Spectral Theory of Orthogonal Polynomials

Barry Simon
IBM Professor of Mathematics and Theoretical Physics
California Institute of Technology
Pasadena, CA, U.S.A.

Lecture 7: Periodic OPRL
Spectral Theory of Orthogonal Polynomials

- Lecture 5: Killip–Simon Theorem on $[-2, 2]$
- Lecture 6: Szegő Asymptotics and Shohat-Nevai for $[-2, 2]$
- Lecture 7: Periodic OPRL
- Lecture 8: Finite Gap Isospectral Torus
References

The lecture title is a bit of a misnomer in that we’ll mainly discuss whole line periodic Jacobi matrices although the half-line objects will enter a lot in future lectures.

So \(\{a_n, b_n\}_{n=-\infty}^{\infty} \) are two-sided sequences with some \(p > 0 \) in \(\mathbb{Z} \) so that

\[
a_{n+p} = a_n \quad b_{n+p} = b_n
\]

For \(z \in \mathbb{C} \) fixed, we are interested in solutions \(\{u_n\}_{n=0}^{\infty} \) of

\[
a_n u_{n+1} + b_n u_n + a_{n-1} u_{n-1} = zu_n
\]
that also obey for some $\lambda \in \mathbb{C}$ ($\lambda = e^{i\theta}$, $\theta \in \mathbb{C}$)

\[u_{n+p} = \lambda u_n \]

Such solutions are called Floquet solutions as they are analogs of solutions of ODE, especially Hill’s equation

\[-u'' + Vu = z u, \ V(x+p) = V(x).\]

The analysis of such solutions is a delightful amalgam of three tools, the first of which is just the fact that the set of all solutions of the difference equation is two-dimensional.

Thus, there are, for z fixed, at most two different λ’s for which there is a solution. If λ_1, λ_2 are two such λ’s, their Wronskian is non-zero so constancy of the Wronskian implies $\lambda_1 \lambda_2 = 1$.
The (twisted) periodic boundary condition Jacobi matrix $J^\text{per, } \lambda$ is $p \times p$. It is the finite Jacobi matrix with $1p$ and $p1$ matrix elements added:

$$J_{jj} = b_j, \quad J_{j \, j+1} = a_j, \quad J_{j \, j-1} = a_{j-1}$$

$$J_{1p} = a_p \lambda^{-1}, \quad J_{p1} = a_p \lambda$$

If $\{u_n\}_{n=-\infty}^{\infty}$ is a Floquet solution, $u_0 = \lambda^{-1} u_p$, $u_{p+1} = \lambda u_1$ so $\tilde{u} = \{u_n\}_{n=1}^{p}$ has $J^\text{per, } \lambda \tilde{u} = z \tilde{u}$.

Conversely, if \tilde{u} solves this, the unique u with $u_{n+p} = \lambda u_n$ and $\tilde{u} = \{u_n\}_{n=1}^{\infty}$ is a Floquet solution.
This implies

- For any λ, there are at most p z’s which have a Floquet solution for that λ. (We’ll see soon that if $\lambda \neq \pm 1$, there are exactly p.)

- If $\lambda = e^{i\theta}$, $\theta \in \mathbb{R}$, $\lambda \neq \pm 1$, there are precisely p distinct z’s all real, for which there are Floquet solutions with that λ.

The reality comes from hermicity of $J_{\text{per},\lambda}$.

If $\lambda \neq \pm 1$, $\bar{\lambda} \neq \lambda$. If u is a Floquet solution for λ, since z is real, \bar{u} is a Floquet solution for $\bar{\lambda}$ so there is a unique solution for that z. Thus, for $\lambda \in \partial \mathbb{D} \setminus \{\pm 1\}$, $J_{\text{per},\lambda}$ has p eigenvalues and each simple.
The third tool concerns the p-step transfer matrix.

$$T_p(z)\left(\begin{array}{c} u_1 \\ a_0 u_0 \end{array}\right) = \lambda \left(\begin{array}{c} u_1 \\ a_0 u_0 \end{array}\right)$$ is equivalent to \(\left(\begin{array}{c} u_1 \\ a_0 u_0 \end{array}\right) \) generating a Floquet solution! (Note: \(a_0\) may not be 1.)

In terms of the OP’s for \(\{a_n, b_n\}_{n=1}^\infty\),

$$T_p(z) = \left(\begin{array}{cc} p_p(z) & -q_p(z) \\ a_p p_{p-1}(z) & -a_p q_{p-1}(z) \end{array}\right)$$

The discriminant, \(\Delta(z)\), is defined by

$$\Delta(z) = \text{Tr} \left(T_p(z) \right) = p_p(z) - a_p q_{p-1}(z)$$

is a (real) polynomial of degree exactly \(p\).
Since \(\det(T_p(z)) = 1 \), it has algebraic eigenvalues \(\lambda \) and \(\lambda^{-1} \) where

\[
\Delta(z) = \lambda + \lambda^{-1}; \quad \Delta(z) = 2 \cos \theta \text{ if } \lambda = e^{i\theta}.
\]

Floquet solutions correspond to geometric eigenvalues for \(T_p(z) \). If \(\lambda \neq \pm 1 \), it has multiplicity one, so is geometric. \(\lambda = \pm 1 \) has multiplicity 2, so there can be one or two Floquet solutions.

An important consequence of the fact that \(\Delta(z) \in (-2, 2) \) implies all \(z \)'s are real is \(\Delta^{-1}[(-2, 2)] \subset \mathbb{R} \).
A basic fact of analytic functions is that if $f(z)$ is real (i.e., $f(\bar{z}) = f(z)$), $x_0 \in \mathbb{R}$ with $f'(x_0) = 0$, there are non-real z’s near x_0 with $f(z)$ real and near $f(x_0)$.

Thus, $\Delta^{-1}[-2, 2] \subset \mathbb{R} \Rightarrow \Delta'(x_0) \neq 0$ if $\Delta(x_0) \in (-2, 2)$.

Thus, $\Delta^{-1}[-2, 2] = (\alpha_1, \beta_1) \cup (\alpha_2, \beta_2) \cup \ldots \cup (\alpha_p, \beta_p)$

where $\alpha_1 < \beta_1 \leq \alpha_2 < \beta_2 \leq \alpha_3 < \ldots < \beta_p$

with Δ a smooth bijection of (α_j, β_j) to $(-2, 2)$.

Could be orientation reversing or not.
The Discriminant

Since $\Delta(x) \to \infty$ as $x \to \infty$, we must have $\Delta(\beta_p) = 2$.

It follows that $\Delta(\alpha_p) = -2$, $\Delta(\beta_{p-1}) = -2$, $\Delta(\alpha_{p-1}) = 2 \ldots$

i.e., $\Delta(\beta_j) = (-1)^{p-j}2$, $\Delta(\alpha_j) = (-1)^{p-j-1}2$

If the α’s and β’s are all distinct, we have p points where $\Delta(x) = 2$ and p where $\Delta(x) = -2$.

Since $\deg \Delta = p$, these are all the points.

If $\beta_{j-1} = \alpha_j$, there is one less point where $\Delta(x) = (-1)^{p-j-1}2$, but $\Delta'(\alpha_j) = 0$ since $\Delta - (-1)^{p-j-1}2$ has the same sign on both sides of α_j. It follows that
Theorem. $\Delta^{-1}([-2, 2]) = \bigcup_{j=1}^{p} [\alpha_j, \beta_j]$ and

$\Delta^{-1}([-2, 2]) = \{\alpha_j, \beta_j\}_{j=1}^{p}$ and

$\Delta'(\alpha_j) = 0 \iff \alpha_j = \beta_{j-1}$, $\Delta'(\beta_j) = 0 \iff \beta_j = \alpha_{j+1}$

and in that case, Δ'' is not zero at that point.

The $[\alpha_j, \beta_j]$ are called the bands and (β_j, α_{j+1}) the gaps.

If $\beta_j < \alpha_{j+1}$, we say that gap j is open.

If $\beta_j = \alpha_{j+1}$, we say gap j is closed.
Furthur analysis shows at a closed gap (with $\Delta(\alpha) = 2$ for simplicity) there are two periodic (Floquet) solutions, while at each of the edges of an open gap there is only one periodic (Floquet) solution. The transfer matrix has a Jordan anomaly, i.e., $\det = 1$, $\Tr = 2$, but $T \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Each of the gaps where $\Delta(x) \geq 2$ has two periodic solutions—either two at $\beta_j = \alpha_{j+1}$ or one each at β_j and α_{j+1} so there are p periodic Floquet solutions, as there must be from the J_{per} analysis.
Spectrum and Spectral Types

If \(z \) is such that \(\Delta(z) \not\in [-2, 2] \), then the roots of \(\lambda + \lambda^{-1} = \Delta(z) \) have \(|\lambda| > 1, |\lambda^{-1}| < 1 \). It follows that there are different solutions \(u_\pm \) decaying exponentially at \(\pm\infty \) so their Wronskian is not zero. By the earlier analysis,

\[
G_{nm}(z) = u_{\max(n,m)}^+(z) u_{\min(m.n)}^-(z)/W(z)
\]

is the matrix for \((J - z)^{-1}\), i.e., \(z \notin \sigma(J) \).

If \(\Delta(z) \in [-2, 2] \), there is a bounded Floquet solution (since \(|\lambda| = 1 \)). Then \(\| (J - z)[u \chi_{[-N,N]}] \| \) is bounded, but since \(\sum_{j=1}^{p} |u_{m+j}|^2 \) is constant, \(\| u \chi_{[-N,N]} \| \to \infty \) so \(z \in \sigma(J) \). Thus

Theorem. \(\sigma(J) = \bigcup_{j=1}^{p} [\alpha_j, \beta_j] \).
If $\Delta(z) \in (-2, 2)$, we get that all solutions are bounded at $\pm \infty$ and then by a Wronskian argument, $|u_n|^2 + |u_{n+1}|^2$ is bounded from below. So by a Carmona-type formula, one should expect purely a.c. spectrum. But this is whole line, not half line!

Here is a replacement: Away from the bands, $G_{nn} = u_n^+ u_n^- / W$ as we’ve seen. By continuity of eigenfunctions of transfer matrix in z, u_n^\pm has a limit at $z = x + i \varepsilon$ with $\varepsilon \downarrow 0$ which are Floquet solutions. This is true at least at interiors of bands where the transfer matrix has distinct eigenvalues.
W is non-vanishing on each (α_j, β_j) since u^+ and u^- are distinct Floquet solutions $(e^{\pm i\theta})$. Thus, $G_{nn}(z)$ is continuous from \mathbb{C}_+ to $\mathbb{C}_+ \cup \mathbb{R} \setminus \{\alpha_j, \beta_j\}_{j=1}^p$.

But if $\mu^{(n)}$ is the spectral measure of δ_n:

$$G_{nn}(z) = \int \frac{d\mu^{(n)}(x)}{x - z}$$

The continuity implies $d\mu^{(n)}$ is purely a.c., so we have proven

Theorem. A periodic two-sided Jacobi matrix has purely absolutely continuous spectrum.

One can write out an explicit spectral representation with Floquet solutions with $z \in (\alpha_j, \beta_j)$ as continuum eigenfunctions.
We start with a puzzle. \(\Delta \) determines
\(\alpha_1 < \beta_1 \leq \alpha_2 < \beta_2 \leq \ldots \) as the roots of \(\Delta^2 - 4 \).

Conversely, given \(\beta_p, \alpha_{p-1}, \beta_{p-2}, \ldots, \Delta - 2 \) is determined up to a constant since we know its zeros.

That constant is determined by \(\alpha_p \) when \(\Delta \) is \(-2 \). Thus, \(\beta_p, \alpha_{p-1}, \beta_{p-2} \) plus \(\alpha_p \) determine the remaining \(p - 1 \) \(\alpha \)'s and \(\beta \)'s. Why this rigidity? Why can’t we have \(2p \) arbitrary \(\alpha \)'s and \(\beta \)'s?

The answer will lie in potential theory.
For any $z \in \mathbb{C}$, there are two Floquet indices, λ_{\pm}, solving $\lambda + \lambda^{-1} = \Delta(z)$. If $|\lambda_+| \geq 1$, we see that

$$\gamma(z) = \lim_{n \to \infty} \frac{1}{n} \log \|T_n(\lambda)\| = \frac{1}{p} \log |\lambda_+(z)|$$

Solving the quadratic equation for λ

$$\gamma(z) = \frac{1}{p} \left[\log \left| \frac{\Delta(z)}{2} + \sqrt{\left(\frac{\Delta(z)}{2} \right)^2 - 1} \right| \right]$$

On $\varepsilon = \bigcup_{j=1}^{p} [\alpha_j, \beta_j], |\ldots| = 1$, so $\gamma(z) \geq 0$, $\gamma(z) = 0$ on ε. $\gamma(z)$ is harmonic on $\mathbb{C} \setminus \varepsilon$

since $\frac{\Delta}{2} + \sqrt{(\frac{\Delta}{2}) - 1}$ is analytic and non-vanishing there and $\gamma(z) = \log (|z|) + O(1)$ at ∞, since $\Delta(z)$ is a degree p polynomial.
Thus $\gamma(z) = G_e(z)$ is the potential theorists’ Green’s function. Thus,

Theorem. $\gamma(z)$ as given above is the potential theorists’ Green’s function and periodic Jacobi parameters are associated to regular measures (in the Stahl–Totik sense).

Corollary. $C(e) = (a_1 \cdots a_p)^{1/p}$
By general principles, if G_ϵ is smooth up to ϵ on ϵ^{int}, the equilibrium measure $d\rho_\epsilon(x) = f_\epsilon(x)dx$ where

$$f_\epsilon(x) = \frac{1}{\pi} \frac{\partial}{\partial y} G_\epsilon(x + iy) \mid_{y=0}$$

Thus, the equilibrium measure is

$$f_\epsilon(z) = \frac{1}{p\pi} \frac{|\Delta'(x)|}{\sqrt{4 - \Delta^2(x)}} = \frac{1}{p\pi} \left| \frac{d}{dx} \arccos\left(\frac{\Delta(x)}{2}\right) \right|$$
In each, band $\Delta(\lambda)$ goes from -2 to 2, so $\arccos(\frac{\Delta}{2})$ from π to 0. Thus,

Theorem. $\rho_\epsilon([\alpha_j, \beta_j]) = \frac{1}{p}$.

This explains the puzzle mentioned earlier.

This is also a density of zeros way of understanding why the above f_ϵ is the DOS. For the periodic eigenfunctions with a box of size kp are the Floquet solutions with $\lambda = e^{2\pi ij/k}$, $j = 0, 1, 2, \ldots, k - 1$.