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Floquet Solutions

The lecture title is a bit of a misnomer in that we'll mainly
discuss whole line periodic Jacobi matrices although the
half-line objects will enter a lot in future lectures.

So {an, bn}∞n=−∞ are two-sided sequences with some p > 0
in Z so that

an+p = an bn+p = bn

For z ∈ C �xed, we are interested in solutions {un}∞n=0 of

anun+1 + bnun + an−1un−1 = zun
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Floquet Solutions

that also obey for some λ ∈ C (λ = eiθ, θ ∈ C)

un+p = λun

Such solutions are called Floquet soluations as they are
analogs of solutions of ODE, especially Hill's equation
−u′′

+ V u = zu, V (x+ p) = V (x).

The analysis of such solutions is a delightful amalgam of
three tools, the �rst of which is just the fact that the set of
all solutions of the di�erence equation is two-dimensional.

Thus, there are, for z �xed, at most two di�erent λ's for
which there is a solution. If λ1, λ2 are two such λ's, their
Wronskian is non-zero so constancy of the Wronskian
implies λ1λ2 = 1.
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Periodic B.C. Jacobi Matrices

The (twisted) periodic boundary condition Jacobi matrix
Jper,λ is p× p. It is the �nite Jacobi matrix with 1p and p1
matrix elements added:

Jjj = bj , Jj j+1 = aj , Jj j−1 = aj−1

J1p = apλ
−1, Jp1 = apλ

If {un}∞n=−∞ is a Floquet solution, u0 = λ−1up,
up+1 = λu1 so ũ = {un}pn=1 has Jper,λũ = zũ.

Conversely, if ũ solves this, the unique u with un+p = λun
and ũ = {un}∞n=1 is a Floquet solution.
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Periodic B.C. Jacobi Matrices

This implies

For any λ, there are at most p z's which have a
Floquet solution for that λ. (We'll see soon that if
λ 6= ±1, there are exactly p.)

If λ = eiθ, θ ∈ R, λ 6= ±1, there are precisely p distinct
z's all real, for which there are Floquet solutions with
that λ.

The reality comes from hermicity of Jper,λ.

If λ 6= ±1, λ̄ 6= λ. If u is a Floquet solution for λ, since z is
real, ū is a Floquet solution for λ̄ so there is a unique
solution for that z. Thus, for λ ∈ ∂D \ {±1}, Jper,λ has p
eigenvalues and each simple.
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The Discriminant

The third tool concerns the p-step transfer matrix.

Tp(z)(
u1
a0u0 ) = λ( u1

a0u0 ) is equivalent to ( u1
a0u0 ) generating a

Floquet solution ! (Note: a0 may not be 1.)

In terms of the OP's for {an, bn}∞n=1,

Tp(z) =

(
pp(z) −qp(z)

appp−1(z) −apqp−1(z)

)
The discriminant, ∆(z), is de�ned by

∆(z) = Tr
(
Tp(z)

)
= pp(z)− apqp−1(z)

is a (real) polynomial of degree exactly p.
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The Discriminant

Since det
(
Tp(z)

)
= 1, it has algebraic eigenvalues λ and

λ−1 where

∆(z) = λ+ λ−1; ∆(z) = 2 cos θ if λ = eiθ.

Floquet solutions correspond to geometric eigenvalues for
Tp(z). If λ 6= ±1, it has multiplicity one, so is geomtric.
λ = ±1 has multiplicity 2, so there can be one or two
Floquet solutions.

An important consequence of the fact that ∆(z) ∈ (−2, 2)
implies all z's are real is ∆−1

[
(−2, 2)

]
⊂ R.
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The Discriminant

A basic fact of analytic functions is that if f(z) is real (i.e.,
f(z̄) = f(z)), x0 ∈ R with f ′(x0) = 0, there are non-real
z's near x0 with f(z) real and near f(x0).

Thus, ∆−1
[
(−2, 2)

]
⊂ R⇒ ∆′(x0) 6= 0 if ∆(x0) ∈ (−2, 2).

Thus, ∆−1
[
(−2, 2)

]
= (α1, β1) ∪ (α2, β2) ∪ . . . ∪ (αp, βp)

where α1 < β1 ≤ α2 < β2 ≤ α3 < . . . < βp

with ∆ a smooth bijection of (αj , βj) to (−2, 2).

Could be orientation reversing or not.
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The Discriminant

Since ∆(x)→∞ as x→∞, we must have ∆(βp) = 2.

It follows that ∆(αp) = −2, ∆(βp−1) = −2,
∆(αp−1) = 2 . . .

i.e., ∆(βj) = (−1)p−j2, ∆(αj) = (−1)p−j−12

If the α's and β's are all distinct, we have p points where
∆(x) = 2 and p where ∆(x) = −2.

Since deg ∆ = p, these are all the points.

If βj−1 = αj , there is one less point where ∆(x) =
(−1)p−j−12, but ∆′(αj) = 0 since ∆− (−1)p−j−12 has the
same sign on both sides of αj . It follows that
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Opens and Closed Gaps

Theorem. ∆−1
(
[−2, 2]

)
= ∪pj=1[αj , βj ] and

∆−1
(
{−2, 2}

)
= {αj , βj}pj=1 and

∆′(αj) = 0⇔ αj = βj−1, ∆′(βj) = 0⇔ βj = αj+1

and in that case, ∆
′′
is not zero at that point.

The [αj , βj ] are called the bands and (βj , αj+1) the gaps.

If βj < αj+1, we say that gap j is open.

If βj = αj+1, we say gap j is closed.



Floquet Solutions

Periodic Jacobi
Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

Opens and Closed Gaps

Furthur analysis shows at a closed gap (with ∆(α) = 2 for
simplicity) there are two periodic (Floquet) solutions, while
at each of the edges of an open gap there is only one
periodic (Floquet) solution. The transfer matrix has a
Jordan anomaly, i.e., det = 1, Tr = 2, but T 6= ( 1 0

0 1 ).

Each of the gaps where ∆(x) ≥ 2 has two periodic
solutions�either two at βj = αj+1 or one each at βj and
αj+1 so there are p periodic Floquet solutions, as there
must be from the Jper analysis.
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Spectrum and Spectral Types

If z is such that ∆(z) 6∈ [−2, 2], then the roots of
λ+ λ−1 = ∆(z) have |λ| > 1, |λ−1| < 1. It follows that
there are di�erent solutions u± decaying exponentially at
±∞ so their Wronskian is not zero. By the earlier analysis,

Gnm(z) = u+
max(n,m)(z)u

−
min(m.n)(z)/W (z)

is the matrix for
(
J − z

)−1
, i.e., z /∈ σ(J).

If ∆(z) ∈ [−2, 2], there is a bounded Floquet solution (since
|λ| = 1). Then ‖(J − z)[uχ[−N,N ]]‖ is bounded, but since∑p

j=1|um+j |2 is constant, ‖uχ[−N,N ]‖ → ∞ so z ∈ σ(J).
Thus

Theorem. σ(J) = ∪pj=1[αj , βj ].
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Spectrum and Spectral Types

If ∆(z) ∈ (−2, 2), we get that all solutions are bounded at
±∞ and then by a Wronskian argument, |un|2 + |un+1|2 is
bounded from below. So by a Carmona-type formula, one
should expect purely a.c. spectrum. But this is whole line,
not half line !

Here is a replacement: Away from the bands, Gnn =
u+
n u
−
n /W as we've seen. By continuity of eigenfunctions of

transfer matrix in z, u±n has a limit at z = x+ iε with ε ↓ 0
which are Floquet solutions. This is true at least at interiors
of bands where the transfer matrix has distinct eigenvalues.
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Spectrum and Spectral Types

W is non-vanishing on each (αj , βj) since u+ and u− are
distinct Floquet solutions (e±iθ). Thus, Gnn(z) is
continuous from C+ to C+ ∪ R \ {αj , βj}pj=1.

But if µ(n) is the spectral measure of δn:

Gnn(z) =

∫
dµ(n)(x)

x− z

The continuity implies dµ(n) is purely a.c., so we have
proven

Theorem. A periodic two-sided Jacobi matrix has purely

absolutely continuous spectrum.

One can write out an explicit spectral representation with
Floquet solutions with z ∈ (αj , βj) as continuum
eigenfunctions.



Floquet Solutions

Periodic Jacobi
Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

Potential Theory

We start with a puzzle. ∆ determines
α1 < β1 ≤ α2 < β2 ≤ . . . as the roots of ∆2 − 4.

Conversely, given βp, αp−1, βp−2, . . ., ∆− 2 is determined
up to a constant since we know its zeros.

That constant is determined by αp when ∆ is −2. Thus,
βp, αp−1, βp−2 plus αp determine the remaining p− 1 α's
and β's. Why this rigidity? Why can't we have 2p arbitrary
α's and β's?

The answer will lie in potential theory.
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Potential Theory

For any z ∈ C, there are two Floquet indices, λ±, solving
λ+ λ−1 = ∆(z). If |λ+| ≥ 1, we see that

γ(z) = lim
n→∞

1

n
log ‖Tn(λ)‖ =

1

p
log |λ+(z)|

Solving the quadratic equation for λ

γ(z) =
1

p

[
log

∣∣∣∣∆(z)

2
+

√(∆(z)

2

)2 − 1

∣∣∣∣ ]
On e = ∪pj=1[αj , βj ], |. . .| = 1, so γ(z) ≥ 0,

γ(z) = 0 on e. γ(z) is harmonic on C \ e

since ∆
2 +

√(
∆
2

)
− 1 is analytic and non-vanishing there

and γ(z) = log (|z|) +O(1) at ∞, since ∆(z) is a degree p
polynomial.
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Potential Theory

Thus γ(z) = Ge(z) is the potential theorists' Green's
function. Thus,

Theorem. γ(z) as given above is the potential theorists'

Green's function and periodic Jacobi parameters are

associated to regular measures (in the Stahl�Totik sense).

Corollary. C(e) = (a1 · · · ap)1/p



Floquet Solutions

Periodic Jacobi
Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

Potential Theory

By general principles, if Ge is smooth up to e on eint, the
equilibrium measure dρe(x) = fe(x)dx where

fe(x) =
1

π

∂

∂y
Ge(x+ iy) |y=0

Thus, the equilibrium measure is

fe(z) =
1

pπ

|∆′(x)|√
4−∆2(x)

=
1

pπ

∣∣∣∣ ddx arccos
(∆(x)

2

)∣∣∣∣
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Potential Theory

In each, band ∆(λ) goes from −2 to 2, so arccos(∆
2 ) from

π to 0. Thus,

Theorem. ρe
(
[αj , βj ]

)
= 1

p .

This explains the puzzle mentioned earlier.

This is also a density of zeros way of understanding why the
above fe is the DOS. For the periodic eigenfunctions with a
box of size kp are the Floquet solutions with λ = e2πij/k,
j = 0, 1, 2, . . . , k − 1.
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