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Killip�Simon Theorem

In 2000, Rowan Killip and I proved the following OPRL
analog of Szeg®'s Theorem.

Theorem. Let dµ(x) = f(x) dx+ dµs with Jacobi
parameters {an, bn}∞n=1. Then

∞∑
n=1

(an − 1)2 + b2n <∞
if and only if

(i) (Blumental�Weyl) σess(J) = ess supp(dµ) = [−2, 2],
i.e., supp(dµ) is a set of pure points whose only possible
limit points are ±2: E−1 < E−2 < . . . < −2; 2 < . . . <
E+

2 < E+
1 .

(ii) (Lieb�Thirring)
∑
±,j(|E

±
j | − 2)3/2 <∞.

(iii) (Quasi-Szeg®)
∫
(x2 − 4)1/2 log

(
f(x)

)
dx <∞.
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Killip�Simon Theorem

If J0 is the Jacobi matrix, an ≡ 1, bn ≡ 0, the L2 condition
is

Tr
(
(J − J0)

2
)
<∞

Weyl's Theorem says J − J0 compact ⇒ σess(J) =
σess(J0) = [−2, 2].

For Schrödinger operators in 1D (and so on half line),
Lieb�Thirring proved (initially for p > 1/2, p = 1/2 is Weidl
and then Hundertmark�Lieb�Thomas)∑

Ej ,±
|E±j |

p ≤ Cp
∫ ∞

0
|V (x)|p+

1
2
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Killip�Simon Theorem

Hundertmark�Simon (Killip�Simon for p = 3/2)

∑(
|E±j | − 2

)p ≤ C̃p ∞∑
n=0

|aj − 1|p+
1
2 + |bj |p+

1
2

Quasi-Sezg® because power is +1/2, not −1/2 of Szeg®
condition.
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P2-Sum Rule

De�ne F on R \ [−2, 2] by (|β| > 1)

F (β + β−1) = 1
4

[
β2 − β−2 − log(β4)

]
;

F (E) = 1
2

∫ |E|
2

(y2 − 4)
1
2 dy

so F (E) > 0 and F (E) = 2
3

(
|E| − 2

) 3
2 +O

(
(|E| − 2)

5
2

)
.

De�ne G(a) = a2 − 1− log(a2), so

G(a) > 0 on (0,∞) \ {1}; G(a) = 2(a− 1)2 +O
(
(a− 1)3

)
.

Q(µ) = 1
4π

∫ 2
−2 log

(√
4−x2

2πf(x)

)√
4− x2 dx

= −1
2S
(
µ0 | µ

)
; µ0 = (an ≡ 1, bn ≡ 0) measure
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P2-Sum Rule

P2-Sum Rule:

Q(µ) +
∑

F (E±n ) =

∞∑
n=1

[
1
4 b

2
n +

1
2 G(an)

]
if σess(µ) = [−2, 2].

RHS <∞⇔
∑∞

n=1 b
2
n + (an − 1)2 <∞.

LHS <∞⇔ Quasi-Szeg® +
∑

n,±
(
|E±n | − 2

) 3
2 <∞.

Thus P2-sum rule ⇒ KS Theorem.
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The Method of Step-by-Step Sum Rules

Consider �rst OPUC. Given µ with Verblunsky coe�cients
{αn}∞n=0, we de�ne the once stripped measure, µ, by

αj(µ1) = αj+1(µ)

i.e., drop α0 and shift left.

If µ obeys a Szeg® condition, so does µ1 and if
dµ1 = f1

dθ
2π + dµ1,s, then

1− |α0|2 = exp
( 1

2π

∫
log
( f(θ)
f1(θ)

)
dθ
)
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The Method of Step-by-Step Sum Rules

This is a little dicey if f1 or f vanish on sets of positive
Lebesgue measure but otherwise makes sense even if µ
doesn't obey a Szeg® condition.

There is such a �single step� sum rule in general where
log
( f(θ)
f1(θ)

)
is replaced by a function G(θ) equal to that log

if f(θ) 6= 0 and it can be used to prove Szeg®'s theorem
(see [SzThm], Sections 2.6 and 2.7).

Since the proof uses usc of entropy, it only replaces
variational upper bound so for OPUC not so signi�cant.

Still it leads to a higher-order Szeg® theorem for OPUC (see
[SzThm], Section 2.8).
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The Method of Step-by-Step Sum Rules

We'll eventually prove

Theorem (P2 Step-by-Step Sum Rule). µ` has Jacobi

parameters aj(µ`) = aj+`(µ), bj(µ`) = bj+`(µ). Then,

(a)
∑

j,±
[
F (E±j (µ))− F (E

±
j (µ1))

]
is convergent.

(b) ∃Q(µ | µ1) �nite for all µ.

(c) Q(µ) <∞⇔ Q(µ1) <∞ and in that case

Q(µ | µ1) = Q(µ)−Q(µ1).

1
4b

2
1 +G(a1) = Q(µ | µ1) +

∑
j,±

F (E±j (µ))− F (E
±
j (µ1))
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Step-by-Step Sum Rule ⇒ Sum Rule

Step 1. P2 for �nite rank perturbations

If J − J0 has rank n, then µn = µ0 has Q(µ0) = 0 <∞.
Thus Q(µ) <∞. Similarly, the sum of F 's is �nite.

By iteration, we get P2 for µn−1, µn−2, . . . , µ.
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Step-by-Step Sum Rule ⇒ Sum Rule

Step 2. Let J (n) have

a
(n)
` = a`, ` ≤ n− 1, a

(n)
` = 1 if ` ≥ n,

b
(n)
` = b`, ` ≤ n, b

(n)
` = 0 if ` ≥ n+ 1,

Let E(µ) =
∑
F 's.

By Step 1,

Q(µ(n)) + E(µ(n)) = 1
4

n∑
j=1

b2j +
n−1∑
j=1

G(aj)

Since Q = −S, Q is lsc so Q(µ) ≤ limQ(µ(n)).

For j �xed, E±j (µ
(n))→ E±j (µ), so

∑
j,±≤m F

(
E±j (µ)

)
≤ lim E(µ(n)), so E(µ) ≤ lim E(µ(n)).

We have thus proven that Q(µ) + E(µ) ≤
∑∞

j=1
1
4b

2
j

+G(aj).
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Step-by-Step Sum Rule ⇒ Sum Rule

Step 3. If Q(µ) <∞, E(µ) <∞, by step-by-step,
Q(µn) <∞, E(µn) <∞ and

Q(µ) + E(µ) =
n−1∑
j=1

[
1
4 b

2
j +G(aj)

]
+Q(µn) + E(µn)

≥
n−1∑
j=1

1
4 b

2
j +G(aj)

Taking n→∞, Q(µ) + E(µ) ≥
∑∞

j=1
1
4 b

2
j +G(aj)

If Q =∞ or E =∞, this inequality is trivial.

QED!
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m-Functions

One de�nes mµ(z) =
∫ dµ(x)

x−z for z 6∈ supp(µ) = σ(J).

Of course, m is analytic on C \ σ(J) and meromorphic at
isolated pure points of µ.

Moreover, since J is multiplication by x in L2(R, dµ),
isolated eigenvalues of J are exactly the poles of mµ.

We'll see soon that the poles of mµ1 , the once-stripped m
are precisely the zeros of mµ.
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m-Functions

If (α, β) ⊂ R \ σ(J), dm(y)
dy =

∫ dµ(x)
(x−y)2

> 0 so

zeros and poles of m interlace. Since m→ 0 at ±∞, last
�pole or zero� is a pole.

Thus, E+
1 (µ) > E+

1 (µ1) > E+
2 (µ) > E+

2 (µ1) . . .

⇒ terms in F
(
E(µ)

)
− F

(
E(µ1)

)
are all positive

and as alternating sum, the sum converges.

Also for Lebesgue a.e. x, f(x) = π−1 limε↓0 Imm(x+ iε)
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Second Kind Polynomials

qn(x) =

∫
pn(x)− pn(y)

x− y
dµ(y); q0 = 0, q−1 = −1

Since p1(x) = a−1
1 (x− b1), we have q1 = a−1

1 .

Using recursion relation for p's, see q obeys same relations.

Indeed,
qn(x) = a−1

1 pn−1

(
x; {a`+1, b`+1}∞`=0

)
are �essentially� the p's for dµ1.
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Weyl Solution

For z 6∈ σ(J), de�ne the Weyl solution

gn(z) ≡ m(z) pn(z) + qn(z)

which is a solution of di�erence equation.Thus,

gn(z) = pn(z)

∫
dµ(x)

x− z
− pn(z)

∫
dµ(x)

x− z
+

∫
pn(x)

x− z
dµ(x)

= 〈pn, (· − z)−1〉

Since (· − z)−1 ∈ L2(R, dµ), we see∑∞
n=0|gn(z)|2 <∞

(
= Imm(z)

Im z if Im z 6= 0

)
If infn an > 0, the Weyl solution is the unique L2 solution
(up to a constant) by constancy of the Wronskian.
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Weyl Solution

Clearly m(z) = − g0(z)
a0 g−1(z)

since q0 = 0, p0 = 1, q−1 = −1, p−1 = 0, a0 = 1.

By uniqueness of L2 solutions up to a constant

gn(z; dµ1) = c(z) gn+1(z; dµ),n ≥ −1.

Thus, m(z; dµ1) =
−g1(z)
a1 g0(z) .

In m(z) = −g0/a0 g−1, we put a0 = 1, but it works for any

value of a0 which is why we put in the a1.

Since a1 g1 + (b1 − z)g0 + a0 g−1 = 0, we see that

−a2
1m1 + (b1 − z)−m(z)−1 = 0.
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Weyl Solution

Thus, m(z) = (b1 − z − a2
1m1(z))

−1, called the coe�cient
stripping relation.

In particular, poles of m1 are exactly the zeros of m as we
claimed.

Iterating gives Markov continued fraction expansion for m !

In particular taking z = x+ iε, ε ↓ 0 using Im(w−1) =

− Imw/|w|2,

ε+ a2
1 Imm1 = Imm/|m|2 ⇒ f/f1 = |a1m|2



Killip�Simon
Theorem

P2-Sum Rule

Step-by-Step
Sum Rules

Step-by-Step ⇒
Result

m-Functions

Second Kind
Polynomials

Weyl Solution

Meromorphic
Herglotz
Functions

Case Sum Rules

End of the Story

Meromorphic Herglotz Functions on D

Let M be meromotphic on D with ± ImM > 0 if
± Im z > 0. Then poles and zeros (i.e., on (−1, 1))
interlace. By controlling the ratio of Blaschke products as
zeros move, one proves that

Theorem. If {zj}∞j=1, {pj}∞j=1 ⊂ (−1, 1) with |zj | → 1 as

j →∞ and
∑∞

j=1|zj − pj | <∞ (automatic if interlaced),

then ∏N
j=1

bzj (z)

bpj (z) → B(z)

as meromorphic functions on D �uniformly� (as functions to

Riemann sphere).

B converges in UHP uniformly on compacts, so
|B(eiθ)| = 1.

As usual bw=0(z) = z, bw 6=0(z) = − |w|w
z−w
1−w̄z .
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Meromorphic Herglotz Functions on D

Let B∞ be Blaschke product of zeros and poles for M , a
meromorphic Herglotz function on D. One proves in UHP,
|argB∞(z)| ≤ 2π (starting from argB∞(x) = 0 for
B∞(x) > 0 on R) so arg(M/B∞) is bounded, so by
M. Riesz Theorem,

log (M/B∞) ⊂ ∩p<∞Hp
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Meromorphic Herglotz Functions on D

We get

Theorem. If M is a meromorphic Herglotz function on D,

B∞ meromorphic on D, poles only at poles of M . Then for

a.e. θ, limr↑1M(reiθ) ≡M(eiθ) exists with∫ [
log |M(eiθ)|

]p dθ
2π

<∞

for all p ∈ [1,∞)

with
f(z) = σB∞(z) exp

(∫
eiθ + z

eiθ − z
log |M(eiθ)|dθ

2π

)
where σ = ±1.

σ = sgn
(
f(0)

)
if f(0) 6= 0, σ = 1 if f(0) = 0, σ = −1 if

f(0) =∞.
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Step-by-Step Case Sum Rules

(named after Ken Case) We now apply this to

M(z) = m(z + z−1)

looking at log
(a1M(z)

z

)
. z = 0 corresponds to x =∞, so

there are Taylor coe�cients expressible in terms of
continued function expansion.The leading terms are

log
a1M(z)

z
= log a1 + b1z + (1

2b
2
1 + a2

1 − 1)z2 +O(z3)

Using

log
(
1− β

z + z−1

)
=

∞∑
n=1

2
n

[
Tn(0)− Tn(1

2β)
]
zn

one can obtain �explicit� formulas for the Taylor coe�cients.
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Step-by-Step Case Sum Rules

One also expands the log of Blaschke terms, using

log bw(z) = log |w|+
∑∞

n=1
zn

n (wn − w−n)

and eiθ+z
eiθ−z

= 1 + 2
∑∞

n=1 z
ne−inθ.

One gets the C0 step-by-step rule

− log (a1) = Z(J | J1) +
∑

j,±
[
log(|pj |)− log (|zj |)

]
Z(J | J1) =

1
4π

∫ 2π
0 log

(
ImM1(eiθ)
ImM(eiθ)

)
dθ

if ImM(eiθ) 6= 0, otherwise it's really |a1M(eiθ)|2.
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Step-by-Step Case Sum Rules

For n ≥ 1, Cn sum rules,

Pn(a's, b's) = Sn + En
Pn is, in general, complicated but

P2 = 1
2 b

2
1 + a2

1 − 1, P1 = b1

En =
∑

j,±1

znj −pnj −(z−nj −p
−n
j )

n

Sn = − 1
2π

∫ 2π
0 log

(
ImM1(eiθ)
ImM(eiθ)

)
cos(nθ) dθ

where we use ImM(eiθ) = − ImM(eiθ) so ratio is even to
replace einθ by cos(nθ).
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The End of the Story

P2 is C0 +
1
2C2. A miracle takes place!

1
4π −

1
4π cos(2θ) =

1
2π sin

2 θ, so the entropies terms combine

to

Q(J | J1) =
1

2π

∫ 2π
0 log

(
ImM1
ImM

)
sin2 θ dθ

− log(a1) +
1
2

(
1
2b

2
1 + a2

1 − 1
)
= 1

4 b
2
1 +

1
2 G(a1)

with G(a) > 0 on (0,∞) \ {1}.

The Blaschke terms also combine to something positive.

Everything works because of the positivity. So far, there is
no understanding why they are positive other than as a
fortuitous result of calculation!
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