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Abstract
We study self-programming in recurrent neural networks where both neurons
(the ‘processors’) and synaptic interactions (‘the programme’) evolve in time
simultaneously, according to specific coupled stochastic equations. The
interactions are divided into a hierarchy of L groups with adiabatically separated
and monotonically increasing time-scales, representing sub-routines of the
system programme of decreasing volatility. We solve this model in equilibrium,
assuming ergodicity at every level, and find as our replica-symmetric solution
a formalism with a structure similar but not identical to Parisi’s L-step replica
symmetry breaking scheme. Apart from differences in details of the equations
(due to the fact that here interactions, rather than spins, are grouped into
clusters with different time-scales), in the present model the block sizes mi of
the emerging ultrametric solution are not restricted to the interval [0, 1], but
are independent control parameters, defined in terms of the noise strengths of
the various levels in the hierarchy, which can take any value in [0,∞〉. This
is shown to lead to extremely rich phase diagrams, with an abundance of first-
order transitions especially when the level of stochasticity in the interaction
dynamics is chosen to be low.

PACS numbers: 87.10.+e, 05.20.−y, 84.35.+i

1. Introduction

In this paper we study recurrent networks of binary neuronal state variables, represented as
Ising spins, with symmetric couplings (or synaptic interactions) Jij , taken to be of infinite
range. In contrast to most standard neural network models, not only the neuron states but
also the interactions are allowed to evolve in time (simultaneously), driven by correlations in
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the states of the neurons (albeit slowly compared to the dynamics of the latter), reflecting the
effect of ‘learning’ or ‘long-term potentiation’ in real nervous tissue. Since the interactions
represent the ‘programme’ of the system, and since the slow interaction dynamics are driven
by the states of the neurons (the ‘processors’), such models can be regarded as describing
self-programming information-processing systems, which can be expected to exhibit highly
complex dynamical behaviour.

The first papers in which self-programming recurrent neural networks were studied appear
to be [1, 2]. In the language of self-programming systems one could say that these authors
were mostly concerned with the stability properties of embedded ‘programmes’ (usually taken
to be those implementing content-addressable or associative memories). In both [1, 2], the
programme dynamics, i.e. that of the {Jij}, was defined to be adiabatically slow compared
to the neuronal dynamics, and fully deterministic. However, the authors already made the
important observation that the natural type of (deterministic) programme dynamics (from a
biological point of view), so-called Hebbian learning, could be written as a gradient descent
of the interactions {Jij } on the free energy surface of a symmetric recurrent neural network
equipped with these interactions.

In order to study more generally the potential of such self-programming systems, several
authors (simultaneously and independently) took the natural next step [3–8]: they generalized
the interaction dynamics by adding Gaussian white noise to the deterministic laws, converting
the process into one described by conservative Langevin equations, and were thus able to set up
an equilibrium statistical mechanics of the self-programming process. This was (surprisingly)
found to take the form of a replica theory with finite replica dimension, whose value was
given by the ratio of the noise levels in the neuronal dynamics and the interaction dynamics,
respectively. Furthermore, adding explicit quenched disorder to the problem in the form of
additional random (but frozen) forces in the interaction dynamics led to theories with two
nested levels of replicas, one representing the disorder (with zero replica dimension) and the
other representing the adiabatically slow dynamics of the interactions [6, 9, 10] (with non-zero
replica dimension). The structure of these latter theories was found to be more or less identical
to those of ordinary disordered spin systems such as the SK model [11], with fixed interactions
but quenched disorder, when described by replica theories with one step replica symmetry
breaking (RSB) [12]. The only (yet crucial) difference was that in ordinary disordered spin
systems the size m of the level-1 block in the Parisi solution is determined by extremization
of the free energy, which forces m to lie in the interval [0, 1] (see also [13]), whereas in the
self-programming neural networks of [6, 9, 10] m was an independent control parameters,
given by the ratio of two temperatures, which can take any non-zero value. As a consequence
one can observe in the latter systems, for sufficiently large values of such dimensions, much
more complicated scenarios of (generally discontinuous) phase transitions.

Two further classes of neural network theory studies deserve mentioning at this stage
(apart from those where a coupled dynamics of fast neurons and slow synapses is initially
defined, but where in working out equations the authors sever the two-way link between the
two after all, such as [14, 15]). The first class consists of studies aimed at modelling networks
with increased biological realism, including the effects of, e.g., synaptic exhaustion during
operation; here one is forced either to resort fully to simulations [16] or to restrict one’s
analysis to the behaviour of special solutions [17, 18]. The second class, closer in spirit to
[3–8] and the present study, aims at solving the coupled dynamics of neurons and synapses
in extremely diluted networks, exploiting the simplifications resulting from having Gaussian
distributed local fields [19, 20].

In contrast to the previously studied models involving coupled dynamics of fast neurons
and slow interactions, in this paper we study systems in which the interactions do not evolve
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Figure 1. Schematic illustration of the structure and ingredients of our recurrent self-programming
model for L = 2. The binary spin variables (spin up: ◦, spin down: •) evolve on time-scales of
order 1. The level-1 interactions (solid line segments) evolve on time-scales τ1 	 1. The level-2
interactions (dashed line segments) evolve on time-scales τ2 	 τ1. The interactions are randomly
allocated to levels. Our present model differs from this simple picture in two ways: firstly, it is
fully connected (i.e. infinite dimensional), and secondly, we allow for an arbitrary number L of
interaction types.

on a single time-scale, but are divided into a hierarchy of L different groups, each with their
own characteristic time-scale τ� and noise level T� (� = 1, . . . , L), describing a hierarchy
of increasingly non-volatile programming levels. This appears to be a much more realistic
representation of self-programming systems; conventional programmes generally take the
form of hierarchies of routines, sub-routines and so on,and it would appear appropriate to allow
low-level sub-routines to be more easily modifiable than high-level ones. In order to retain
analytical solvability we choose the different groups of interactions randomly (prescribing only
their sizes), see figure 1. We solve the model in equilibrium, and find, upon making the replica-
symmetric (i.e. ergodic) ansatz within each level of our hierarchy, a theory which resembles,
but is not identical to, Parisi’s L-level replica symmetry breaking solution for spin systems
with frozen disorder. Although Parisi’s solution can also be traced back to the existence of a
hierarchy of adiabatically separated time-scales [13], in the present model the interactions are
grouped into clusters with different time-scales, rather than the spins. Apart from quantitative
differences in the details of the order parameter equations, a major consequence of this
difference is that in the present model the block sizes mi of the emerging ultrametric solution
are not restricted to the interval [0, 1], but are independent control parameters, defined in terms
of the noise strengths of the various levels in the hierarchy. They can consequently take any
value in the interval [0,∞〉. We show that this leads to extremely rich phase diagrams, with an
abundance of first-order transitions especially when the level of stochasticity in the interaction
dynamics is chosen to be low, i.e. when the dimensions {mi} become large. We study our
model in full detail for the choices L = 2 and L = 3, including phase diagrams, and we
study the asymptotic properties of our model in the limits m1 → ∞ for fixed T (deterministic
dynamics of the level-1 interactions) and m1 → 0 for fixed T1 (deterministic dynamics of the
neuronal processors), for arbitrary L.
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2. Model definitions

In this paper we will refer to our binary neurons as spins and to the synaptic interactions as
couplings. We will write the N-spin state vector as σ = (σ1, . . . , σN ) ∈ {−1, 1}N , and the
matrix of interactions as J = {Jij }. The spins are taken to have a stochastic Glauber-type
dynamics such that for stationary choices of the couplings the microscopic spin probability
density would evolve towards a Boltzmann distribution

p∞(σ) = e−βH(σ)

Z
Z =

∑
σ

e−βH(σ) (1)

with the conventional Hamiltonian

H(σ) = −
∑
i<j

Jijσiσj (2)

where i, j ∈ {1, . . . , N}, and with the inverse temperature β = T −1.
The couplings Jij also evolve in a stochastic manner, in response to the states of the spins,

but adiabatically slowly compared to the spins, such that on the time-scales of the couplings
the spins are always in an equilibrium state described by (1). For the coupling dynamics the
following Langevin equations are proposed:

τij
d

dt
Jij = 1

N
〈σiσj 〉sp − µijJij + ηij (t)

√
τij

N
i < j = 1, . . . , N (3)

with τij 	 1. In the adiabatic limit τij → ∞, the term 〈σiσj 〉sp, representing spin correlations
associated with the coupling Jij , becomes an average over the Boltzmann distribution (1)
of the spins, given the instantaneous couplings J . ηij (t) represent Gaussian white noise
contributions, of zero mean and covariance 〈ηij (t)ηkl(t ′)〉 = 2Tijδikδjlδ(t − t ′), with
associated temperature Tij = β−1

ij . Appropriate factors of N have been introduced in order to
ensure non-trivial behaviour in the limit N → ∞. We classify the spin pairs (i, j) according
to the characteristic time-scale τij and the control parameters (Tij , µij ) associated with their
interactions Jij . In contrast to papers such as [3, 4, 6, 9, 10], where τij = τ , Tij = T̃ and
µij = µ for all (i, j), here the various time-scales, temperatures and decay rates are no longer
assumed to be identical, but to come in L distinct adiabatically separated groups I� (always
with i < j ):

I� = {(i, j)|τij = τ�, Tij = T�, µij = µ�} l = 1, . . . , L (4)

with 1 � τ1 � τ2 � · · · � τL. Thus {(i, j)} = ⋃
��L I�. We will write the set of spin-

interactions with time-scale τ� as J � = {Jij |(i, j) ∈ I�}. The interactions in group I2 are
adiabatically slow compared to those in group I1, and so on. The rationale of this set-up is that,
in information processing terms, this would represent a stochastic self-programming neural
information processing system equipped with a programme which consists of a hierarchy of
increasingly less volatile and less easily modifiable sub-routines.

Finally we have to define the detailed partitioning of the 1
2N(N − 1) interactions into the

L volatility groups. We introduce εij (�) ∈ {0, 1} such that εij (�) = 1 if and only if (i, j) ∈ I�,
so

∑L
�=1 εij (�) = 1 for all (i, j). In order to arrive at a solvable mean-field problem, with full

equivalence of the N sites, we will choose the εij (�) independently at random for each pair
(i, j) with i < j , with probabilities

Prob[εij (�) = 1] = ε�

L∑
�=1

ε� = 1. (5)

These time-scale and temperature allocation variables {εij (�)} thus introduce quenched
disorder into our problem. Averaging over this disorder will be denoted by · · ·, as usual.
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3. Replica analysis of the stationary state

3.1. Equilibrium statistical mechanics of the couplings

We denote averages over the probability distribution of the couplings at level � in the hierarchy
as 〈· · ·〉�. At every level �, the stochastic equation (3) for those couplings which evolve on
that particular time-scale τ� has now become conservative:

τ�
d

dt
Jij = 1

N
〈· · · 〈〈σiσj 〉sp〉1 · · ·〉�−1 − µ�Jij + ηij (t)

√
τ�

N

= − 1

N

∂

∂Jij
H�(J

�, . . . ,JL) + ηij (t)

√
τ�

N
(6)

with the following effective Hamiltonian for the couplings at level �:

H1(J
1, . . . ,JL) = −β−1 logZ[J1, . . . ,JL] (7)

H�+1(J
�+1, . . . ,JL) = −β−1

� logZ�[J
�+1, . . . ,JL] (1 � � < L) (8)

and with the partition functions

Z[J1, . . . ,JL] =
∑

σ

e−βH(σ,J) (9)

Z�[J�+1, . . . ,JL] =
∫

dJ � e−β�H�(J
l ,...,JL) (1 � � < L) (10)

ZL =
∫

dJL e−βLHL(J
L) (11)

in which

H(σ,J) = −
∑
i<j

Jijσiσj +
1

2
N
∑
i<j

µijJ
2
ij . (12)

This describes a hierarchy of nested equilibrations. At each time-scale τ� the interactions
J� equilibrate to a Boltzmann distribution, with effective Hamiltonian H� which is the free
energy of the previous level � + 1, starting from the overall Hamiltonian (12) (for spins and
couplings) at the fastest (spin) level. As a result of having different effective temperatures T�
associated with each level, the partition functions are found to generate replica theories with
replica dimensionsm� � 0 which represent the ratios of the effective temperatures of the two
levels involved. This follows from substitution of (8) into (10):

Z�[J l+1, . . . ,JL] =
∫

dJ�
{
Z�−1[J l , . . . ,JL]

}m� (13)

m� = β�/β�−1 m1 = β1/β. (14)

The statics of the system, including the effect of the quenched disorder, are governed by the
disorder-averaged free energy F associated with the partition function ZL in (11), where the
slowest variables have finally been integrated out:

F = − 1

βL
logZL = − lim

mL+1→0

1

mL+1βL
logZmL+1

L . (15)

This function is found to act as the general generator of equilibrium values for observables
at any level in the hierarchy, since upon adding suitable generating terms to the Hamiltonian
(12), i.e. H(σ,J) → H(σ,J) + λ�(σ,J), one finds

〈· · · 〈〈�(σ,J )〉sp〉1 · · ·〉L = lim
λ→0

∂

∂λ
F . (16)
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We can now combine our previous results and write down an explicit expression for F ,
involving multiple replications due to (13) and (15). We findF = limmL+1→0 F [m1, . . . ,mL+1],
with F [m1, . . . ,mL+1] = −(mL+1βL)

−1 logZmL+1
1 , and where ZmL+1

L is written as

Z
mL+1
L =

∫ [∏
αL+1

dJL,αL+1

]∏
αL+1

{
ZL−1[JL,αL+1 ]

}mL

=
∑

{σα1 ,...,αL+1 }
e

β

2N

∑
��L

1
m1 ···m�µ�

∑
(i<j)∈I�

∑
α�+1 ,...,αL+1

[∑
α1,...,α�

σ
α1,...,αL+1
i σ

α1,...,αL+1
j

]2

(17)

(modulo irrelevant constants), in which always α� = 1, . . . ,m�.

3.2. Disorder averaging

In order to average (17) over the disorder, we note that the spin summation in the exponent
can also be written in terms of the allocation variables εij (�):∑
��L

1

m1 · · ·m�µ�

∑
(i<j)∈I�

∑
αl+1,...,αL+1

· · ·

=
∑
i<j

∑
��L

β

β�

εij (�)

µ�

∑
α�+1,...,αL+1

[ ∑
α1,...,α�

σ
α1,...,αL+1
i σ

α1,...,αL+1
j

]2

where we used m1 · · ·m� = β�/β. This allows us to carry out the average in (17):

F [· · ·] = − 1

mL+1βL
log

∑
{σα1 ,...,αL+1 }

∏
i<j

[
e
β2

2N

∑
��L

εij (�)

β�µ�

∑
α�+1 ,...,αL+1

[∑
α1,...,α�

σ
α1,...,αL+1
i σ

α1,...,αL+1
j

]2]

= − 1

mL+1βL
log

∑
{σα1 ,...,αL+1 }

eO(N
0)

× exp


Nβ

2

4

∑
α1,...,αL+1

∑
β1,...,βL+1

∑
��L

ε�

β�µ�
δ(α�+1,...,αL+1),(β�+1,...,βL+1)

×
[

1

N

∑
i

σ
α1,...,αL+1
i σ

β1,...,βL+1
i

]2



(again modulo irrelevant constants). We abbreviate a = (α1, . . . , αL+1), and introduce the
spin-glass replica order parameters qab = 1

N

∑
i σ

α1,...,αL+1
i σ

β1,...,βL+1
i by inserting appropriate

integrals over δ-distributions, and arrive at

F [· · ·] = − 1

mL+1βL
log

∫
{dqab dq̂ab} eNG[{qab,q̂ab}]+O(N 0) (18)

G[{qab, q̂ab}] = i
∑
ab

q̂ab qab +
β2

4

∑
��L

ε�

β�µ�

∑
ab

δ(α�+1,...,αL+1),(β�+1,...,βL+1)q
2
ab

+ log
∑

{σα1,...,αL+1 }
e−i

∑
ab q̂abσα1 ,...,αL+1σβ1 ,...,βL+1 . (19)

For N → ∞ the above integral can be evaluated by steepest descent, and upon elimination of
the conjugate order parameters {q̂ab} by variation of {qab}, the disorder-averaged free energy
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per spin f = limN→∞ F/N is found to be

f = lim
mL+1→0

1

mL+1βL


β

2

4

∑
��L

ε�

β�µ�

∑
ab

δ(α�+1,...,αL+1),(β�+1,...,βL+1)q
2
ab

− log
∑
{σa}

e
β2

2

∑
��L

ε�
β�µ�

∑
ab δ(α�+1 ,...,αL+1),(β�+1 ,...,βL+1)qabσaσb


 . (20)

The saddle-point equations used to solve the {qab} are given by

qcd =
∑

{σa} σcσd e
β2

2

∑
��L ε�/(β�µ�)

∑
ab δ(α�+1 ,...,αL+1),(β�+1 ,...,βL+1)qabσaσb∑

{σa} e
β2

2

∑
��L ε�/(β�µ�)

∑
ab δ(α�+1 ,...,αL+1),(β�+1 ,...,βL+1)qabσaσb

(21)

with a = (α1, . . . , αL+1) and α� ∈ {1, . . . ,m�} for all �, where the dimensions m� are given
by the ratios of the temperatures (14) of subsequent programming levels in the hierarchy.

4. Replica-symmetric solutions

4.1. Evaluation of the replica-symmetric free energy

Our full order parameters are qab = 1
N

∑
i σ

α1,...,αL+1
i σ

β1,...,βL+1
i . Note that αL+1 = βL+1 and that

qaa = 1. Spin variables with αL = βL have identical level-L bonds. Those with αL = βL and
αL−1 = βL−1 have identical level L bonds and identical level L−1 bonds, and so on. Hence,
for the present model the replica-symmetric (RS) ansatz (describing ergodicity at each level
of the hierarchy of time-scales) takes the following form:

αL �=βL : qab = qL

(α�+1, . . . , αL+1) = (β�+1, . . . , βL+1), α� �=β� : qab = q�

or

qab =
L∑
�=1

q� δ(α�+1,...,αL+1)(β�+1,...,βL+1)δ̄α�β� + δab (22)

where δ̄ij = 1 − δij , and where 0 � qL � · · · � q1 � 1. With a modest amount of foresight
we introduce the abbreviation

π� =
L∑

�′=�

βε�′

β�′µ�′
=

L∑
�′=�

1

m1 · · ·m�′

ε�′

µ�′
. (23)

Insertion of the ansatz (22) into (20) gives (using the relation βL = β
∏L

�=1 m�, and with the
notational convention qL+1 = 0 to simplify summations):

f = −1

4
πL − 1

β
log 2 +

1

4

L∑
�=2

q2
� π�m1 · · ·m�−1(m� − 1) +

1

4
q2

1π1(m1 − 1) +
1

2
q1π1

− 1

βm1 · · ·mL

log
∫
DzL

{
. . .

×
{∫

Dz1 coshm1

[
L∑
�=1

z�
√
β(q�π� − q�+1π�+1)

]}m2

. . .

}mL
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For L = 1 this reduces to (modulo the irrelevant constant):

f = 1

2
q1π1 +

1

4
q2

1π1(m1−1)− 1

β
log 2 − 1

βm1
log

∫
Dz1 coshm1 [z1

√
βq1π1] (24)

whereas for L > 1 we can simplify our result to (modulo the irrelevant constant):

f = 1

2
π1q1 − 1

β
log 2 +

1

4

L∑
�=2

q2
� π�

[
�−1∏
k=1

mk

]
(m� − 1) +

1

4
q2

1π1(m1 − 1)

− 1

β
∏L

�=1 m�

log
∫

DzL



∫

DzL−1


 · · ·

{∫
Dz1

×
{

cosh

[
zL
√
βqLπL +

L−1∑
�=1

z�
√
β(q�π� − q�+1π�+1)

]}m1}m2

· · ·


mL−1



mL

.

(25)

For systems with a single coupling time-scale (24) we again observe the similarity with the
free energy of Parisi’s RSB-1 ansatz [12] (see also, e.g., [6, 13]). For systems with multiple
coupling time-scales (25) this similarity is lost: Parisi’s RSB-L solution [12, 13] emerges only
when π� = πL for all �, i.e. when we return to a single coupling time-scale.

4.2. The single-level benchmark

A simple and convenient benchmark test of the above equations is obtained upon putting
ε� → δr� for some r ∈ {1, . . . , L}. Here we retain only a single bond time-scale, and our
theory should effectively reduce to that of [3]. For L = 1 this is indeed true, according to
equation (24); here we will address the generic case L > 1 and 1 < r < L. The ε� occur only
in the quantities π� of (23), which now simplify to

π��r = εr

µrm1 · · ·mr

π�>r = 0. (26)

Insertion into the replica-symmetric disorder-averaged free energy per spin (25) gives

f = 1

2
πrq1 − 1

β
log 2 +

1

4
πr

r∑
�=2

q2
�

[
�−1∏
k=1

mk

]
(m� − 1) +

1

4
q2

1πr(m1 − 1)

− 1

β
∏r

�=1 m�

log
∫

Dzr



∫

Dzr−1


 · · ·

{∫
Dz1

×
{

cosh

[
zr
√
βqrπr +

r−1∑
�=1

z�
√
β(q� − q�+1)πr

]}m1}m2

· · ·


mr−1



mr

.

Since qL measures the overlap between spin states with different level L bonds, qL−1 measures
the overlap between spin states with identical level L bonds but different level (L − 1) bonds,
and so on, the relevant state for ε� = δr� must be one where q� = qr for all � � r . Insertion
into the above expression gives

f = 1

2
πrqr − 1

β
log 2 +

1

4
πrq

2
r

(
r∏

k=1

mk − 1

)

− 1

β
∏r

�=1 m�

log
∫

Dzr{cosh[zr
√
βqrπr ]}m1m2···mr .
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This expression is indeed equivalent to (24), from which it can be obtained by making the
replacements π1 → πr and m1 → m1 · · ·mr .

4.3. Nature of the physical saddle-point

Due to our previous elimination of (imaginary) conjugate order parameters and the possible
curvature sign changes occurring in replica theories, we can no longer be sure that the relevant
saddle-point (24) and (25) gives the minimum of f . In order to allow us to select the physical
saddle-point in situations where multiple saddle-points exist, we determine the nature of the
physical saddle-point by inspection of the high-temperature state. Since there are multiple
temperatures in this problem (one for the spins, and L for the various bond levels), there are
also different ways to send all temperatures to infinity, with potentially different outcomes.
Here we consider the limit which appears most natural, where β → 0 for fixed {m1, . . . ,mL}.
We then obtain from expression (25), with f̃ = f + 1

β
log 2:

lim
β→0

f̃ = 1

2
π1q1 +

1

4

L∑
�=2

q2
�π�

[
l−1∏
k=1

mk

]
(m� − 1) +

1

4
q2

1π1(m1 − 1)

− lim
β→0

1

β
∏L

�=1 m�

log
∫

DzL



∫

DzL−1


 · · ·


1 +

1

2
βm1

∫
Dz1

×
[
zL

√
qLπL +

L−1∑
�=1

z�
√
q�π� − q�+1π�+1

]2

+ O(β2)



m2

· · ·


mL−1



mL

= 1

4

L∑
�=2

q2
� π�

[
�−1∏
k=1

mk

]
(m� − 1) +

1

4
q2

1π1(m1 − 1) + O(β2). (27)

This shows explicitly that the nature of the physical state, for β → 0 given by q� = 0 for all �,
depends on the specific choice made for the various coupling temperatures, which determine
the replica dimensions {m�} via (14). This is in sharp contrast with the standard Parisi ansatz
[12] where one always has m� � 1. Here we find

m� > 1 : minimization of f with respect to q�
m� < 1 : maximization of f with respect to q�.

(28)

4.4. The full saddle-point equations

In this section we derive the full saddle point equations of (25) for the replica-symmetric order
parameters 0 � qL � qL−1 � · · · q1 � 1, in the general L-level hierarchy. This is most
efficiently done by first writing the free energy (25) as

f = 1

2
π1q1 − 1

β
log 2 +

1

4

L∑
�=2

q2
� π�

[
�−1∏
k=1

mk

]
(m� − 1)

+
1

4
q2

1π1(m1−1)−
[
β

L∏
�=1

m�

]−1

logKL (29)

KL =
∫

DzL

{∫
DzL−1

{
· · ·

{∫
Dz1{cosh/}m1

}m2

· · ·
}mL−1

}mL

(30)
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/ = zL
√
βqLπL +

L−1∑
�=1

z�
√
β(q�π� − q�+1π�+1) =

L∑
�=1

alzl (31)

a�(<L) =
√
β(q�π� − q�+1π�+1) aL =

√
βqLπL. (32)

From this it follows, upon taking derivatives of f with respect to q1 and q�>1, respectively,
that the saddle-point equations can be written as

0 = 1

2
π1 +

1

2
q1π1(m1−1)− 1

βm1 · · ·mL

1

KL

∂K

∂q1
(33)

0 = 1

2
q�π�

[
�−1∏
k=1

mk

]
(m�−1)− 1

βm1 · · ·mL

1

KL

∂K

∂q�
for � > 1. (34)

The remaining problem is to calculate derivatives of KL, which is complicated by the nesting
of integrals. Note that KL can be defined iteratively,

K0 = cosh/ KL =
∫

DzLK
mL

L−1. (35)

To suppress notation we also define

M0 = 1 M�>0 =
�∏

�′=1

m�′ 〈f 〉� = K−1
�

∫
Dz� K

m�

�−1f (z�). (36)

In appendix B we show that, with this shorthand, the relevant derivatives of K are given by the
following expressions:

∂KL

∂q1
= 1

2
βπ1MLK

{
1 + (m1 − 1)

〈· · · 〈tanh2 /〉1 · · ·〉
L

}
(37)

∂KL

∂q�>1
= 1

2
βπ�MLM�−1(m� − 1)K

〈· · · 〈[〈· · · 〈tanh/〉1 · · ·〉�−1]2〉
�
· · ·〉

L
. (38)

Hence the saddle-point equations (33) and (34) reduce to the, in view of the definition (22),
appealing and transparent relations

q1 = 〈 · · · 〈tanh2 /〉1 · · · 〉
L

(39)
q�>1 = 〈 · · · 〈[〈· · · 〈tanh/〉1 · · ·〉�−1]2

〉
�
· · · 〉

L
. (40)

5. The two-level hierarchy: L = 2

5.1. General properties

We next apply our results to the case where we have just two time-scales in the bond dynamics,
and calculate the phase diagram. We found in studying the single level limit that our theory
will simply self-consistently ‘forget’ about non-existent intermediate levels (as it should), and
substitute the right temperature definitions in the expressions that would have been obtained if
we had considered subsequent levels. Hence we may choose L = 2, without loss of generality,
and simply put L = 2 in expression (25):

fL=2(q1, q2) = 1

2
π1q1 − 1

β
log 2 +

1

4
q2

2π2m1(m2 − 1) +
1

4
q2

1π1(m1−1)− 1

βm1m2
log

×
∫

Dz2

{∫
Dz1

{
cosh

[
z2

√
βq2π2 + z1

√
β(q1π1 − q2π2)

]}m1
}m2

. (41)
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For L = 2 the saddle-point equations (39) and (40) reduce in explicit form to

q1 =
∫

Dz2
[∫

Dz1 coshm1 /
]m2

[ ∫
Dz1 coshm1 / tanh2 /∫

Dz1 coshm1 /

]
∫

Dz2
[∫

Dz1 coshm1 /
]m2

(42)

q2 =
∫

Dz2
[∫

Dz1 coshm1 /
]m2

[ ∫
Dz1 coshm1 / tanh/∫

Dz1 coshm1 /

]2

∫
Dz2

[∫
Dz1 coshm1 /

]m2
(43)

(note: q1 � q2), with

/ = z2

√
βq2π2 + z1

√
β(q1π1 − q2π2).

We can distinguish between three phases. The first is a paramagnetic phase (P), corresponding
to the solution q1 = q2 = 0 of (42), (43); according to (27) it is the sole saddle-point of (41)
in the high-temperature regime, as it should be. The second is a spin-glass phase (SG1),
corresponding to a solution of the form q1 > 0, q2 = 0, describing a (spin-glass type) state
with freezing of spins but not of the couplings. Insertion of q2 = 0 into (42) and (43) shows
that in this SG1 phase q1 is the solution of

q1 =
∫

Dz coshm1(z
√
βq1π1) tanh2(z

√
βq1π1)∫

Dz coshm1(z
√
βq1π1)

. (44)

In the third phase (SG2) one has q1 �= 0 and q2 �= 0, here both spins and level-1 couplings
‘freeze’ into a state determined by the level-2 couplings, but the latter slowly but continually
evolve, given sufficient time. Now one has to solve (42) and (43) in full. We indicate the
various potential transition temperatures separating these phases as follows:

T 2nd
p,1 : P → SG1 2nd order

T 2nd
1,2 : SG1 → SG2 2nd order

T 1st
p,1: P → SG1 1st order

T 1st
p,2: P → SG2 1st order.

(45)

We will find that this list contains all transitions occurring.

5.2. P → SG1 transitions

The locations and properties of the two types of P → SG1 transitions follow upon expanding
f (q1, 0) in powers of q1:

−βm1f (q1, 0) = F0 + a(T )q2
1 + b(T )q3

1 + c(T )q4
1 + · · · .

The coefficients are found to be

a(T ) = 1
4m1(m1 − 1)βπ1(βπ1 − 1)

b(T ) = 1
6m1(m1 − 1)(m1 − 2)(βπ1)

3 (46)

c(T ) = 1
96m1(βπ1)

4
(
3m3

1 − 72m2
1 + 128m1 − 68

)
.

Note that c(T ) < 0 for 0 < m1 � m+, wherem+ ≈ 15. A continuous bifurcation occurs when
a(T ) = 0, i.e. when T = π1, so

T 2nd
p,1 = ε1/m1µ1 + ε2/m1m2µ2. (47)
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This bifurcation, dependent on the values of {m1,m2}, can, however, be preceded by a
discontinuous one. Upon varying m1 one finds the following scenario:

0 < m1 < 1: b(T ) > 0 f (q1, 0)maximal at q1 = 0 for T > T 2nd
p,1

f (q1, 0)maximal at q1 > 0 for T < T 2nd
p,1

1 < m1 < 2: b(T ) < 0 f (q1, 0)minimal at q1 = 0 for T > T 2nd
p,1

f (q1, 0)minimal at q1 > 0 for T < T 2nd
p,1

2 < m1 : b(T ) > 0 f (q1, 0)minimal at q1 = 0 for T > T 2nd
p,1

f (q1, 0)minimal at q1 > 0 for T < T 1st
p,1

where T 1st
p,1 signals a discontinuous (i.e. first-order) transition, with T 1st

p,1 > T 2nd
p,1 . The condition

for this latter transition follows from putting the derivative of the right-hand side of (44) with
respect to q1 equal to unity, giving

1 = 1

2
βπ1

[
m1(1 −m1)q

2
1 + 4(m1 − 2)q1 + 2

+ (m1 − 2)(m1 − 3)

∫
Dz coshm1(z

√
βq1π1) tanh4(z

√
βq1π1)∫

Dz coshm1(z
√
βq1π1)

]
. (48)

Together with (28) we may now conclude that the P → SG1 transition is of second order for
m1 < 2, in which case it is given by (47), and first order for m1 > 2, in which case it is given
by the solution of (48). In a subsequent section we will show that form1 → ∞ the first-order
transition temperature T 1st

p,1 tends to a finite and non-zero value.

5.3. Transitions to SG2

Two such transition temperatures: T 1st
p,2 (where one goes from a paramagnetic state to one with

q1 � q2 > 0) and T 2nd
1,2 (where one goes from q1 > q2 = 0 to q1 � q2 > 0) are found. The

transition condition defining T 2nd
1,2 follows from putting the derivative of the right-hand side of

(43) with respect to q2 equal to unity, followed by putting q2 = 0, which gives

1 =
√
βπ2[1 + (m1 − 1)q1]. (49)

We will show in appendix A that T 2nd
1,2 ∝ √

T/m1 = √
T1 as m1 → ∞.

To determine T 1st
p,2, in contrast, one must demand an instability of (42) and (43) with

q1,2 > 0. This implies meeting the more general condition(
∂ϕ1

∂q1
− 1

)(
∂ϕ2

∂q2
− 1

)
= ∂ϕ1

∂q2

∂ϕ2

∂q1
(50)

where ϕ1(q1, q2) and ϕ2(q1, q2) denote the right-hand sides of (42) and (43), respectively.
For m1 → ∞ we will show, as with T 1st

p,1, that T 1st
p,2 also tends to a finite and non-zero value,

and that T (1st)
p,2 > T

(1st)
p,1 . Hence, T 1st

p,2 will ultimately become the true physical transition as
m1 → ∞ (or, equivalently, T1 → 0 for fixed T ).

5.4. The L = 2 phase diagram

For L = 2 there are still five independent control parameters in our model, namely T, m1,
m2, π1 and π2 (where π2 = ε2/m1m2µ2 and π1 = π2 + ε1/m1µ1) or any combination of
these. Hence we can only present representative cross-sections of the full phase diagram.
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Figure 2. Phase diagram in the (T1, T ) plane for L = 2, ε1/µ1 = 1, ε2/µ2 = 2 andm2 = 0.5,
obtained by solving numerically the equations defining the various bifurcation lines (note:
T1 = T /m1). Left panel: the large-scale structure. Right panel: enlargement of the low T1 (or high
m1) region, where the first-order transitions are found. The relevant phases are P (paramagnetic
phase, q1 = q2 = 0), SG1 (first spin-glass phase, q1 > 0, q2 = 0), and SG2 (second spin-glass
phase, q1 > 0, q2 > 0). The transition lines shown, as defined in (45), are T 2nd

p,1 (solid curve), T 2nd
1,2

(dot-dash curve), T 1st
p,1 (dashed curve), and T 1st

p,2 (dotted curve). Note: the curve T 2nd
1,2 jumps to zero

discontinuously at T1 = T
(0)
c ≈ 12.575 (see main text).

In this section we will restrict ourselves to showing the transition lines in the (T1, T ) plane,
solved numerically from the various appropriate conditions as derived above, for the choice
ε1/µ1 = 1, ε2/µ2 = 2 with m2 ∈ {0.5, 1.5} (which was found to cover more or less
the generic scenarios). According to (47), for this choice of parameters the second-order
P → SG1 transition temperature T 2nd

p,1 will be at

T 2nd
p,1 = 1

m1

(
1 +

2

m2

)
(51)

and it is replaced by a first-order P → SG1 transition at m1 = 2, which, together with the
relation m1 = T/T1, tells us that the first- and second-order P → SG1 lines meet at

T 1st
p,1 = T 2nd

p,2 : T1 = 1

4

(
1 +

2

m2

)
. (52)

In section 7 we will prove that, for any L, the discontinuous transition temperaturesT 1st
p,1 and T 1st

p,2

always tend to a finite non-zero value asm1 → ∞, whereas limm1→∞ T 2nd
p,1 = limm1→∞ T 2nd

1,2 =
0. Thus, for sufficiently small T1 (i.e. large m1) the first-order transitions are always the ones
which will actually take place. Secondly, we will find that there is always a critical value
T (0)
c for T1 such that T 2nd

1,2 = 0 at T1 = T (0)
c , with T 2nd

1,2 simply absent for T1 > T (0)
c ; as a

consequence, the phaseSG2 no longer exists forT1 > T (0)
c . These two properties will be shown

to be specific cases of more general results concerning spin-glass phases of arbitrary order.
Let us first turn to m2 = 0.5, i.e. relatively high noise levels in the level-2

couplings compared to that of the spins. In figure 2 we show the phase diagram
and the various bifurcation lines of the L = 2 system for m2 = 0.5, as obtained by
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Figure 3. Values of the order parameters q1 and q2 as functions of T1, along some of the transition
lines of the previous figure, for L = 2 , ε1/µ1 = 1, ε2/µ2 = 2 andm2 = 0.5. The values shown are
q1 along T 2nd

1,2 (dot-dash curve), q1 along T 1st
p,1 (dashed curve), and both q1 and q2 for T 1st

p,2 (dotted
curves). Note: the order parameters which are not shown in this figure are zero by definition.

numerical solution of the relevant equations. The actual physical transitions are the
ones which occur first as the temperature T is lowered from within the paramagnetic
region. It will be clear from the figure that upon lowering T one can find different
types of transition sequences, dependent on the value of T1, which prompts us to define
the following critical values for T1 (these depend on the values chosen for the control
parameters):

T (0)
c ≈ 12.575: creation point of phaseSG2

T (1)
c = 1.25: creation point ofT 1st

p,1 T 2nd
p,1 = T 1st

p,1

T (2)
c ≈ 1.15: T 1st

p,1 and T 2nd
1,2 touch tangentially

T (3)
c ≈ 1.06: creation point of T 1st

p,2 T 2nd
1,2 = T 1st

p,2

.

Note: T (1)
c is the point given by expression (52). In terms of these critical values we can

classify the different transition scenarios encountered upon reducing T down to zero, starting
in the paramagnetic region, as follows:

T (0)
c < T1: P → SG1(2nd order)
T (1)
c < T1 < T (0)

c : P → SG1(2nd order) SG1 → SG2(2nd order)
T (2)
c < T1 < T (1)

c : P → SG1(1st order) SG1 → SG2(2nd order)
T (3)
c < T1 < T (2)

c : P → SG1(1st order) SG1 → SG2(2nd order)
T1 < T (3)

c : P → SG1(1st order) SG1 → SG2(1st order).

In figure 3 we show the corresponding values of the order parameters along the various
transition lines, as functions of T1 (with line types identical to those used in figure 2
for the same transitions), except for those order parameters which are zero by definition
(such as the values of q2 when bifurcating continuously from zero). Curves in figures 2
and 3 which terminate for small but non-zero values of T1 do so due to computational
limitations; they can be shown to extend down to T1 = 0. We will calculate the values
of the order parameters in the m1 → ∞ (i.e. T1 → 0) limit analytically in a subsequent
section.
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Figure 4. Phase diagram in the (T1, T ) plane for L = 2 , ε1/µ1, ε2/µ2 = 2 andm2 = 1.5, obtained
by solving numerically the equations defining the various bifurcation lines (note: T1 = T /m1).
Left panel: the large-scale structure. Right panel: enlargement of the low T1 (or high m1)
region, where the first-order transitions are found. The relevant phases are P (paramagnetic phase,
q1 = q2 = 0), SG1 (first spin-glass phase, q1 > 0, q2 = 0), and SG2 (second spin-glass phase,
q1 > 0, q2 > 0). The transition lines shown, as defined in (45), are T 2nd

p,1 (solid curve), T 2nd
1,2

(dot-dash curve), T 1st
p,1 (dashed curve), and T 1st

p,2 (dotted curve). Note: the curve T 2nd
1,2 jumps to zero

discontinuously at T1 = T
(0)
c ≈ 2.17 (see main text).

The general tendency for the system in the phase diagram, as expected, is to have more
phases, increasingly discontinuous transitions separating them, and hence the most interesting
physics, for small values of T1 (i.e. large m1). We should emphasize once more in this
context that in our model we have the freedom to choose m1 > 1 (or T1 < T ), in contrast
to the standard Parisi solution for ordinary complex systems [12] (where one always has
m1 � 1).

Let us next turn to m2 = 1.5, i.e. relatively low noise levels in the level-2 couplings
compared to that of the spins. In figure 4 we show the phase diagram and the various
bifurcation lines of the L = 2 system for m2 = 1.5, as obtained by numerical solution of the
relevant equations. It is again clear from the figure that upon lowering T one can find different
types of transition sequences, dependent on the value of T1. Now the relevant critical values
for T1 are as follows:

T (0)
c ≈ 2.17: creation point of phaseSG2

T (1)
c ≈ 0.597: creation point of T 1st

p,2 T 2nd
1,2 = T 1st

p,2

T (2)
c = 7/12 ≈ 0.583: T 2nd

p,1 = T 1st
p,1

T (3)
c ≈ 0.5572: T 1st

p,1 = T 1st
p,2.

Note: T (2)
c is the point given by expression (52). In terms of these critical values we can

classify the different transition scenarios encountered upon reducing T, as before, as follows:

T (0)
c < T1: P → SG1(2nd order)
T (1)
c < T1 < T (0)

c : P → SG1(2nd order) SG1 → SG2(2nd order)
T (2)
c < T1 < T (1)

c : P → SG1(2nd order) SG1 → SG2(1st order)
T (3)
c < T1 < T (2)

c : P → SG1(1st order) SG1 → SG2(1st order)
T1 < T (3)

c : P → SG2(1st order).
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Figure 5. Values of the order parameters q1 and q2 as functions of T1, along some of the transition
lines of the previous figure, for L = 2 , ε1/µ1 = 1, ε2/µ2 = 2 andm2 = 1.5. The values shown are
q1 along T 2nd

1,2 (dot-dash curve), q1 along T 1st
p,1 (dashed curve), and both q1 and q2 for T 1st

p,2 (dotted
curves). Note: the order parameters which are not shown in this figure are zero by definition.

In figure 5 we show the corresponding values of the order parameters along the various
transition lines, as functions of T1 (with line types identical to those used in figure 4 for the
same transitions), except for those which are zero by definition. Again, curves in figures 4 and
5 which terminate for small but non-zero values of T1 do so due to computational limitations.
The values of the order parameters in the m1 → ∞ (i.e. T1 → 0) limit will be calculated
analytically in a subsequent section.

The main difference between m2 = 1.5 and m2 = 0.5 is that in the former case, for
sufficiently low T1, when lowering T the system goes straight from the paramagnetic state
q1 = q2 = 0 into the SG2 state q1,2 �= 0, without an intermediate SG1 phase. This is in
agreement with the physical picture sketched so far: high values of the replica dimension m2,
corresponding to low coupling temperatures (here T2), are found to induce more pronounced
discontinuities, similar to the effect of choosing large values for m1.

5.5. Comparison to the L = 1 system

It might be helpful at this stage to compare the phenomenology of theL = 2 model, as derived
above, with that of the L = 1 model studied originally in [3, 4] (where there is just one
interaction time-scale)2. For L = 1 the free energy per spin reduces to (24); there is only the
order parameter q1, and the possible phases are P and SG1. One easily convinces oneself that
all L1 = 1 formulae can be obtained by simply putting q2 = 0 in those derived for L = 2.
In particular, q1 is solved from (44), and the two remaining transition temperatures T 2nd

p,1 and
T 1st
p,1 (which are derived from (44)) remain exactly as calculated earlier for L = 2, including

the cross-over point at m1 = 2. Hence the L = 1 phase diagram is obtained from the L = 2
phase diagram simply by elimination of the phase SG2 and its associated transition lines. The
result is shown in figure 6.

2 Note that in [3, 4] and related papers the phases were shown in the (m1, T ) plane, whereas in this paper we have
consistently opted for (T1, T ) phase diagrams, in view of the richest phenomenology occurring for small T1.



Hierarchical self-programming in recurrent neural networks 2777

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.4 0.8 1.2 1.6 2.0

T

T1

P

SG1

SG1

Figure 6. Phase diagram in the (T1, T ) plane for (L = 1) and µ1 = 1, obtained by solving
numerically the equations defining the bifurcation lines, to be compared with that of L = 2. The
phases are P (paramagnetic phase, q1 = 0) and SG1 (spin-glass phase, q1 > 0). The transition
lines shown are T 2nd

p,1 (solid curve) and T 1st
p,1 (dashed curve).

Increasing the number of interaction time-scales is thus found to enable the creation of
new phases, with new order parameters which measure the degree of freezing at even larger
time-scales. However, although these newly created phases replace the previous phases in
those regions of the phase diagram where the associated new order parameter is non-zero,
they cannot alter the locations of the previous phases in those regions where the new order
parameter remains zero (provided we keep the parameters {φ�} unchanged). This is found to be
true not only when comparing the L = 1 with the L = 2 case (where the novel phase is SG2),
but also when inspecting larger values of L; see e.g. the results for L = 3 in the next section.
The explanation is reasonably clear. The phase SG� describes freezing at time-scale τ�−1; at
this time-scale the system simply cannot feel the difference between truly frozen higher level
bonds, and bonds which undergo (pseudo-) random motion at time-scales τ� 	 τ�−1.

6. The three-level hierarchy: L = 3

6.1. General properties

We now apply our results to the case L = 3, where we have three time-scales in the bond
dynamics. Putting L = 3 in expression (25) for the free energy per spin gives:

fL=3(q1, q2, q3) = 1

2
π1q1 − 1

β
log 2 +

1

4
q2

1π1(m1−1)

+
1

4
q2

2π2m1(m2 − 1) +
1

4
q2

3π3m1m2(m3 − 1)

− 1

βm1m2m3
log

∫
Dz3

{∫
Dz2

{∫
Dz1{cosh[/]}m1

}m2
}m3

(53)
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with

/ = z3

√
βq3π3 + z2

√
β(q2π2 − q3π3) + z1

√
β(q1π1 − q2π2).

Due to the increased complexity of formulae induced by the nesting of integrals, it is, for
L = 3, no longer helpful to write the saddle-point equations for the three order parameters
q1 � q2 � q3 in explicit form. However, in order to suppress notation in deriving the
conditions for the various phase transitions, we will introduce the following abbreviations for
the right-hand sides of the saddle-point equations (39) and (40):

q1 = 〈〈〈tanh2 /〉1
〉
2

〉
3

= ϕ1(q1, q2, q3)

q2 = 〈〈{〈tanh/〉1}2
〉
2

〉
3

= ϕ2(q1, q2, q3)

q3 = 〈{〈〈tanh/〉1〉2}2〉
3 = ϕ3(q1, q1, q3).

For L = 3 we can distinguish between four phases. The first is a paramagnetic
phase P, where q1 = q2 = q3 = 0; this always solves (39) and (40), and according
to (27), is the sole saddle-point of (53) in the high-temperature regime. In addition,
we now have three spin-glass phases: SG1, corresponding to a solution of the form
q1 > q2 = q3 = 0 (i.e. freezing of spins only), SG2, corresponding to a solution
q1 � q2 > q3 = 0 (i.e. freezing of spins and couplings on time-scale τ1 but not on the
time-scale τ2 	 τ1), and SG3, corresponding to a solution q1 � q2 � q3 > 0 (i.e. freezing
of spins and couplings on time-scale τ2). It immediately follows from the simple relation
fL=3(q1, q2, 0) = fL=2(q1, q2) that the phases SG1 and SG2 are fully identical to those of
the L = 2 model, including the values of the order parameters and the locations of transition
lines. However, there will now be new transition lines which are related to transitions into
phase SG3.

All partial derivatives of the type ∂ϕ�/∂q�′ which occur in the transition conditions
discussed below are calculated in detail in appendix D. In the various derivations we will save
ink and paper by using the shorthand ψ� = 〈· · · 〈tanh/〉1 · · ·〉�, e.g.

ψ1 = 〈tanh/〉1 ψ2 = 〈〈tanh/〉1〉2 etc.

The result is

∂ϕ1

∂q2
= βπ2

2
m1(m2 − 1)

{
−m1m2m3ϕ1ϕ2 +m1(m2 − 2)

〈〈
ψ2

1 〈tanh2 /〉1
〉
2

〉
3

+m1m2(m3 − 1)
〈〈〈tanh2 /〉1

〉
2

〈
ψ2

1

〉
2

〉
3

+ 2(m1 − 2)
〈〈
ψ1〈tanh3 /〉1

〉
2

〉
3

+ 4ϕ2

}
(54)

∂ϕ2

∂q1
= βπ1

2
(m1 − 1)

{
−m1m2m3ϕ1ϕ2 +m1(m2 − 2)

〈〈
ψ2

1 〈tanh2 /〉1
〉
2

〉
3

+m1m2(m3 − 1)

× 〈〈〈tanh2 /〉1
〉
2

〈
ψ2

1

〉
2

〉
3

+ 2(m1 − 2)
〈〈
ψ1〈tanh3 /〉1

〉
2

〉
3

+ 4ϕ2

}
(55)

∂ϕ1

∂q1
= βπ1

2

{
−(m1 − 1)m1m2m3(ϕ1)

2 +m1(m1 − 1)(m2 − 1)
〈〈〈tanh2 /〉2

1

〉
2

〉
3

+ (m1 − 1)m1m2(m3 − 1)
〈〈〈tanh2 /〉1

〉2
2

〉
3

+ (m1 − 2)(m1 − 3)
〈〈〈tanh4 /〉1

〉
2

〉
3

+ 4(m1 − 2)ϕ1 + 2
}

(56)
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∂ϕ2

∂q2
= βπ2

2

{
−m2

1m2m3(m2 − 1)(ϕ2)
2 +m2

1(m2 − 2)(m2 − 3)
〈〈
ψ4

1

〉
2

〉
3

+m2
1m2(m2 − 1)(m3 − 1)

〈〈
ψ2

1

〉2
2

〉
3

+ 4m1(m2 − 2)ϕ2 + 4m1(m1 − 1)(m2 − 2)

× 〈〈
ψ2

1 〈tanh2 /〉1
〉
2

〉
3

+ 2 + 4(m1 − 1)ϕ1 + 2(m1 − 1)2
〈〈〈tanh2 /〉2

1

〉
2

〉
3

}
(57)

∂ϕ3

∂q1
= βπ1

2
(m1 − 1)

{
2m1(m2 − 1)

〈
ψ2

〈〈tanh2 /〉1ψ1
〉
2

〉
3

+ (m3 − 2)m1m2
〈〈〈tanh2 /〉1

〉
2 ψ

2
2

〉
3

+ 2(m1 − 2)
〈
ψ2

〈〈tanh3 /〉1
〉
2

〉
3

+ 4ϕ3 −m1m2m3ϕ1ϕ3

}
(58)

∂ϕ3

∂q2
= βπ2

2
(m2 − 1)

{
m2

1m2(m3 − 2)
〈〈
ψ2

1

〉
2 ψ

2
2

〉
3

+ 4m1(m1 − 1)
〈
ψ2

〈
ψ1〈tanh2 /〉1

〉
2

〉
3

+ 2m2
1(m2 − 2)

〈
ψ2

〈
ψ3

1

〉
2

〉
3

+ 4m1ϕ3 −m2
1m2m3ϕ2ϕ3

}
(59)

∂ϕ3

∂q3
= βπ3

2

{
2 − (m3 − 1)m2

1m
2
2m3ϕ

2
3 +m2

1m
2
2(m3 − 2)(m3 − 3)

〈
ψ4

2

〉
3

+ 4(m3 − 2)m1m2ϕ3 + 4(m1 − 1)ϕ1 + 4m1(m2 − 1)ϕ2

+ 4(m1 − 1)(m3 − 2)m1m2
〈〈〈tanh2 /〉1

〉
2 ψ

2
2

〉
3

+ 4m2
1m2(m2 − 1)(m3 − 2)

〈〈
ψ2

1

〉
2 ψ

2
2

〉
3

+ 4m1(m1 − 1)(m2 − 1)
〈〈〈tanh2 /〉1

〉
2

〈
ψ2

1

〉
2

〉
3

+ 2(m1 − 1)2
〈〈〈tanh2 /〉1

〉2
2

〉
3

+ 2m2
1(m2 − 1)2

〈〈
ψ2

1

〉2
2

〉
3

}
(60)

∂ϕ1

∂q3
= βπ3

2
m1m2(m3 − 1)

{
4ϕ3 −m1m2m3ϕ1ϕ3

+ 2m1(m2 − 1)
〈
ψ2

〈〈tanh2 /〉1ψ1
〉
2

〉
3

+ 2(m1 − 2)
〈
ψ2

〈〈tanh3 /〉1
〉
2

〉
3

+ (m3 − 2)m1m2
〈〈〈tanh2 /〉1

〉
2 ψ

2
2

〉
3

}
(61)

∂ϕ2

∂q3
= βπ3

2
m2(m3 − 1)

{
4m1ϕ3 −m2

1m2m3ϕ2ϕ3 + 2m2
1(m2 − 2)

〈
ψ2

〈
ψ3

1

〉
2

〉
3

+ 4m1(m1 − 1)
〈
ψ2

〈
ψ1〈tanh2 /〉1

〉
2

〉
3

+ m2
1(m3 − 2)m2

〈〈
ψ2

1

〉
2 ψ

2
2

〉
3

}
. (62)

6.2. Transitions identical to those of L = 2

All transitions relating only to the three phases P, SG1 and SG2, as well as the second-order
transition SG1 → SG2, where q3 = 0, must be identical to those derived in the previous
section for L = 2 . The general condition for such transitions is

0 =
(
∂ϕ1

∂q1
− 1

)(
∂ϕ2

∂q2
− 1

)
− ∂ϕ1

∂q2

∂ϕ2

∂q1
. (63)

This involves only the partial derivatives (54)–(57). Due to q3 = 0 the averages 〈· · ·〉3 drop
out, and together with the identities〈〈tanh2 /〉1

〉
2 = q1

〈〈tanh/〉2
1

〉
2 = q2

〈
ψ2

1

〉
2 = q2 ψ2 = 0 (64)

the four relevant partial derivatives simplify considerably to

∂ϕ1

∂q2
= βπ2

2
m1(m2 − 1)

{
(4 −m1m2q1)q2

+m1(m2 − 2)
〈
ψ2

1 〈tanh2 /〉1
〉
2 + 2(m1 − 2)

〈
ψ1〈tanh3 /〉1

〉
2

}
(65)
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∂ϕ2

∂q1
= βπ1

2
(m1 − 1)

{
(4 −m1m2q1)q2

+m1(m2 − 2)
〈
ψ2

1 〈tanh2 /〉1
〉
2 + 2(m1 − 2)

〈
ψ1〈tanh3 /〉1

〉
2

}
(66)

∂ϕ1

∂q1
= βπ1

2

{
2 − (m1 − 1)m1m2q

2
1 +m1(m1 − 1)(m2 − 1)

〈〈tanh2 /〉2
1

〉
2

+ (m1 − 2)(m1 − 3)
〈〈tanh4 /〉1

〉
2 + 4(m1 − 2)q1

}
(67)

∂ϕ2

∂q2
= βπ2

2

{
−m2

1m2m3(m2 − 1)q2
2 +m2

1(m2 − 2)(m2 − 3)
〈
ψ4

1

〉
2

+m2
1m2(m2 − 1)(m3 − 1)

〈
ψ2

1

〉2
2 + 4m1(m2 − 2)q2 + 4m1(m1 − 1)(m2 − 2)

× 〈
ψ2

1 〈tanh2 /〉1
〉
2 + 2 + 4(m1 − 1)q1 + 2(m1 − 1)2

〈〈tanh2 /〉2
1

〉
2

}
. (68)

For the P → SG1 transition and the continuous SG1 → SG2 transition we have to put
q2 = 0, in (65)–(68). We then arrive, together with the dropping out of 〈· · ·〉2 and the relations
ψ1 = ψ2 = 0, 〈tanh2 /〉1 = q1, at the simple expressions ∂ϕ1/∂q2 = ∂ϕ2/∂q1 = 0 and

∂ϕ1

∂q1
= βπ1

2

{
2 −m1(m1 − 1)q2

1 + (m1 − 2)(m1 − 3)〈tanh4 /〉1 + 4(m1 − 2)q1
}

∂ϕ2

∂q2
= βπ2[1 + (m1 − 1)q1]2.

Thus (63) gives us the transition conditions

βπ1

2

{
2 −m1(m1 − 1)q2

1 + (m1 − 2)(m1 − 3)〈tanh4 /〉1 + 4(m1 − 2)q1
} = 1 (69)

βπ2[1 + (m1 − 1)q1]2 = 1. (70)

For q1 = 0 (where also / = 0) we recover from (69) the condition (47) for the line T 2nd
p,1 , for

q1 > 0 equation (69) is seen to be identical to condition T = π1 (which for L = 2 led to (48))
for the line T 1st

p,1, and (70) is identical to condition (49) for the line T 2nd
1,2 . Finally, the condition

for the first-order SG1 → SG2 transition line T 1st
1,2 of L = 2 is recovered by combining the full

expressions (65)–(68) with the bifurcation condition (63), as it should. Thus, from our L = 3
saddle-point equations we do indeed extract fully those transitions encountered earlier for
L = 2 , which do not involve the SG3 phase.

6.3. Transitions to SG3

The novel transitions induced by going from L = 2 to L = 3 are those where the new phase
SG3 is concerned. The condition for second-order SG2 → SG3 transitions is simply given by
∂ϕ3/∂q3|q3=0 = 1. Inserting q3 = 0 into (60), followed by usage of the simplifying relations
(64) which follow from q3 = 0, leads to

∂ϕ3

∂q3

∣∣
q3=0 = βπ3[1 + (m1 − 1)q1 +m1(m2 − 1)q2]2.

And the condition defining the critical temperature T 2nd
2,3 for the second-order transition

SG2 → SG3 is seen to be simply

βπ3[1 + (m1 − 1)q1 +m1(m2 − 1)q2]2 = 1. (71)
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Finally, the most general bifurcation condition defining first-order SG2 → SG3 transitions is
given by ∣∣∣∣∣∣

∂ϕ1/∂q1 − 1 ∂ϕ1/∂q2 ∂ϕ1/∂q3

∂ϕ2/∂q1 ∂ϕ2/∂q2 − 1 ∂ϕ2/∂q3

∂ϕ3/∂q1 ∂ϕ3/∂q2 ∂ϕ3/∂q3 − 1

∣∣∣∣∣∣ = 0 (72)

where q1 � q2 � q3 > 0. Here there are no further simplifying properties to be exploited, and
hence (72) must be solved numerically with the full expressions (55)–(62) for the nine partial
derivatives.

6.4. The L = 3 phase diagram

For L = 3 we have seven independent control parameters, namely T, m1,m2,m3, π1, π2 and
π3 (where π3 = ε3/m1m2m3µ3, π2 = π3 + ε2/m1m2µ2 and π1 = π2 + ε1/m1µ1), so we
again have to resort to phase diagram cross-sections. As in the previous case L = 2 we will
show the transition lines in the (T1, T ) plane, solved numerically from the various bifurcation
conditions, now for the choice ε1/µ1 = ε2/µ2 = 1, ε3/µ3 = 2 with m2 ∈ {0.5, 1.5} and
with m3 = 2 (i.e. relatively low noise levels in the level-3 bonds). According to (47), for this
choice of parameters the second-order P → SG1 transition condition T 2nd

p,1 = π1 will again
reduce to

T 2nd
p,1 = 1

m1

(
1 +

2

m2

)
(73)

and is replaced by a first-order P → SG1 transition at m1 = 2, or

T 1st
p,1 = T 2nd

p,2 : T1 = 1

4

(
1 +

2

m2

)
. (74)

As in the case L = 2 , we will generally find (see section 7) that for any L and for any � � 1
there are always non-zero critical values for T1 above which T 2nd

�,�+1 = 0. Hence all spin-glass
phases SG�>1 will at some finite point cease to exist as T1 is increased. The values of the
order parameters in the m1 → ∞ (i.e. T1 → 0) limit will be also be calculated analytically in
section 7.

In figure 7 we show the phase diagram and the various bifurcation lines of the L = 3
system for m2 = 0.5 (relatively high noise levels in the level-2 couplings), obtained by
numerical solution of the relevant equations. The physical transitions are the ones which
occur first as the temperature T is lowered from within the paramagnetic region. In the present
case the different T1-dependent types of transition sequences are separated by the following
critical values for T1:

T (0)
c ≈ 12.575: creation point of phaseSG2

T (1)
c = 1.25: creation point of T 1st

p,1 T 2nd
p,1 = T 1st

p,1

T (2)
c ≈ 1.15: T 1st

p,1 and T 2nd
1,2 touch tangentially

T (3)
c ≈ 1.06: creation point of T 1st

p,2 T 2nd
1,2 = T 1st

p,2

T (4)
c ≈ 0.692: creation point of phaseSG3

T (5)
c ≈ 0.38: creation point of T 1st

p,3 T 2nd
2,3 = T 1st

p,3

T (6)
c ≈ 0.325: T 1st

p,2 = T 1st
p,3.

Note: T (1)
c is the point given by expression (74). In terms of these critical values we can

classify the different transition scenarios encountered upon reducing T down to zero (and the
orders of the transitions), starting in the paramagnetic region, as follows:
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Figure 7. Phase diagram in the (T1, T ) plane for L = 3, ε1/µ1 = ε2/µ2 = 1, ε3/µ3 = 2, m3 = 2
and m2 = 0.5, obtained by solving numerically the equations defining the various bifurcation
lines (note: T1 = T /m1). Left panel: the large-scale structure. Right panel: enlargement of the
low T1 (or high m1) region, where the first-order transitions are found. The relevant phases are P
(paramagnetic phase, q1 = q2 = 0), SG1 (first spin-glass phase, q1 > q2 = q3 = 0), SG2 (second
spin-glass phase, q1 � q2 > q3 = 0), and SG3 (third spin-glass phase, q1 � q2 � q3 > 0).
The transition lines shown are T 2nd

p,1 (solid curve), T 2nd
1,2 (dot-dash curve), T 1st

p,1 (dashed curve), T 1st
p,2

(dotted curve), T 2nd
2,3 (short dashes), and T 1st

2,3 (dot-long dash curve). Note: the curves T 2nd
1,2 and

T 2nd
2,3 jump to zero discontinuously at T1 = T

(0)
c ≈ 12.575 and T1 = T

(4)
c ≈ 0.692, respectively

(see main text).

T (0)
c < T1: P → SG1(2nd)
T (1)
c < T1 < T (0)

c : P → SG1(2nd) SG1 → SG2(2nd)
T (2)
c < T1 < T (1)

c : P → SG1(1st) SG1 → SG2(2nd)
T (3)
c < T1 < T (2)

c : P → SG1(1st) SG1 → SG2(2nd)
T (4)
c < T1 < T (3)

c : P → SG1(1st) SG1 → SG2(1st)
T (5)
c < T1 < T (4)

c : P → SG1(1st) SG1 → SG2(1st) SG2 → SG3(2nd)
T (6)
c < T1 < T (5)

c : P → SG1(1st) SG1 → SG2(1st) SG2 → SG3(1st)
T1 < T (6)

c : P → SG1(1st) SG1 → SG3(1st).

In figure 8 we show the corresponding values of the order parameters along the various
transition lines, as functions of T1 (with line types identical to those used in figure 7 for the
same transitions), except for those order parameters which are zero by definition (such as the
values at the transition of order parameters which bifurcate continuously from zero). Curves in
figures 7 and 8 which terminate for small but non-zero values of T1 do so due to computational
limitations.

In figure 9 we show the phase diagram and the various bifurcation lines of the L = 3
system for m2 = 1.5 (i.e. relatively low noise levels in the level-2 couplings), as obtained by
numerical solution of the relevant equations. Now the relevant critical values for T1 are as
follows:

T (0)
c ≈ 2.17: creation point of phaseSG2

T (1)
c ≈ 1.3: creation point of phaseSG3, viaT 1st

2,3
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Figure 8. Values of the order parameters q1 and q2 as
functions of T1, along some of the transition lines of
the previous figure, for L = 3, ε1/µ1 = ε2/µ2 = 1,
ε3/µ3 = 2, m3 = 2 and m2 = 0.5. The values shown
are q1 along T 2nd

1,2 (dot-dash curve), q1 along T 1st
p,1 (dashed

curve), q1 and q2 along T 1st
p,2 (dotted curves), q1 and q2

along T 2nd
2,3 (short dashes), and q1, q2 and q3 for T 1st

2,3
(dot-long dash curves) Note: the order parameters which
are not shown in this figure are zero by definition.
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Figure 9. Phase diagram in the (T1, T ) plane for L = 3, ε1/µ1 = ε2/µ2 = 1, ε3/µ3 = 2,m3 = 2
and m2 = 1.5, obtained by solving numerically the equations defining the various bifurcation
lines (note: T1 = T /m1). Left panel: the large-scale structure. Right panel: enlargement of the
low T1 (or high m1) region, where the first-order transitions are found. The relevant phases are P
(paramagnetic phase, q1 = q2 = 0), SG1 (first spin-glass phase, q1 > q2 = q3 = 0), SG2 (second
spin-glass phase, q1 � q2 > q3 = 0), and SG3 (third spin-glass phase, q1 � q2 � q3 > 0).
The transition lines shown are T 2nd

p,1 (solid curve), T 2nd
1,2 (dot-dash curve), T 1st

p,1 (dashed curve), T 1st
p,2

(dotted curve), T 2nd
2,3 (short dashes), and T 1st

2,3 (dot-long dash curve). Note: the curves T 2nd
1,2 and

T 2nd
2,3 jump to zero discontinuously at T1 = T

(0)
c ≈ 2.17 and T1 = T

(1)
c ≈ 1.3, respectively (see

main text).

T (2)
c ≈ 1.3: creation point of T 2nd

2,3

T (3)
c ≈ 0.8: T 2nd

1,2 = T 1st
2,3

T (4)
c ≈ 0.73: T 2nd

p,1 = T 1st
2,3

T (5)
c ≈ 0.597: creation point of T 1st

p,2 T 2nd
1,2 = T 1st

p,2

T (6)
c = 7/12 ≈ 0.583: T 2nd

p,1 = T 1st
p,1

T (7)
c ≈ 0.5572: T 1st

p,1 = T 1st
p,2.
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Figure 10. Values of the order parameters q1 and q2 as functions of T1, along some of the transition
lines of the previous figure, for L = 3, ε1/µ1 = ε2/µ2 = 1, ε3/µ3 = 2, m3 = 2 and m2 = 1.5.
The values shown are q1 along T 2nd

1,2 (dot-dash curve), q1 along T 1st
p,1 (dashed curve), q1 and q2

along T 1st
p,2 (dotted curves), q1 and q2 along T 2nd

2,3 (short dashes), and q1, q2 and q3 for T 1st
2,3 (dot-long

dash curves) Note: the order parameters which are not shown in this figure are zero by definition.

Note: T (2)
c < T (1)

c . In terms of these critical values we can classify the different transition
scenarios encountered upon reducing T, as before, as follows:

T (0)
c < T1: P → SG1(2nd)
T (1)
c < T1 < T (0)

c : P → SG1(2nd) SG1 → SG2(2nd)
T (2)
c < T1 < T (1)

c : P → SG1(2nd) SG1 → SG2(2nd) SG2 → SG3(1st)
T (3)
c < T1 < T (2)

c : P → SG1(2nd) SG1 → SG3(1st)
T1 < T (3)

c : P → SG3(1st).

In figure 10 we show the corresponding values of the order parameters along the various
transition lines, as functions of T1 (with line types identical to those used in figure 9 for the
same transitions), except for those which are zero by definition. Again, curves in figures
9 and 10 which terminate for small but non-zero values of T1 do so due to computational
limitations.

The general picture for L = 3 is obviously more complicated but qualitatively similar
to that which we arrived at for L = 2 , with increasingly discontinuous and non-trivial phase
behaviour of the system for decreasing relative noise levels of the couplings, whether measured
by m1, m2 or m3. For instance, for L = 2 we observed that for sufficiently large values of m1

and m2, upon lowering T the system goes straight from the paramagnetic state q1 = q2 = 0
into the SG2 state q1 � q2 > 0, without an intermediate SG1 phase. Here we see, similarly,
that for sufficiently large values of m1, m2 and m2, upon lowering T the system goes straight
from the paramagnetic state q1 = q2 = q3 = 0 into the SG3 state q1 � q2 � q3 > 0, without
intermediate SG1 or SG2 phases. In the next section we will show that the jump of the
SG� → SG�+1 transitions, as observed in the L = 2 and L = 3 phase diagrams for small T,
reflect non-physical re-entrance phenomena, which can be regarded as indicators that replica
symmetry will be broken for values of m1 = T/T1 close to zero.
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7. Asymptotic behaviour in L-level hierarchy

In this section we study the saddle-point equations of the general L-level hierarchy in the two
limits T1 → 0 for fixed T (i.e. m1 → ∞, fully deterministic evolution of level-1 couplings)
and T → 0 for fixed T1 (i.e.m1 → 0, fully deterministic evolution of spins). For the particular
choices L = 2 and L = 3 this implies solving our model along the left and bottom boundaries
in the phase diagrams of figures 2, 4, 7 and 9.

7.1. The limit m1 → ∞ in the L-level hierarchy

In this section we study the order parameter equations in the �th spin-glass phase SG�,
characterized by q1 � · · · � q� > 0 and q�+1 = · · · = qL = 0. We calculate the order
parameters in the limit m1 → ∞ (deterministic evolution of level-1 couplings), for fixed β,
and derive in this limit an expression for the first-order P → SG� transition temperature T 1st

p,�.
Insertion of q�+1 = q�+2 = · · · = qL = 0 into expression (29) for the free energy per spin
gives

f = 1

2
π1q1 − 1

β
log 2 +

1

4

�∑
k=2

q2
k πkm1m2 · · ·mk−1(mk − 1)

+
1

4
q2

1π1(m1−1)−
[
β

�∏
k=1

mk

]−1

logK� (75)

K� =
∫

Dz�

{∫
Dz�−1

{
· · ·

∫
Dz2

{∫
Dz1 {cosh/}m1

}m2

· · ·
}m�−1

}m�

with

/ =
�∑

k=1

zkak a� =
√
βq�π� ak =

√
β(qkπk − qk+1πk+1) (k < �)

It is not a priori obvious how the various order parameters will scale with m1 for m1 → ∞.
Here we will make a scaling ansatz which we then show to lead self-consistently to solutions
of our saddle-point equations, which satisfy all physical and mathematical requirements. We
assume that / = O(m0

1

)
as m1 → ∞, and consequently put

ak = ãkζk zk = z̃kζ
−1
k (k = 1, . . . , �)

such that / = ∑�
k=1 z̃kãk, with ãk = O(m0

1

)
and z̃k = O(m0

1

)
, and with scaling functions

ζk = ζk(m1) which will be determined in due course. As a consequence, we can work out the
term K� in (76) for large m1 as follows:

K� =
∫

Dz�

{∫
Dz�−1

{
· · ·

∫
Dz2

{∫
dz̃1√
2πζ1

e(ζ
2
1m1 ln cosh/− 1

2 z̃
2
1)/ζ

2
1

}m2

. . .

}m�−1}m�

.

This expression immediately suggests that the appropriate m1 → ∞ scaling is obtained upon
choosing ζ1 = m

−1/2
1 . As a result of this choice, the z̃1 integration can, for m1 → ∞ in

leading order, be carried out by steepest descent, and we arrive at

K� �
∫

Dz�

{∫
Dz�−1

{
· · ·

{∫
Dz2 em1m2k1(z̃

0
1 z̃2,...,z̃�)

}m3

· · ·
}m�−1

}m�

k1(z̃1, z̃2, . . . , z̃�) = ln cosh/− 1
2 z̃

2
1
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where z̃ 0
1 denotes the saddle-point of k1 with respect to variation of z̃1, i.e.

∂k1

∂z̃1

∣∣
(z̃ 0

1,z̃2,...,z̃�)
= 0: z̃ 0

1 = ã1 tanh/
(
z̃0

1, z̃2, . . . , z̃�
)
.

Hence z̃ 0
1 is a function of z̃2, . . . , z̃�. We now see that one can repeat this procedure

and carry out all the Gaussian integrations iteratively by steepest descent, upon setting
ζk = (m1m2 · · ·mk)

−1/2, which gives in leading order

K� � em1m2 ···m�−1m�k�(z̃
0
1,z̃

0
2,...,z̃

0
�−1,z̃

0
�) (76)

in which the functions kj (· · ·) are defined recursively via

kj
(
z̃ 0

1, . . . , z̃
0
j−1, z̃j , . . . , z̃ �

) = kj−1
(
z̃ 0

1, . . . , z̃
0
j−1, z̃j , . . . , z̃�

)− 1
2 z̃

2
j (j > 1)

k1 (z̃1, . . . , z̃�) = ln cosh/(z̃1, . . . , z̃�)− 1
2 z̃

2
1

giving for j > 1:

kj
(
z̃ 0

1, . . . , z̃
0
j−1, z̃j , . . . , z̃�

) = ln cosh/
(
z̃ 0

1, . . . , z̃
0
j−1, z̃j , . . . , z̃�

) − 1

2
z̃2
j − 1

2

j−1∑
k=1

(
z̃ 0
k

)2
.

(77)

The identity

∂

∂z̃j
kj
(
z̃ 0

1, . . . , z̃
0
j−1, z̃j , . . . , z̃�

) = ãj tanh/
(
z̃ 0

1, . . . , z̃
0
j−1, z̃j , . . . , z̃�

) − z̃j

shows that the values of all
{
z̃ 0
j

}
are ultimately to be solved from the following � coupled

saddle-point equations:

z̃ 0
j = ãj tanh/

(
z̃ 0

1, . . . , z̃
0
�

)
(j = 1, . . . , �). (78)

We insert (76) and (77) into (75), and find that for m1 → ∞ the free energy per spin reduces
in leading order simply to

f � 1

2
π1q1 − 1

β
log 2 +

1

4

�∑
k=2

q2
k πkm1m2 · · ·mk−1(mk − 1)

+
1

4
q2

1π1(m1 − 1)− β−1

[
ln cosh/

(
z̃ 0

1, . . . , z̃
0
�

) − 1

2

�∑
k=1

(
z̃ 0
k

)2

]
(79)

with /
(
z̃ 0

1, . . . , z̃
0
�

) = ∑�
k=1 ãkz̃

0
k.

We can now derive the saddle-point equations for m1 → ∞ by variation of (79) with
respect to the order parameters {qk}. Let us first derive the equation for q1 in leading order:

0 = 1

2
π1 +

1

2
q1π1(m1 − 1)− 1

β

�∑
k=1

∂z̃ 0
k

∂q1

∂

∂z̃ 0
k

[
ln cosh/− 1

2

�∑
k=1

(
z̃ 0
k

)2

]

− 1

β

�∑
k=1

tanh/
∂/

∂ãk

∂ãk

∂q1
+ · · · (m1 → ∞).

The term with the partial derivatives ∂/∂z̃ 0
k is identical zero due to the saddle-point equations

(78), and hence, upon working out the derivatives ∂ãk/∂q1 = ζ−1
k ∂ak/∂q1 and using (78) to

eliminate occurrences of z̃ 0
1, we just retain in leading order

0 = 1
2π1m1

[
q1 − tanh2 /

]
+ · · · (m1 → ∞).
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Hence

q1 = tanh2 / (m1 → ∞).

Similarly we can deal with the derivatives of f (79) with respect to the other qj . With the
simple identity

ak
∂ak

∂qj
= 1

2
β
∂

∂qj
[qkπk − qk+1πk+1] = 1

2
βπj [δj,k − δj,k+1]

the saddle-point equation for qj with j > 1 is seen to become in leading order

0 = 1

2
qjπjm1 · · ·mj−1(mj − 1)− 1

β

�∑
k=1

∂z̃ 0
k

∂qj

∂

∂z̃ 0
k

[
ln cosh/− 1

2

�∑
k=1

(
z̃ 0
k

)2

]

− 1

β

�∑
k=1

tanh/
∂/

∂ãk

∂ãk

∂qj
+ · · · (m1 → ∞)

= 1

2
qjπjm1 · · ·mj−1(mj − 1)− 1

β
tanh2 /

�∑
k=1

m1 · · ·mkak
∂ak

∂qj
+ · · ·

= 1

2
πjm1m2 · · ·mj−1(mj − 1)

[
qj − tanh2 /

]
+ · · · .

Hence, for all j � 1 one simply has

qj = q8 = tanh2 / (m1 → ∞). (80)

The final stage of our argument is to determine the amplitude q8 in (80). We note that,
by virtue of (78), we can write / = ∑�

k=1 ãkz̃
0
k in leading order as / � Y tanh/, where

Y = ∑�
k=1 ã

2
k. It now follows, upon inserting (80) into this relation, that q8 is the solution of

q8 = tanh2[Y
√
q8] (m1 → ∞). (81)

In working out the quantity Y in leading order for m1 → ∞ we have to take care not to forget
about the m1 dependence of the factors πk , defined in (23). In particular,

πjζ
−2
j = εj

µj
+

L∑
k=j+1

1

mj+1 · · ·mk

εk

µk
.

Using this relation we find

Y = βq8


�−1∑
j=1

(πj − πj+1)ζ
−2
j + π�ζ

−2
�


 + · · · (m1 → ∞)

= βq8


 �∑
j=1

εj

µj
+

L∑
j=�+1

1

m�+1 · · ·mj

εj

µj


 + · · · .

Our final result on the limit m1 → ∞ is the following: in the phase SG� one has
q1 = · · · = q� = q8 > 0 and q�+1 = · · · = qL = 0, where q8 is the solution of

q8 = tanh2 [βω̄�(q∗)3/2
]

(82)

ω̄� =
�∑

j=1

εj

µj
+

L∑
j=�+1

1

m�+1 · · ·mj

εj

µj
. (83)
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Figure 11. Properties of the equation q = Fx(q), where Fx(q) = tanh2(xq
3
2 ), from which we

solve the m1 → ∞ order parameter amplitude q8 (see main text). Left panel: shape of the
function Fx(q) for x ∈ {1, 2, 3} (solid curves, from bottom to top), together with the diagonal
(dashed) whose intersection with Fx(q) defines q8. Right panel: largest solution q8 of the equation
q = Fx(q) as a function of x−1. The jump occurs at q8 ≈ 0.7911 and x−1 ≈ 0.4958.

We note that, for any ω̄� > 0, equation (82) will have a non-zero solution (and hence phase
SG� will indeed exist) when T is sufficiently low, and that limT→0 q

8 = 1. The behaviour of
equation (82) as a function of the effective control parameter x = βω̄� is illustrated in
figure 11.

From (82) and (83) we can immediately extract the critical temperature T 1st
p,�, signalling

the (first-order) transitionP → SG�. The condition for non-zero solutions of (82) to bifurcate
follows from solving (82) simultaneously with the equation 1 = d

dq8 tanh2
[
βω̄�(q

∗)3/2
]
, which

leads us to the explicit and simple result

T 1st
p,� = 3ω̄�q8(1 − q8) q8 = tanh2

[ √
q8

3(1 − q8)

]
. (84)

Numerical solution of (84) shows that q8 ≈ 0.7911 and T 1st
p,�/ω̄� ≈ 0.4958. In order to assess

the dependence on � of the transition temperatures T 1st
p,�, we subtract

T 1st
p,�+1 − T 1st

p,� = 3q8(1 − q8)[ω̄�+1 − ω̄�]

= 3q8(1 − q8)

[
m�+1 − 1

m�+1

] ε�+1

µ�+1
+

L∑
j=�+2

1

m�+2 · · ·mj

εj

µj


 .

Thus T 1st
p,�+1 > Tp,� for m�+1 > 1 (i.e. for relatively low noise levels in the level-(� + 1)

couplings), whereas T 1st
p,�+1 < Tp,� for m�+1 < 1 (for relatively high noise levels in the level-

(� + 1) couplings). Upon inserting the appropriate values of the control parameters, one can
easily verify that the general results obtained in this section regarding the values of the order
parameters in the phase SG� and of the P → SG� transition temperatures T 1st

p,� for arbitrary
L are in perfect agreement with our solutions as calculated for the special choices L = 2 and
L = 3 in previous sections.
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7.2. The limit m1 → 0 in the L-level hierarchy

We next turn to the limitm1 → 0, for fixed T1 (i.e.T → 0). We observed in the phase diagrams
of figures 2, 4, 7 and 9 for L = 2 and L = 3 that along the line T = 0 one finds critical
values T 2nd

�−1,� for T1 which signal the creation of phase SG� (where q1 � · · · � q� > 0 and
q�+1 = · · · = qL = 0) from SG�−1 (where q1 � · · · � q�−1 > 0 and q� = · · · = qL = 0). In
this section we calculate these critical values for the general L-level system. Our starting point
is again expression (75) for the free energy per spin (obtained by putting q�+1 = · · · = qL = 0).
In order to make all occurrences of m1 explicit, we substitute T = T1m1, and write the factors
π� of (23) as

π� = π̃�

m1
: π̃1 = ε1

µ1
+

L∑
�′=2

1

m2 · · ·m�′

ε�′

µ�′
π̃�>1 =

L∑
�′=�

1

m2 · · ·m�′

ε�′

µ�′

so that π̃� = O(m0
1

)
for all � as m1 → 0. This gives

m1f (q1, . . . , q�) = 1

4
π̃1 − 1

4
π̃1(q1 − 1)2 + O (

m2
1

)− T1m1∏�
k=2 mk

logK�

+
1

4
m1

[
q2

1 π̃1 + q2
2 π̃2(m2 − 1) +

�∑
k=3

q2
k π̃km2 · · ·mk−1(mk − 1)

]
(85)

with

K� =
∫

Dz�

{∫
Dz�−1

{
· · ·

∫
Dz2

{∫
Dz1 {cosh/}m1

}m2

· · ·
}m�−1}m�

/ = m−1
1 /̃ /̃ =

�∑
k=1

zkãk

ã� =
√
T −1

1 q�π̃� ãk<� =
√
T −1

1 (qkπ̃k − qk+1π̃k+1).

Since /̃ = O(m0
1

)
asm1 → 0, by virtue of our definitions,we may conclude thatK� = O(m0

1

)
:

{cosh/}m1 = 2−m1 [e/̃/m1 + e−/̃/m1 ]m1 = e|/̃|(1 + O(m1)) (m1 → 0)

K� =
∫

Dz�

{∫
Dz�−1

{
· · ·

∫
Dz2

{∫
Dz1 e|/̃|

}m2

· · ·
}m�−1

}m�

+ · · · . (86)

Similarly one gets in leading order for m1 → 0:

1

K1

∫
Dz1 {cosh/}m1 tanh/ =

∫
Dz1e|/̃|sgn(/̃)∫

Dz1e|/̃| + · · · . (87)

According to (85) the saddle-point value of q1 is of the form q1 = 1 − O(√m1). If, however,
we substitute q1 = 1 − κ

√
m1 + O(m1) into (85), we find that the saddle-point obeys κ = 0,

hence the true scaling of q1 is

q1 = 1 − κm1 + O (
m2

1

)
. (88)

Insertion of (88) into (85) gives

m1f (q2, . . . , q�) = 1

4
(1 +m1)π̃1 + O (

m2
1

) − T1m1∏�
k=2 mk

logK�|q1=1

+
1

4
m1

[
q2

2 π̃2(m2 − 1) +
�∑

k=3

q2
k π̃km2 · · ·mk−1(mk − 1)

]
(89)
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and hence the m1 → 0 saddle-point equations for the order parameters q�′ with 1 < �′ � �

are given by

q2 = 2T1

π̃2(m2 − 1)
(∏�

k=2 mk

) ∂

∂q2
log K̃� (90)

q�′ = 2T1

π̃�′(m�′ − 1)
(∏�′−1

k=2 mk

) (∏�
k=2 mk

) ∂

∂q�′
log K̃� (91)

with K̃�(q2, . . . , q�) = limq1→1 limm1→0 K� (as given by (86)). At this stage it is advantageous
to use our earlier results (39) and (40), which in the present context and in combination with
(87) translate into

q2 =
〈
· · ·

〈[∫
Dz1e|/̃|sgn(/̃)∫

Dz1e|/̃|

]2〉
2

· · ·
〉
�

(92)

qk>2 =
〈
· · ·

〈[〈
· · ·

〈[∫
Dz1e|/̃|sgn(/̃)∫

Dz1e|/̃|

]〉
2

· · ·
〉
k−1

]2〉
k

· · ·
〉
�

(93)

with

K̃1 =
∫

Dz1 e|/̃| K̃�′ =
∫

Dz�′K̃
m�′
�′−1

〈f 〉�′ = K̃−1
�′

∫
Dz�′K̃

m�′
�′−1f (z�′) /̃ =

�∑
k=1

zkãk|q1=1 = z1ã1 + /̃1.

Working out the z1 integrations in (92) and (93) leads to

∫
Dz1 e|/̃|sgn(/̃)∫

Dz1 e|/̃| =
sinh(/̃1) + 1

2 e/̃1 Erf
[
ã2

1+/̃1

ã1

√
2

]
− 1

2 e−/̃1 Erf
[
ã2

1−/̃1

ã1

√
2

]
cosh(/̃1) + 1

2 e/̃1 Erf
[
ã2

1+/̃1

ã1

√
2

]
+ 1

2 e−/̃1 Erf
[
ã2

1−/̃1

ã1

√
2

] . (94)

The transition value T 2nd
�−1,� for T1 is the one which gives a second-order bifurcation of q� away

from zero in (93).
Let us work out these results first for �= 2. Here one simply has ã1 = (

√
π̃1 − q2π̃2)/

√
T1

and /̃1 = z2
√
q2π̃2/

√
T1, with q2 to be solved from

q2 =
〈[

sinh(/̃1) + 1
2 e/̃1 Erf

[ ã2
1+/̃1

ã1

√
2

] − 1
2 e−/̃1 Erf

[ ã2
1−/̃1

ã1

√
2

]
cosh(/̃1) + 1

2 e/̃1 Erf
[ ã2

1+/̃1

ã1

√
2

]
+ 1

2 e−/̃1 Erf
[ ã2

1−/̃1

ã1

√
2

]
]2〉

2

=
〈
/̃2

1

[
1 + Erf

[
ã1√

2

]
+

√
2

ã1
√
π

e− 1
2 ã

2
1 + O(/̃1)

1 + Erf
[
ã1√

2

]
]2〉

2

(95)

= q2π̃2

T1


1 +

√
2T1√
π̃1

√
π

e− 1
2 π̃1/T1

1 + Erf
[ √

π̃1√
2T1

]



2

+ O
(
q

3
2

2

)
. (96)
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Figure 12. Re-entrance phenomena in the second-order SG1 → SG2 transition for L = 3
and m2 = 0.5. Left panel: phase diagram in the (T1, T ) plane. Right panel: value of the
order parameter q1 at the transition line as a function of T1. In both cases the solid part of the
curve indicates the physical part of the transition line; the dashed part indicates the non-physical
(re-entrant) part.

Hence the condition for the second-order SG1 → SG2 transition, T1 = T 2nd
1,2 , is to be solved

from

1 =
√
π̃2

T1


1 +

(
2T1
π̃1π

) 1
2

e− 1
2 π̃1/T1

1 + Erf

[(
π̃1
2T1

) 1
2

]

 . (97)

Equivalently, upon substituting x2 = π̃1/2T1:

T 2nd
1,2 = π̃1

2x2

√
π̃1

2π̃2
= x +

1√
π

e−x2

1 + Erf[x]
. (98)

Insertion of the parameter values appropriate for the L = 2 and L = 3 examples, as studied
in detail in a previous section, sheds interesting new light on the nature of the jumps observed
in the SG1 → SG2 transition lines of the L = 2 and L = 3 phase diagrams for small T:

m2 = 0.5: T
jump

1 ≈ 12.58 T 2nd
1,2 ≈ 9.884

m2 = 1.5: T
jump

1 ≈ 2.17 T 2nd
1,2 ≈ 2.095.

These results indicate that for low T the SG1 → SG2 transition exhibits re-entrance, the extent
of which decreases with increasing m2. In fact, we found another second-order transition line
from SG1 to SG2 which shows re-entrance for eachm2 (see figures 11 and 12). On reflection,
this is not entirely surprising, since for m1 → 0 one should expect replica symmetry to
break. It has been observed frequently in many disordered systems (see, e.g., [12]) that
replica-symmetric solutions show unphysical re-entrance phenomena in RSB regions (which
are removed by the proper RSB solution).

For general values of �we have to work out the following continuous bifurcation condition
of q� �= 0, derived from equation (93):

1 = lim
q�→0

∂

∂q�

×
〈

· · ·
〈[〈

· · ·
〈[

sinh(/̃1) + 1
2 e/̃1 Erf

[ ã2
1+/̃1

ã1

√
2

] − 1
2 e−/̃1 Erf

[ ã2
1−/̃1

ã1

√
2

]
cosh(/̃1) + 1

2 e/̃1 Erf
[ ã2

1+/̃1

ã1

√
2

]
+ 1

2 e−/̃1 Erf
[ ã2

1−/̃1

ã1

√
2

]
]〉

2

. . .

〉
k−1

]2〉
k

. . .

〉
�

.
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Figure 13. Re-entrance phenomena in the second-order SG1 → SG2 transition for L = 3
and m2 = 1.5. Left panel: phase diagram in the (T1, T ) plane. Right panel: value of the
order parameter q1 at the transition line as a function of T1. In both cases the solid part of the
curve indicates the physical part of the transition line; the dashed part indicates the non-physical
(re-entrant) part.

This is done in appendix C, where we show that the value T 2nd
�−1,� for T1 which marks the

continuous transition from SG�−1 to SG� is to be solved from

1 =
√
π̃�

T1

{
1 + κ +

�−1∑
k=2

m2 · · ·mk−1(mk − 1)qk

}
(99)

where κ = limm1→0(1 − q1)/m1, where q� = 0, and where for the values of the {qk} with
1 < k < � one has to substitute the solution of equations (92) and (93). The quantity κ is
calculated along the lines of our previous calculation of (86) and (87):

κ = lim
m1→0

1

m1

〈
· · ·

〈∫
Dz1 coshm1(/)[1 − tanh2(/)]∫

Dz1 coshm1(/)

〉
2

· · ·
〉
�

= lim
m1→0

1

m1

〈
· · ·

〈∫
Dz1 coshm1−2(/̃/m1)∫
Dz1 coshm1(/̃/m1)

〉
2

· · ·
〉
�

. (100)

We know that K1 = ∫
Dz1 coshm1(/̃/m1) → ∫

Dz1 e|/̃| for m1 → 0. Let us calculate the
term in the numerator in leading order.∫

Dz1 coshm1−2(/̃/m1) = I+(/̃1) + I−(/̃1)

with

I+(/̃1) =
∫
/>0

Dz1 coshm1−2(/̃/m1) =
∫ ∞

− /̃1
ã1

Dz1{e/̃/m1(1 + e−2/̃/m1)/2}m1−2

I−(/̃1) =
∫
/<0

Dz1 coshm1−2(/̃/m1) =
∫ − /̃1

ã1

−∞
Dz1{e−/̃/m1(1 + e2/̃/m1)/2}m1−2 = I+(−/̃1).

Putting b = 2ã1/m1, bn = nb, fixing m1 to a small number, introducing a cut-off ε and using
(1 + x)−2 = ∑∞

n=0(n + 1)(−x)n and the asymptotic properties of the error function [21], we
obtain
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I+(/̃1) =
∫ ∞

− /̃1
ã1

Dz1 e−/̃(2/m1−1){(1 + e−2/̃/m1)/2}m1−2

=
∫ ∞

− /̃1
ã1

Dz1 e−/̃(2/m1−1){(1 + e−2/̃/m1)/2}−2(1 + O(m1))

= 4 lim
ε→+0

∫ ∞

ε− /̃1
ã1

Dz1 e−/̃(2/m1−1)
∞∑
n=0

(n + 1)(−)n e−2n/̃/m1(1 + O(m1))

= 4 lim
ε→+0

∞∑
n=0

(n + 1)(−)n
∫ ∞

ε− /̃1
ã1

Dz1 e−(bz1+ 2/̃1
m1

)(n+1−m1
2 )(1 + O(m1))

= 4 lim
ε→+0

∞∑
n=0

(n + 1)(−)n e− 2/̃1
m1
(n+1−m1

2 ) eb
2(n+1−m1

2 )2/2

×
{

1

2
− 1

π
Erf

[
ε − /̃1

ã1
+ b

(
n + 1 − m1

2

)
√

2

]}
+ · · ·

= 4 lim
ε→+0

∞∑
n=0

(n + 1)(−)n e− 2/̃1
m1
(n+1−m1

2 ) eb
2(n+1−m1

2 )2/2−(ε− /̃1
ã1

+b(n+1−m1
2 ))2/2

× 1√
2π

1

ε − /̃1
ã1

+ b
(
n + 1 − m1

2

) + · · ·

= 4 lim
ε→+0

∞∑
n=0

(n + 1)(−)n e− 2/̃1
m1
(n+1−m1

2 ) e−(ε− /̃1
ã1
)b(n+1−m1

2 )−(ε− /̃1
ã1
)2/2

× 1√
2πb(n + 1)

1(
ε − /̃1

ã1

)
1

b(n+1) + 1 − m1
2(n+1)

+ · · ·

= 4√
2πb

lim
ε→+0

eã1ε−(ε− /̃1
ã1
)2/2

∞∑
n=0

(−)n(e−bε)n+1(1 + O(m1)) + · · ·

= 4√
2πb

lim
ε→+0

eã1ε−(ε− /̃1
ã1
)2/2 e−bε

1 + e−bε + · · ·

= 2√
2πb

e−( /̃1
ã1
)2/2 + · · · = m1√

2πã1

e−( /̃1
ã1
)2/2 + · · · .

Therefore,∫
Dz1 coshm1−2(/̃/m1) = I+(/̃1) + I−(/̃1) = 2m1√

2πã1
e−( /̃1

ã1
)2/2 + · · ·

= m1

ã1

√
2

π
e−/̃2

1/2ã
2
1 + · · · (m1 → 0).

Hence

κ = 1

ã1

√
2

π

〈
· · ·

〈
e−/̃2

1/2ã
2
1∫

Dz1 e|/̃|

〉
2

· · ·
〉
�

=
〈

· · ·
〈[

ã−1
1 (2/π)

1
2 e−/̃2

1/2ã
2
1−ã2

1/2

cosh(/̃1) + 1
2 e/̃1 Erf

[ ã2
1+/̃1

ã1

√
2

]
+ 1

2 e−/̃1 Erf
[ ã2

1−/̃1

ã1

√
2

]
]〉

2

· · ·
〉
�

. (101)
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We have now calculated explicitly all ingredients necessary for determining T 2nd
�−1,�: one is to

solve equation (99), upon insertion of the solution of equations (92) and (93) for {qk>1} and
of expression (101) for κ .

As a simple test one can verify the outcome of (99) for the case � = 2 which we analysed
before. This corresponds to /̃1 = 0, insertion of which into (101) and subsequently into (99)
indeed brings us back to (97), as it should.

8. Discussion

In this paper we have studied self-programming in recurrent neural networks where both
neurons (the ‘processors’) and synaptic interactions (‘the programme’) evolve in time
simultaneously. In contrast to previous models involving coupled dynamics of fast neurons
and slow interactions, the interactions in our model do not evolve on a single time-scale; they
are divided randomly into a hierarchy of L different groups of prescribed sizes, each with their
own characteristic time-scale τ� and noise level T� (� = 1, . . . , L), describing increasingly
non-volatile programming levels.

We have solved our model in equilibrium upon making the replica-symmetric (i.e. ergodic)
ansatz within each level of our hierarchy, leading to a theory which resembles, but is not
identical to, Parisi’s L-level replica symmetry breaking (RSB) solution for spin systems with
frozen disorder. In addition to a paramagnetic phase, the phase diagram of our model involves
a hierarchy of distinct spin-glass phases SG�, which differ in terms of the largest time-scale
on which the system (spins and couplings) will be found in a frozen state. Our theory involves
L replica dimensions m�, reminiscent of the block sizes in Parisi’s RSB scheme, which here
represent ratios of the temperatures of subsequent levels in the hierarchy of equilibrating
couplings, and which can take any value in the interval [0,∞〉.

We have solved our order parameter equations in full detail for the choices L = 2 and
L = 3, leading to extremely rich phase diagrams, with an abundance of first-order transitions
especially when the level of stochasticity in the interaction dynamics is chosen to be low, i.e.
when one or more of the m� become large (which can never happen in the Parisi scheme,
where always 0 � m� � 1). Increasing L always leads to the creation of new phases, thereby
increasing their total number, with associated new order parameters which measure the degree
of freezing at larger time-scales. We also studied the asymptotic properties of our model for
arbitrary values of L in the limits m1 → ∞ for fixed T (deterministic dynamics of the level-1
interactions) and m1 → 0 for fixed T1 (deterministic dynamics of the neuronal processors).
This revealed further non-trivial properties, such as the universal nature of the values of the
order parameters (i.e. qk = q8 ≈ 0.7911 for all k � �, independent of the control parameters)
at the first-order P → SG� transitions for m1 = ∞, and re-entrance phenomena at the
SG�−1 → SG� borders in the phase diagrams for m1 = 0 (the latter are likely to be replaced
by discrete non-reentrant jumps when replica symmetry breaking is taken into account).

In the present study we have not attempted to validate the predictions of our theory by
numerical simulations. With the present CPU resources this would not have been possible,
since our model requires L nested equilibrations of disordered sub-systems. Even with fixed
couplings it would not have been possible to reach equilibrium with a system size sufficiently
large to suppress finite size effects; as a consequence, even for a similar L = 1 system it
was already found to be impossible to carry out simulations which achieve more than a very
rough qualitative agreement with the theory [10]. Experimental verification for a recurrent
self-programming network with L > 1 will probably require hardware realizations. There
is also little scope for comparison with other papers; we are not aware of any other study
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involving coupled dynamics of fast neurons and slow synapses where there are multiple
separated time-scales for the synapses.

In retrospect, we found ourselves pleasantly surprised by the extent to which the present
model allows for analytical solution, in spite of the complications induced by the nested
equilibrations. Rather than being restricted by mathematical intractability, our problem was
how to select the control parameters for which full phase diagrams are to be shown. This
allowed us to gain qualitative and quantitative insight into the structural properties of simple
recurrent self-programming systems, in particular regarding the questions of when and how
these systems switch from random motion of processors and programme (the paramagnetic
phase) to states where processors and some (or all) of the levels of the hierarchy of programme
routines are ‘locked’ into specific fixed-points (the different types of spin-glass phases).

At the same time it will also be clear, however, that both in terms of understanding the
physics of realistic self-programming systems and in terms of understanding the mathematical
theory by which they are described, this paper represents only a modest step. In realistic
self-programming systems one should obviously expect the programming levels not to evolve
only on the basis of pair-correlations in processor states, a simple decay term, and Gaussian
noise, but one would as a minimum introduce external symmetry-breaking forces into both
the processor dynamics and the coupling dynamics, representing data to be processed and
programming objectives to be met, respectively. At a theoretical level it would be interesting
to investigate the form taken in the present model of replica symmetry breaking, for which we
have already found indirect evidence (in the form of re-entrance phenomena) in studying the
m1 → 0 limit, by calculating AT lines [22]. Since in our present model the replica symmetric
(RS) theory is already similar to an L-step RSB theory á la Parisi, it is not immediately obvious
what structure to expect when replica symmetry is broken at one or more levels in our hierarchy.
These and other questions and extensions will hopefully be addressed in future studies.
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Appendix A. Asymptotic form of T 2nd
1,2 when m1 � 1

In this appendix we derive the asymptotic form of the transition temperature T 2nd
1,2 form1 	 1.

The value of T 2nd
1,2 is determined by solving the coupled equations

1 =
√
βπ2[1 + (m1 − 1)q1] (A.1)

q1 = 1

K1

∫
Dz1 coshm1(a1z1) tanh2(a1z1) (A.2)

where a1 = √
βπ1q1. Upon assuming q1 � 1 and m1 	 1, we can derive from (A.2) the

equation for q̃ ≡ m1q1 to take the form

1 �
√
βπ1[1 + βπ1q̃(1 + q̃)]. (A.3)

From (A.1) and (A.3) we obtain equations for the quantities w ≡ 1/
√
βπ2 and q̃,

q̃ = w − 1 (A.4)
g(w) ≡ w3 − aw + b = 0 (A.5)
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where a = π̃1
π̃2

(
1 + π̃1

π̃2

)
, b = (

π̃1
π̃2

)2
and π̃i = m1πi , both of which are independent ofm1. From

π̃1 = π̃2 + ε1
µ1

it follows that g(1) = 1 − π̃1
π̃2
< 0. Thus g(w) = 0 has the unique solution

w∗ > 1. Therefore we obtain our desired result for m1 → ∞:

q1 � q̃

m1
= 1

m1
(w∗ − 1) > 0 (A.6)

T � π̃2w
∗√T1. (A.7)

Appendix B. Building blocks of the general saddle-point equations

In this appendix we calculate the derivatives used in deriving the saddle-point equations for
general values of L in section 4.4. In this and subsequent appendices it will be helpful to
define a convenient shorthand (further notation is as in section 4.4):

M�>0 =
�∏

k=1

mk M0 = 1

ψ�>0 = 〈· · · 〈tanh/〉1 · · ·〉� ψ0 = tanh/

J� = K−1
�

∂

∂/
(K�ψ�).

Appendix B.1. Calculation of K−1
� ∂K�/∂/ and J� = K−1

� ∂(K�ψ�)/∂/

We first calculate K−1
� ∂K�/∂/ for � � 1:

K−1
�

∂K�

∂/
= m�

K�

∫
Dz�K

m�−1
�−1

∂K�−1

∂/

=
∏�

k=1 mk

K�

∫
Dz�K

m�−1
�−1

∫
Dz�−1K

m�−1−1
� · · ·

∫
Dz1 coshm1−1 / sinh/

= M�〈· · · 〈tanh/〉1 · · ·〉� = M�ψ�. (B.1)

Next we calculate J� = K−1
� ∂(K�ψ�)/∂/ for � � 1. We commence with J1:

J1 = K−1
1

∫
Dz1

∂

∂/

(
K
m1
0 ψ0

)
= K−1

1

∫
Dz1 K

m1
0

[
1 + (m1 − 1) tanh2 /

]
= 1 + (m1 − 1)〈tanh2 /〉1. (B.2)

We move on to � > 1, abbreviating L� = K−1
� ∂K�/∂/:

J� = K−1
�

∫
Dz�

∂

∂/

(
K
m�−1
�−1 K�−1ψ�−1

)
= K−1

�

∫
Dz�

{
(m� − 1)Km�−2

�−1

∂K�−1

∂/
K�−1ψ�−1 +Km�−1

�−1

∂

∂/
(K�−1ψ�−1)

}

= K−1
�

∫
Dz�

{
(m� − 1)Km�

�−1L�−1ψ�−1 +Km�

�−1J�−1
}

= (m� − 1)〈L�−1ψ�−1〉� + 〈J�−1〉�
= M�−1(m� − 1)

〈
ψ2
�−1

〉
�

+ 〈J�−1〉�.



Hierarchical self-programming in recurrent neural networks 2797

Iteration of this relation gives:

J� =
�∑

k=2

Mk−1(mk − 1)
〈 · · · 〈ψ2

k−1

〉
k
· · · 〉

�
+ 〈· · · 〈J1〉2 · · ·〉�

=
�∑

k=2

Mk−1(mk − 1)
〈 · · · 〈ψ2

k−1

〉
k
· · · 〉

�
+ 1 + (m1 − 1)

〈 · · · 〈tanh2 /〉1 · · · 〉
�

= 1 +
�∑

k=1

Mk−1(mk − 1)
〈 · · · 〈ψ2

k−1

〉
k
· · · 〉

�
. (B.3)

Finally we prove that J� > 0 for all � � 1. We put qk = 〈 · · · 〈ψ2
k−1

〉
k
· · · 〉

�
and use the

inequalities q1 � q2 � · · · � q� � 0:

J� =
�∑

k=2

(Mk −Mk−1)qk + 1 + (m1 − 1)q1

=
�−1∑
k=2

Mk(qk − qk+1) +M�q� −m1q2 + 1 + (m1 − 1)q1

=
�−1∑
k=2

Mk(qk − qk+1) +M�ql + m1(q1 − q2) + 1 − q1 > 0.

Appendix B.2. Calculation of ∂K�/∂q�′

In this second part of appendix B we will repeatedly need the following simple relations:

∂/

∂q1
= 1

2
βπ1z1

(
∂/

∂z1

)−1
∂/

∂q�>1
= 1

2
βπ�

{
z�

(
∂/

∂z�

)−1

− z�−1

(
∂/

∂z�−1

)−1
}
. (B.4)

We first calculate ∂K�/∂q�′ for 1 < �′ � �:

∂K�

∂q�′
= m�

∫
Dz� K

m�−1
�−1

∂K�−1

∂q�′

=
[

�∏
k=�′−1

mk

]∫
Dz� K

m�−1
�−1

∫
Dz�−1K

m�−1−1
�−2

· · ·
∫

Dz�′K
m�′ −1
�′−1

∫
Dz�′−1K

m�′−1−1
�′−2

∂K�′−2

∂q�′

=
[

�∏
k=�′−1

mk

]∫
Dz�K

m�−1
�−1 · · ·

∫
Dz�′K

m�′ −1
�′−1

∫
Dz�′−1K

m�′−1−1
�′−2

× βπ�′

2

{
z�′

(
∂/

∂z�′

)−1

− z�′−1

(
∂/

∂z�′−1

)−1
}
∂K�′−2

∂/

= βπ�′

2

[
�∏

k=�′−1

mk

]∫
Dz�K

m�−1
�−1

∫
Dz�−1K

m�−1−1
�−2

· · ·
∫

Dz�′
∂K

m�′ −1
�′−1

∂/

∫
Dz�′−1K

m�′−1−1
�′−2

∂K�′−2

∂/
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= βπ�′

2

[
�∏

k=�′−1

mk

]
(m�′ − 1)K�

×
〈〈

· · ·
〈

1

K�′−1

∂K�′−1

∂/

〈
1

K�′−2

∂K�′−2

∂/

〉
�′−1

〉
�′

· · ·
〉
�−1

〉
�

.

Hence, upon using K−1
� ∂K�/∂/ = M�ψ�, we obtain for 1 < �′ � � the simple result:

K−1
�

∂K�

∂q�′
= βπ�′

2

[
�∏

k=1

mk

]
�′−1∏
j=1

mj


 (m�′ − 1)〈〈· · · 〈ψ�′−1〈ψ�′−2〉�′−1〉�′ · · ·〉�−1〉�

= βπ�′

2
M�M�′−1(m�′ − 1)

〈〈 · · · 〈ψ2
�′−1

〉
�′ · · ·

〉
�−1

〉
�
. (B.5)

For �′ = 1 � � we obtain, similarly:

K−1
�

∂K�

∂q1
= m�

K�

∫
Dz�K

m�−1
�−1

∂K�−1

∂q1

=
∏�

k=1 mk

K�

∫
Dz�K

m�−1
�−1

∫
Dz�−1K

m�−1−1
�−2 · · ·

∫
Dz1K

m1−1
0

∂K0

∂q1

= M�

K�

∫
Dz�K

m�−1
�−1 · · ·

∫
Dz1K

m1−1
0

βπ1

2
z1

(
∂/

∂z1

)−1
∂K0

∂/

= βπ1

2

M�

K�

∫
Dz�K

m�−1
�−1 · · ·

∫
Dz1

∂

∂/

{
K
m1−1
0

∂K0

∂/

}

= βπ1

2

M�

K�

∫
Dz�K

m�−1
�−1 · · ·

∫
Dz1

{
1 + (m1 − 1) tanh2 /

}
K
m1
0

= βπ1

2
M�

{
1 + (m1 − 1)

〈 · · · 〈tanh2 /〉1 · · · 〉
�

}
. (B.6)

Next we turn to the case where �′ > �, noting that K� is a function of {z�+1, . . . , zL}. If
�′ > � + 1 one finds

K−1
�

∂K�

∂q�′
= βπ�′

2

{
z�′

(
∂/

∂z�′

)−1

− z�′−1

(
∂/

∂z�′−1

)−1
}

1

K�

∂K�

∂/

= βπ�′

2

{
z�′

(
∂/

∂z�′

)−1

− z�′−1

(
∂/

∂z�′−1

)−1
}
M�ψ�.

For �′ = � + 1, on the other hand, we obtain

∂K�

∂q�+1
= m�

∫
Dz�K

m�−1
�−1

∂K�−1

∂q�+1

= m�βπ�+1

2

∫
Dz�K

m�−1
�−1

{
z�+1

(
∂/

∂z�+1

)−1

− z�

(
∂/

∂z�

)−1
}
∂K�−1

∂/

= m�βπ�+1

2

{
z�+1

(
∂/

∂z�+1

)−1 ∫
Dz�K

m�−1
�−1

∂K�−1

∂/
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−
∫

Dz�
∂

∂/

[
K
m�−1
�−1

∂K�−1

∂/

]}
.

This latter term will appear inside an integral over z�+1 whenever q�+1 > 0. Thus, we will at
some point have to evaluate integrals of the following form:∫

Dz�+1g(/)
∂K�

∂q�+1
= m�βπ�+1

2

∫
Dz�+1

∂g(/)

∂/

∫
Dz�K

m�−1
�−1

∂K�−1

∂/
. (B.7)

We calculate the derivative in the second term of ∂K�/∂q�+1 as follows:

∂

∂/

{
K
m�−1
�−1

∂K�−1

∂/

}
= M�−1

∂

∂/

{
K
m�−1
�−1 K�−1ψ�−1

}
= M�−1

{
(m� − 1)Km�−2

�−1

∂K�−1

∂/
K�−1ψ�−1 + Km�−1

�−1

∂

∂/
(K�−1ψ�−1)

}

= M�−1

{
(m� − 1)Km�

�−1M�−1ψ
2
�−1 + Km�−1

�−1

∂

∂/
(K�−1ψ�−1)

}
.

Upon using formula (B.3) we arrive at

M−1
�−1

∂

∂/

{
K
m�−1
�−1

∂K�−1

∂/

}
= (m� − 1)Km�

�−1M�−1ψ
2
�−1

+Km�

�−1


1 +

�−1∑
j=1

Mj−1(mj − 1)
〈 · · · 〈ψ2

j−1

〉
j
· · · 〉

�−1


 .

Hence

K−1
�

∫
Dz�

∂

∂/

{
K
m�−1
�−1

∂K�−1

∂/

}
= M�−1


1 +

�∑
j=1

Mj−1(mj − 1)
〈 · · · 〈ψ2

j−1

〉
j
· · · 〉

�




= M�−1J�

K−1
�

∂K�

∂q�+1
= m�

K�

βπ�+1

2

{
z�+1

(
∂/

∂z�+1

)−1

K�M�−1〈ψ�−1〉� −K�M�−1J�

}

= βπ�+1

2
M�−1m�

{
z�+1

(
∂/

∂z�+1

)−1

ψ� − J�

}
. (B.8)

Appendix C. Condition for second-order SG�−1 → SG� transitions

In this appendix we derive the condition for the second-order transition SG�−1 to SG�, for
arbitrary values of 1 � � � L. We generalize our previous notational conventions, and write
the general saddle-point equations as

q� = ϕ�(q1, . . . , qL) (� = 1, . . . , L).

Similarly we define, for 1 � k � �:

ϕ
(�)
k (q1, . . . , qL) = 〈· · · 〈ψ2

k−1

〉
k
· · ·〉

�
.
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Note that, with these conventions, ϕk(q1, . . . , qL) = 〈 · · · 〈ϕ(�)k 〉
�+1 · · · 〉

L
. The second-order

SG�−1 → SG� transition temperature is defined by

∂ϕ
(�)
�

∂q�

∣∣∣∣
(q�−1>0;q�=q�+1=···=qL=0)

= 1. (C.1)

We can write ϕ
(�)
� (q1, . . . , qL) as ϕ

(�)
� = K−1

�

∫
Dz�K

m�

�−1ψ
2
�−1 = 〈

ψ2
�−1

〉
�
, with ψ�−1 =

〈· · · 〈tanh/〉1 · · ·〉�−1. From this expression we obtain

∂ϕ
(�)
�

∂q�
= − 1

K�

∂K�

∂q�
ϕ
(�)
� +

1

K�

∫
Dz�

∂

∂q�

[
K
m�

�−1ψ
2
�−1

]
= − 1

K�

∂K�

∂q�
ϕ
(�)
� +

m� − 2

K�

∫
Dz�K

m�−3
�−1

∂K�−1

∂q�
(K�−1ψ�−1)

2

+
2

K�

∫
Dz�K

m�−1
�−1 ψ�−1

∂

∂q�
[K�−1ψ�−1]

= − 1

K�

∂K�

∂q�
ϕ
(�)
� +

m� − 2

K�

∫
Dz�K

m�−3
�−1

∂K�−1

∂q�
[K�−1ψ�−1]2

+
2

K�

∫
Dz�K

m�−1
�−1 ψ�−1

∫
Dz�−1

∂/

∂q�

∂

∂/

[
K
m�−1

�−2 ψ�−2
]

= − 1

K�

∂K�

∂q�
ϕ
(�)

� +
m� − 2

K�

∫
Dz�K

m�−3
�−1

∂K�−1

∂q�
[K�−1ψ�−1]2

+
βπ�

K�

∫
Dz�

{(
∂/

∂z�

)−1
∂

∂z�

(
K
m�−1
�−1 ψ�−1

)} ∫
Dz�−1

∂

∂/

[
K
m�−1
�−2 ψ�−2

]

= − 1

K�

∂K�

∂q�
ϕ
(�)
� +

m� − 2

K�

∫
Dz�K

m�−3
�−1

∂K�−1

∂q�
[K�−1ψ�−1]2

+
βπ�

K�

∫
Dz�

{
(m� − 2)Km�−2

�−1

∂K�−1

∂/
ψ�−1 +Km�−2

�−1

∂

∂/
(K�−1ψ�−1)

}

× ∂

∂/
[K�−1ψ�−1]

= − 1

K�

∂K�

∂q�
ϕ
(�)

� + (m� − 2)

〈
K−1
�−1

∂K�−1

∂q�
ψ2
�−1

〉
�

+ βπ�(m� − 2)

〈
K−2
�−1

∂K�−1

∂/
ψ�−1

∂

∂/
(K�−1ψ�−1)

〉
�

+ βπ�

〈
K−2
�−1

{
∂

∂/
[K�−1ψ�−1]

}2
〉
�

.

For � > 1 this reduces to

∂ϕ
(�)
�

∂q�
= − 1

K�

∂K�

∂q�
ϕ
(�)
� + βπ�(m� − 2)

〈
1

K�−1

∂K�−1

∂/
ψ�−1J�−1

〉
�

+ βπ�
〈
J 2
�−1

〉
�

+ (m� − 2)
βπ�

2K�

m�−1

∫
Dz�

{
∂

∂/

[
K
m�−1
�−1 ψ2

�−1

]} ∫
Dz�−1K

m�−1−1
�−2

∂K�−2

∂/

= − 1

K�

∂K�

∂q�
ϕ
(�)

� + βπ�(m� − 2)

〈
1

K�−1

∂K�−1

∂/
ψ�−1J�−1

〉
�

+ βπ�
〈
J 2
�−1

〉
�

+ (m� − 2)
βπ�

2
m�−1

〈{
(m� − 3)

1

K�−1

∂K�−1

∂/
ψ2
�−1
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+ 2ψ�−1
1

K�−1

∂

∂/
(K�−1ψ�−1)

} 〈
1

K�−2

∂K�−2

∂/

〉
�−1

〉
�

= − 1

K�

∂K�

∂q�
ϕ
(�)
� + βπ�(m� − 2)M�−1

〈
ψ2
�−1J�−1

〉
�

+ βπ�
〈
J 2
�−1

〉
�

+ (m� − 2)
βπ�

2
m�−1

〈{
(m� − 3)M�−1ψ

3
�−1 + 2ψ�−1J�−1

} 〈M�−2ψ�−2〉�−1
〉
�

= βπ�

2

{
−M�M�−1(m� − 1)

(
ϕ
(�)
�

)2
+ 2(m� − 2)m�−1M�−2

〈
ψ2
�−1J�−1

〉
�

+ (m� − 2)m�−1M�−2(m� − 3)M�−1
〈
ψ4
�−1

〉
�

+ 2(m� − 2)M�−1
〈
ψ2
�−1J�−1

〉
�

+ 2
〈
J 2
�−1

〉
�

}
= βπ�

2

{
−M�M�−1(m� − 1)

(
ϕ
(�)

�

)2
+ 4(m� − 2)M�−1

〈
ψ2
�−1J�−1

〉
�

+ (m� − 2)m�−1M�−2(m� − 3)M�−1
〈
ψ4
�−1

〉
�

+ 2
〈
J 2
�−1

〉
�

}
(C.2)

whereas for � = 1 one finds

∂ϕ
(1)
1

∂q1
= − 1

K1

∂K1

∂q1
ϕ
(1)
1 +

1

K1

∫
Dz1

∂

∂q1

[
K
m1
0 tanh2 /

]
= − 1

K1

∂K1

∂q1
ϕ
(1)
1 +

1

K1

∫
Dz1

βπ1

2
z1(∂//∂z1)

−1 ∂

∂/

[
K
m1
0 tanh2 /

]
= − 1

K1

∂K1

∂q1
ϕ
(1)
1 +

βπ1

2

1

K1

∫
Dz1

∂2

∂/2

[
K
m1
0 tanh2 /

]
.

The second derivative of Km1
0 tanh2 / is given by

∂2

∂/2

[
K
m1
0 tanh2 /

] = ∂

∂/

[
(m1 − 2) coshm1 − 3/ sinh3 / + 2 coshm1−1 / sinh/

]
= coshm1 /

[
(m1 − 2)(m1 − 3) tanh4 / + (5m1 − 8) tanh2 / + 2

]
.

Inserting this expression, and using (B.6), we now arrive at

∂ϕ
(1)
1

∂q1
= βπ1

2

{
−m1(m1 − 1)

(
ϕ
(1)
1

)2
+ (m1 − 2)(m1 − 3)〈tanh4 /〉1

+ 4(m1 − 2)ϕ(1)1 + 2

}
. (C.3)

Finally we note that the property q� = 0 induces the simplifying relations ϕ(�)� = ψ�−1 = 0,
with which expressions (C.2) and (C.3) leads to

∂ϕ
(�)
�

∂q�

∣∣∣∣
(q�−1>0;q�=q�+1=···=qL=0)

= βπ�J
2
�−1.

Together with (B.3) we can now work out the condition (C.1) for the second-order
SG�−1 → SG� transition explicitly, giving the final result

√
βπ�

{
1 +

�−1∑
k=1

Mk−1(mk − 1)qk

}
= 1. (C.4)
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Appendix D. Derivation of partial derivatives for L = 2 and L = 3

In this appendix we will find it convenient to use the following abbreviations:

ϕ1(q1, q2, q2) = 〈〈〈tanh2 /〉1
〉
2

〉
3

ϕ2(q1, q2, q3) = 〈〈 〈tanh/〉2
1

〉
2

〉
3

ϕ3(q1, q1, q3) = 〈〈〈tanh/〉1〉2
2

〉
3

(these are the right-hand sides of the L = 3 saddle-point equations for {q1, q2, q3}),
ϕ
(1)
1 (q1, q2, q3) = 〈tanh2 /〉1 ϕ

(2)
1 (q1, q2, q3) = 〈〈tanh2 /〉1

〉
2

ϕ
(1)
2 (q1, q2, q3) = 〈tanh/〉2

1 ϕ
(2)
2 (q1, q2, q3) = 〈〈tanh/〉2

1

〉
2

ϕ
(2)
3 (q1, q2, q3) = 〈〈tanh/〉1〉2

2

and also ψ� = 〈· · · 〈tanh/〉1 · · ·〉�. Note that
〈
ϕ
(1)
k

〉
2 = ϕ

(2)
k , ϕk = 〈

ϕ
(2)
k

〉
3 (k = 1, 2, 3),

ψ2
1 = ϕ

(1)
2 and ψ2

2 = ϕ
(2)
3 . Further notation is as in sections 4 and 5 and appendix C.

Appendix D.1. Building blocks of the partial derivatives

First, we calculate the derivative ∂ϕ(1)1 (q1, q2, q3)/∂q1. From (C.3) we obtain

∂ϕ
(1)
1

∂q1
= βπ1

2

{
2 −m1(m1 − 1)

(
ϕ
(1)
1

)2
+ (m1 − 2)(m1 − 3)〈tanh4 /〉1 + 4(m1 − 2)ϕ(1)1

}
.

(D.1)

Next is ∂ϕ(2)2 (q1, q2, q3)/∂q2. Equation (C.2) with k = 2 can be simplifid by using (B.3):

∂ϕ
(2)
2

∂q2
= βπ2

2

{
−M2m1(m2 − 1)

(
ϕ
(2)
2

)2
+m2

1(m2 − 2)(m2 − 3)
〈
ψ4

1

〉
2

+ 4m1(m2 − 2)
〈
ψ2

1J1
〉
2 + 2

〈
J 2

1

〉
2

}
= βπ2

2

{
−m2

1m2(m2 − 1)
(
ϕ
(2)
2

)2
+m2

1(m2 − 2)(m2 − 3)
〈
ψ4

1

〉
2

+ 4m1(m2 − 2)ϕ(2)2 + 4m1(m1 − 1)(m2 − 2)
〈
ψ2

1 〈tanh2 /〉1
〉
2

+ 2 + 4(m1 − 1)ϕ(2)1 + 2(m1 − 1)2
〈〈tanh2 /〉2

1

〉
2

}
. (D.2)

The third partial derivative which we will need is

∂ϕ
(2)
1

∂q1
= − 1

K2

∂K2

∂q1
ϕ
(2)
1 +

1

K2

∫
Dz2

∂

∂q1

(
K
m2
1 〈tanh2 /〉1

)
= − 1

K2

∂K2

∂q1
ϕ
(2)
1 +

m2

K2

∫
Dz2K

m2−1
1

∂K1

∂q1
〈tanh2 /〉1 +

〈
∂

∂q1
〈tanh2 /〉1

〉

= − 1

K2

∂K2

∂q1
ϕ
(2)
1 +m2

〈
1

K1

∂K1

∂q1
〈tanh2 /〉1

〉
2

+

〈
∂ϕ

(1)
1

∂q1

〉
2

.

The last term in this expression is found to be〈
∂ϕ

(1)
1

∂q1

〉
2

= βπ1

2

{
−m1(m1 − 1)

〈〈tanh2 /〉2
1

〉
2

+ (m1 − 2)(m1 − 3)
〈〈tanh4 /〉1

〉
2 + 4(m1 − 2)ϕ(2)1 + 2

}
.
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Thus

∂ϕ
(2)
1

∂q1
= βπ1

2

{
4(m1 − 2)ϕ(2)1 + 2 −M2ϕ

(2)
1 − (m1 − 1)M2

(
ϕ
(2)
1

)2

+m1m2
〈[

1 + (m1 − 1)〈tanh2 /〉1
] 〈tanh2 /〉1

〉
2

−m1(m1 − 1)
〈〈tanh2 /〉2

1

〉
2 + (m1 − 2)(m1 − 3)

〈〈tanh4 /〉1
〉
2

+ (m1 − 2)(m1 − 3)
〈〈tanh4 /〉1

〉
2 + 4(m1 − 2)ϕ(2)1 + 2

}
. (D.3)

Similarly we calculate the fourth relevant partial derivative:

∂ϕ
(2)
1

∂q2
= − 1

K2

∂K2

∂q2
ϕ
(2)
1 +

1

K2

∫
Dz2

∂

∂q2

[
K
m2−1
1

∫
Dz1 coshm1 / tanh2 /

]

= − 1

K2

∂K2

∂q2
ϕ
(2)
1 + (m2 − 1)

1

K2

∫
Dz2K

m2−2
1

∂K1

∂q2
K1〈tanh2 /〉1

+
1

K2

∫
Dz2K

m2−1
1

∫
Dz1

∂

∂q2
[coshm1 / tanh2 /]

= − βπ2

2
m2

1m2(m2 − 1)
〈
ψ2

1

〉
2 ϕ

(2)
1 + (m2 − 1)

βm1π2

2K2

∫
Dz2

× ∂

∂/
[Km2−1

1 〈tanh2 /〉1]
∫

Dz1 coshm1−1 /
∂K0

∂/

+
1

K2

∫
Dz2K

m2−1
1

βπ2

2

∫
Dz1

(
z2

a2
− z1

a1

)
∂

∂/
(coshm1 / tanh2 /)

= βπ2

2

{
1

K2

∫
Dz2

∂K
m2−1
1

∂/

∂

∂/

[
K1〈tanh2 /〉1

] −m2
1m2(m2 − 1)ϕ(2)2 ϕ

(2)
1

+ (m2 − 1)
m1

K2

∫
Dz2K1ψ1

∂

∂/

[
K
m2−1
1 〈tanh2 /〉1

]}
.

In this expression we need to calculate the following two objects:

∂

∂/

[
K
m2−1
1 〈tanh2 /〉1

] = ∂

∂/

[
K
m2−2
1 K1〈tanh2 /〉1

]
= (m2 − 2)

∂K1

∂/
K
m2−3
1 K1〈tanh2 /〉1 +Km2−2

1

∂

∂/

[
K1〈tanh2 /〉1

]
= K

m1
2

{
(m2 − 2)m1ψ1K

−1
1 〈tanh2 /〉1 +K−2

1

∂

∂/

[
K1〈tanh2 /〉1

]}

∂

∂/

[
K1〈tanh2 /〉1

] = K1
[
(m1 − 2)〈tanh3 /〉1 + 2〈tanh/〉1

]
.

Insertion of these intermediate results into our previous expression for ∂ϕ(2)1 /∂q2 gives

∂ϕ
(2)
1

∂q2
= βπ2

2
m1(m2 − 1)

{
−m1m2ϕ

(2)
2 ϕ

(2)
1 +m1(m2 − 2)

〈
ψ2

1 〈tanh2 /〉1
〉
2

+ 2
〈
ψ1

(
(m1 − 2)〈tanh3 /〉1 + 2〈tanh/〉1

)〉
2

}
= βπ2

2
m1(m2 − 1)

{
−m1m2ϕ

(2)
2 ϕ

(2)
1 +m1(m2 − 2)

〈
ψ2

1 〈tanh2 /〉1
〉
2

+ 2(m1 − 2)
〈
ψ1〈tanh3 /〉1

〉
2 + 4ϕ(2)2

}
. (D.4)
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From this last result one immediately obtains also the remaining partial derivative

∂ϕ
(2)
2

∂q1
= α1

α2

∂ϕ
(2)
1

∂q2
= π1(m1 − 1)

π2m1(m2 − 1)

∂ϕ
(2)
1

∂q2

= βπ1

2
(m1 − 1)

{
−m1m2ϕ

(2)
1 ϕ

(2)
2 +m1(m2 − 2)

〈
ψ2

1 〈tanh2 /〉1
〉
2

+ 2(m1 − 2)
〈
ψ1〈tanh3 /〉1

〉
2 + 4ϕ(2)2

}
(D.5)

where αl = βπ�
2 M�−1(m� − 1).

Appendix D.2. Partial derivatives of the saddle-point equations

Here we calculate all partial derivatives of the form ∂ϕ�(q1, q2, q3)/∂q�′ , with �, �′ ∈ {1, 2, 3},
which play a role in our analysis of the L ∈ {2, 3} saddle-point equations.

Calculation of ∂ϕ3/∂q3: Starting from the general formula (C.2)
∂ϕ3

∂q3
= βπ3

2

{−M3M2(m3 − 1)ϕ2
3 + (m3 − 2)m2m1(m3 − 3)M2

〈
ψ4

2

〉
3

+ 4(m3 − 2)M2
〈
ψ2

2J2
〉
3 + 2

〈
J 2

2

〉
3

}
we derive
∂ϕ3

∂q3
= βπ3

2

{
−M3M2(m3 − 1)ϕ2

3 + (m3 − 2)m2m1(m3 − 3)M2
〈
ψ4

2

〉
3

+ 4(m3 − 2)M2
(〈
ψ2

2

〉
3 + (m1 − 1)

〈
ψ2

2

〈〈tanh2 /〉1
〉
2

〉
3

+ m1(m2 − 1)
〈
ψ2

2

〈
ψ2

1

〉
2

〉
3

)
+ 2

〈(
1 + (m1 − 1)

〈〈
ψ2

0

〉
1

〉
2 + m1(m2 − 1)

〈
ψ2

1

〉
2

)2〉
3

}

= βπ3

2

{
−M3M2(m3 − 1)ϕ2

3 + (m3 − 2)m2m1(m3 − 3)M2
〈
ψ4

2

〉
3

+ 4(m3 − 2)M2
(
ϕ3 + (m1 − 1)〈ψ2

2

〈〈tanh2 /〉1〉2
〉
3

+m1(m2 − 1)
〈
ψ2

2

〈
ψ2

1

〉
2

〉
3

)
+ 2 + 4(m1 − 1)ϕ1 + 4m1(m2 − 1)ϕ2

+ 2(m1 − 1)2
〈 (〈〈tanh2 /〉1

〉
2

)2 〉
3 + 2m2

1(m2 − 1)2
〈 (〈
ψ2

1

〉
2

)2 〉
3

+ 4m1(m1 − 1)(m2 − 1)
〈〈〈tanh2 /〉1〉2

〈
ψ2

1

〉
2

〉
3

}
. (D.6)

Calculation of ∂ϕ3/∂q1:
∂ϕ3

∂q1
= − 1

K3

∂K3

∂q1
ϕ3 +

1

K3

∫
Dz3

∂

∂q1

(
K
m3
2 ψ2

2

)
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K3

∂K3
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K3

∫
Dz3K

m3−3
2

∂K2

∂q1
(K2ψ2)

2

+
2

K3

∫
Dz3K

m3−1
2 ψ2

∂

∂q1
(K2ψ2)

= − 1

K3

∂K3

∂q1
ϕ3 +

m3 − 2

K3

∫
Dz3K

m3−3
2

∂K2

∂q1
(K2ψ2)

2

+
2(m2 − 1)

K3

∫
Dz3K

m3−1
2 ψ2

∫
Dz2K

m2−2
1

∂K1

∂q1
K1ψ1
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+
2

K3

∫
Dz3K

m3−1
2 ψ2

∫
Dz2K

m2−1
1

∂

∂q1
(K1ψ1)

= − 1

K3

∂K3

∂q1
ϕ3 +

m3 − 2

K3

∫
Dz3K

m3−3
2

∂K2

∂q1
(K2ψ2)

2

+
2(m2 − 1)

K3

∫
Dz3K

m3−1
2 ψ2

∫
Dz2K

m2−2
1

∂K1

∂q1
K1ψ1

+
βπ2

2

2

K3

∫
Dz3K

m3−1
2 ψ2

∫
Dz2K

m2−1
1

∫
Dz1z1(∂//∂z1)

−1 ∂

∂/

(
K
m1
0 ψ0

)
= − 1

K3

∂K3

∂q1
ϕ3 + (m3 − 2)

〈
1

K2

∂K2

∂q1
ψ2

2

〉
3

+ 2(m2 − 1)

〈
ψ2

〈
1

K1

∂K1

∂q1
ψ1

〉
2

〉
3

+
βπ1

2

2

K3

∫
Dz3K

m3−1
2 ψ2

∫
Dz2K

m2−1
1

∫
Dz1

∂2

∂/2

(
K
m1
0 ψ0

)
= − 1

K3

∂K3

∂q1
ϕ3 + (m3 − 2)

〈
1

K2

∂K2

∂q1
ψ2

2

〉
3

+ 2(m2 − 1)

〈
ψ2

〈
1

K1

∂K1

∂q1
ψ1

〉
2

〉
3

+
βπ1

2
2

〈
ψ2

〈
1

K1

∂2

∂/2
(K1〈ψ0〉1)

〉
2

〉
3

.

The second derivative ∂2(K1〈ψ0〉1)/∂/
2 in this expression is calculated as

∂2

∂/2
(K1〈ψ0〉1) =

∫
Dz1

∂2

∂/2

[
coshm1−1 / sinh/

]
=

∫
Dz1

[
(m1 − 1)(m1 − 2) coshm1−3 / sinh3 /

+ (3m1 − 2) coshm1−1 / sinh/
]

= K1
(
(m1 − 1)(m1 − 2)〈tanh3 /〉1 + (3m1 − 2)ψ1

)
.

Insertion into our previous expression for ∂ϕ3/∂q1 gives
∂ϕ3

∂q1
= − 1

K3

∂K3

∂q1
ϕ3 + (m3 − 2)

〈
1

K2

∂K2

∂q1
ψ2

2

〉
3

+ 2(m2 − 1)

〈
ψ2

〈
1

K1

∂K1

∂q1
ψ1

〉
2

〉
3

+
βπ1

2

{
2(m1 − 1)(m1 − 2)

〈
ψ2

〈〈tanh3 /〉1
〉
2

〉
3 + 2(3m1 − 2)〈ψ2〈ψ1〉2〉3

}
.

Upon using our previous result (B.6) of appendix B, this subsequently translates into
∂ϕ3

∂q1
= βπ1

2

{
−M3ϕ3 −M3(m1 − 1)ϕ1ϕ3 + (m3 − 2)M2

〈
ψ2

2

〉
3

+ (m1 − 1)(m3 − 2)M2
〈
ϕ
(2)
1 ψ2

2

〉
3

+ 2m1(m2 − 1)〈ψ2〈ψ1〉2〉3 + 2m1(m1 − 1)(m2 − 1)〈ψ2〈〈tanh2 /〉1ψ1〉2〉3

+ 2(m1 − 1)(m1 − 2)
〈
ψ2

〈〈tanh3 /〉1
〉
2

〉
3

+ 2(3m1 − 2)〈ψ2〈ψ1〉2〉3

}
= βπ1

2
(m1 − 1)

{
4ϕ3 −M3ϕ1ϕ3 + (m3 − 2)M2

〈
ϕ
(2)
1 ψ2

2

〉
3

+ 2m1(m2 − 1)
〈
ψ2

〈〈tanh2 /〉1ψ1
〉
2

〉
3

+ 2(m1 − 2)
〈
ψ2

〈〈tanh3 /〉1
〉
2

〉
3

}
. (D.7)

Calculation of ∂ϕ3/∂q2:
∂ϕ3

∂q2
= − 1

K3

∂K3

∂q2
ϕ3 +

1

K3

∫
Dz3

∂

∂q2

(
K
m3
2 ψ2

2

)
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= − 1

K3

∂K3

∂q2
ϕ3 +

m3 − 2

K3

∫
Dz3K

m3−3
2

∂K2

∂q2
(K2ψ2)

2

+
2

K3

∫
Dz3K

m3−1
2 ψ2

∫
Dz2

∂

∂q2

(
K
m2−1
1 K1ψ1

)
= − 1

K3

∂K3

∂q2
ϕ3 +

m3 − 2

K3

∫
Dz3K

m3−3
2

∂K2

∂q2
(K2ψ2)

2

+
2(m2 − 1)

K3

∫
Dz3K

m3−1
2 ψ2

∫
Dz2K

m2−2
1

∂K1

∂q2
K1ψ1

+
βπ2

2

2

K3

∫
Dz3K

m3−1
2 ψ2

∫
Dz2

∂K
m2−1
1

∂/

∫
Dz1

∂

∂/

(
K
m1
0 ψ0

)
= − 1

K3

∂K3

∂q2
ϕ3 +

m3 − 2

K3

∫
Dz3K

m3−3
2

∂K2

∂q2
(K2ψ2)

2

+
2(m2 − 1)

K3

∫
Dz3K

m3−1
2 ψ2

∫
Dz2K

m2−2
1

∂K1

∂q2
K1ψ1

+
βπ2

2

2

K3

∫
Dz3K

m3−1
2 ψ2

∫
Dz2(m2 − 1)Km2−2

1

∂K1

∂/
K1J1

= − 1

K3

∂K3

∂q2
ϕ3 + (m3 − 2)

〈
1

K2

∂K2

∂q2
ψ2

2

〉
3

+ 2(m2 − 1)

〈
ψ2

〈
1

K1

∂K1

∂q2
ψ1

〉
2

〉
3

+
βπ2

2
2m1(m2 − 1)〈ψ2〈ψ1J1〉2〉3.

Here we require the following object:〈
1

K1

∂K1

∂q2
ψ1

〉
2

= 1

K2

∫
Dz2K

m2−1
1 ψ1

∂K1

∂q2

= 1

K2
m1

βπ2

2

∫
Dz2

{
∂

∂/

[
K
m2−1
1 ψ1

]} ∫
Dz1K

m1−1
0

∂K0

∂/

= 1

K2
m1

βπ2

2

∫
Dz2K

m2
1

[
(m2 − 2)

1

K1

∂K1

∂/

1

K1
ψ1 +

1

K1

∂

∂/
(K1ψ1)

1

K1

]

×
∫

Dz1K
m1
0 tanh/

= m1
βπ2

2

〈[
(m2 − 2)

1

K1

∂K1

∂/
ψ1 +

1

K1

∂

∂/
(K1ψ1)

]
ψ1

〉
2

= m1
βπ2

2

[
m1(m2 − 2)

〈
ψ3

1

〉
2 + 〈J1ψ1〉2

]
.

Insertion into our earlier expression for ∂ϕ3/∂q2, followed by usage of (B.5)–(B.8) whenever
appropriate, allows us to write

∂ϕ3

∂q2
= − 1

K3

∂K3

∂q2
ϕ3 + (m3 − 2)

〈
1

K2

∂K2

∂q2
ψ2

2

〉
3

+ 2m1(m2 − 1)
βπ2

2

〈
ψ2

{
m1(m2 − 2)

〈
ψ3

1

〉
2 + 〈J1ψ1〉2

}〉
3

+
βπ2

2
2m1(m2 − 1)〈ψ2〈ψ1J1〉2〉3

= − 1

K3

∂K3

∂q2
ϕ3 + (m3 − 2)

〈
1

K2

∂K2

∂q2
ψ2

2

〉
3



Hierarchical self-programming in recurrent neural networks 2807

+ 2m2
1(m2 − 1)(m2 − 2)

βπ2

2

〈
ψ2

〈
ψ2

1

〉
2

〉
3

+
βπ2

2
4m1(m2 − 1)

{〈ψ2〈ψ1〉3〉3 + (m1 − 1)
〈
ψ2

〈
ψ1〈tanh2 /〉1

〉
2

〉
3

}
= βπ2

2
(m2 − 1)

{
−M3m1ϕ2ϕ3 +M2m1(m3 − 2)

〈〈
ψ2

1

〉
2 ψ

2
2

〉
3

+ 2m2
1(m2 − 2)

〈
ψ2

〈
ψ3

1

〉
2

〉
3

+ 4m1ϕ3 + 4m1(m1 − 1)
〈
ψ2

〈
ψ1〈tanh2 /〉1

〉
2

〉
3

}
. (D.8)

Calculation of ∂ϕ1/∂q3 and ∂ϕ2/∂q3: These two partial derivatives are found to be relatively
easy to calculate:

∂ϕ1

∂q3
= α3

α1

∂ϕ3

∂q1
= π3M2(m3 − 1)

π1(m1 − 1)

∂ϕ3

∂q1

= βπ3

2
M2(m3 − 1)

{
4ϕ3 −M3ϕ1ϕ3 + (m3 − 2)M2

〈
ϕ
(2)
1 ψ2

2

〉
3

+ 2m1(m2 − 1)
〈
ψ2

〈〈tanh2 /〉1ψ1
〉
2

〉
3

+ 2(m1 − 2)
〈
ψ2

〈〈tanh3 /〉1
〉
2

〉
3

}
(D.9)

∂ϕ2

∂q3
= α3

α2

∂ϕ3

∂q2
= π3M2(m3 − 1)

π2M1(m2 − 1)

∂ϕ3

∂q2

= βπ3

2
m2(m3 − 1)

{
−M3m1ϕ2ϕ3 +M2m1(m3 − 2)

〈〈
ψ2

1

〉
2 ψ

2
2

〉
3

+ 4m1ϕ3

+ 2m2
1(m2 − 2)

〈
ψ2

〈
ψ3

1

〉
2

〉
3

+ 4m1(m1 − 1)
〈
ψ2

〈
ψ1〈tanh2 /〉1

〉
2

〉
3

}
. (D.10)

Calculation of ∂ϕ2/∂q1 and ∂ϕ1/∂q2:

∂ϕ1

∂q2
= − 1

K3

∂K3

∂q2
ϕ1 +

1

K3

∫
Dz3

∂

∂q2

(
K
m3
2 ϕ

(2)
1

)

= − 1

K3

∂K3

∂q2
ϕ1 +m3

1

K3

∫
Dz3

1

K2

∂K2

∂q2
K
m3
2 ϕ

(2)
1 +

1

K3

∫
Dz3K

m3
2

∂ϕ
(2)
1

∂q2

= −βπ2

2
M3m1(m2 − 1)ϕ1ϕ2 +m3

〈
1

K2

∂K2

∂q2
ϕ
(2)
1

〉
3

+

〈
∂ϕ

(2)
1

∂q2

〉
3

= βπ2

2
M3m1(m2 − 1)

(
−ϕ1ϕ2 +

〈
ϕ
(2)
1 ϕ

(2)
2

〉
3

)
+

〈
βπ2

2
m1(m2 − 1)

{
−m1m2ϕ

(2)
1 ϕ

(2)
2 +m1(m2 − 2)

〈
ψ2

1 〈tanh2 /〉1
〉
2

+ 2(m1 − 2)
〈
ψ1〈tanh3 /〉1

〉
2 + 4ϕ(2)2

}〉
3

= βπ2

2
m1(m2 − 1)

{
−M3ϕ1ϕ2 + m1m2(m3 − 1)

〈
ϕ
(2)
1 ϕ

(2)
2

〉
3 + 4ϕ2

+m1(m2 − 2)
〈〈
ψ2

1 〈tanh2 /〉1
〉
2

〉
3

+ 2(m1 − 2)
〈〈
ψ1〈tanh3 /〉1

〉
2

〉
3

}
. (D.11)
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From this result, in turn, immediately follows

∂ϕ2

∂q1
= α1

α2

∂ϕ1

∂q2
= π1(m1 − 1)

π2m1(m2 − 1)

∂ϕ1

∂q2

= βπ1

2
(m1 − 1)

{
−m1m2m3ϕ1ϕ2 +m1m2(m3 − 1)

〈
ϕ
(2)
1 ϕ

(2)
2

〉
3 + 4ϕ2

+ m1(m2 − 2)
〈〈
ψ2

1 〈tanh2 /〉1
〉
2

〉
3

+ 2(m1 − 2)
〈〈
ψ1〈tanh3 /〉1

〉
2

〉
3

}
. (D.12)

Calculation of ∂ϕ1/∂q1 and ∂ϕ2/∂q2: Finally, let us turn to the remaining two partial
derivatives, ∂ϕ1/∂q1 and ∂ϕ2/∂q2:

∂ϕ1

∂q1
= − 1

K3

∂K3

∂q1
ϕ1 +

1

K3

∫
Dz3

∂

∂q1

[
K
m3
2 ϕ

(2)
1

]

= − 1

K3

∂K3

∂q1
ϕ1 +

m3

K3

∫
Dz3K

m3−1
2

∂K2

∂q1
ϕ
(2)
1 +

〈
∂ϕ

(2)
1

∂q1

〉
3

= βπ1

2

{
−M3 {1 + (m1 − 1)ϕ1} ϕ1 +M3

〈{
1 + (m1 − 1)ϕ(2)1

}
ϕ
(2)
1

〉
3

− (m1 − 1)M2

〈(
ϕ
(2)
1

)2
〉

3

+m1(m1 − 1)(m2 − 1)
〈〈〈tanh2 /〉2

1

〉
2

〉
3

+ (m1 − 2)(m1 − 3)
〈〈〈tanh4 /〉1

〉
2

〉
3

+ 4(m1 − 2)
〈
ϕ
(2)
1

〉
3

+ 2
}

= βπ1

2

{
−(m1 − 1)M3(ϕ1)

2 + (m1 − 1)M2(m3 − 1)

〈(
ϕ
(2)
1

)2
〉

3

+ m1(m1 − 1)(m2 − 1)
〈〈〈tanh2 /〉2

1

〉
2

〉
3

+ (m1 − 2)(m1 − 3)
〈〈〈tanh4 /〉1

〉
2

〉
3

+ 4(m1 − 2)ϕ1 + 2

}
(D.13)

where we use (D.3), and, similarly, using (D.2)

∂ϕ2

∂q2
= − 1

K3

∂K3

∂q2
ϕ2 +

1

K3

∫
Dz3

∂

∂q2

(
K
m3
2 ϕ

(2)
2

)

= −βπ2

2
M3m1(m2 − 1)(ϕ2)

2 +m3

〈
βπ2

2
M2m1(m2 − 1)ϕ(2)2 ϕ

(2)
2

〉
3

+
〈βπ1

2

{
−m2

1m2(m2 − 1)
(
ϕ
(2)
2

)2
+ m2

1(m2 − 2)(m2 − 3)
〈
ψ4

1

〉
2

+ 4m1(m2 − 2)ϕ(2)2 + 4m1(m1 − 1)(m2 − 2)
〈
ψ2

1 〈tanh2 /〉1
〉
2

+ 2 + 4(m1 − 1)ϕ(2)1 + 2(m1 − 1)2
〈〈tanh2 /〉2

1

〉
2

}〉
3

= βπ2

2

{
−M3m1(m2 − 1)(ϕ2)

2 +m2
1m2(m2 − 1)(m3 − 1)

〈(
ϕ
(2)
2

)2
〉

3

+ m2
1(m2 − 2)(m2 − 3)

〈〈
ψ4

1

〉
2

〉
3

+ 4m1(m2 − 2)ϕ2 + 4m1(m1 − 1)(m2 − 2)
〈〈
ψ2

1 〈tanh2 /〉1
〉
2

〉
3

+ 2 + 4(m1 − 1)ϕ1 + 2(m1 − 1)2
〈〈〈tanh2 /〉2

1

〉
2

〉
3

}
. (D.14)
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