

Periodic Jacob Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

Spectral Theory of Orthogonal Polynomials

Barry Simon IBM Professor of Mathematics and Theoretical Physics California Institute of Technology Pasadena, CA, U.S.A.

Lecture 7: Periodic OPRL

Spectral Theory of Orthogonal Polynomials

- Floquet Solutions
- Periodic Jacob Matrices
- The Discriminant
- Gaps
- Spectrum
- Potential Theory

- Lecture 5: Killip–Simon Theorem on [-2, 2]
- Lecture 6: Szegő Asymptotics and Shohat-Nevai for [-2,2]
- Lecture 7: Periodic OPRL
- Lecture 8: Finite Gap Isospectral Torus

References

Floquet Solutions

Periodic Jacol Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

[OPUC] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, AMS Colloquium Series 54.1, American Mathematical Society, Providence, RI, 2005.

[OPUC2] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, AMS Colloquium Series, 54.2, American Mathematical Society, Providence, RI, 2005.

[SzThm] B. Simon, Szegő's Theorem and Its Descendants: Spectral Theory for L^2 Perturbations of Orthogonal Polynomials, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011.

Floquet Solutions

Periodic Jaco Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

The lecture title is a bit of a misnomer in that we'll mainly discuss whole line periodic Jacobi matrices although the half-line objects will enter a lot in future lectures.

So $\{a_n,b_n\}_{n=-\infty}^\infty$ are two-sided sequences with some p>0 in $\mathbb Z$ so that

$$a_{n+p} = a_n \quad b_{n+p} = b_n$$

For $z\in\mathbb{C}$ fixed, we are interested in solutions $\{u_n\}_{n=0}^\infty$ of

 $a_n u_{n+1} + b_n u_n + a_{n-1} u_{n-1} = z u_n$

that also obey for some
$$\lambda\in\mathbb{C}$$
 $(\lambda=e^{i heta}, heta\in\mathbb{C})$

$$u_{n+p} = \lambda u_n$$

Floquet Solutions

Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

Such solutions are called Floquet solutions as they are analogs of solutions of ODE, especially Hill's equation $-u^{''} + Vu = zu$, V(x + p) = V(x).

The analysis of such solutions is a delightful amalgam of three tools, the first of which is just the fact that the set of all solutions of the difference equation is two-dimensional.

Thus, there are, for z fixed, at most two different λ 's for which there is a solution. If λ_1 , λ_2 are two such λ 's, their Wronskian is non-zero so constancy of the Wronskian implies $\lambda_1 \lambda_2 = 1$.

Periodic Jacobi Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

The (twisted) periodic boundary condition Jacobi matrix $J^{\text{per},\lambda}$ is $p \times p$. It is the finite Jacobi matrix with 1p and p1 matrix elements added:

$$J_{jj} = b_j, \quad J_{j\,j+1} = a_j, \quad J_{j\,j-1} = a_{j-1}$$
$$J_{1p} = a_p \lambda^{-1}, \quad J_{p1} = a_p \lambda$$

If
$$\{u_n\}_{n=-\infty}^{\infty}$$
 is a Floquet solution, $u_0 = \lambda^{-1} u_p$,
 $u_{p+1} = \lambda u_1$ so $\widetilde{u} = \{u_n\}_{n=1}^p$ has $J^{\text{per},\lambda} \widetilde{u} = z \widetilde{u}$.

Conversely, if \widetilde{u} solves this, the unique u with $u_{n+p} = \lambda u_n$ and $\widetilde{u} = \{u_n\}_{n=1}^{\infty}$ is a Floquet solution.

Periodic B.C. Jacobi Matrices

This implies

Periodic Jacobi Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

- For any λ, there are at most p z's which have a Floquet solution for that λ. (We'll see soon that if λ ≠ ±1, there are exactly p.)
- If $\lambda = e^{i\theta}$, $\theta \in \mathbb{R}$, $\lambda \neq \pm 1$, there are precisely p distinct z's all real, for which there are Floquet solutions with that λ .

The reality comes from hermicity of $J^{\mathrm{per},\lambda}$.

If $\lambda \neq \pm 1$, $\overline{\lambda} \neq \lambda$. If u is a Floquet solution for λ , since z is real, \overline{u} is a Floquet solution for $\overline{\lambda}$ so there is a unique solution for that z. Thus, for $\lambda \in \partial \mathbb{D} \setminus \{\pm 1\}$, $J^{\operatorname{per},\lambda}$ has p eigenvalues and each simple.

Floquet Solutions

Periodic Jaco Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

The third tool concerns the p-step transfer matrix.

 $T_p(z)(\begin{array}{c} u_1\\ a_0u_0 \end{array}) = \lambda(\begin{array}{c} u_1\\ a_0u_0 \end{array})$ is equivalent to $(\begin{array}{c} u_1\\ a_0u_0 \end{array})$ generating a Floquet solution ! (Note: a_0 may not be 1.)

In terms of the OP's for $\{a_n,b_n\}_{n=1}^\infty$,

$$T_p(z) = \begin{pmatrix} p_p(z) & -q_p(z) \\ a_p p_{p-1}(z) & -a_p q_{p-1}(z) \end{pmatrix}$$

The discriminant, $\Delta(z)$, is defined by

$$\Delta(z) = \operatorname{Tr}(T_p(z)) = p_p(z) - a_p q_{p-1}(z)$$

is a (real) polynomial of degree exactly p.

Floquet Solutions

Periodic Jaco Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

Since $\det \bigl(T_p(z) \bigr) = 1$, it has algebraic eigenvalues λ and λ^{-1} where

$$\Delta(z) = \lambda + \lambda^{-1}; \quad \Delta(z) = 2\cos\theta \text{ if } \lambda = e^{i\theta}.$$

Floquet solutions correspond to geometric eigenvalues for $T_p(z)$. If $\lambda \neq \pm 1$, it has multiplicity one, so is geomtric. $\lambda = \pm 1$ has multiplicity 2, so there can be one or two Floquet solutions.

An important consequence of the fact that $\Delta(z) \in (-2,2)$ implies all z's are real is $\Delta^{-1}[(-2,2)] \subset \mathbb{R}$.

Floquet Solutions

Periodic Jaco Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

A basic fact of analytic functions is that if f(z) is real (i.e., $f(\overline{z}) = \overline{f(z)}$), $x_0 \in \mathbb{R}$ with $f'(x_0) = 0$, there are non-real z's near x_0 with f(z) real and near $f(x_0)$.

Thus, $\Delta^{-1}[(-2,2)] \subset \mathbb{R} \Rightarrow \Delta'(x_0) \neq 0$ if $\Delta(x_0) \in (-2,2)$. Thus, $\Delta^{-1}[(-2,2)] = (\alpha_1,\beta_1) \cup (\alpha_2,\beta_2) \cup \ldots \cup (\alpha_p,\beta_p)$ where $\alpha_1 < \beta_1 \le \alpha_2 < \beta_2 \le \alpha_3 < \ldots < \beta_p$ with Δ a smooth bijection of (α_j,β_j) to (-2,2). Could be orientation reversing or not.

Floquet Solutions

Periodic Jaco Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

Since
$$\Delta(x) \to \infty$$
 as $x \to \infty$, we must have $\Delta(\beta_p) = 2$.
It follows that $\Delta(\alpha_p) = -2$, $\Delta(\beta_{p-1}) = -2$,
 $\Delta(\alpha_{p-1}) = 2 \dots$
i.e., $\Delta(\beta_j) = (-1)^{p-j}2$, $\Delta(\alpha_j) = (-1)^{p-j-1}2$
If the α 's and β 's are all distinct, we have p points where
 $\Delta(x) = 2$ and p where $\Delta(x) = -2$.

Since $\deg \Delta = p$, these are all the points.

If $\beta_{j-1} = \alpha_j$, there is one less point where $\Delta(x) = (-1)^{p-j-1}2$, but $\Delta'(\alpha_j) = 0$ since $\Delta - (-1)^{p-j-1}2$ has the same sign on both sides of α_j . It follows that

Opens and Closed Gaps

Floquet Solution

Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

Theorem. $\Delta^{-1}([-2,2]) = \bigcup_{j=1}^{p} [\alpha_{j},\beta_{j}]$ and $\Delta^{-1}(\{-2,2\}) = \{\alpha_{j},\beta_{j}\}_{j=1}^{p}$ and $\Delta'(\alpha_{j}) = 0 \Leftrightarrow \alpha_{j} = \beta_{j-1}, \Delta'(\beta_{j}) = 0 \Leftrightarrow \beta_{j} = \alpha_{j+1}$ and in that case, Δ'' is not zero at that point. The $[\alpha_{j},\beta_{j}]$ are called the bands and (β_{j},α_{j+1}) the gaps. If $\beta_{j} < \alpha_{j+1}$, we say that gap j is open. If $\beta_{j} = \alpha_{j+1}$, we say gap j is closed.

Opens and Closed Gaps

Floquet Solutions

Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

Furthur analysis shows at a closed gap (with $\Delta(\alpha) = 2$ for simplicity) there are two periodic (Floquet) solutions, while at each of the edges of an open gap there is only one periodic (Floquet) solution. The transfer matrix has a Jordan anomaly, i.e., det = 1, Tr = 2, but $T \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Each of the gaps where $\Delta(x) \geq 2$ has two periodic solutions—either two at $\beta_j = \alpha_{j+1}$ or one each at β_j and α_{j+1} so there are p periodic Floquet solutions, as there must be from the J^{per} analysis.

Spectrum and Spectral Types

Floquet Solution Periodic Jacobi Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

If z is such that $\Delta(z) \notin [-2,2]$, then the roots of $\lambda + \lambda^{-1} = \Delta(z)$ have $|\lambda| > 1$, $|\lambda^{-1}| < 1$. It follows that there are different solutions u_{\pm} decaying exponentially at $\pm \infty$ so their Wronskian is not zero. By the earlier analysis,

$$G_{nm}(z) = u^+_{\max(n,m)}(z)u^-_{\min(m,n)}(z)/W(z)$$

is the matrix for $(J-z)^{-1}$, i.e., $z \notin \sigma(J)$.

If $\Delta(z) \in [-2, 2]$, there is a bounded Floquet solution (since $|\lambda| = 1$). Then $||(J - z)[u\chi_{[-N,N]}]||$ is bounded, but since $\sum_{j=1}^{p} |u_{m+j}|^2$ is constant, $||u\chi_{[-N,N]}|| \to \infty$ so $z \in \sigma(J)$. Thus

Theorem. $\sigma(J) = \bigcup_{j=1}^{p} [\alpha_j, \beta_j].$

Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

If $\Delta(z) \in (-2,2)$, we get that all solutions are bounded at $\pm \infty$ and then by a Wronskian argument, $|u_n|^2 + |u_{n+1}|^2$ is bounded from below. So by a Carmona-type formula, one should expect purely a.c. spectrum. But this is whole line, not half line !

Here is a replacement: Away from the bands, $G_{nn} = u_n^+ u_n^- / W$ as we've seen. By continuity of eigenfunctions of transfer matrix in z, u_n^\pm has a limit at $z = x + i\varepsilon$ with $\varepsilon \downarrow 0$ which are Floquet solutions. This is true at least at interiors of bands where the transfer matrix has distinct eigenvalues.

Spectrum and Spectral Types

Floquet Solutions

Periodic Jaco Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

W is non-vanishing on each (α_j, β_j) since u^+ and u^- are distinct Floquet solutions $(e^{\pm i\theta})$. Thus, $G_{nn}(z)$ is continuous from \mathbb{C}_+ to $\mathbb{C}_+ \cup \mathbb{R} \setminus \{\alpha_j, \beta_j\}_{j=1}^p$.

But if $\mu^{(n)}$ is the spectral measure of δ_n :

$$G_{nn}(z) = \int \frac{d\mu^{(n)}(x)}{x-z}$$

The continuity implies $d\mu^{(n)}$ is purely a.c., so we have proven

Theorem. A periodic two-sided Jacobi matrix has purely absolutely continuous spectrum.

One can write out an explicit spectral representation with Floquet solutions with $z \in (\alpha_j, \beta_j)$ as continuum eigenfunctions.

Floquet Solution Periodic Jacobi

Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

We start with a puzzle. Δ determines $\alpha_1 < \beta_1 \leq \alpha_2 < \beta_2 \leq \ldots$ as the roots of $\Delta^2 - 4$. Conversely, given $\beta_p, \alpha_{p-1}, \beta_{p-2}, \ldots, \Delta - 2$ is determined up to a constant since we know its zeros.

That constant is determined by α_p when Δ is -2. Thus, $\beta_p, \alpha_{p-1}, \beta_{p-2}$ plus α_p determine the remaining p-1 α 's and β 's. Why this rigidity? Why can't we have 2p arbitrary α 's and β 's?

The answer will lie in potential theory.

- Floquet Solution:
- Matrices
- The Discriminant
- Gaps
- Spectrum

Potential Theory

For any
$$z \in \mathbb{C}$$
, there are two Floquet indices, λ_{\pm} , solvin $\lambda + \lambda^{-1} = \Delta(z)$. If $|\lambda_+| \ge 1$, we see that $\gamma(z) = \lim_{n \to \infty} \frac{1}{n} \log ||T_n(\lambda)|| = \frac{1}{p} \log |\lambda_+(z)|$

Solving the quadratic equation for λ

$$\gamma(z) = \frac{1}{p} \left[\log \left| \frac{\Delta(z)}{2} + \sqrt{\left(\frac{\Delta(z)}{2}\right)^2 - 1} \right| \right]$$

On $\mathfrak{e} = \bigcup_{j=1}^{p} [\alpha_j, \beta_j]$, $|\ldots| = 1$, so $\gamma(z) \ge 0$, $\gamma(z) = 0$ on \mathfrak{e} . $\gamma(z)$ is harmonic on $\mathbb{C} \setminus \mathfrak{e}$ since $\frac{\Delta}{2} + \sqrt{\left(\frac{\Delta}{2}\right) - 1}$ is analytic and non-vanishing there and $\gamma(z) = \log(|z|) + O(1)$ at ∞ , since $\Delta(z)$ is a degree ppolynomial.

Floquet Solution Periodic Jacobi

Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

Thus $\gamma(z)=G_{\mathfrak{c}}(z)$ is the potential theorists' Green's function. Thus,

Theorem. $\gamma(z)$ as given above is the potential theorists' Green's function and periodic Jacobi parameters are associated to regular measures (in the Stahl–Totik sense).

Corollary. $C(\mathfrak{e}) = (a_1 \cdots a_p)^{1/p}$

Floquet Solutions

Periodic Jaco Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

By general principles, if $G_{\mathfrak{e}}$ is smooth up to \mathfrak{e} on $\mathfrak{e}^{\text{int}}$, the equilibrium measure $d\rho_{\mathfrak{e}}(x) = f_{\mathfrak{e}}(x)dx$ where

$$f_{\mathfrak{e}}(x) = rac{1}{\pi} rac{\partial}{\partial y} G_{\mathfrak{e}}(x+iy) \mid_{y=0}$$

Thus, the equilibrium measure is

$$f_{\mathfrak{e}}(z) = \frac{1}{p\pi} \frac{|\Delta'(x)|}{\sqrt{4 - \Delta^2(x)}} = \frac{1}{p\pi} \left| \frac{d}{dx} \arccos\left(\frac{\Delta(x)}{2}\right) \right|$$

Floquet Solution

Matrices

The Discriminant

Gaps

Spectrum

Potential Theory

In each, band $\Delta(\lambda)$ goes from -2 to 2, so $\arccos(\frac{\Delta}{2})$ from π to 0. Thus,

Theorem.
$$\rho_{\mathfrak{e}}([\alpha_j,\beta_j]) = \frac{1}{p}$$
.

This explains the puzzle mentioned earlier.

This is also a density of zeros way of understanding why the above $f_{\mathfrak{e}}$ is the DOS. For the periodic eigenfunctions with a box of size kp are the Floquet solutions with $\lambda = e^{2\pi i j/k}$, $j = 0, 1, 2, \ldots, k-1$.