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Floquet Solutions

Flouet Solutions The lecture title is a bit of a misnomer in that we'll mainly
discuss whole line periodic Jacobi matrices although the
half-line objects will enter a lot in future lectures.

So {an, by}
in Z so that

_ oo are two-sided sequences with some p > 0

Qptp = Qn bn+p = bn

For z € C fixed, we are interested in solutions {u, }°°, of

ApUni1 + bpn + ap_1Up_1 = 2Uy



Floquet Solutions

that also obey for some A € C (A = ¢%, 0 € C)

Floquet Solutions Un+p _ )\un
Such solutions are called Floquet soluations as they are
analogs of solutions of ODE, especially Hill's equation
—u" +Vu=zu V(z+p) = V().

The analysis of such solutions is a delightful amalgam of
three tools, the first of which is just the fact that the set of
all solutions of the difference equation is two-dimensional.

Thus, there are, for z fixed, at most two different \'s for
which there is a solution. If A1, A9 are two such \'s, their
Wronskian is non-zero so constancy of the Wronskian
implies )\1)\2 =1.



Periodic B.C. Jacobi Matrices

The (twisted) periodic boundary condition Jacobi matrix
Reriadic Jacobi JPerA is p x p. It is the finite Jacobi matrix with 1p and pl
Matrices matrix elements added:
Jjj =bjs Jjjrr=aj, Jjj-1=aja
le = ap)\_l, Jpl = ap)\
If {u,}22_ is a Floquet solution, ug = A~ tu,,

Ups1 = Auy 50 U = {up}h_) has JPAU = zai.

Conversely, if @ solves this, the unique u with u,, = Au,
and © = {u,}22, is a Floquet solution.




Periodic B.C. Jacobi Matrices

This implies
- _ m For any ), there are at most p z's which have a

Matrces Floquet solution for that A. (We'll see soon that if
A # +1, there are exactly p.)

mIfA=¢" 0 cR, \+#=+1, there are precisely p distinct
z's all real, for which there are Floquet solutions with
that .

The reality comes from hermicity of JPe',

If X +1, A # A. If uis a Floquet solution for A, since z is
real, @ is a Floquet solution for A so there is a unique
solution for that z. Thus, for A € 9D\ {£1}, JP*"* has p
eigenvalues and each simple.



The Discriminant

The third tool concerns the p-step transfer matrix.

Tp(2)(aguo ) = A aoso ) is equivalent to (4%, ) generating a

Floquet solution ! (Note: ag may not be 1.)

The Discriminant

In terms of the OP’s for {an, b, }02 4,

Tp(Z)Z( Pp(2) —qp(2) >

apppfl(z) _apq"ufl(z)
The discriminant, A(z), is defined by
Az) = TT(TP(Z)) = pp(2) — apgp-1(2)

is a (real) polynomial of degree exactly p.



The Discriminant

Since det(T},(z)) = 1, it has algebraic eigenvalues A and
A~1 where

The Discriminant A(Z) =+ A_l; A(Z) =2cosB if \ = ei@_

Floquet solutions correspond to geometric eigenvalues for
Tp(z). If A # £1, it has multiplicity one, so is geomtric.
A = =£1 has multiplicity 2, so there can be one or two
Flogquet solutions.

An important consequence of the fact that A(z) € (-2,2)
implies all 2’s are real is A™![(-2,2)] C R.



The Discriminant

A basic fact of analytic functions is that if f(z) is real (i.e.,
f(z) = f(2)), zo € R with f/(z) = 0, there are non-real
S 2's near xp with f(z) real and near f(zo).

Thus, A™1[(=2,2)] C R = A(zo) # 0 if A(zo) € (—2,2).
Thus, A7 [(=2,2)] = (a1, 81) U (az, B2) U... U (ap, Bp)
where a1 < 1 <as < fPr < a3 <...<fp

with A a smooth bijection of (a;, 3;) to (—2,2).

Could be orientation reversing or not.



The Discriminant

Since A(x) — oo as  — 0o, we must have A(8,) = 2.

It follows that A(cy) = =2, A(Bp—1) = -2,
A(Oépfl) =2...

e, A(By) = (=1)P772, A(ey) = (-1)P7/712

If the a's and ’s are all distinct, we have p points where
A(z) =2 and p where A(z) = —2.

The Discriminant

Since deg A = p, these are all the points.

If Bj—1 = o, there is one less point where A(x) =
(—1)P=7712, but A’(rj) = 0 since A — (—1)P77712 has the
same sign on both sides of «;. It follows that



Opens and Closed Gaps

Theorem. A™'([-2,2]) = U_, [y, B;] and
A ({=2,2}) = {ay. 4,2, and

Allaj) =0 & aj = fi1, A(B)) =0 fj = ajn

and in that case, A" is not zero at that point.

The [, B;] are called the bands and (5}, j41) the gaps.
If B; < cj+1, we say that gap j is open.

If B; = cj1, we say gap j is closed.



Opens and Closed Gaps

Furthur analysis shows at a closed gap (with A(a) = 2 for
simplicity) there are two periodic (Floquet) solutions, while
at each of the edges of an open gap there is only one
periodic (Floquet) solution. The transfer matrix has a
Jordan anomaly, i.e., det =1, Tr =2, but T # (}9).

Each of the gaps where A(z) > 2 has two periodic
solutions—either two at 3; = aj41 or one each at ; and
aj1+1 so there are p periodic Floquet solutions, as there
must be from the JP°" analysis.



Spectrum and Spectral Types

If z is such that A(z) & [—2, 2], then the roots of
A+ A"t = A(z) have |A] > 1, |A\71| < 1. It follows that
there are different solutions u4 decaying exponentially at
+00 so their Wronskian is not zero. By the earlier analysis,

Gnm(z) = urtax(n,m) (Z)ur;nn(mn) (Z)/W(Z)

Spectrum
is the matrix for (J — z)_l, e, z ¢ a(J).

If A(z) € [-2,2], there is a bounded Floquet solution (since
|A| = 1). Then [[(J — 2)[ux[—n,n1]ll is bounded, but since
Z§:1|um+j|2 is constant, ||ux[_n 1|l — o0 so z € o(J).
Thus

Theorem. o(J) = ngl[ajﬂj]-



Spectrum and Spectral Types

If A(z) € (—2,2), we get that all solutions are bounded at
+00 and then by a Wronskian argument, |u,,|? + |upy1|? is
bounded from below. So by a Carmona-type formula, one
should expect purely a.c. spectrum. But this is whole line,
Spectrum not half line !

Here is a replacement: Away from the bands, G,,,, =

ut u, /W as we've seen. By continuity of eigenfunctions of
transfer matrix in z, uf has alimitat z =z +ie withe | 0
which are Floquet solutions. This is true at least at interiors
of bands where the transfer matrix has distinct eigenvalues.



Spectrum

Spectrum and Spectral Types

W is non-vanishing on each (a;, 3;) since u™ and u™ are
distinct Floquet solutions (e*%). Thus, G, () is
continuous from C to C+ UR\ {ay, B;}_;.

But if u(”) is the spectral measure of §,,:

(n) (
Goun(2) = / dp™(x)

r—z

The continuity implies du(™ is purely a.c., so we have
proven

Theorem. A periodic two-sided Jacobi matrix has purely
absolutely continuous spectrum.

One can write out an explicit spectral representation with
Floguet solutions with z € («;, 3;) as continuum
eigenfunctions.




Potential Theory

We start with a puzzle. A determines
a1 < B1 < ag < By < ... as the roots of A% — 4.

Conversely, given 3,, ap_1, Bp—2,..., A — 2 is determined
up to a constant since we know its zeros.

Potential Theory That constant is determined by a;, when A is —2. Thus,
Bps ap—1, Bp—2 plus v, determine the remaining p — 1 a's
and (3's. Why this rigidity? Why can’t we have 2p arbitrary
a’s and ('s?

The answer will lie in potential theory.



Potential Theory

Potential Theory

For any z € C, there are two Floquet indices, Ay, solving
A2 =A(2). If [A4| > 1, we see that

1 1
= lim = log||T,,(\)|| = = log |\
1(2) = lim = log [T,V = - log|A+(2)|

Solving the quadratic equation for A

-l

One=U_[a;, 5] |...| =1, 50 7(2) >
v(z) =0 on e. y(z) is harmonic on C \ ¢

since % + (%
and v(z) =log (|z|) + O(1) at oo, since A(z) is a degree p
polynomial.

) — 1 is analytic and non-vanishing there



Potential Theory

Thus v(2) = G¢(2) is the potential theorists’ Green's
function. Thus,

Theorem. ~(z) as given above is the potential theorists’
Potential Theory Green'’s function and periodic Jacobi parameters are
associated to regular measures (in the Stahl-Totik sense).

Corollary. C(e) = (a1 ---ap)"/?



Potential Theory

By general principles, if G, is smooth up to ¢ on ¢™, the
equilibrium measure dp.(x) = f.(z)dz where

10
o) = —5 Gl + i) |y

Potential Theory . .
Thus, the equilibrium measure is

IO
)= =5 = ol




Potential Theory

In each, band A()\) goes from —2 to 2, so arccos(%)
7 to 0. Thus,

1

Theorem. pe([aj,ﬂj]) =

: This explains the puzzle mentioned earlier.
Potential Theory

This is also a density of zeros way of understanding why the
above f, is the DOS. For the periodic eigenfunctions with a
box of size kp are the Floquet solutions with A = e27/k,
j=0,1,2,... k—1.
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