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Abstract. Let Σ be a simply connected constant mean curvature surface embedded

in R3. If the curvature is large at some point x ∈ Σ then Σ contains a multi-valued

graph near x. This is a generalization of a Colding and Minicozzi’s result for minimal

surfaces.

0. Introduction.

This paper is an announcement of the result described in the abstract and a

complete proof will be given elsewhere.

Section 1 is a short overview of constant mean curvature surfaces. In sections 2

and 3 we state and motivate the result, describe what a multi-valued graph is and go

over the hypotheses of the theorem/result. In section 4 we briefly outline the proof,
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showing how it is essentially a compactness argument applied on constant mean cur-

vature surfaces containing a multi-valued graph. However, we see there are some

problems which can not be solved with a standard approach. In section 5 we intro-

duce the concept of δ-stability for constant mean curvature surfaces, generalization

of (strong) stability. That will be a key ingredient in the proof. In sections 6 and 7

we take a closer look at the ”not so standard” aspect of the proof.

1. Constant mean curvature surfaces.

Let Σ ⊂ R3 be a 2-dimensional smooth orientable surface (possibly with bound-

ary) with unit normal NΣ. Given a function φ in the space C∞0 (Σ) of infinitely

differentiable (i.e., smooth), compactly supported functions on Σ, consider the one-

parameter variation

Σt,φ = {x+ tφ(x)NΣ(x)|x ∈ Σ}

and let A(t) be the area functional,

A(t) = Area(Σt,φ).

The so called first variation formula of area is the equation (integration is with respect

to darea)

(1.1) A′(0) =

∫
Σ

φH,

where H is the mean curvature of Σ. When H is constant the surface is said to be

a constant mean curvature (CMC) surface (see [1]) and it is a critical point for the

area functional restricted to those variations which preserve the enclosed volume, in

other words φ must satisfy the condition,∫
Σ

φ = 0.

In general, if Σ is given as graph of a function u it is,

(1.2) H = div

(
∇u√

1 + |∇u|2

)
.

Therefore, when H is constant u satisfies a quasi-linear differential equation. In the

particular case where the mean curvature H is identically zero the surface Σ is said to

be a minimal surface (see [2] and [3]). Concrete examples of constant mean curvature

surfaces are spheres, cylinders and Delauney surfaces.

In general, let k1, k2 be the principal curvatures on Σ, the constant mean curvature

H is the sum k1 + k2; |A|2 = k2
1 + k2

2 is the norm of the second fundamental form

squared. Since the Gaussian curvature KΣ is equal to the product of the principal

curvatures k1k2, we have the Gauss equation, that is

(1.3) H2 = |A|2 + 2KΣ.



2. Multi-valued graphs in CMC surfaces.

The result is the following,

Theorem 2.1. For each N ∈ Z+, ω > 1 and ε > 0 there exist H > 0, C(N,ω, ε) > 0

and l̄ > 1 so:

Let 0 ∈ Σ ⊂ Bl̄(0) ⊂ R3 be an embedded and simply connected constant mean curva-

ture equal to h surface (embedded CMC disk) such that |h| ≤ H and ∂Σ ⊂ ∂Bl̄(0).

If

sup
Σ∩Bl̄(0)

|A|2 ≤ 4C2 = 4|A|2(0)

then there exists R̄ < 1
ω

and (after a rotation) an N-valued graph Σg ⊂ Σ over

DωR̄\DR̄ (with gradient ≤ ε and distΣ(0,Σg) ≤ 4R̄).

This is a generalization of a Colding and Minicozzi’s result for minimal surfaces,

Theorem 0.2 of [4]. We are proving the same result for constant mean curvature

surfaces. As a matter of fact the constant, C(N,ω), in Theorem ?? is essentially the

same constant. For a minimal surface, Colding and Minicozzi were able to extend

the multi-valued graph that forms locally, all the way up to the boundary. It is not

known if the same can be done for CMC surfaces.

What is an N -valued graph?

Definition 2.2 (Multi-valued graph). Let Dr be the disk in the plane centered at the

origin and of radius r and let P be the universal cover of the punctured plane C\0
with global coordinates (ρ, θ) so ρ > 0 and θ ∈ R. An N-valued graph of a function u

on the annulus Ds\Dr is a single valued graph over {(ρ, θ)|r ≤ ρ ≤ s, |θ| ≤ Nπ}.

The surface to keep in mind is the helicoid. A parametrization of the helicoid

that illustrates the existence of such an N -valued graph is the following

(s sin t, s cos t, t) where (s, t) ∈ R2

It is easy to see that it contains the N -valued graph φ defined by

φ(ρ, θ) = θ where (ρ, θ) ∈ R+\0× [−Nπ,Nπ].

In fact the helicoid is a minimal surface.

3. About the hypotheses and the rescaling argument.

Thanks to the upper bound on the norm of the second fundamental form the

surface is ”uniformly locally flat” (we will see later in the paper what that means).

Moreover, supΣ |A|2 ≤ 4C2 together with the Gauss equation (??) gives a lower bound

for the Gaussian curvature, KΣ ≥ −4C2+H2

2
. This lower bound is important because

by Bishop comparison theorem implies an upper bound on the area of the intrinsic

balls (see [5]).

From Theorem ?? it follows by rescaling that the result is true even when the

mean curvature is large but on a smaller ball. That is, surfaces with large constant

mean curvature have tiny multy-valued graphs around the origin. The theorem is the

following,



Theorem 3.1. Given N ∈ Z+, ω > 1 and ε > 0, there exist C = C(N,ω, ε) > 0,

H > 0 and l̄ > 1 so:

Let Σ ⊂ R3 be an embedded simply connected constant mean curvature equal to h

surface. If |h| < H
r0

and

sup
Σ∩Br0 l̄

(0)

|A|2 ≤ 4C2r−2
0 = 4|A|2(0)

for some r0 > 0, then Σ (after a rotation) contains an N-valued graph over DωR̄\DR̄

where R̄ < r0
ω

(with gradient ≤ ε and distΣ(0,Σg) ≤ 4R̄).

Note that a rescaling argument applied to a minimal surface gives another minimal

surface. To our task, it is necessary that H differs from 0.

4. Proof by contradiction.

The proof is a proof by contradiction and fundamentally a compactness argument.

We show that the statement

For each h > 0 there exists an embedded and simply connected con-

stant mean curvature surface Σ that does not contain an N -valued

graph Σg ⊂ Σ over DωR̄\DR̄ for any R̄ < 1
ω

but such that satisfies the

hypotheses of ??

is false. The idea is the following, let us assume that such a Σ exists for any h > 0 then

we will be able to construct a sequence of Σn, not containing an N -valued graph, that

converges in the C2 convergence (see [6]) to a minimal surface Σ∞ which satisfy the

hypotheses of Colding-Minicozzi and therefore contains an N -valued graph. Clearly,

it will be H(Σn)→ 0 as n approaches infinity.

The C2 convergence together with the fact that the limit of the sequence contains

an N -valued graph will imply that one of the element of the sequence contains an

N -valued graph, giving the contradiction. However, there are some nontrivial aspects

in the proof.

Roughly speaking the C2 convergence means that Σ∞ can be covered by a finite

number of balls Br(xi), xi ∈ Σ∞, such that in each ball Σn ∩ Br(xi) looks like a

bunch of graphs ujn over TxiΣ∞ and ujn converges C2 to a certain graph uj∞. Given

that the sectional curvatures are bounded it is not too hard to find a lower bound

for the radius of the small ball where everything must look graphical, this is what

we called ”uniformly locally flat”. Once everything is graphical we will be able to

extract, using Arzela-Ascoli, a subsequence ujn that converges uniformly to a graph

uj∞ and it satisfies

1

n
= div

 ∇ujn√
1 + |∇ujn|2

 .

Using Schauder theory (see [7]) we can prove that ujn converges C2 to uj∞ and therefore

the latter is a minimal graph. This part is the more or less standard argument.

Unfortunately, as it has been said, there is a problem. What has just been

described happens locally, on small balls, and it is not enough to prove that the



limit is an embedded and simply connected minimal disk (for instance it could be

a lamination or not simply connected). In short, the standard approach by itself

does not produce the desired simply connected and embedded minimal surface. For

the global result it is necessary to prove that the number of graphs in each ball is

uniformly bounded and that will require more machinery.

From now on, our goal is to find that upper bound on the number of graphs. In

order to do that, we must first introduce the concept of δ-stability.

5. δ-stability.

Let A be the area functional described in section ??, we showed that A′(0) =∫
Σ
φH. A computation shows that if Σ is a CMC surface then

(5.1) A′′(0) = −
∫

Σ

φLΣφ, where LΣφ = ∆Σφ+ |A|2φ

is the second variational operator. Here ∆Σ is the intrinsic Laplacian on Σ. A CMC

surface Σ is said to be (strongly) stable if

(5.2) A′′(0) ≥ 0, for all φ ∈ C∞0 (Σ).

Applying Stokes’ theorem to ?? shows that Σ is stable if and only if∫
Σ

|A|2φ2 ≤
∫

Σ

|∇φ|2, for all φ ∈ C∞0 (Σ)

and that allows us to define δ-stability, namely Σ is said to be δ-stable if

(5.3) (1− δ)
∫

Σ

|A|2φ2 ≤
∫

Σ

|∇φ|2, for all φ ∈ C∞0 (Σ).

The next two lemmas will provide a criteria to find δ-stable domains in CMC surfaces.

Lemma 5.1. There exists δ > 0 so: Let Σ be a CMC surface and u a positive solution

of the CMC graph equation over Σ that is Σu := {x + u(x)NΣ(x)|x ∈ Σ} is a CMC

surface. If HΣu = HΣ, < NΣu , NΣ >≥ 0 and |u||A|+ |∇u| ≤ δ, then Σ is 1
2
-stable.

Proof. Roughly, if Σu is a graph over Σ it satisfies

HΣu = HΣ +
1

2
(4u+ u|A|2) + o(|u|, |∇u|).

Therefore, being HΣu = HΣ, Lu is closer and closer to zero as |u|, |∇u| become smaller

and smaller. The existence of a positive solution of Lu = 0 would imply A′′(0) ≥ 0

for all φ ∈ C∞0 (Σ). In this case there exists a positive function u which is ”almost” a

solution, therefore A′′(0) will be ”almost” non-negative for all φ ∈ C∞0 (Σ). �

When does it happen that a piece of a CMC surface is graphical over another

piece? It happens when they are close enough (with respect to the Euclidean dis-

tance).

From now on Σ will be a CMC surface as in Theorem ?? and, without loss of

generality, we may assume |H(Σ)| < 1, as a matter of fact as small as we want. Let

x, y ∈ Σ and r ≥ 0, dΣ(x, y) is the intrinsic distance (geodesic distance) between x

and y while Br(x) is the intrinsic ball centered at x of radius r.



Lemma 5.2. There exists ε1 so: Let x, y ∈ Σ such that |x−y| ≤ ε ≤ ε1, dΣ(x, y) ≥ 2ε

and < n(x), n(y) >> 0 then there exists t > ε1 such that Bt(y) contains a graph

{z + u(z)n(z)} over a domain containing B t
4
(x) and |∇u|+ |u| ≤ εC0.

Lemma ?? and Lemma ?? together produce δ-stable domains. Note that the

closer x and y are the smaller δ is. Throughout the next two sections we will see why

we have introduced δ-stability.

6. The non-existence of large 1
2
-stable domains.

In order to continue with this proof by contradiction, we need the following,

Proposition 6.1. There exists l1 > 0 so: For any l ≥ l1 and x ∈ Σ if Bl(x) is
1
2
-stable then it is not contained in Σ ∩B1(0).

Namely, if a stable intrinsic ball is contained in Σ ∩ B1(0) then it cannot be too

large. Why? The reason lies in the following result of Zhang Sirong, that is Theorem

0.1 in [8],

Theorem 6.2 (Zhang Sirong). There exists a C such that given any l > 0 there exists

an h > 0 so: if Bl(0) is a ”constant mean curvature equal to h”, 1
2
-stable intrinsic

ball with trivial normal bundle then supB l
2

(0) |A|2 ≤ C
l2

.

This result can be thought as a generalization of [9] and [10]. From this result

it follows that if l is big enough and Bl(x) ⊂ Σ is 1
2
-stable then B l

2
(x) is almost

flat. That forces the intrinsic disk to leave the unit ball giving the contradiction. In

Theorem ?? we take l̄ > l1 + 1. We prove that the number of graphs is uniformly

bounded if we consider the connected component of Σ ∩B1(0) containing zero.

7. Uniform bound on the number of pieces.

And now, why is it that the non-existence of large 1
2
-stable intrinsic balls implies

a bound on the number of graphs? The main idea is that when two points in Σ are

close to each other (Euclidian distance) a little neighborhood of each point is 1
2
-stable.

Decreasing the Euclidian distance and increasing the intrinsic distance between the

two points gives a large 1
2
-stable domain. This happens because in a small ball the

difference of the two graphs satisfies an ordinary elliptic P.D.E. and that means, via

the Harnack inequality, that if two points are close the two graphs are close all the

way up to the boundary and we can repeat this argument (see [6]). and Figure ??).

This ”being close” argument might stop when the two graphs close up, but this does

not happen if the intrinsic distance between the two starting point is big. Hence we

will have large pieces of the surface which are graphical over each other and therefore
1
2
-stable by Lemma ?? and Lemma ??. In sum, the existence of two points with big

intrinsic distance but small euclidian distance produces a large 1
2
-stable domain.

In fact, Bishop inequality and a lower bound on the area of each piece imply that

the more graphs there are in a small ball the larger the intrinsic distance becomes

between two points and that finishes the proof by contradiction. In other words, there

can not be too many graphs close to each other (that is in a small Euclidean ball)



otherwise in the same ball (that is close to each other with respect to the Euclidean

distance) there will be two points which are far away with respect to the intrinsic

distance and that produces a large 1
2
-stable intrinsic ball. This completes the sketch

of the proof. Full details will appear elsewhere.
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