

Particle phenomenology with public tools

Florian Staub

CERN

School on Methods for String Phenomenology Florence, 19.-23. October 2015

Florian Staub 1 / 21

Outline

Public tools

SARAH and related tools

Practical part

Florian Staub 2 / 21

Spectrum Generators

Purpose

A spectrum generator calculates the mass spectrum of a SUSY model including (the most important) radiative corrections. Some tool make also predictions for decay widths and precision observables.

Florian Staub 3 / 21

Spectrum Generators

Purpose

A spectrum generator calculates the mass spectrum of a SUSY model including (the most important) radiative corrections. Some tool make also predictions for decay widths and precision observables.

- MSSM: Isajet, SoftSUSY, SPheno, Suspect
- NMSSM: NMSSMCALC, NMSSMTools, Next-to-minimal SoftSUSY

Florian Staub 3 / 21

Spectrum Generators

Purpose

A spectrum generator calculates the mass spectrum of a SUSY model including (the most important) radiative corrections. Some tool make also predictions for decay widths and precision observables.

- MSSM: Isajet, SoftSUSY, SPheno, Suspect
- NMSSM: NMSSMCALC, NMSSMTools, Next-to-minimal SoftSUSY

Main restriction

All information about a model is hardcoded and only very few models are supported.

Florian Staub 3 / 21

Monte Carlo tools

Purpose

MC tools can calculate decays, cross sections and generate events for lepton and hadron colliders. The output can be passed to hadronisation tools (Pythia) and detector simulations.

Florian Staub 4 / 21

Monte Carlo tools

Purpose

MC tools can calculate decays, cross sections and generate events for lepton and hadron colliders. The output can be passed to hadronisation tools (Pythia) and detector simulations.

► CalcHep, CompHep, Herwig, MadGraph, WHIZARD, ...

Florian Staub 4 / 21

Monte Carlo tools

Purpose

MC tools can calculate decays, cross sections and generate events for lepton and hadron colliders. The output can be passed to hadronisation tools (Pythia) and detector simulations.

► CalcHep, CompHep, Herwig, MadGraph, WHIZARD, ...

Models

MC tools are usually delivered with only very few models, but new models can be implemented via specific model files.

Florian Staub 4 / 21

Tools for Feynman rules

Purpose

Generate model files with all Feynman rules to implement a new model in MC and other tools

Florian Staub 5 / 21

Tools for Feynman rules

Purpose

Generate model files with all Feynman rules to implement a new model in MC and other tools

► FeynRules, LanHEP, SARAH

Florian Staub 5 / 21

Tools for Feynman rules

Purpose

Generate model files with all Feynman rules to implement a new model in MC and other tools

FeynRules, LanHEP, SARAH

Features

The challenge in implementing new models, the supported output formats, and the range of other information derived by these tools is very different.

Florian Staub 5 / 21

Tools for dark matter

Purpose

The tools calculate the dark matter relic density as well as different observables for direct and indirect detection.

Florian Staub 6 / 21

Tools for dark matter

Purpose

The tools calculate the dark matter relic density as well as different observables for direct and indirect detection.

DarkSUSY, MadDM, MicrOmegas, Superiso relic

Florian Staub 6 / 21

Tools for dark matter

Purpose

The tools calculate the dark matter relic density as well as different observables for direct and indirect detection.

DarkSUSY, MadDM, MicrOmegas, Superiso relic

Models

While in DarkSUSY the MSSM is hardcoded, the other tools make use of CalcHep, FeynArts respectively MadGraph and can handle many models in principle.

Florian Staub 6 / 21

Tools for other observables

Flavour tools

Predict rates of quark flavour violating observables ($b \to s\gamma$, $B_s \to l\bar{l}, \; \Delta M_{B_s}, \; \ldots$) in the MSSM or NMSSM

► Superiso, Susy_Flavor

Florian Staub 7 / 21

Tools for other observables

Flavour tools

Predict rates of quark flavour violating observables ($b \to s\gamma$, $B_s \to l\bar{l}, \Delta M_{B_s}, \ldots$) in the MSSM or NMSSM

Superiso, Susy_Flavor

Higgs tools

Check parameters points against Higgs searches at LEP, Tevatron and LHC.

► HiggsBounds, HiggsSignals

Florian Staub 7 / 21

Other tools

FeynArts/FormCalc

Can be used to calculate Feynman diagrams at tree- and loop-level.

Florian Staub 8 / 21

Other tools

FeynArts/FormCalc

Can be used to calculate Feynman diagrams at tree- and loop-level.

Vevacious

Checks the stability of the scalar potential at one-loop

Florian Staub 8 / 21

Other tools

FeynArts/FormCalc

Can be used to calculate Feynman diagrams at tree- and loop-level.

Vevacious

Checks the stability of the scalar potential at one-loop

Susyno, Pyr@te

Calculate the two-loop RGEs for SUSY and non-SUSY models.

Florian Staub 8 / 21

Main restrictions

Despite the large variety of tools, there are two main bottle necks in using them for non-minimal SUSY models:

► For MC tools, dark matter tools, FeynArts, ... the corresponding model files are needed

Florian Staub 9 / 21

Main restrictions

Despite the large variety of tools, there are two main bottle necks in using them for non-minimal SUSY models:

- ► For MC tools, dark matter tools, FeynArts, ... the corresponding model files are needed
- Extending spectrum generators and flavour tools is not possible for users with a reasonable amount of work

Florian Staub 9 / 21

Main restrictions

Despite the large variety of tools, there are two main bottle necks in using them for non-minimal SUSY models:

- ► For MC tools, dark matter tools, FeynArts, ... the corresponding model files are needed
- Extending spectrum generators and flavour tools is not possible for users with a reasonable amount of work

Both issues are addressed by SARAH.

Florian Staub 9 / 21

SARAH and related tools

Florian Staub 10 / 21

SARAH and supported models

SARAH

[FS,0806.0538,0909.2863,1002.0840,1207.0906,1309.7223,1503.04200]

SARAH is a Mathematica package to get from a minimal input all important properties of SUSY and non-SUSY models. Models are defined by

- gauge & global symmetries
- particle content
- (super)potential
- field rotations

Florian Staub 11 / 21

SARAH and supported models

SARAH

[FS,0806.0538,0909.2863,1002.0840,1207.0906,1309.7223,1503.04200]

SARAH is a Mathematica package to get from a minimal input all important properties of SUSY and non-SUSY models. Models are defined by

- gauge & global symmetries
- particle content
- (super)potential
- field rotations
- ▶ The gauge sector can be any product of U(1) & SU(N) groups
- Gauge kinetic mixing fully supported

Florian Staub 11 / 21

SARAH and supported models

SARAH

[FS,0806.0538,0909.2863,1002.0840,1207.0906,1309.7223,1503.04200]

SARAH is a Mathematica package to get from a minimal input all important properties of SUSY and non-SUSY models. Models are defined by

- gauge & global symmetries
- particle content
- (super)potential
- field rotations
- ▶ The gauge sector can be any product of U(1) & SU(N) groups
- ► Gauge kinetic mixing fully supported
- ► An arbitrary number of matter states is possible
- ► All irreducible representations are supported

Florian Staub 11 / 21

Calculated Lagrangian

- ► SARAH derives all gauge and matter interactions
- ► The gauge fixing terms and ghost interactions are added
- For SUSY models, the soft-breaking terms are added
- ► All necessary field rotations are performed

Florian Staub 12 / 21

Calculated Lagrangian

- ► SARAH derives all gauge and matter interactions
- ► The gauge fixing terms and ghost interactions are added
- For SUSY models, the soft-breaking terms are added
- ► All necessary field rotations are performed

Derived information

▶ all Vertices, Tadpole equations, Masses and Mass matrices

Florian Staub 12 / 21

Calculated Lagrangian

- ► SARAH derives all gauge and matter interactions
- ► The gauge fixing terms and ghost interactions are added
- For SUSY models, the soft-breaking terms are added
- ► All necessary field rotations are performed

Derived information

- ▶ all Vertices, Tadpole equations, Masses and Mass matrices
- ▶ Two-loop RGEs including the full CP and flavour structure, effects of gauge kinetic mixing, and R_{ξ} dependence of VEVs.

Florian Staub 12 / 21

Calculated Lagrangian

- SARAH derives all gauge and matter interactions
- ► The gauge fixing terms and ghost interactions are added
- For SUSY models, the soft-breaking terms are added
- ► All necessary field rotations are performed

Derived information

- ▶ all Vertices, Tadpole equations, Masses and Mass matrices
- ▶ Two-loop RGEs including the full CP and flavour structure, effects of gauge kinetic mixing, and R_{ξ} dependence of VEVs.

Expressions for loop-diagrams

The analytical expressions derived by SARAH can be exported:

Model files for Monte Carlo Tools

► CalcHep/CompHep (can be used with MicrOmegas)

[Pukhov et al.],[Boos et al.],[Belanger et al.]

► WHIZARD

[Kilian,Ohl,Reuter,0708.4233],[Moretti,Ohl,Reuter,0102195]

► MadGraph & Herwig++ via UFO [Alwall et al.,1106.0522], [Bellm et al.,1310.6877]

The analytical expressions derived by SARAH can be exported:

Model files for Monte Carlo Tools

► CalcHep/CompHep (can be used with MicrOmegas)

[Pukhov et al.],[Boos et al.],[Belanger et al.]

► WHIZARD

[Kilian,Ohl,Reuter,0708.4233],[Moretti,Ohl,Reuter,0102195]

► MadGraph & Herwig++ via UFO [Alwall et al.,1106.0522], [Bellm et al.,1310.6877]

Interface to other tools

► FeynArts/FormCalc

[Hahn,hep-ph/0012260],[Hahn,Victoria,hep-ph/9807565]

▶ Vevacious

[Camargo-Molina,O'Leary,Porod,FS,1307.1477]

The analytical expressions derived by SARAH can be exported:

Model files for Monte Carlo Tools

► CalcHep/CompHep (can be used with MicrOmegas)

[Pukhov et al.],[Boos et al.],[Belanger et al.]

▶ WHIZARD

[Kilian,Ohl,Reuter,0708.4233],[Moretti,Ohl,Reuter,0102195]

► MadGraph & Herwig++ via UFO [Alwall et al.,1106.0522], [Bellm et al.,1310.6877]

Interface to other tools

► FeynArts/FormCalc

 $[\mathsf{Hahn}, \mathsf{hep-ph}/0012260], [\mathsf{Hahn}, \mathsf{Victoria}, \mathsf{hep-ph}/9807565]$

► Vevacious

 $[{\sf Camargo-Molina}, {\sf O'Leary}, {\sf Porod}, {\sf FS}, 1307.1477\]$

Spectrum generators:

▶ SPheno

[Porod,hep-ph/0301101],[Porod,FS,1104.1573]

► Third-party interface to C++ code: FlexibleSUSY

[Athron, Park, Stöckinger, Voigt, 1406.2319; flexiblesusy.hepforge.org]

Linking SARAH and SPheno

Status before 2011

SPheno	SARAH
Restricted mostly to MSSM	Supports many models
RGEs, vertices, hardcoded	Calculates everything by its own
Routines for loop integrals, phase space,	Nothing like that
Numerically fast (Fortran)	Numerically slow (Mathematica)

Florian Staub 14 / 21

Linking SARAH and SPheno

Status before 2011

SPheno	SARAH
Restricted mostly to MSSM	Supports many models
RGEs, vertices, hardcoded	Calculates everything by its own
Routines for loop integrals, phase space,	Nothing like that
Numerically fast (Fortran)	Numerically slow (Mathematica)

→ A combination of both looked very promising

Florian Staub 14 / 21

SARAH and SPheno

'Spectrum Generator Generator'

SARAH writes source-code which can be compiled with SPheno.

→ Implementation of new models in SPheno in a modular way without the need to write source code by hand.

Florian Staub 15 / 21

SARAH and SPheno

'Spectrum Generator Generator'

SARAH writes source-code which can be compiled with SPheno.

→ Implementation of new models in SPheno in a modular way without the need to write source code by hand.

Necessary steps:

- 1. Load Model in SARAH
- 2. Run MakeSPheno[]
- 3. Copy code into a new SPheno subdirectory and compile it

Florian Staub 15 / 21

SARAH and SPheno

'Spectrum Generator Generator'

SARAH writes source-code which can be compiled with SPheno.

ightarrow Implementation of new models in SPheno in a modular way without the need to write source code by hand.

Necessary steps:

- 1. Load Model in SARAH
- 2. Run MakeSPheno[]
- 3. Copy code into a new SPheno subdirectory and compile it

Running time and lines of SPheno code:

- ► MSSM: ~8min, ~280k lines
- ► NMSSM: ~10min, ~330k lines
- ► B-L-SSM: ~35min, ~550k lines

Florian Staub 15 / 21

Features

The generated SPheno version provides all features of state-of-the-art spectrum generator for any model

Florian Staub 16 / 21

Features

The generated SPheno version provides all features of state-of-the-art spectrum generator for any model

Features of 'SPheno by SARAH' versions

- ► Full 2-loop running of all parameters and all masses at 1-loop
- ▶ Complete 1-loop thresholds at M_Z
- two-loop corrections to Higgs masses
- calculation of flavour and precision observables
- calculation of decay widths and branching ratios
- ▶ interface to HiggsBounds and HiggsSignals
- estimate of electroweak Fine-Tuning

Florian Staub 16 / 21

Idea for a new model

WHIZARD, MG5, MicrOmegas, Vevacious

SARAH

Practical part

Florian Staub 18 / 21

First lecture, 21.10.

Working with SARAH

Changing the Implementation of a model:

$$W = \dots + \mu H_u H_d \quad \rightarrow \quad W = \dots + (\lambda S + \mu) H_u H_d + t_S S + \mu_S S^2 + \kappa S^3$$

- Playing with the new model
 - Checking mass matrices and tadpole equation
 - Calculating vertices
 - Calculating RGEs
 - ► Generating LATEX files

Homework

To be prepared for the second lecture, generate the output for the $\ensuremath{\mathsf{SMSSM}}$ in $\ensuremath{\mathsf{SARAH}}$

Run in Mathematica

```
<<[PATH]/SARAH.m
Start["SMSSM"];
MakeAll[];
```

... and wait for 15-20min until SARAH is finished.

In the case of problems, you can also download the output and some additional material from

http://flstaub.web.cern.ch/flstaub/GGI_2015.tar.gz

Florian Staub 20 / 21

Second lecture, 23.10.

Using the SARAH output with other tools

- Spectrum calculation with SPheno
- Checking Higgs constraints with HiggsBounds, HiggsSignals
- Calculating the dark matter relic density with MicrOmegas
- Generating events with MadGraph

Florian Staub 21 / 21

Second lecture, 23.10.

Using the SARAH output with other tools

- Spectrum calculation with SPheno
- Checking Higgs constraints with HiggsBounds, HiggsSignals
- Calculating the dark matter relic density with MicrOmegas
- Generating events with MadGraph

If you want to run the examples by your own, please, download and compile the tools before the lecuture:

- SPheno (spheno.hepforge.org): unpack and make
- ► HB/HS (higgsbounds.hepforge.org): unpack, configure and make
- MO (lapth.in2p3.fr/micromegas): unpack and make
- MG (launchpad.net/mg5amcnlo): unpack

Florian Staub 21 / 21