Comparison between the average values for the wealth of a given agent l (symbols)
calculated from 50 simulations on the two networks (left: network 1; right: network 2) with the
theoretical predictions from Equation 10 (lines).

embedded in a manifold with genus g = 10000. We introduce an ‘energy’ E =
∑

j(zj−z̄)2

and we perform a Glauber-Kawasaki type of dynamics. This procedure is an extension
to g 6= 1 and negative ‘temperatures’ of the method presented in [18]. Two different net-
works were generated by performing 600000 switches from a disordered start respectively
at inverse ‘temperatures’ β = −0.5 (network 1) and β = +0.5 (network 2). At positive
temperature a rather homogeneous network emerges with degree distribution centered
around the average (z̄ = 6 + 12(g − 1)/N) and with exponentially fast decreasing tails
(Figure 3, network 2). On the other hand, negative temperatures favour the formation
of inhomogeneous-scale free networks, with power law tails in the degree distribution
(Figure 3, network 1).

Once the networks are generated, we associate to each agent an equal initial wealth of
m (arbitrary) units. We set m = 100, q0 = 0.1, σ = 0.05/m and we run the simulation by
updating at each time-step all the agent’s wealth by using Equation 3 up to a maximum
time T . We verify that a steady state distribution is achieved after about 100 time-steps
and therefore we set T = 1000. The resulting wealth distributions for 50 simulations over
fixed underlying networks are reported in Figure 4. We see that the network properties
have a dramatic effect on the overall behavior of the wealth distribution. We observe
an exponentially fast decay in the homogeneous network, whereas we obtain a power
law ‘fat’ tail in the scale-free one. We verify that, in agreement with Equation 10, the
expectation velue for the wealth on each agent is proportional to its connectivity in the
social network. Figure 5 reports the average (over the 50 simulation) wealth on each agent
v.s. its connectivty. The theoretical prediction (Equation 10) is also reported showing
a remarkable agreement for both the networks. The small spreading of the data (more
evident for network 2) indicates that non-local effects might also have some relevance.

4. – Conclusion

We have shown that a mechanism of wealth exchange with additive Gaussian noise
can produce distributions with power-law tails when the network which connects the
agents is of a scale-free type. Although the original purpose of this work was not to
produce a realistic model for the wealth evolution, we find a good qualitative agreement
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between the empirical data and the theoretical prediction. More realistic models will
be proposed in future works by introducing also multiplicative stochastic terms and a
dynamical evolution in the network connectivity.
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