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Killip—Simon
Theorem

Killip—Simon Theorem

In 2000, Rowan Killip and | proved the following OPRL
analog of Szeg6's Theorem.

Theorem. Let du(x) = f(z)dx + dus with Jacobi

parameters {a,, b, }>2 ;. Then
oo

Z(an— 1?2 +b2 < o0

n=1

if and only if

(i) (Blumental-Weyl) cess(J) = esssupp(du) = [-2,2],
i.e., supp(du) is a set of pure points whose only possible
limit points are £2: ] < E, <...<-=2;2<... <
Ef < Ef.

(i) (Lieb-Thirring) 3= (| E}| — 2)3/2 < oc.
(iii) (Quasi-Szegs) [(2? —4)'/2 log (f(2)) dz < .




Killip—Simon Theorem

If Jo is the Jacobi matrix, a,, = 1, b, = 0, the L? condition
Killip—Simon is
Theorem

Tr((J — J0)2) < 0
Weyl's Theorem says J — Jy compact = oegs(J) =
Uess(JO) = [_272]'

For Schrddinger operators in 1D (and so on half line),
Lieb—Thirring proved (initially for p > 1/2, p = 1/2 is Weidl
and then Hundertmark—Lieb—Thomas)

Y <G JNCle



Killip—Simon Theorem

Killip—Simon
Theorem

Hundertmark-Simon (Killip=Simon for p = 3/2)
=~ > 1 1
Z(|Eji] — 2)p < CPZ\aj —1Pte 4+ ‘bj’PJra

n=0

Quasi-Sezg6 because power is +1/2, not —1/2 of Szeg8
condition.



DDDDD

Define F on R\ [—

2,2] by (8] > 1)
F(B+p871) =3[ —p7% —log(8Y)];

so F(E) > 0 and F(E) = 2(|E| - 2)? + O((|E| - 2)%).
Define G(a) = a® — 1 — log(a?), so
G(a) > 0on (0,00)\{1}; G(a) =2(a—1)>+O((a—1)?).

Q) f log(%f )\/ 4 —22dx

—38(po | )5 o = (an =1,b, = 0) measure



P>-Sum Rule

P5-Sum Rule:

P5-Sum Rule 00

Q)+ Y F(ET)=> [102 + 5 G(an)]

n=1
if oess(p) = [-2,2].
RHS < 0o & 3% b2 + (a, — 1)% < 0.
LHS < oo < Quasi-Szegé +Zn:|:(|E;H - 2)% < oo,

Thus Py-sum rule = KS Theorem.



The Method of Step-by-Step Sum Rules

Consider first OPUC. Given p with Verblunsky coefficients
{an}o2,, we define the once stripped measure, 1, by

Step-by-Step aj(pr) = ajy1(p)

Sum Rules
i.e., drop ag and shift left.

If 1 obeys a Szegd condition, so does p; and if
dpy = f1% + dpys, then

1—|agl* = exp(% /log (}Z&%)d@)



The Method of Step-by-Step Sum Rules

This is a little dicey if f1 or f vanish on sets of positive
Lebesgue measure but otherwise makes sense even if
doesn’t obey a Szegé condition.

Step-by-Step . ‘o ” .
Sum Rules There is such a “single step” sum rule in general where

log (J{l(—(%))) is replaced by a function G(6) equal to that log

if f(0) # 0 and it can be used to prove Szegd's theorem
(see [SzThm], Sections 2.6 and 2.7).

Since the proof uses usc of entropy, it only replaces
variational upper bound so for OPUC not so significant.

Still it leads to a higher-order Szegé theorem for OPUC (see
[SzThm], Section 2.8).



The Method of Step-by-Step Sum Rules

We'll eventually prove

Theorem (P, Step-by-Step Sum Rule). py has Jacobi
parameters a;(1e) = a;yo(), bj(te) = bjre(p). Then,

il (@) 2+ [F(E]i(u)) - F(E;E(,ul))] is convergent.
(b) 3Q(p | p1) finite for all .

(c) Q(u) < 00 < Q(u1) < oo and in that case
Qu ] ) = Q(p) — Q)

P01+ Glar) = Qu | ) + ) F(ES () = F(E (1))
J,x



Step-by-Step Sum Rule = Sum Rule

Step 1. P, for finite rank perturbations

Sl ) = If J — Jo has rank n, then p, = po has Q(up) =0 < oo.
Thus Q(p) < co. Similarly, the sum of F's is finite.

By iteration, we get P for i, 1, fin—2,. .., i



Step-by-Step Sum Rule = Sum Rule

Step 2. Let J(™ have
agn):ag,ﬁgn—l, agn)zl if ¢ >n,
B = by, 6<n, B =0if>n+1,
Let E(p) =D F's.

Step-by-Step = By Step 1,

Result n n—1

Since Q = —S, Qis Isc so Q(u) < lim Q(p™).
For ] fixed, Ei(,u(")) — Ei( ), so Zj,iSmF(E]j'E(N))

We have thus proven that Q(u) +&(p) <322, 1p?
+G(aj).



Step-by-Step Sum Rule = Sum Rule

Step 3. If Q(u) < oo, E(n) < o0, by step-by-step,
Q(pn) < 00, E(pn) < 00 and

n—1

(502 + G(a;)] + Q(n) + E(n)

Step-by-Step = le
Result

1
% b2- + G(aj)

n

vV
0

Taking n — 00, Q(1) + £() > Y22, 162 + G(ay)

If Q@ = o0 or & = o0, this inequality is trivial.
QED!




m~-Functions

One defines m,(z) = [ dx"—_(? for z & supp(u) = o(J).
Of course, m is analytic on C\ o(J) and meromorphic at

isolated pure points of p.

Moreover, since .J is multiplication by x in L?(R, du),
isolated eigenvalues of J are exactly the poles of m,,.

m-Functions

We'll see soon that the poles of m,,,, the once-stripped m
are precisely the zeros of m,,.



m~-Functions

If (@, 8) C R\ o(]), P58 = [ 28, > 0 50

T—y
zeros and poles of m interlace. Since m — 0 at %oo, last
“pole or zero” is a pole.

Thus, B (1) > Ef (1) > E5 (1) > Ef (1) ...
= terms in F(E(p)) — F(E()) are all positive

m-Functions

and as alternating sum, the sum converges.

Also for Lebesgue a.e. z, f(z) = m 1 lim. o Imm(z + ic)




Second Kind Polynomials

gn(z) = /W du(y); qo=0,q-1=-1

Since p1(2) = a7 ' (z — by), we have ¢; = a7 "
Using recursion relation for p's, see ¢ obeys same relations.

Indeed,

Second Kind
Polynomials

an () = a7 "pu_1(@; {ass1, ber1}20)

are “essentially” the p’s for dyu;.



Weyl Solution

Weyl Solution

For z € o(J), define the Weyl solution
gn(2) = m(2) pn(2) + qn(2)

which is a solution of difference equation.Thus,

n(z) = pu() [P o) [y [0 g

rT—z T —z T —z
= <pn7 ( - Z)il>
Since (- — 2)7! € L?(R, du), we see
Zzozo|9n(2)\2 < o0 (— % if Imz # O)

If inf,, a,, > 0, the Weyl solution is the unique L? solution
(up to a constant) by constancy of the Wronskian.



Weyl Solution

Weyl Solution

_ g0(2)
Clearly m(z) = — go_l(z)
since qo = 0, Po = 1, q—1 = —1, P—-1 = 0, apg = 1.
By uniqueness of L? solutions up to a constant
gn(z3dp1) = c(2) gn+1(z3dp),n > —1.

Thus, m(z;duy) = %o((zz))'

In m(z) = —go/ao g—1, we put a9 = 1, but it works for any
value of ag which is why we put in the a;.
Since a1 g1 + (b1 — 2)go + ap g—1 = 0, we see that

—a2my + (by — 2) —m(z)"L =0.



Weyl Solution

Thus, m(z) = (b1 — 2 — a3 m(2)) 7L, called the coefficient
stripping relation.

In particular, poles of m; are exactly the zeros of m as we
claimed.

Iterating gives Markov continued fraction expansion for m !

In particular taking z = x + ic, £ . 0 using Im(w™!) =

—Imw/|w|?,

Weyl Solution

e+aiImmy =Imm/|m|* = f/fi = |aym|?



Meromorphic Herglotz Functions on D

Let M be meromotphic on D with 2Im M > 0 if
+Imz > 0. Then poles and zeros (i.e., on (—1,1))
interlace. By controlling the ratio of Blaschke products as
zeros move, one proves that

Theorem. If {z;}5,, {p;}32; C (—=1,1) with [2;] — 1 as
j —o00and 3772 |z — pj| < oo (automatic if interlaced),

then b (2)
N 2. (2
Hj:l bpj-(Z) — B(2)

as meromorphic functions on D “uniformly” (as functions to

M Riemann sphere).
Herglotz
Functions B converges in UHP uniformly on compacts, so

|B(e?)| = 1.

|w| 2=
w 1—wz"

As usual by—o(2) = 2, bwxo(2) = —



Meromorphic Herglotz Functions on D

Let B, be Blaschke product of zeros and poles for M, a
meromorphic Herglotz function on . One proves in UHP,
|arg Boo(2)| < 27 (starting from arg Boo(x) = 0 for
Bso(z) > 0 on R) so arg(M/By) is bounded, so by

M. Riesz Theorem,

log (M/Bso) C Np<cooHP

Meromorphic

Herglotz
Functions



Meromorphic Herglotz Functions on D

We get

Theorem. If M is a meromorphic Herglotz function on D,
B, meromorphic on D, poles only at poles of M. Then for
a.e. 0, lim4; M(re?) = M(e?) exists with

/[log |M(ei9)|]p % < 5

for all p € [1,00)

ith ;
wh e? 4+ 2

N
|l\_:I:rrgolzltt;rphic f(2) = 0Bx(2) exp </ eif — 5 log |M(e“9)|27r>
Functions

where 0 = £1.

o =sgn(f(0)) if f(0)#0,0=1if f(0)=0,0=—1if
f(0) = oc.



Case Sum Rules

Step-by-Step Case Sum Rules

(named after Ken Case) We now apply this to

M(2) = m(z +27)

looking at log (%(2)) z = 0 corresponds to = = oo, s0
there are Taylor coefficients expressible in terms of

continued function expansion.The leading terms are

ayM(z)

log =log ai + b1z + (302 + a} — 1)z + O(23)

Using

S

log (1 — . le) = 2[T,(0) - Tn(38)] 2"

n=1

one can obtain “explicit” formulas for the Taylor coefficients.



Step-by-Step Case Sum Rules

One also expands the log of Blaschke terms, using
log by (=) = log [w] + 758, 22 (" — w")

0 .
and G2 = 1423700 2neminf,

elf—z

One gets the Cy step-by-step rule

—log (a1) = Z(J | J1) + 32 1 [log(|p;1) — log (I2;1)]

s m eie
Z(J| ) = & [Z log (Ilmf‘ﬁéw))) o

Case Sum Rules if Im M (e?) # 0, otherwise it's really |a; M (e)|2.




Step-by-Step Case Sum Rules

For n > 1, C,, sum rules,
Pnla's, b's) =S, + &,
Py, is, in general, complicated but

PQZ%b%—F(I%—l, P1=b

—n

z"]‘—p’?’—(z.ﬁn—p. )
— J J J J
En =225+

n

™ m eie
Sp=—5 02 log <Ilm]\1\441((ei9))> cos(n#) do

where we use Im M (e?) = — Tm M (e*) so ratio is even to
Case Sum Rules replace €™ by cos(n#).



The End of the Story

Py is Cy + 102. A miracle takes place!

£ — = cos(20) = 5= sin? 0, so the entropies terms combine

to

QI | )= log( M) sin? 0 do
—log(a1) + i(ib% +a}—1) =102+ 3G(ar)
with G(a) > 0 on (0,00) \ {1}.

The Blaschke terms also combine to something positive.

Everything works because of the positivity. So far, there is
no understanding why they are positive other than as a
fortuitous result of calculation!

End of the Story
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