Chebyshev Asym
Three Asym
OPUC Transfer Matrices

OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym

Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

Spectral Theory of Orthogonal Polynomials

Barry Simon

IBM Professor of Mathematics and Theoretical Physics
California Institute of Technology
Pasadena, CA, U.S.A.

Lectures 3 \& 4: Three Kinds of Polynomial Asymptotics, I, II

Spectral Theory of Orthogonal Polynomials

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer
Matrix
OPRL L^{1} Pert
OPUC Sz Asym

■ Lecture 2: Szegö Theorem for OPUC
■ Lecture 3: Three Kinds of Polynomials Asymptotics, I
■ Lecture 4: Three Kinds of Polynomial Asymptotics, II

- Lecture 5: Killip-Simon Theorem on [-2, 2]

References

Chebyshev Asym
Three Asym
OPUC Transfer Matrices

OPUC L^{1} Pert
OPRL Transfer
Matrix
OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym
[OPUC] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, AMS Colloquium Series 54.1, American Mathematical Society, Providence, RI, 2005.
[OPUC2] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, AMS Colloquium Series, 54.2, American Mathematical Society, Providence, RI, 2005.
[SzThm] B. Simon, Szegő's Theorem and Its Descendants: Spectral Theory for L^{2} Perturbations of Orthogonal Polynomials, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011.

Asymptotics of Chebyshev of Second Kind

Since

$$
\sin (n \pm 1) \theta=\sin n \theta \cos \theta \pm \cos n \theta \sin \theta
$$

we have that

$$
\sin (n+1) \theta+\sin (n-1) \theta=2 \cos \theta(\sin n \theta)
$$

If $f_{n}(\theta)=\frac{\sin (n+1) \theta}{\sin \theta}$, then $f_{-1}=0, f_{0}=1$, and
$f_{n+1}+f_{n-1}=(2 \cos \theta) f_{n}$.
Thus, by induction, $f_{n}(\theta)$ is a polynomial in $2 \cos \theta$ of degree n, i.e.,

$$
f_{n}(\theta)=p_{n}(2 \cos \theta)
$$

where

$$
p_{n+1}(x)+p_{n-1}(x)=x p_{n}(x) ; \quad p_{-1}=0, p_{0}=1
$$

Asymptotics of Chebyshev of Second Kind

Three Asym

OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer
Matrix
OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

Thus, $\left\{p_{n}(x)\right\}_{n=0}^{\infty}$ are the orthonormal OPs with Jacobi parameters, $b_{n} \equiv 0, a_{n} \equiv 1$.
$x=2 \cos \theta$ (leads to quadratic equation for $e^{i \theta}$) so

$$
e^{ \pm i \theta}=\frac{x}{2} \pm \sqrt{1-\left(\frac{x}{2}\right)^{2}}
$$

WARNING: I am very bad at calculations. Factors of $2, \pi$, etc., could be wrong.
Since $\sin (k \theta)$ are orthogonal for $\frac{d \theta}{2 \pi}, f_{n}(\theta)$ are orthogonal for $\sin ^{2} \theta \frac{d \theta}{2 \pi}$ (for normalization on $[0,2 \pi]$).

Asymptotics of Chebyshev of Second Kind

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer
Matrix
OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym

Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

But $\theta \mapsto x=2 \cos \theta$ is 2 to 1 from $[0,2 \pi]$ to $[-2,2]$, so we want to look at $2 \sin ^{2} \theta \frac{d \theta}{2 \pi}$ on $[0, \pi]$.
$x=2 \cos \theta \Rightarrow d x=2 \sin \theta d \theta$, so the measure is

$$
\sin \theta d x=\sqrt{1-\left(\frac{x}{2}\right)^{2}} d x \text {, i.e., }
$$

$$
d \mu(x)=\frac{1}{2 \pi} \sqrt{4-x^{2}} d x
$$

is the orthogonality measure for this problem.

Asymptotics of Chebyshev of Second Kind

Three Asym

OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegó Mapping
$[-2,2] \mathrm{Sz}$ Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

If $x \notin[-2,2](x \in \mathbb{C}), e^{ \pm i \theta}$ have different rates of growth so one dominates for $\sin (n+1) \theta / \sin \theta$ for n large, i.e.,

$$
\left|p_{n}(x)\right| /\left|\frac{x}{2}+\sqrt{1-\left(\frac{x}{2}\right)}\right|^{n} \rightarrow 1
$$

as $n \rightarrow \infty . x \notin[-2,2]$ is critical to avoid oscillation.
There is a branch of $\sqrt{ }$ so $|\cdots|>1$ on $\mathbb{C} \backslash[-2,2]$.
One question we'll answer is where $\frac{x}{2}+\sqrt{1-\left(\frac{x}{2}\right)^{2}}$ comes from.

Three Kinds of Asymptotics

Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

What does it mean to say that a sequence, $y_{n} \sim a^{n}$ for n large?

Root asymptotics: $\left|y_{n}\right|^{1 / n} \rightarrow|a|$.
Ratio asymptotics: $\frac{y_{n+1}}{y_{n}} \rightarrow a$.
Szegő asymptotics: $y_{n} / A a^{n} \rightarrow 1$ for some A.

Three Kinds of Asymptotics

Chebyshev Asym
Three Asym
OPUC Transfer Matrices

OPUC L^{1} Pert
OPRL Transfer
Matrix
OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2]$ Sz Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

A second theme in this pair of lectures will be to explore when these conditions hold for OPUC/OPRL close to the "free" case ($\alpha_{n} \equiv 0$ for OPUC; $a_{n} \equiv 1, b_{n} \equiv 0$ for OPRL).

We'll look at this asymptotics away from $\operatorname{supp}(d \mu)$ because on $\operatorname{supp}(d \mu)$, the asymptotics are typically unusual (decay rather than growth for isolated points in $\operatorname{supp}(d \mu)$; oscillation on the a.c. part of $d \mu$.)

That said, asymptotic behavior on the spectrum can have important consequences as we'll illustrate with the theory of L^{1} perturbations.

OPUC Transfer Matrices

Chebyshev Asym
Three Asym
OPUC Transfer Matrices

OPUC L^{1} Pert
OPRL Transfer
Matrix
OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

We begin by looking at all solutions of the difference equations that describe recursion. In some sense, they are both second order, so there is a 2×2 "update" matrix that takes data at $n=0$ to data at $n=m$.
For OPUC, we saw that $A\left(z ; \alpha_{n}\right)\binom{\varphi_{n}^{*}}{\varphi_{n}^{*}}=\binom{\varphi_{n+1}^{*}}{\varphi_{n+1}^{*}}$

$$
A(z ; \alpha)=\rho^{-1}\left(\begin{array}{cc}
z & -\bar{\alpha} \\
-\alpha z & 1
\end{array}\right)
$$

Notice that $\operatorname{det} A(z ; \alpha)=z$, so for $z \neq 0, z \in \mathbb{C}$, we have A invertible and for $z \in \partial \mathbb{D}$,

$$
\left\|A^{-1}\right\|=\|A\|
$$

OPUC Transfer Matrices

Define the transfer matrix by

$$
T_{n}\left(z ; \alpha_{n-1}, \ldots, \alpha_{0}\right)=A\left(z ; \alpha_{n-1}\right) A\left(z ; \alpha_{n-2}\right) \cdots A\left(z ; \alpha_{0}\right)
$$

Thus,

$$
\binom{\varphi_{n}}{\varphi_{n}^{*}}=T_{n}\binom{1}{1}
$$

The second kind of polynomials are defined by

$$
\binom{\psi_{n}}{-\psi_{n}^{*}}=T_{n}\binom{1}{-1}
$$

A little thought using

$$
\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) A(z ; \alpha)\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)=A(z ;-\alpha)
$$

shows that

$$
\psi_{n}\left(z ;\left\{\alpha_{j}\right\}_{j=0}^{n-1}\right)=\varphi_{n}\left(z ;\left\{-\alpha_{j}\right\}_{j=0}^{n-1}\right)
$$

OPUC L^{1} Perturbation

As a simple application of transfer matrices for OPUC, we prove

Theorem. If

$$
\sum_{j=0}^{\infty}\left|\alpha_{j}\right|<\infty
$$

then $d \mu=w(\theta) \frac{d \theta}{2 \pi}$ with $\inf w>0, \operatorname{supp} w<\infty$ (so $d \mu_{s}=0$).

Remarks. 1. Our proof can be slightly extended to show w is continuous.
2. A much stronger result is known (Baxter's Theorem):
$\sum_{j=0}^{\infty}\left|\alpha_{j}(d \mu)\right|<\infty \Leftrightarrow \sum_{j=0}^{\infty}\left|c_{j}(d \mu)\right|<\infty+\left(d \mu=w(\theta) \frac{d \theta}{2 \pi}\right.$, w continuous with $\inf w>0$.)

OPUC L^{1} Perturbation

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2]$ Sz Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

Notice that for $|z|=1$, we have that (Euclidean norm on \mathbb{C}^{2})

$$
\|A(z ; \alpha)\| \leq 1+|\alpha| \leq e^{|\alpha|}
$$

Thus, $\left\|T_{n}\left(z ; \alpha_{0}, \cdots \alpha_{n-1}\right)\right\| \leq e^{\sum_{0}^{n-1}\left|\alpha_{j}\right|}$
so $\sup _{|z|=1, n}\left|\varphi_{n}(z)\right| \leq e^{\sum_{0}^{\infty}\left|\alpha_{j}\right|}$
but $\left\|A^{-1}\right\|=\|A\|$ for $|z|=1$ and $|\varphi|=\left|\varphi^{*}\right|$
implies $\inf _{|z|=1, n}\left|\varphi_{n}(z)\right| \geq e^{-\sum_{0}^{\infty}\left|\alpha_{j}\right|}$
Thus, by Bernstein-Szegő, we get the desired result.

OPRL Transfer Matrix

Chebyshev Asym
Three Asym
OPUC Transfer Matrices

OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2]$ Sz Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

Consider the difference equation

$$
u_{n+1}=a_{n}^{-1}\left(\left(z-b_{n}\right) u_{n}-a_{n-1} u_{n-1}\right)
$$

$u_{n}=p_{n-1}(z)$ solves this equation with $u_{0}=0, u_{1}=1$.
The difference equation can be rewritten (we take $a_{0}=1$)

$$
\begin{gathered}
\binom{u_{n+1}}{a_{n} u_{n}}=A\left(z ; a_{n}, b_{n}\right)\binom{u_{n}}{a_{n-1} u_{n-1}} ; \\
A(z ; a, b)=\frac{1}{a}\left(\begin{array}{cc}
z-b & -1 \\
a^{2} & 0
\end{array}\right)
\end{gathered}
$$

OPUC L^{1} Perturbation

Chebyshev Asym
Three Asym
OPUC Transfer Matrices

OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2]$ Sz Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

The reason for the funny a_{n} in the lower component (a suggestion of Killip) is that it makes

$$
\operatorname{det} A=1
$$

This implies if u, v are two solutions (same z) that (courtesy of Wronkian) $a_{n}\left(u_{n+1} v_{n}-u_{n} v_{n+1}\right)=$ constant.

As for OPUC, we define
$T_{n}\left(z ;\left\{a_{j}, b_{j}\right\}_{j=1}^{n}\right)=A\left(z ; a_{n}, b_{n}\right) \cdots A\left(z: a_{1}, b_{1}\right)$ so

$$
T_{n}\binom{1}{0}=\binom{p_{n}(z)}{a_{n} p_{n-1}(z)}
$$

OPRL L^{1} Perturbation

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer
Matrix
OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

In the free Jacobi matrix case,

$$
A_{0}(z)=\left(\begin{array}{rr}
z & -1 \\
1 & 0
\end{array}\right)
$$

Since $\left\|A_{0}(z)\binom{1}{0}\right\|=\left\|\binom{z}{1}\right\|=1+|z|^{2}$, except for $z=0$, $A_{0}(z)$ is not a contraction in the Euclidean norm. Since (as we'll see) $\sup _{n}\left\|A_{0}(z)^{n}\right\|$ is bounded for $z \in(-2,2)$, this isn't a problem for A_{0} but it makes perturbations tricky.

We'll overcome this by changing norm. In essence, the plane wave solutions will be a basis, so this is essentially a variation of parameters argument.

OPRL L^{1} Perturbation

We are heading towards a proof of
Theorem. Let $\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty} \subset[(0, \infty) \times \mathbb{R}]^{\infty}$ obey

$$
\sum_{n=1}^{\infty}\left|a_{n}-1\right|+\left|b_{n}\right|<\infty
$$

Then, for any $\varepsilon>0$, there is $C_{\varepsilon}>0$ so that for all n and all $x \in[-2+\varepsilon, 2-\varepsilon]$, we have

$$
C_{\varepsilon} \leq\left|p_{n}(x)\right|^{2}+\left|p_{n-1}(x)\right|^{2} \leq C_{\varepsilon}^{-1}
$$

In particular (since $0<\inf a_{n}<\sup a_{n}<\infty$), J has purely a.c. spectrum in $(-2,2)$.

OPRL L^{1} Perturbation

Since $\operatorname{det} A_{0}(2 \cos \theta)=1, \operatorname{Tr}\left(A_{0}(2 \cos \theta)\right)=2 \cos \theta$, the eigenvalues of $A_{0}(2 \cos \theta)$ are $\pm e^{i \theta}$. Thus, for $x \in(-2,2)$, there is $U(x)$ so

$$
U(x) A_{0}(x) U(x)^{-1}=\left(\begin{array}{cc}
e^{i \theta(x)} & 0 \\
0 & e^{-i \theta(x)}
\end{array}\right)
$$

We define

$$
\|B\|_{x}=\left\|U(x) B U(x)^{-1}\right\|
$$

where $\|\cdot\|$ without an x is Euclidean norm. $\|\cdot\|_{x}$ is a Banach algebra norm on $\operatorname{Hom}\left(\mathbb{C}^{2}\right)$, since

$$
U(x) B C U(x)^{-1}=\left[U(x) B U(x)^{-1}\right]\left[U(x) C U(x)^{-1}\right]
$$

OPRL L^{1} Perturbation

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
opuc Sz Asym
Szegő Mapping
$[-2,2]$ Sz Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym
$U(x)$ is singular at $x= \pm 2$ but on $(-2,2)$ it can be chosen real analytic (and, in particular, so $U(x)$ and $U(x)^{-1}$ are bounded on each $[-2+\varepsilon, 2-\varepsilon]$).

Thus, for each interval, there is $D_{\varepsilon}>0$ so for all x in the interval and B

$$
D_{\varepsilon}\|B\| \leq\|B\|_{x} \leq D_{\varepsilon}^{-1}\|B\|
$$

The point, of course, is that $\left\|A_{0}(x)\right\|_{x}=1$, so

$$
\left\|a_{n} A_{n}\left(x ; a_{n}, b_{n}\right)\right\|_{x} \leq 1+E_{x}\left[\left\|a_{n}-1\right\|+\left\|b_{n}\right\|\right]
$$

OPRL L^{1} Perturbation

Chebyshev Asym
Three Asym
OPUC Transfer Matrices

OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2]$ Sz Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

Since $\delta \leq a_{n} \leq \delta^{-1}$ and $\sum_{n}\left|a_{n}-1\right|<\infty, \prod_{j=1}^{n} a_{j}$ and its inverse converge and are uniformly bounded.

We conclude $\left\|T_{n}\right\|_{x}$ and $\left\|T_{n}^{-1}\right\|_{x}$ and so $\left\|T_{n}\right\|$ and $\left\|T_{n}^{-1}\right\|$ are uniformly bounded on $[-2+\varepsilon, 2+\varepsilon]$ which yields the claimed estimates.

Szegő Asymptotics for OPUC

For OPUC, the condition for $d \mu=f(\theta) \frac{d \theta}{2 \pi}+d \mu_{s}$

$$
\int \log f(\theta) \frac{d \theta}{2 \pi}>-\infty
$$

is called the Szegő condition. When it holds, we define the Szegő function, $D(z)$, on \mathbb{D} by

$$
D(z)=\exp \left(\int \frac{e^{i \theta}+z}{e^{i \theta}-z} \log (f(\theta)) \frac{d \theta}{4 \pi}\right)
$$

Lemma. If the Szegô condition holds, $D \in H^{2}(\mathbb{D})$, indeed,

$$
\sup _{0 \leq r<1} \int\left|D\left(r e^{i \theta}\right)\right|^{2} \frac{d \theta}{2 \pi} \leq 1
$$

and, with $D\left(e^{i \theta}\right) \equiv \lim _{r \uparrow 1} D\left(r e^{i \theta}\right)$,

$$
\left|D\left(e^{i \theta}\right)\right|^{2}=f(\theta)
$$

Szegő Asymptotics for OPUC

Proof. Let $f_{\varepsilon}(\theta)=\min \left(f(\theta), \varepsilon^{-1}\right)$. Then $\log \left(f_{\varepsilon}(\theta)\right)$ is bounded above by $\log \left(\varepsilon^{-1}\right)$, so

$$
\operatorname{Re}\left(\int \frac{e^{i \theta}+z}{e^{i \theta}-z} \log \left(f_{\varepsilon}(\theta)\right) \frac{d \theta}{4 \pi}\right) \leq \frac{1}{2} \log \left(\varepsilon^{-1}\right)
$$

so $\left|D_{\varepsilon}\right| \leq \varepsilon^{-1 / 2}$. Thus, D_{ε} lies in H^{∞} and has boundary values

$$
\left|D_{\varepsilon}\left(e^{i \theta}\right)\right|^{2}=f_{\varepsilon}(\theta)
$$

Therefore, $D_{\varepsilon} \in H^{2}$ and

$$
\sup _{0 \leq r<1} \int\left|D_{\varepsilon}\left(r e^{i \theta}\right)\right|^{2} \frac{d \theta}{2 \pi}=\int\left|D_{\varepsilon}\left(e^{i \theta}\right)\right|^{2} \frac{d \theta}{2 \pi} \leq 1
$$

Taking $\varepsilon \downarrow 0$, we see that $D \in H^{2}$ and the rest follows.

Szegő Asymptotics for OPUC

We have the following beautiful calculation of Szegő:

$$
\int\left|\varphi_{n}^{*}\left(e^{i \theta}\right) D\left(e^{i \theta}\right)-1\right|^{2} \frac{d \theta}{2 \pi}+\int\left|\varphi_{n}^{*}\left(e^{i \theta}\right)\right|^{2} d \mu_{s}=2\left(1-\prod_{j=n}^{\infty} \rho_{j}\right)
$$

For
$\mathrm{LHS}=\int \frac{d \theta}{2 \pi}+\int\left|\varphi_{n}^{*}\left(e^{i \theta}\right)\right|^{2} d \mu-2 \operatorname{Re} \int D\left(e^{i \theta}\right) \varphi_{n}^{*}\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}$

$$
=2-2 \operatorname{Re}\left(D(0) \varphi_{n}^{*}(0)\right)
$$

$$
=2\left[1-\prod_{j=0}^{\infty} \rho_{j}\left(\prod_{j=0}^{n-1} \rho_{j}^{-1}\right)\right]
$$

Szegő Asymptotics for OPUC

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer
Matrix
OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2]$ Sz Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

Since RHS $\rightarrow 0$ as $n \rightarrow \infty$ (if the product converges, i.e., if the Szegő condition holds), each term goes to zero.
Thus $\int\left|\varphi_{n}^{*}\left(e^{i \theta}\right)\right|^{2} d \mu_{s} \rightarrow 0$ and $\varphi_{n}^{*} D \rightarrow 1$ in $L^{2}\left(\partial \mathbb{D}, \frac{d \theta}{2 \pi}\right)$.
Since the Poisson kernel $P_{z}\left(e^{i \theta}\right)$ is L^{2} uniformly for $|z| \leq r<1, \varphi_{n}^{*}(z) D(z) \rightarrow 1$ uniformly on $|z| \leq r<1$. Thus, uniformly in $|z| \geq r^{-1}>1$,

$$
z^{-n} \varphi_{n}(z) \rightarrow\left[\overline{D\left(\frac{1}{z}\right)}\right]^{-1}
$$

which is Szegő asymptotics for φ_{n}.

The Szegő Mapping

Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer
Matrix
OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2]$ Sz Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

We now turn to OPRL with μ supported on $[-2,2]$. Since we'll later consider a related result which generalizes this, we'll only sketch or, even hand wave, some details.

The map

$$
z \mapsto x=z+z^{-1}
$$

(called the Joukowski map) is a 2 to 1 map of $\partial \mathbb{D}$ to $[-2,2]$ that takes $e^{i \theta}$ to $2 \cos \theta$ in the limit.

The Szegő Mapping

Chebyshev Asym
Three Asym
OPUC Transfer Matrices

OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2]$ Sz Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym
$Q\left(e^{i \theta}\right)=2 \cos \theta$ induces a map of $C([-2,2])$ to $C(\partial \mathbb{D})$ by $\left(Q^{*} f\right)\left(e^{i \theta}\right)=f\left(Q\left(e^{i \theta}\right)\right)$. It is onto the even functions, i.e., $g\left(e^{-i \theta}\right)=g\left(e^{i \theta}\right)$. By duality, it defines a dual map Sz :
Even measures on $\partial \mathbb{D}$ to some probability measures on $[-2,2]$ by $d \rho=\mathrm{Sz}(d \mu)$

$$
\int f\left(\arccos \left(\frac{x}{2}\right)\right) d \rho(x)=\int f(\theta) d \mu(\theta)
$$

The Szegő Mapping

Three Asym

OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

Let P_{n} be the monic OP's for $d \rho=\mathrm{Sz}(d \mu)$ and Φ_{n} for μ. Then

$$
P_{n}\left(z+\frac{1}{z}\right)=\left[1-\alpha_{2 n-1}(d \mu)\right]^{-1} z^{-n}\left[\Phi_{2 n}(z)+\Phi_{2 n}^{*}(z)\right]
$$

This can be proven by noting first that the right side is a Laurent polynomial of z, even under $z \rightarrow \frac{1}{z}$ and every such Laurent polynomial has the form $Q_{n}\left(z+\frac{1}{z}\right)$.

The Szegő Mapping

Chebyshev Asym
Three Asym
OPUC Transfer Matrices

OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2]$ Sz Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

By an easy computation \int (RHS for n) (RHS for ℓ) $d \mu=0$ if $n \neq \ell$, so the Q_{n} 's are OP and by the leading term, it is monic.

By computing $\left\langle\Phi_{2 n}, \Phi_{2 n}^{*}\right\rangle=-\alpha_{2 n-1}\left\|\Phi_{2 n}\right\|^{2}$, one finds

$$
\left\|P_{n}\right\|_{L^{2}(d \rho)}^{2}=2\left(1-\alpha_{2 n-1}\right)^{-1}\left\|\Phi_{2 n}\right\|_{L^{2}(d \mu)}^{2}
$$

This implies that

$$
\left(a_{1} \cdots a_{n}\right)^{2}=2\left(1+\alpha_{2 n-1}\right) \prod_{j=0}^{2 n-2}\left(1-\alpha_{j}^{2}\right)
$$

The Szegő Mapping

Chebyshev Asym
Three Asym
OPUC Transfer Matrices

OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2]$ Sz Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

One also finds (Section 13.1 and 13.2 of [OPUC2] have two different proofs)-known as Geronimus relations

$$
\begin{gathered}
a_{n+1}^{2}=\left(1-\alpha_{2 n-1}\right)\left(1-\alpha_{2 n}^{2}\right)\left(1+\alpha_{2 n+1}\right) \\
b_{n+1}=\left(1-\alpha_{2 n-1}\right) \alpha_{2 n}-\left(1+\alpha_{2 n-1}\right) \alpha_{2 n-2}
\end{gathered}
$$

Szegó Asymptotics for [-2, 2]

From $a_{n}^{2} \cdots a_{1}^{2}=2\left(1+\alpha_{2 n-1}\right) \prod_{j=0}^{2 n-1}\left(1-\alpha_{j}^{2}\right)$, one sees

Chebyshev Asym
Three Asym
OPUC Transfer Matrices

OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2]$ Sz Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

$$
\sum_{j=1}^{\infty}\left|\alpha_{j}\right|^{2}<\infty \Leftrightarrow \lim \sup a_{1} \cdots a_{n}>0
$$

This leads to
Shohat-Nevai Theorem. Let $d \mu=f(x) d x+d \mu_{s}$ be supported on $[-2,2]$. Then
$\lim \sup a_{1} \cdots a_{n}>0 \Leftrightarrow \int_{-2}^{2}\left(4-x^{2}\right)^{-1 / 2} \log (f(x)) d x>-\infty$
If that holds, then
$\sum_{n=1}^{\infty}\left(a_{n}-1\right)^{2}+b_{n}^{2}<\infty, \quad \lim a_{1} \cdots a_{N}$,
$\lim \sum_{n=1}^{N}\left(a_{n}-1\right)$ and $\lim \sum_{n=1}^{N} b_{n}$ all exist.

Szegó Asymptotics for [-2, 2]

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer Matrix

It is critical that we require that support $(d \mu) \subset[-2,2]$, i.e., no eigenvalues outside $[-2,2]$-unnatural from a perturbation theory point of view.
$\int_{-2}^{2}\left(4-x^{2}\right)^{-1 / 2} \log (f(x)) d x>-\infty$ is called the Szegő condition.

$$
\begin{aligned}
& x=2 \cos \theta \Rightarrow d x=2 \sin \theta d \theta \Rightarrow d \theta=\frac{d x}{2 \sin (\theta)} \\
& \Rightarrow d \theta=\left(4-x^{2}\right)^{-1 / 2} d x
\end{aligned}
$$

The other relations follow from Geronimus relations.

Szegó Asymptotics for [-2, 2]

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2]$ Sz Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

Recall that

$$
P_{n}\left(z+\frac{1}{z}\right)=\left[1-\alpha_{2 n-1}(d \mu)\right]^{-1} z^{-n}\left[\Phi_{2 n}(z)+\Phi_{2 n}^{*}(z)\right]
$$

and for $|z|>1$,

$$
z^{-2 n} \Phi_{2 n}(z) \rightarrow D(0) / \overline{D\left(\frac{1}{z}\right)}
$$

By the maximum principle $(1+\varepsilon)^{-2 n} \Phi_{2 n}(z) \rightarrow 0$ for $|z|>1$, so $z^{-2 n} \Phi_{2 n}^{*}(z) \rightarrow 0$.

Thus, we obtain

Szegő Asymptotics for [-2, 2]

Chebyshev Asym

Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2]$ Sz Asym

Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

Theorem (Szegő asymptotics for $[-2,2]$, with no bound states). If the Szegô condition holds, then, for $|z|>1$

$$
z^{-n} P_{n}\left(z+\frac{1}{z}\right) \rightarrow G(z) \equiv D(0) / \overline{D\left(\frac{1}{z}\right)}
$$

Equivalently, for $x \in \mathbb{C} \backslash[-2,2]$

$$
\left(\frac{x}{2}+\sqrt{\left(\frac{x}{2}\right)-1}\right)^{-n} P_{n}(x) \rightarrow \widetilde{G}(x)
$$

The Density of Zeros

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer
Matrix
OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

I now say a little about root and ratio asymptotics. In the final lectures, I hope to return to this subject.

As a warm-up for root asymptotics, let J_{N} be the $N \times N$ truncated Jacobi matrix (with b_{1}, \ldots, b_{n} along the diagonal). Let $D_{n}(z)=\operatorname{det}\left(z-J_{N}\right)$. Then, expanding in minors:

$$
D_{N}=-a_{N-1}^{2} D_{N-2}+\left(z-b_{N}\right) D_{N-1} ; \quad D_{0}=1, D_{-1}=0
$$

Thus $D_{N}(z)=P_{N}(z)$.
which implies zero of $P_{N}=$ eigenvalues of J_{N} are real and simple.

The Density of Zeros

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

For each N, let $x_{1}^{(N)}<\cdots<x_{N}^{(N)}$ be the zeros. By the variational principle, $x_{j}^{(N)}<x_{j}^{(N+1)}<x_{j+1}^{(N+1)}$, i.e., zero interlace. Let

$$
\nu^{(N)}=\frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}^{(N)}}
$$

If

$$
\nu=\mathrm{w}-\lim \nu^{(N)}
$$

exists, we say ν is the density of zeros, aka, density of states.

The Density of Zeros

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym
ν is boundary condition independent, e.g., if

$$
J_{N}^{\mathrm{per}}=\left(\begin{array}{ccc}
b_{1} & \ldots & a_{N} e^{i \theta} \\
\vdots & \ddots & \vdots \\
a_{N} e^{-i \theta} & \ldots & b_{N}
\end{array}\right)
$$

$\mathrm{w}-\lim \nu_{\mathrm{per}}^{(N)}=\mathrm{w}-\lim \nu^{(N)}$
For

$$
\int x^{\ell} d \nu(x)=\lim _{N \rightarrow \infty} \frac{1}{N} \operatorname{Tr}\left(J_{n}^{\ell}\right)
$$

and $\left|\operatorname{Tr}\left(J_{N}^{\ell}\right)-\operatorname{Tr}\left(\left(J_{N}^{\text {per }}\right)^{\ell}\right)\right|$ is bounded.

Thouless Formula

The DOS is intimately connected to root asymptotics because

$$
p_{n}(z)=\left(a_{1} \cdots a_{n}\right)^{-1} \prod_{j=1}^{N}\left(z-x_{j}^{(n)}\right)
$$

SO
$\frac{1}{n} \log \left|p_{n}(z)\right|=-\frac{1}{n} \log \left(a_{1} \cdots a_{n}\right)+\int \log |z-x| d \nu^{(N)}(x)$
Theorem (Thouless Formula). If DOS exists and

$$
\lim \left(a_{1} \cdots a_{n}\right)^{1 / n}=c(d \mu)
$$

exists, then for $z \in \mathbb{C} \backslash \mathbb{R},\left(\Phi_{\mu}(z)=\int \log |z-x|^{-1} d \mu(x)\right.$ is the potential of μ)

$$
\lim \frac{1}{n} \log \left|p_{n}(z)\right|=-\log c(d \mu)+\int \log |z-x| d \nu(x)
$$

Connection to Potential Theory

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

Given any compact set, \mathfrak{e}, we say \mathfrak{e} has zero capacity if

$$
\mathcal{E}(\mu)=\int d \mu(x) d \mu(y) \log |x-y|^{-1}
$$

is infinite for all $\mu \in M_{+, 1}(\mathfrak{e})$.
(Note: the integral is either $+\infty$ or finite.)
If \mathfrak{e} does not have zero capacity, we define $C(\mathfrak{e})$ by

$$
C(\mathfrak{e})=\exp \left(-\inf _{\mu \in M_{+, 1}(\mathfrak{e})} \mathcal{E}(\mu)\right)
$$

Connection to Potential Theory

It is a fundamental theorem that if $C(\mathfrak{e})>0$, there is a unique probability measure, $\rho_{\mathfrak{e}}$, called the equilibrium measure or the harmonic measure for \mathfrak{e} with $\mathcal{E}\left(\rho_{\mathfrak{e}}\right)=$ $\inf \mathcal{E}(\mu)$.
$T_{n, \mathfrak{e}}$, the Chebyschev polynomial for \mathfrak{e}, is the (it turns out unique) monic polynomial of degree n with

$$
\left\|T_{n, \mathfrak{e}}\right\|_{\infty, \mathfrak{e}}=\inf _{P \text { monic }}\|P\|_{\infty, \mathfrak{e}} ; \quad\|f\|_{\infty, \mathfrak{e}}=\sup _{x \in \mathfrak{e}}|f(x)|
$$

Theorem (Faber-Fekete-Szegő).

Thouless Formula
Potential Theory

$$
\left\|T_{n}\right\|_{\infty, \mathfrak{e}}^{1 / n} \geq C(\mathfrak{e}) \text { and } \lim _{n \rightarrow \infty}\left\|T_{n}\right\|_{\infty, \mathfrak{e}}^{1 / n}=C(\mathfrak{e})
$$

Regular Measures

Chebyshev Asym
Three Asym
OPUC Transfer Matrices

OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

Since $\left\|T_{n}\right\|_{L^{2}(d \mu)} \leq\left\|T_{n}\right\|_{\infty, \mathfrak{e}}$, if

$$
\mathfrak{e}=\operatorname{supp}(\mu)
$$

and $\left\|P_{n}\right\|_{L^{2}(d \mu)} \leq\left\|T_{n}\right\|_{L^{2}(d \mu)} \quad$ (by variational principle)
$\limsup \left(a_{1} \cdots a_{n}\right)^{1 / n} \leq C(\mathfrak{e})$.
We call μ regular $($ with $\operatorname{supp}(\mu)=\mathfrak{e} \subset \mathbb{R})$ if $\lim _{n \rightarrow \infty}\left(a_{1} \cdots a_{n}\right)^{1 / n}=C(\mathfrak{e})$.

Pioneers are Ulmann (for $\mathfrak{e}=[0,1]$) and Stahl-Totik $(\mathfrak{e} \in \mathbb{C})$.
See also Simon, Inv. Prob. Imaging 1 (2007), 189-215.

Regular Measures

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer
Matrix
OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

If μ is regular, the DOS exists and equals the equilibrium measure for \mathfrak{e}.

Thus, for $z \in \mathbb{C} \backslash \mathbb{R}, \lim _{n \rightarrow \infty}\left|p_{n}(z)\right|^{1 / n}=e^{G_{\mathfrak{e}}(z)}$.
$G_{\mathfrak{e}}(z)=\log (C(\mathfrak{e}))^{-1}-\Phi_{\rho_{\mathfrak{e}}}(z)$
This is the potential theorists' Green's Function, the unique function subharmonic on \mathbb{C}, harmonic on $\mathbb{C} \backslash \mathfrak{e}$, equal to 0 q.e. on \mathfrak{e} and $\log (|z|)+O(1)$ at ∞.

Ratio Asymptotics

Szegő's Asymptotic Theorem for OPUC says

Chebyshev Asym
Three Asym
OPUC Transfer Matrices

OPUC L^{1} Pert
OPRL Transfer Matrix

OPRL L^{1} Pert
opuc Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym
$\Phi_{n}^{*}(z) \rightarrow D(0) D(z)^{-1}$ as $n \rightarrow \infty$ so $\Phi_{n+1}^{*} / \Phi_{n}^{*} \rightarrow 1$. We state without proof

Krushchev's Theorem (see [OPUC2], Section 9.5).
$\Phi_{n+1}^{*}(z) / \Phi_{n}^{*}(z)$ converges uniformly on each
$\{z||z|<1-\varepsilon\}$ if and only if either
For $\ell=1,2, \ldots, \lim _{n \rightarrow \infty} \alpha_{n+\ell} \alpha_{n}=0$; limit is then 1 .
OR $\exists a \in(0,1]$ and $\lambda \in \partial \mathbb{D}$ so $\lim _{n \rightarrow \infty}\left|\alpha_{n}\right|=a$, $\lim _{n \rightarrow \infty} \bar{\alpha}_{n+1} \alpha_{n}=a^{2} \lambda$
and then limit $\frac{1}{2}\left[(1+\lambda z)+\sqrt{(1-z \lambda)^{2}+4 a^{2} \lambda z}\right]$.

Ratio Asymptotics

For OPRL, we have
Simon's Theorem (J. Approx. Th. 128 (2004), 198-217).
For OPRL if $\lim _{n \rightarrow \infty} \frac{P_{n+1}(z)}{P_{n}(z)}$ exists at a single point in
$\mathbb{C} \backslash \mathbb{R}$, it exists at all points and this happens if and only if for some $a \in[0, \infty), b \in \mathbb{R}$

$$
\lim _{n \rightarrow \infty} a_{n}=a, \quad \lim _{n \rightarrow \infty} b_{n}=b
$$

and the limit is
$\frac{1}{2}\left[(z-b)+\sqrt{(z-b)^{2}-4 a^{2}}\right] \quad$ (root with $\sqrt{ }=z$ near ∞)

Ratio Asymptotics

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC L^{1} Pert
OPRL Transfer
Matrix
OPRL L^{1} Pert
OPUC Sz Asym
Szegő Mapping
$[-2,2] \mathrm{Sz}$ Asym
DOS
Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

Closely related to ratio asymptotics (because the conclusions imply ratio asymptotics) are

Rakhmanov's Theorem. If $d \mu=f(\theta) \frac{d \theta}{2 \pi}+d \mu_{s}$ and $f(\theta)>0$ for a.e. θ, then $\alpha_{n} \rightarrow 0$.
Denisov-Rakhamanov Theorem. If $d \mu=f(x) d x+d \mu_{s}$ and $f(x)>0$ on $[-2,2]$ and $\sigma_{\text {ess }}(J)=[-2,2]$, then $a_{n} \rightarrow 1, b_{n} \rightarrow 0$.

I hope to say more about this in Lecture 11 or 12.
Moral is ratio and Szegő asymptotics unusual. Expect oscillations.

