# CORRECTIONS to STATISTICAL DYNAMICS

Imperial College Press, 1995, by R. F. Streater

Page 4, line 10 should be
S(p)=-\sum_\omega p(\omega)\log p(\omega).

Page 22, line -10 should be
"For any $N$ complex numbers..."

Page 23, line 2 should be
"...\frac{\partial^n}{\partial x^n}{\cal F}(x)..."

Page 23, last line: delete "see Exercise (2.61)"

Page 26, line 16 should add
"\langle p,{\cal M}_1^dF\rangle=" at the left-hand side of the equation.

Page 26, line 17 should say
$\Upsilon={\cal M}_1^d$, as claimed.

Page 27, line -3, should say
$F:\Omega\rightarrow {\bf R}$

Page 33, Ex. 2.49 should say
$\Lambda_1\cap\Lambda_2$

Page 35, Exercise 2.64: the norm here should be
$\|\bullet\|_\infty$

Page 49, line 9 should be
"called $\Psi$, or the Massieu potential."

Page 107 line 8 should say
$\frac{\partial}{\partial p_l}\left(2p_ke^{\beta{\cal E}_c(k)+\lambda\right) =2e^{\beta{\cal E}_c(k)}\delta_{kl}$

Page 107 line 21; insert
For simplicity, we denote ${\cal E}_c(j)$ by ${\cal E}_j$.

Page 107 line -7 should say
\sum_{ij}Z_\beta T_{cji}^\dagger e^{-\beta\epsilon_i}\left(e^{\beta\epsilon_j} q_j-e^{\beta\epsilon_i}p_i\right)^2\geq 0 (5.27)

Page 185, line 5 should be
$\psi_n=1 \otimes 1\ldots \otimes 1=(n!)^{-1/2}a^{*n}\psi_0=(n!)^{-1/2} \frac{\partial^n}{\partial\overline{z}^n}\exp\{a^*\overline{z}\}\psi_0|_ {\overline{z}=0}.$

Page 185, line 7 should be
$\rho\left(e^{az}e^{a^*\overline{z}}\right)=Z^{-1}\mbox{Tr}\,\exp\{-\beta \epsilon a^*a\}\exp(az}\exp(a^*\overline{z})$

Page 209, line 3 should say
${\cal E}_A={\cal E}_B+...$

Go to my book for the contents.