

Case 0 Sum Rule

Theorem

Sz Asym —Results

Jost Asymptotics

Peherstorfer Yuditskii

Spectral Theory of Orthogonal Polynomials

Barry Simon

IBM Professor of Mathematics and Theoretical Physics
California Institute of Technology
Pasadena, CA, U.S.A.

Lecture 6: Szegő Asymptotics and Shohat-Nevai for [-2,2]

Spectral Theory of Orthogonal Polynomials

Case 0 Sum Rule

Theorem

—Results

Jost Asymptotics

Peherstorfe Yuditskii Approach

- Lecture 4: Three Kinds of Polynomial Asymptotics, II
- Lecture 5: Killip-Simon Theorem on [-2, 2]
- Lecture 6: Szegő Asymptotics and Shohat-Nevai for $\left[-2,2\right]$
- Lecture 7: Periodic OPRL

References

Case 0 Sum Rule

Shohat-Neva Theorem

—Results

Jost Asymptotic

Peherstorfe Yuditskii Approach [OPUC] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, AMS Colloquium Series **54.1**, American Mathematical Society, Providence, RI, 2005.

[OPUC2] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, AMS Colloquium Series, 54.2, American Mathematical Society, Providence, RI, 2005.

[SzThm] B. Simon, Szegő's Theorem and Its Descendants: Spectral Theory for L^2 Perturbations of Orthogonal Polynomials, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011.

Case 0 Sum Rule

Case 0 Sum Rule

Recall C_0 step-by-step says

$$-\log(a_1) = Z(\mu) - Z(\mu_1) + \mathcal{E}_0(J) - \mathcal{E}_0(J_1)$$

where $\mathcal{E}_0(J) = \sum_{i,+} \log |\beta^{\pm}(J)|, E = \beta + \beta^{-1}, |\beta| > 1$ and $Z(\mu) = -\frac{1}{2}S(\mu^{(0)} \mid \mu) - \frac{1}{2}\log 2$

(Note $S(\mu^{(0)} \mid \mu_0) = -\log 2$)

$$1 \quad f_1 \quad \left(\begin{array}{c} \sin \theta \\ \end{array}\right)$$

 $=\frac{1}{4\pi}\int \log\left(\frac{\sin\theta}{\operatorname{Im}M(e^{i\theta})}\right) d\theta$.

 $d\mu^{(0)} = \operatorname{Sz}(\frac{d\theta}{2\pi})$. Recall $d\mu_0 = \operatorname{Sz}(\sin^2\theta \frac{d\theta}{\pi})$ is free half-line.

So formally, C_0 is

So formally,
$$C_0$$
 is $-\log(\sum_{i=1}^\infty a_j) = Z(\mu) - \mathcal{E}_0(J)$

Unlike P_2 , not all terms positive.

(Extended) Shohat–Nevai Theorem

Case 0 Sum Rul Shohat-Nevai

last Asymptotics

Peherstorfer Yuditskii Approach **Theorem** (Extended Shohat–Nevai Theorem). Let $d\mu = f(x) \, dx + d\mu_s$. $\sigma_{\rm ess}(J) = [-2,2]$. Suppose that

$$\sum_{n,\pm} \left(|E_n^{\pm}| - 2 \right)^{\frac{1}{2}} < \infty$$

Then

$$\int_{-2}^{2} (4 - x^2)^{-\frac{1}{2}} \log f(x) > -\infty \Leftrightarrow \overline{\lim} a_1 \cdots a_n > 0$$

In that case

$$\sum_{n=1}^{\infty} (a_n - 1)^2 + b_n^2 < \infty$$

 $\prod_{n=1}^N a_n$, $\sum_{n=1}^N (a_n-1)$, $\sum_{n=1}^N b_n$ all have limits (in $(0,\infty)$, resp., $(-\infty,\infty)$)

(Extended) Shohat–Nevai Theorem

Case 0 Sum Rule

Shohat-Nevai Theorem

—Results

Peherstorfe Yuditskii Approach **Remarks.** 1. $\sum (|E_n^{\pm}| - 2)^{\frac{1}{2}} < \infty$ is called Blaschke condition for reasons we'll see below.

- 2. One variant of this theorem is that among the three conditions:
- (i) $\sum (|E_n^{\pm}| 2)^{\frac{1}{2}} < \infty$;
- (ii) Szegő integral $> -\infty$,
- (iii) $\lim (a_1 \cdots a_n)$ exists in $(0, \infty)$ (not just $\overline{\lim}$), any two imply the third.
- 3. Recall Lieb-Thirring (proven for Jacobi by Hundertmark-Simon)

$$\sum (|E_n^{\pm}| - 2)^p \le \sum (|a_n - 1|^{p + \frac{1}{2}} + |b_n|^{p + \frac{1}{2}}) \text{ for } p \ge \frac{1}{2}.$$

(Extended) Shohat–Nevai Theorem

Case 0 Sum Rule

Shohat-Nevai Theorem

Sz Asym —Results

Jost Asymptotics

Peherstorfe Yuditskii Approach Thus $J-J_0\in\ell_1$ (trace class), equivalent to $\sum |a_n-1|+|b_n|<\infty$ implies both Blaschke condition and $\lim{(a_1\cdots a_n)}$ exists so we have

Nevai Conjecture. $\sum |a_n - 1| + |b_n| < \infty \Rightarrow \mathsf{Szeg}$ ő condition.

We refer you to [SzTh], Section 3.8 for the proof of the extended Shohat–Nevai Theorem. The idea is to use the C_0 step-by-step sum rule and lsc of Z much like we did for Killip–Simon.

Case 0 Sum Rule

Shohat-Nev Theorem

Sz Asym —Results

Jost Asymptotics

Peherstorfe Yuditskii Approach **Theorem** (Damanik–Simon [Inv. Math **165** (2006), 1–50]). Let the Jacobi parameters obey

(a)
$$\sum_{n=1}^{\infty} (a_n - 1)^2 + b_n^2 < \infty$$

(b)
$$\lim_{n\to\infty} \prod_{j=1}^n a_j$$
 exists in $(0,\infty)$

(c)
$$\lim_{n\to\infty}\sum_{j=1}^n b_j$$
 exists in \mathbb{R} .

Then, for all $z \in \mathbb{D} \setminus \{0\}$ with $z + z^{-1} \notin \sigma(J)$, $\lim_{n \to \infty} z^n p_n(z + z^{-1})$ exists uniformly on compacts and is non-zero.

Conversely, if that limit exists uniformly and is non-zero for $\{z\mid |z|=r\}$ for all $r\in (0,\varepsilon)$, then (a)–(c) hold.

Case 0 Sum Rule

Theorem
Sz Asym

—Results

Peherstorfer-

Corollary (Peherstorfer-Yuditskii [Proc. AMS 129 (2001) 3213-3220]). If $\sum_{n,\pm}(|E_n^{\pm}|-2)^{\frac{1}{2}}<\infty$ and Szegő condition holds, then $\lim z^n p_n(z+z^{-1})$ exists, etc.

For by Shohat-Nevai, we get all the required conditions for above theorem.

For each $\frac{1}{2} \leq p < \frac{3}{2}$, Damanik–Simon construct examples with $a_n \equiv 1$, $\sum_{n=1}^{\infty} b_n^2 < \infty$, $\lim_{n \to \infty} \sum_{j=1}^n b_j$ exists but $\sum (|E_n^{\pm}| - 2)^p = \infty$.

For such examples, the Szegő condition fails, but you still get Szegő asymptotics! This came as a surprise to many. Of course, if an ℓ^2 condition holds, then the sum is finite for p=3/2 by Killip–Simon.

Casa O Sum Bula

Shohat-Nev Theorem

Sz Asym —Results

Jost Asymptotic

Peherstorfer-Yuditskii Approach Here is the idea of the construction, at least if p < 1.

For whole line $a_n\equiv 1$, $b_n=0$ for $n\neq 0$, $b_0=\pm \varepsilon$ has a single eigenvalue of size $\pm 2\pm C\varepsilon^2+O(\varepsilon^3)$. (I think $C=\frac{1}{4}$?)

Fix a sequence of numbers β_j of alternating sign, $|\beta_j| \to 0$, $\beta_1 > 0$, and integers, $0 < m_1 < m_2 < \dots$ Take $a_n \equiv 1$, $b_n = 0$ if $n \not\in \{m_j\}$. $b_{m_j} = \beta_j$. As $m_1, m_{j+1} - m_j, \dots$ all get very large, J has eigenvalues very close to $(-1)^{j+1} \big[2 + C \beta_j^2 \big]$, at least for j large.

Take $\beta_j = k^{-\beta}$, j = 2k - 1; $\beta_j = -k^{-\beta}$, j = 2k.

Trivially, $\sum_{n=1}^N \beta_n$ converges to 0 and if $\beta>\frac{1}{2}$, $\sum_{n=1}^\infty b_n^2 < \infty$.

$$|E_i^{\pm}| - 2 \sim Cj^{-2\beta}$$
. If $2\beta p < 1$, $\sum (|E_i^{\pm}| - 2)^p = \infty$.

Case 0 Sum Rule

Shohat-Nev Theorem

Sz Asym —Results

Jost Asymptotics

Peherstorfe Yuditskii Approach That Szegő asymptotics implies the conditions on the a's and b's is not hard. For each n, for z near 0,

$$z^{n} p_{n}(z + \frac{1}{z}) = \frac{1}{a_{1} \cdots a_{n}} \left(1 + z \left(\sum_{j=1}^{n} b_{j} \right) + O(z^{2}) \right)$$

so $z^n p_n(z+\frac{1}{z})$ is analytic near z=0 and Szegő asymptotics implies convergence of the Taylor coefficients.

The first two coefficients give convergence of $\prod_1^n a_j$ and $\sum_1^n b_j$ by the above and the third coefficient yields the conditional convergence of $\sum_1^n (a_j-1)^2 + b_j^2$ but since the sum of positive numbers, conditional convergence implies absolute convergence.

Jost Asymptotics

Case 0 Sum Rule

Shohat-Nev Theorem

Sz Asym –Results

Jost Asymptotics

Peherstorfe Yuditskii Approach In the last lecture, we defined the Weyl solution, $g_n(x)$, $x \in \mathbb{C} \setminus \sigma(J)$

We say we have Jost asymptotics at z_0 if and only if

$$\lim_{n \to \infty} -z_0^{-(n+1)} g_n(z_0 + \frac{1}{z_0}) \equiv \frac{1}{u(z_0)}$$

exists and is non-zero. In that case, \boldsymbol{u} is called the Jost function, the Jost solution is defined to be

$$u_n(z) = -u(z) g_{n-1}(z + \frac{1}{z})$$

so $u_n(z) \sim z^n$.

Jost Asymptotics

Case 0 Sum Rule

Shohat-Nevai Theorem

Sz Asym —Results

Jost Asymptotics

Peherstorfe Yuditskii Approach Define $x_n = -z_0^{-(n+1)} g_n(z_0 + \frac{1}{z_0}), \ y_n = z_0^n p_n(z_0 + \frac{1}{z_0}).$

Theorem (Damanik–Simon). Suppose $a_n \to 1$, $b_n \to 0$. Fix z_0 . Then $\lim x_n = x_\infty$ if and only if $\lim y_n = y_\infty$ and then

$$x_{\infty} y_{\infty} = (1 - z^2)^{-1}$$

.

Proof (Christensen–Simon–Zinchenko [Const. Approx **33** (2011), 365–403]). The Wronskian of p_n and q_n is 1, so the Wronskian of p_n and $g_n = q_n + m \, p_n$ is 1 also. Thus, with $G_{nn} = \langle \delta_n, (J - (z + z^{-1}))^{-1} \delta_n \rangle$

$$G_{nn} = p_{n-1}(z+z^{-1}) g_{n-1}(z+z^{-1})$$

Jost Asymptotics

Case 0 Sum Rule

Shohat-Neva Theorem

-Result

Jost Asymptotics

Peherstorfe Yuditskii Approach Let J_0 be the whole line free $(a_n \equiv 1, b_n \equiv 0)$ Jacobi matrix.

Then,
$$G_{nn}^{(0)}(z) \equiv \langle \delta_n, (J_0 - (z+z^{-1}))^{-1} \delta_n \rangle$$

= $-(z-z^{-1})^{-1}$

(by computing Wronskian of z^{-n} and z^n)

and
$$a_n \to 1$$
, $b_n \to 0 \Rightarrow \lim G_{nn}(z) = G_{00}^{(0)}(z)$.

Thus,
$$y_{n-1} x_{n-1} \to (1-z^2)^{-1} \Rightarrow \text{result.}$$

Peherstorfer-Yuditskii Approach

Case 0 Sum Rule

Shohat-Neva

Sz Asym —Results

Jost Asymptotic

Peherstorfer-Yuditskii Approach Rather than prove Jost asymptotics in the Damanik–Simon generality, we suppose we have a Szegő condition and a Blaschke condition and sketch how to get Szegő asymptotics directly but still using the Jost function. (Our approach follows Peherstorfer-Yuditskii.)

The condition
$$\sum \left(|E_j^\pm|-2\right)^{\frac{1}{2}}<\infty$$
 is equivalent to $\sum (1-|\beta_j^\pm|)<\infty$ where $E_j^\pm=\beta_j^\pm+(\beta_j^\pm)^{-1},\ |\beta_j|<1.$

Thus, $B(z) = \prod b_{\beta_j^\pm}(z)$ exists (hence Blaschke condition) and one defines

$$u(z) = B(z) \exp\left(\int \frac{e^{i\theta} + z}{e^{i\theta} - z} \log\left(\frac{\sin\theta}{\operatorname{Im} M(e^{i\theta})}\right) \frac{d\theta}{2\pi}\right)$$

where $\operatorname{Im} M(e^{i\theta}) = \pi f(2\cos\theta)$ (if $0 < \theta < \pi$).

Peherstorfer-Yuditskii Approach

Case 0 Sum Rule

Shohat-Neva Theorem

Sz Asym —Results

Jost Asymptotics

Peherstorfer-Yuditskii Approach By the Szegő condition, the integral defines a function E(z) with $(1-z^2)\,E(z)^{-1}\in H^2.$

A calculation reminiscent of Szegő's yields

$$\int \left| p_n(x) - \frac{\operatorname{Im}\left[\bar{u}(e^{i\theta(x)})e^{i(n+1)\theta(x)}\right]}{\sin(\theta(x))} \right|^2 f(x) \, dx + \int |p_n(x)|^2 \, d\mu_s(x) \text{ goes to zero.}$$

This implies Szegő and Jost asymptotics and that u as defined above is the Jost function.