

Chebyshev Asym

Three Asym

OPUC Trans

OPUC  $L^1$  Per

OPRL Transfe

ODDL II Daw

OPUC Sz Asym

Szagő Manning

[-2 2] Sz Asvr

DOS

Thouless Formula

Potantial Theor

Regular Measures

Datie Asum

#### Spectral Theory of Orthogonal Polynomials

Barry Simon

IBM Professor of Mathematics and Theoretical Physics
California Institute of Technology
Pasadena, CA, U.S.A.

Lectures 3 & 4: Three Kinds of Polynomial Asymptotics, I, II



# Spectral Theory of Orthogonal Polynomials

Regular Measures

■ Lecture 2: Szegö Theorem for OPUC

Lecture 3: Three Kinds of Polynomials Asymptotics, I

Lecture 4: Three Kinds of Polynomial Asymptotics, II

■ Lecture 5: Killip-Simon Theorem on [-2, 2]



#### References

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC  $L^1$  Pert
OPRL Transfer
Matrix
OPRL  $L^1$  Pert
OPUC Sz Asym
Szegő Mapping [-2,2] Sz Asym

Potential Theory

[OPUC] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, AMS Colloquium Series **54.1**, American Mathematical Society, Providence, RI, 2005.

[OPUC2] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, AMS Colloquium Series, **54.2**, American Mathematical Society, Providence, RI, 2005.

[SzThm] B. Simon, Szegő's Theorem and Its Descendants: Spectral Theory for  $L^2$  Perturbations of Orthogonal Polynomials, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011.



# Since

Asymptotics of Chebyshev of Second Kind

 $\sin(n \pm 1)\theta = \sin n\theta \cos \theta \pm \cos n\theta \sin \theta$ 

Chebyshev Asym

Regular Measures

we have that

 $\sin(n+1)\theta + \sin(n-1)\theta = 2\cos\theta(\sin n\theta)$ 

If  $f_n(\theta) = \frac{\sin(n+1)\theta}{\sin \theta}$ , then  $f_{-1} = 0$ ,  $f_0 = 1$ , and

 $f_{n+1} + f_{n-1} = (2\cos\theta)f_n$ . Thus, by induction,  $f_n(\theta)$  is a polynomial in  $2\cos\theta$  of

degree n, i.e.,  $f_n(\theta) = p_n(2\cos\theta)$ 

where

 $p_{n+1}(x) + p_{n-1}(x) = xp_n(x); \quad p_{-1} = 0, p_0 = 1$ 



# Asymptotics of Chebyshev of Second Kind

Chebyshev Asym

Three Asyn

OPUC Transf Matrices

OPOC L Pe

OPRI II Per

OPKL L- Per

Szegő Mapping

[-2,2] Sz Asy

DOS

Thouless Formula
Potential Theory
Regular Measures

Thus,  $\{p_n(x)\}_{n=0}^{\infty}$  are the orthonormal OPs with Jacobi parameters,  $b_n \equiv 0$ ,  $a_n \equiv 1$ .

 $x=2\cos heta$  (leads to quadratic equation for  $e^{i heta}$ ) so

$$e^{\pm i\theta} = \frac{x}{2} \pm \sqrt{1 - \left(\frac{x}{2}\right)^2}$$

WARNING: I am very bad at calculations. Factors of  $2,\pi$ , etc., could be wrong.

Since  $\sin(k\theta)$  are orthogonal for  $\frac{d\theta}{2\pi}$ ,  $f_n(\theta)$  are orthogonal for  $\sin^2\theta\frac{d\theta}{2\pi}$  (for normalization on  $[0,2\pi]$ ).



# Asymptotics of Chebyshev of Second Kind

#### Chebyshev Asym

Three Asym

OPUC Trans

OPUC  $L^1$  Pe

OPRL Transfer

OPRL  $L^1$  Pert

OPUC Sz Asym

[-2,2] Sz Asyn

DOS

Potential Theory

Regular Measures

But  $\theta \mapsto x = 2\cos\theta$  is 2 to 1 from  $[0,2\pi]$  to [-2,2], so we want to look at  $2\sin^2\theta \frac{d\theta}{2\pi}$  on  $[0,\pi]$ .

 $x=2\cos\theta\Rightarrow dx=2\sin\theta d\theta$ , so the measure is  $\sin\theta dx=\sqrt{1-\left(\frac{x}{2}\right)^2}dx$ , i.e.,

$$d\mu(x) = \frac{1}{2\pi} \sqrt{4 - x^2} \, dx$$

is the orthogonality measure for this problem.



# Asymptotics of Chebyshev of Second Kind

Chebyshev Asym

Three Asym

OPUC Trans

OPUC  $L^1$  Pe

Matrix

OPRL  $L^1$  Per

OF UC 32 Asyll

[-2,2] Sz Asyr

DOS

Thouless Formula
Potential Theory
Regular Measures

If  $x \notin [-2,2]$   $(x \in \mathbb{C})$ ,  $e^{\pm i\theta}$  have different rates of growth so one dominates for  $\sin(n+1)\theta/\sin\theta$  for n large, i.e.,

$$|p_n(x)| / \left| \frac{x}{2} + \sqrt{1 - \left(\frac{x}{2}\right)} \right|^n \to 1$$

as  $n \to \infty$ .  $x \notin [-2, 2]$  is critical to avoid oscillation.

There is a branch of  $\sqrt{\phantom{a}}$  so  $|\cdots| > 1$  on  $\mathbb{C} \setminus [-2, 2]$ .

One question we'll answer is where  $\frac{x}{2} + \sqrt{1 - \left(\frac{x}{2}\right)^2}$  comes from.



#### Three Kinds of Asymptotics

Chebyshev Asym

Three Asym

OPUC Trans

OPUC L+ Pe

OPRL Transfe

OPRL  $L^1$  Pert

OPUC Sz Asym

[\_2 2] Sz Asv

DOS

Thouloss Formul

Potential Theor

Regular Measures

Ratio Asym

What does it mean to say that a sequence,  $y_n \sim a^n$  for n large?

Root asymptotics:  $|y_n|^{1/n} \to |a|$ .

Ratio asymptotics:  $\frac{y_{n+1}}{y_n} \to a$ .

Szegő asymptotics:  $y_n/Aa^n \to 1$  for some A.



#### Three Kinds of Asymptotics

Cheby shev Asym

Three Asym
OPUC Transf

OPUC  $L^{\perp}$  Peri

ODDI II Dare

OFRE L FEI

Szegő Manning

[-2,2] Sz Asym

Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

A second theme in this pair of lectures will be to explore when these conditions hold for OPUC/OPRL close to the "free" case ( $\alpha_n \equiv 0$  for OPUC;  $a_n \equiv 1, b_n \equiv 0$  for OPRL).

We'll look at this asymptotics away from  $\operatorname{supp}(d\mu)$  because on  $\operatorname{supp}(d\mu)$ , the asymptotics are typically unusual (decay rather than growth for isolated points in  $\operatorname{supp}(d\mu)$ ; oscillation on the a.c. part of  $d\mu$ .)

That said, asymptotic behavior on the spectrum can have important consequences as we'll illustrate with the theory of  $L^1$  perturbations.



#### **OPUC Transfer Matrices**

We begin by looking at all solutions of the difference equations that describe recursion. In some sense, they are both second order, so there is a  $2\times 2$  "update" matrix that takes data at n=0 to data at n=m.

For OPUC, we saw that  $A(z;\alpha_n)({\varphi_n \atop \varphi_n^*})=({\varphi_{n+1} \atop \varphi_{n+1}^*})$ 

$$A(z; \alpha) = \rho^{-1} \begin{pmatrix} z & -\bar{\alpha} \\ -\alpha z & 1 \end{pmatrix}$$

Notice that  $\det A(z;\alpha)=z$ , so for  $z\neq 0$ ,  $z\in \mathbb{C}$ , we have A invertible and for  $z\in \partial \mathbb{D}$ ,

$$||A^{-1}|| = ||A||$$

Chebyshev Asym

OPUC Transfer Matrices

OPOC L Pen

OPRL  $L^1$  Pert

OPUC Sz Asvn

Szegő Mapping

[-2,2] Sz Asym

Thouless Formula
Potential Theory
Regular Measures



## **OPUC Transfer Matrices**

OPUC Transfer Matrices

Regular Measures

Define the transfer matrix by

$$T_n(z;\alpha_{n-1},\ldots,\alpha_0) = A(z;\alpha_{n-1}) A(z;\alpha_{n-2}) \cdots A(z;\alpha_0)$$

Thus,

$$\begin{pmatrix} \varphi_n \\ \varphi_n^* \end{pmatrix} = T_n \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

The second kind of polynomials are defined by

$$\begin{pmatrix} \psi_n \\ -\psi_n^* \end{pmatrix} = T_n \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

A little thought using

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} A(z; \alpha) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = A(z; -\alpha)$$

shows that

$$\psi_n(z; \{\alpha_j\}_{j=0}^{n-1}) = \varphi_n(z; \{-\alpha_j\}_{j=0}^{n-1})$$



Cheby shev Asy

OPUC Transf Matrices

OPUC  $L^1$  Pert

OPRL Transfe Matrix

OPRL  $L^1$  Pert

Szegő Manning

[-2,2] Sz Asym

DOS

Thouless Formula
Potential Theory
Regular Measures
Ratio Asym

As a simple application of transfer matrices for OPUC, we prove

Theorem. If

$$\sum_{j=0}^{\infty} |\alpha_j| < \infty$$

then  $d\mu = w(\theta) \frac{d\theta}{2\pi}$  with  $\inf w > 0$ ,  $\sup w < \infty$  (so  $d\mu_s = 0$ ).

**Remarks.** 1. Our proof can be slightly extended to show  $\boldsymbol{w}$  is continuous.

2. A much stronger result is known (Baxter's Theorem):

$$\begin{array}{l} \sum_{j=0}^{\infty} |\alpha_j(d\mu)| < \infty \Leftrightarrow \sum_{j=0}^{\infty} |c_j(d\mu)| < \infty + (d\mu = w(\theta) \tfrac{d\theta}{2\pi}, w \text{ continuous with } \inf w > 0.) \end{array}$$



Chebyshev Asym

OPUC Transf

OPUC  $L^1$  Pert

OPRL Transfer Matrix

OPRL  $L^1$  Pert

OPUC Sz Asym

[-2,2] Sz Asy

DOS

Thouless Formula
Potential Theory
Regular Measures

Notice that for |z|=1, we have that (Euclidean norm on  $\mathbb{C}^2$ )

$$||A(z;\alpha)|| \le 1 + |\alpha| \le e^{|\alpha|}$$

Thus, 
$$||T_n(z;\alpha_0,\cdots\alpha_{n-1})|| \le e^{\sum\limits_{j=0}^{n-1}|\alpha_j|}$$

so 
$$\sup_{|z|=1,n} |\varphi_n(z)| \le e^{\sum\limits_{0}^{\infty} |\alpha_j|}$$

but 
$$\|A^{-1}\|=\|A\|$$
 for  $|z|=1$  and  $|\varphi|=|\varphi^*|$ 

implies 
$$\inf_{|z|=1,n}|\varphi_n(z)|\geq e^{-\sum\limits_0^\infty |\alpha_j|}$$

Thus, by Bernstein-Szegő, we get the desired result.



#### **OPRL Transfer Matrix**

Chebyshev Asym

Three Asym

OPUC Transf Matrices

OPUC L+ Pe

OPRL Transfer Matrix

OPRL  $L^{f 1}$  Peri

OPUC Sz Asym

[-2. 2] Sz Asvn

DOS

Thouless Formula

Potential Theory

Regular Measures

Ratio Asym

Consider the difference equation

$$u_{n+1} = a_n^{-1} ((z - b_n)u_n - a_{n-1}u_{n-1})$$

 $u_n = p_{n-1}(z)$  solves this equation with  $u_0 = 0$ ,  $u_1 = 1$ .

The difference equation can be rewritten (we take  $a_0=1$ )

$$\begin{pmatrix} u_{n+1} \\ a_n u_n \end{pmatrix} = A(z; a_n, b_n) \begin{pmatrix} u_n \\ a_{n-1} u_{n-1} \end{pmatrix};$$

$$A(z; a, b) = \frac{1}{a} \begin{pmatrix} z - b & -1 \\ a^2 & 0 \end{pmatrix}$$



The reason for the funny  $a_n$  in the lower component (a suggestion of Killip) is that it makes

$$\det A = 1$$

This implies if u,v are two solutions (same z) that (courtesy of Wronkian)  $a_n(u_{n+1}v_n-u_nv_{n+1})=$  constant.

As for OPUC, we define

$$T_n(z; \{a_j, b_j\}_{j=1}^n) = A(z; a_n, b_n) \cdots A(z; a_1, b_1)$$
 so

$$T_n \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} p_n(z) \\ a_n p_{n-1}(z) \end{pmatrix}$$

Chebyshev Asym

OBJIC Transf

Matrices

OPUC L\* Pert

Matrix

OPKL L+ Pert

Szegő Mapping

[-2,2] Sz Asyı

Dos

Thouless Formula

Potential Theory
Regular Measures

\_ . .



Chebyshev Asyr

OPUC Transf

OPUC L<sup>1</sup> Per

OPRL Transf Matrix

OPRL  $L^1$  Pert

OPUC Sz Asym

[-2,2] Sz Asyr

Dos

Thouless Formula
Potential Theory
Regular Measures

In the free Jacobi matrix case,

$$A_0(z) = \begin{pmatrix} z & -1 \\ 1 & 0 \end{pmatrix}$$

Since  $\|A_0(z)(\frac{1}{0})\|=\|(\frac{z}{1})\|=1+|z|^2$ , except for z=0,  $A_0(z)$  is not a contraction in the Euclidean norm. Since (as we'll see)  $\sup_n \|A_0(z)^n\|$  is bounded for  $z\in (-2,2)$ , this isn't a problem for  $A_0$  but it makes perturbations tricky.

We'll overcome this by changing norm. In essence, the plane wave solutions will be a basis, so this is essentially a variation of parameters argument.



Chebyshev Asyn

Three Asym

OPUC Tran Matrices

OPUC  $L^{\pm}$  Pe

OPRL Transfe Matrix

 $\mathsf{OPRL}\ L^1\ \mathsf{Pert}$ 

OPUC 5z Asym

[-2, 2] Sz As

DOS

Thouless Formula
Potential Theory
Regular Measures

We are heading towards a proof of

Theorem. Let  $\{a_n,b_n\}_{n=1}^{\infty} \subset \left[(0,\infty)\times\mathbb{R}\right]^{\infty}$  obey

$$\sum_{n=1}^{\infty} |a_n - 1| + |b_n| < \infty$$

Then, for any  $\varepsilon>0$ , there is  $C_{\varepsilon}>0$  so that for all n and all  $x\in [-2+\varepsilon,2-\varepsilon]$ , we have

$$C_{\varepsilon} \le |p_n(x)|^2 + |p_{n-1}(x)|^2 \le C_{\varepsilon}^{-1}$$

In particular (since  $0 < \inf a_n < \sup a_n < \infty$ ), J has purely a.c. spectrum in (-2,2).



Since  $\det A_0(2\cos\theta) = 1$ ,  $\operatorname{Tr}(A_0(2\cos\theta)) = 2\cos\theta$ , the eigenvalues of  $A_0(2\cos\theta)$  are  $\pm e^{i\theta}$ . Thus, for  $x\in(-2,2)$ , there is U(x) so

$$U(x) A_0(x) U(x)^{-1} = \begin{pmatrix} e^{i\theta(x)} & 0\\ 0 & e^{-i\theta(x)} \end{pmatrix}$$

We define

$$||B||_x = ||U(x)BU(x)^{-1}||$$

where  $\|\cdot\|$  without an x is Euclidean norm.  $\|\cdot\|_x$  is a Banach algebra norm on  $\mathrm{Hom}(\mathbb{C}^2)$ , since

$$U(x)BCU(x)^{-1} = [U(x)BU(x)^{-1}][U(x)CU(x)^{-1}]$$

OPRI L1 Pert

Regular Measures



OPRL  $L^1$  Pert

Regular Measures

U(x) is singular at  $x=\pm 2$  but on (-2,2) it can be chosen real analytic (and, in particular, so U(x) and  $U(x)^{-1}$  are bounded on each  $[-2+\varepsilon, 2-\varepsilon]$ ).

Thus, for each interval, there is  $D_{\varepsilon} > 0$  so for all x in the interval and B

$$|D_{\varepsilon}||B|| \le ||B||_x \le D_{\varepsilon}^{-1}||B||$$

The point, of course, is that  $||A_0(x)||_x = 1$ , so

$$||a_n A_n(x; a_n, b_n)||_x \le 1 + E_x [||a_n - 1|| + ||b_n||]$$



Chebyshev Asym

Three Asym

OPUC Trans

OPUC  $L^1$  Pe

OPRL Transfe

 $\mathsf{OPRL}\ L^1\ \mathsf{Pert}$ 

OPUC Sz Asym

Szegő Mapping

[-2,2] Sz Asy

Dos

Thouloss Formul

Potential Theor

Regular Measures

Ratio Asym

Since  $\delta \leq a_n \leq \delta^{-1}$  and  $\sum_n |a_n-1| < \infty$ ,  $\prod_{j=1}^n a_j$  and its inverse converge and are uniformly bounded.

We conclude  $\|T_n\|_x$  and  $\|T_n^{-1}\|_x$  and so  $\|T_n\|$  and  $\|T_n^{-1}\|$  are uniformly bounded on  $[-2+\varepsilon,2+\varepsilon]$  which yields the claimed estimates.



For OPUC, the condition for  $d\mu = f(\theta) \frac{d\theta}{2\pi} + d\mu_s$ 

$$\int \log f(\theta) \frac{d\theta}{2\pi} > -\infty$$

is called the Szegő condition. When it holds, we define the Szegő function, D(z), on  $\mathbb D$  by

$$D(z) = \exp\left(\int \frac{e^{i\theta} + z}{e^{i\theta} - z} \log(f(\theta)) \frac{d\theta}{4\pi}\right)$$

**Lemma**. If the Szegő condition holds,  $D \in H^2(\mathbb{D})$ , indeed,

$$\sup_{0 \le r < 1} \int |D(re^{i\theta})|^2 \frac{d\theta}{2\pi} \le 1$$

and, with 
$$D(e^{i\theta}) \equiv \lim_{r \uparrow 1} D(re^{i\theta})$$
,  $|D(e^{i\theta})|^2 = f(\theta)$ 

Chebyshev Asym

Three Asym

Matrices

OPUC L- Pe

OPRL  $L^1$  Per

OPUC Sz Asym

 $\left[-2,2\right]$  Sz Asy

Thouless Formula
Potential Theory
Regular Measures

Ratio Asym



**Proof.** Let  $f_{\varepsilon}(\theta) = \min(f(\theta), \varepsilon^{-1})$ . Then  $\log(f_{\varepsilon}(\theta))$  is bounded above by  $\log(\varepsilon^{-1})$ , so

$$\operatorname{Re}\left(\int \frac{e^{i\theta} + z}{e^{i\theta} - z} \log(f_{\varepsilon}(\theta)) \frac{d\theta}{4\pi}\right) \le \frac{1}{2} \log(\varepsilon^{-1})$$

so  $|D_\varepsilon| \le \varepsilon^{-1/2}.$  Thus,  $D_\varepsilon$  lies in  $H^\infty$  and has boundary values

$$|D_{\varepsilon}(e^{i\theta})|^2 = f_{\varepsilon}(\theta)$$

Therefore,  $D_{arepsilon} \in H^2$  and

$$\sup_{0 \le r \le 1} \int |D_{\varepsilon}(re^{i\theta})|^2 \frac{d\theta}{2\pi} = \int |D_{\varepsilon}(e^{i\theta})|^2 \frac{d\theta}{2\pi} \le 1$$

Taking  $\varepsilon \downarrow 0$ , we see that  $D \in H^2$  and the rest follows.

Chebyshev Asym

OPUC Transfe Matrices

OPUC L<sup>+</sup> Per

OPRL  $L^1$  Pert

OPUC Sz Asym

[-2,2] Sz Asyr

DOS

Thouless Formula

Potential Theory

Regular Measure



shev Asyn

oo Asum

OPUC Trans

00110 -1 -

PUC  $L^1$  Pert

Matrix

OPRL  $L^1$  Pert
OPUC Sz Asvm

Szegő Mappin[-2,2] Sz Asy

Dos

Thouless Formul Potential Theory Regular Measure We have the following beautiful calculation of Szegő:

$$\int |\varphi_n^*(e^{i\theta}) D(e^{i\theta}) - 1|^2 \frac{d\theta}{2\pi} + \int |\varphi_n^*(e^{i\theta})|^2 d\mu_s = 2\left(1 - \prod_{j=n}^{\infty} \rho_j\right)$$

For

LHS = 
$$\int \frac{d\theta}{2\pi} + \int |\varphi_n^*(e^{i\theta})|^2 d\mu - 2\operatorname{Re} \int D(e^{i\theta})\varphi_n^*(e^{i\theta}) \frac{d\theta}{2\pi}$$

$$= 2 - 2\operatorname{Re}(D(0)\varphi_n^*(0))$$

$$= 2 \left[ 1 - \prod_{j=0}^{\infty} \rho_j \left( \prod_{j=0}^{n-1} \rho_j^{-1} \right) \right]$$



OPUC Sz Asvm

Potential Theory Regular Measures

Since RHS  $\to 0$  as  $n \to \infty$  (if the product converges, i.e., if the Szegő condition holds), each term goes to zero.

Thus  $\int |\varphi_n^*(e^{i\theta})|^2 d\mu_s \to 0$  and  $\varphi_n^* D \to 1$  in  $L^2(\partial \mathbb{D}, \frac{d\theta}{2\pi})$ .

Since the Poisson kernel  $P_z(e^{i\theta})$  is  $L^2$  uniformly for  $|z| \le r < 1$ ,  $\varphi_n^*(z) D(z) \to 1$  uniformly on  $|z| \le r < 1$ .

Thus, uniformly in  $|z| > r^{-1} > 1$ ,

$$z^{-n}\varphi_n(z) \to \left[D\left(\frac{1}{z}\right)\right]^{-1}$$

which is Szegő asymptotics for  $\varphi_n$ .



Chebyshev Asym

Three Asym

OPUC Transf

OPUC  $L^1$  Pe

OPRL Transfe

OPRL  $L^1$  Per

Szegő Mapping

[-2,2] Sz Asyr

DOS

Thouless Formula

Potential Theor

Regular Measures

Ratio Asym

We now turn to OPRL with  $\mu$  supported on [-2,2]. Since we'll later consider a related result which generalizes this, we'll only sketch or, even hand wave, some details.

The map

$$z \mapsto x = z + z^{-1}$$

(called the Joukowski map) is a 2 to 1 map of  $\partial \mathbb{D}$  to [-2,2] that takes  $e^{i\theta}$  to  $2\cos\theta$  in the limit.



[-2,2] by  $d\rho = \operatorname{Sz}(d\mu)$ 

Chebyshev Asym

Three Asym

OPUC Trans

OPLIC L<sup>1</sup> Pe

O. OC 2 . C.

Matrix

OPRL L+ Pert

Szegő Mapping

[\_2 2] \$= Asym

[-2,2] Sz Asyn

Theodore Fermal

Potential Theory

Regular Measures

Ratio Asym

 $Q(e^{i\theta})=2\cos\theta$  induces a map of  $C\big([-2,2]\big)$  to  $C(\partial\mathbb{D})$  by  $\big(Q^*f\big)(e^{i\theta})=f\big(Q(e^{i\theta})\big)$ . It is onto the even functions, i.e.,  $g(e^{-i\theta})=g(e^{i\theta})$ . By duality, it defines a dual map Sz: Even measures on  $\partial\mathbb{D}$  to some probability measures on

$$\int f\left(\arccos\left(\frac{x}{2}\right)\right) d\rho(x) = \int f(\theta) d\mu(\theta)$$



Chebyshev Asym

Three Asym

OPUC Transf

OPUC  $L^1$  Pe

OPRL Transfe

OPRL  $L^1$  Per

OPUC Sz Asym

Szegő Mapping

[-2,2] Sz Asy

Dos

Thouless Formula

Potential Theor

Regular Measures

Ratio Asym

Let  $P_n$  be the monic OP's for  $d\rho=\mathrm{Sz}(d\mu)$  and  $\Phi_n$  for  $\mu$ . Then

$$P_n(z + \frac{1}{z}) = \left[1 - \alpha_{2n-1}(d\mu)\right]^{-1} z^{-n} \left[\Phi_{2n}(z) + \Phi_{2n}^*(z)\right]$$

This can be proven by noting first that the right side is a Laurent polynomial of z, even under  $z \to \frac{1}{z}$  and every such Laurent polynomial has the form  $Q_n(z+\frac{1}{z})$ .



Szegő Mapping

Potential Theory

Regular Measures

By an easy computation  $\int (RHS \text{ for } n) (RHS \text{ for } \ell) d\mu = 0$ if  $n \neq \ell$ , so the  $Q_n$ 's are OP and by the leading term, it is monic

By computing  $\langle \Phi_{2n}, \Phi_{2n}^* \rangle = -\alpha_{2n-1} \|\Phi_{2n}\|^2$ , one finds

$$||P_n||_{L^2(d\rho)}^2 = 2(1 - \alpha_{2n-1})^{-1} ||\Phi_{2n}||_{L^2(d\mu)}^2$$

This implies that

$$(a_1 \cdots a_n)^2 = 2(1 + \alpha_{2n-1}) \prod_{j=0}^{2n-2} (1 - \alpha_j^2)$$



Chebyshev Asym

Three Asym

OPUC Tran

OPUC  $L^1$  Pe

OPRL Transfe

OPRL  $L^1$  Per

OPUC Sz Asym

Szegő Mapping

. DOS

-. . - .

Potential Theory

Regular Measures

Ratio Asym

One also finds (Section 13.1 and 13.2 of [OPUC2] have two different proofs)—known as Geronimus relations

$$a_{n+1}^2 = (1 - \alpha_{2n-1})(1 - \alpha_{2n}^2)(1 + \alpha_{2n+1})$$

$$b_{n+1} = (1 - \alpha_{2n-1})\alpha_{2n} - (1 + \alpha_{2n-1})\alpha_{2n-2}$$



# Szegő Asymptotics for [-2,2]

[-2,2] Sz Asym

From 
$$a_n^2\cdots a_1^2=2(1+\alpha_{2n-1})\prod_{j=0}^{2n-1}(1-\alpha_j^2)$$
, one sees 
$$\sum_{j=1}^\infty |\alpha_j|^2<\infty\Leftrightarrow \limsup \,a_1\cdots a_n>0$$

This leads to

Shohat-Nevai Theorem.Let  $d\mu = f(x) dx + d\mu_s$  be supported on [-2,2]. Then  $\limsup a_1 \cdots a_n > 0 \Leftrightarrow \int_{-2}^{2} (4-x^2)^{-1/2} \log(f(x)) dx > -\infty$ 

$$\sum_{n=1}^{\infty} (a_n - 1)^2 + b_n^2 < \infty, \quad \lim a_1 \cdots a_N,$$

 $\lim \sum_{n=1}^{N} (a_n - 1)$  and  $\lim \sum_{n=1}^{N} b_n$  all exist.



# Szegő Asymptotics for [-2,2]

[-2, 2] Sz Asym

Regular Measures

It is critical that we require that support $(d\mu) \subset [-2,2]$ , i.e., no eigenvalues outside [-2,2]—unnatural from a perturbation theory point of view.

 $\int_{-2}^{2} (4-x^2)^{-1/2} \log(f(x)) dx > -\infty$  is called the Szegő condition.

$$x = 2\cos\theta \Rightarrow dx = 2\sin\theta d\theta \Rightarrow d\theta = \frac{dx}{2\sin(\theta)}$$
  
  $\Rightarrow d\theta = (4 - x^2)^{-1/2} dx.$ 

The other relations follow from Geronimus relations.



# Szegő Asymptotics for [-2, 2]

[-2, 2] Sz Asym

Regular Measures

Recall that

$$P_n(z + \frac{1}{z}) = \left[1 - \alpha_{2n-1}(d\mu)\right]^{-1} z^{-n} \left[\Phi_{2n}(z) + \Phi_{2n}^*(z)\right]$$

and for |z|>1,  $z^{-2n}\Phi_{2n}(z) \to D(0)/D\left(\frac{1}{z}\right)$ 

By the maximum principle  $(1+\varepsilon)^{-2n}\Phi_{2n}(z)\to 0$  for |z| > 1, so  $z^{-2n} \Phi_{2n}^*(z) \to 0$ .

Thus, we obtain



# Szegő Asymptotics for [-2,2]

Cheby shev Asym

OPUC Transfe

OPUC  $L^1$  Pe

OPRL Transfe

OPRL  $L^1$  Per

OPUC Sz Asym

[-2, 2] Sz Asym

DUS

Thouless Formula

Potential Theory

Regular Measures

Ratio Asym

**Theorem** (Szegő asymptotics for [-2,2], with no bound states). If the Szegő condition holds, then, for |z| > 1

$$z^{-n}P_n(z+\frac{1}{z}) \to G(z) \equiv D(0)/\overline{D(\frac{1}{z})}$$

Equivalently, for  $x \in \mathbb{C} \setminus [-2, 2]$ 

$$\left(\frac{x}{2} + \sqrt{\left(\frac{x}{2}\right) - 1}\right)^{-n} P_n(x) \to \widetilde{G}(x)$$



## The Density of Zeros

Chebyshev Asym

OPUC Trans

OPUC  $L^1$  Pe

OPRL Transfe Matrix

OPRL  $L^1$  Per

Szegő Manning

[-2,2] Sz Asyı

Dos

Thouless Formula
Potential Theory
Regular Measures

I now say a little about root and ratio asymptotics. In the final lectures, I hope to return to this subject.

As a warm-up for root asymptotics, let  $J_N$  be the  $N\times N$  truncated Jacobi matrix (with  $b_1,\ldots,b_n$  along the diagonal). Let  $D_n(z)=\det(z-J_N)$ . Then, expanding in minors:

$$D_N = -a_{N-1}^2 D_{N-2} + (z - b_N) D_{N-1}; \quad D_0 = 1, D_{-1} = 0$$

Thus  $D_N(z) = P_N(z)$ .

which implies zero of  $P_N={\rm eigenvalues}$  of  $J_N$  are real and simple.



## The Density of Zeros

DOS

Regular Measures

For each N, let  $x_1^{(N)} < \cdots < x_N^{(N)}$  be the zeros. By the variational principle,  $x_i^{(N)} < x_i^{(N+1)} < x_{i+1}^{(N+1)}$ , i.e., zero interlace. Let

$$\nu^{(N)} = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{j}^{(N)}}$$

lf

$$\nu = \text{w-lim } \nu^{(N)}$$

exists, we say  $\nu$  is the density of zeros, aka, density of states.



## The Density of Zeros

Chebyshev Asym

Three Asym

OPUC Transfer Matrices

OPUC  $L^1$  Pe

OPRL Transfer

OPRL  $L^1$  Pert

OPUC Sz Asym

Szegő Mapping

DOS

Thouless Formula

Potential Theory

Regular Measures

Ratio Asvm

u is boundary condition independent, e.g., if

$$J_N^{\text{per}} = \begin{pmatrix} b_1 & \dots & a_N e^{i\theta} \\ \vdots & \ddots & \vdots \\ a_N e^{-i\theta} & \dots & b_N \end{pmatrix}$$

 $\operatorname{w-lim} \nu_{\operatorname{per}}^{(N)} = \operatorname{w-lim} \nu^{(N)}$ 

For

$$\int x^{\ell} d\nu(x) = \lim_{N \to \infty} \frac{1}{N} \text{Tr}(J_n^{\ell})$$

and  $|\operatorname{Tr}(J_N^\ell) - \operatorname{Tr}((J_N^{\operatorname{per}})^\ell)|$  is bounded.



## Thouless Formula

The DOS is intimately connected to root asymptotics because

$$p_n(z) = (a_1 \cdots a_n)^{-1} \prod_{j=1}^{N} (z - x_j^{(n)})$$

so

$$\frac{1}{n}\log|p_n(z)| = -\frac{1}{n}\log(a_1\cdots a_n) + \int \log|z - x| \,d\nu^{(N)}(x)$$

Theorem (Thouless Formula). If DOS exists and

$$\lim (a_1 \cdots a_n)^{1/n} = c(d\mu)$$

exists, then for  $z \in \mathbb{C} \setminus \mathbb{R}$ ,  $(\Phi_{\mu}(z) = \int \log |z - x|^{-1} d\mu(x)$  is the potential of  $\mu$ )

$$\lim_{n \to \infty} \frac{1}{n} \log |p_n(z)| = -\log c(d\mu) + \int \log |z - x| \, d\nu(x)$$

Chebyshev Asyr

OPUC Trans

OPUC  $L^1$  P

OPRL Transfe

OPRL  $L^1$  Pert

Szegő Mappi

DOS

Thouless Formula
Potential Theory
Regular Measures



#### **Connection to Potential Theory**

Cheby shev Asym

Three Asym

OPUC Transfe Matrices

OPUC  $L^1$  Pe

Matrix

OPRL  $L^1$  Pert

OPUC Sz Asym

[-2, 2] Sz Asvi

Dos

Thouless Formula

Potential Theory

Regular Measures

Ratio Asym

Given any compact set, e, we say e has zero capacity if

$$\mathcal{E}(\mu) = \int d\mu(x) \, d\mu(y) \, \log|x - y|^{-1}$$

is infinite for all  $\mu \in M_{+,1}(\mathfrak{e})$ .

(Note: the integral is either  $+\infty$  or finite.)

If  ${\mathfrak e}$  does not have zero capacity, we define  $C({\mathfrak e})$  by

$$C(\mathfrak{e}) = \exp\left(-\inf_{\mu \in M_{+,1}(\mathfrak{e})} \mathcal{E}(\mu)\right)$$



#### Connection to Potential Theory

It is a fundamental theorem that if  $C(\mathfrak{e}) > 0$ , there is a unique probability measure,  $\rho_{\mathfrak{e}}$ , called the *equilibrium* measure or the harmonic measure for  $\mathfrak{e}$  with  $\mathcal{E}(\rho_{\mathfrak{e}}) = \inf \mathcal{E}(\mu)$ .

 $T_{n,\mathfrak{e}}$ , the Chebyschev polynomial for  $\mathfrak{e}$ , is the (it turns out unique) monic polynomial of degree n with

$$||T_{n,\mathfrak{e}}||_{\infty,\mathfrak{e}} = \inf_{P \text{ monic}} ||P||_{\infty,\mathfrak{e}}; \quad ||f||_{\infty,\mathfrak{e}} = \sup_{x \in \mathfrak{e}} |f(x)|$$

**Theorem** (Faber–Fekete-Szegő).

$$\|T_n\|_{\infty,\mathfrak{e}}^{1/n} \geq C(\mathfrak{e})$$
 and  $\lim_{n \to \infty} \|T_n\|_{\infty,\mathfrak{e}}^{1/n} = C(\mathfrak{e})$ 

Chebyshev Asym

OPUC Transfo Matrices

OPUC  $L^{\pm}$  Period OPRL Transfer

 $\mathsf{OPRL}\ L^1$   $\mathsf{Pert}$ 

Szegő Mapping

[-2, 2] Sz Asy

Thouless Formul

Potential Theory Regular Measures



### Regular Measures

Chebyshev Asyn

OPUC Trans

OPUC  $L^1$  Pe

OPRL Transfe

OPRL  $L^1$  Pert

OPUC Sz Asym

[-2, 2] Sz As

DOS

Thouless Formul Potential Theory

Regular Measures

Since  $||T_n||_{L^2(d\mu)} \le ||T_n||_{\infty,\mathfrak{e}}$ , if

$$\mathfrak{e} = \operatorname{supp}(\mu)$$

and  $||P_n||_{L^2(d\mu)} \le ||T_n||_{L^2(d\mu)}$  (by variational principle)

 $\limsup (a_1 \cdots a_n)^{1/n} \le C(\mathfrak{e}).$ 

We call  $\mu$  regular (with  $\operatorname{supp}(\mu) = \mathfrak{e} \subset \mathbb{R}$ ) if  $\lim_{n \to \infty} (a_1 \cdots a_n)^{1/n} = C(\mathfrak{e})$ .

Pioneers are Ulmann (for  $\mathfrak{e}=[0,1]$ ) and Stahl-Totik ( $\mathfrak{e}\in\mathbb{C}$ ).

See also Simon, Inv. Prob. Imaging 1 (2007), 189–215.



#### Regular Measures

Chebyshev Asym

Three Asym

OPUC Transf Matrices

OPUC  $L^1$  Pe

OPRL Transfer

OPRL  $L^1$  Pert

OPUC Sz Asym

[-2, 2] Sz Asvr

DOS

Thouless Formula

Regular Measures

Ratio Asvm

If  $\mu$  is regular, the DOS exists and equals the equilibrium measure for  $\mathfrak{e}$ .

Thus, for  $z \in \mathbb{C} \setminus \mathbb{R}$ ,  $\lim_{n \to \infty} |p_n(z)|^{1/n} = e^{G_{\mathfrak{c}}(z)}$ .

$$G_{\mathfrak{e}}(z) = \log (C(\mathfrak{e}))^{-1} - \Phi_{\rho_{\mathfrak{e}}}(z)$$

This is the potential theorists' Green's Function, the unique function subharmonic on  $\mathbb{C}$ , harmonic on  $\mathbb{C} \setminus \mathfrak{e}$ , equal to 0 q.e. on  $\mathfrak{e}$  and  $\log(|z|) + O(1)$  at  $\infty$ .



## Ratio Asymptotics

Chebyshev Asym
Three Asym
OPUC Transfer
Matrices
OPUC  $L^1$  Pert
OPRL Transfer
Matrix
OPRL  $L^1$  Pert
OPUC Sz Asym
Szegő Mapping [-2,2] Sz Asym

Regular Measures
Ratio Asym

Szegő's Asymptotic Theorem for OPUC says  $\Phi_n^*(z) o D(0)D(z)^{-1}$  as  $n o \infty$  so  $\Phi_{n+1}^*/\Phi_n^* o 1.$  We state without proof

Krushchev's Theorem (see [OPUC2], Section 9.5).

 $\Phi_{n+1}^*(z)/\Phi_n^*(z)$  converges uniformly on each  $\{z\mid |z|<1-\varepsilon\}$  if and only if either

For  $\ell=1,2,\ldots$ ,  $\lim_{n\to\infty}\alpha_{n+\ell}\,\alpha_n=0$ ; limit is then 1.

 $OR \ \exists \ a \in (0,1] \ \text{and} \ \lambda \in \partial \mathbb{D} \ \text{so} \ \lim_{n \to \infty} |\alpha_n| = a$ ,  $\lim_{n \to \infty} \bar{\alpha}_{n+1} \ \alpha_n = a^2 \ \lambda$ 

and then limit  $\frac{1}{2} \left[ (1 + \lambda z) + \sqrt{(1 - z\lambda)^2 + 4a^2 \, \lambda z} \, \right]$ .



## Ratio Asymptotics

Chebyshev Asym

Three Asym

Matrices

OPUC  $L^1$  Pe

OPRL Transfe Matrix

OPRL  $L^1$  Pert

OF UC 32 Asyll

[-2, 2] Sz Asv

Dos

Thouless Formula
Potential Theory
Regular Measures

Ratio Asym

For OPRL, we have

Simon's Theorem (J. Approx. Th. 128 (2004), 198–217). For OPRL if  $\lim_{n\to\infty}\frac{P_{n+1}(z)}{P_n(z)}$  exists at a single point in  $\mathbb{C}\setminus\mathbb{R}$ , it exists at all points and this happens if and only if for some  $a\in[0,\infty),\ b\in\mathbb{R}$ 

$$\lim_{n \to \infty} a_n = a, \quad \lim_{n \to \infty} b_n = b$$

and the limit is

$$\frac{1}{2}\bigg[(z-b)+\sqrt{(z-b)^2-4a^2}\,\bigg]\quad \text{(root with } \sqrt{\phantom{a}}=z \text{ near } \infty\text{)}$$



#### Ratio Asymptotics

Chebyshev Asym

OPUC Transfo

OPUC  $L^1$  Pe

OPRL Transfe Matrix

OPRL  $L^1$  Pert

OPUC Sz Asym

[-2,2] Sz Asyn

DOS

Thouless Formula Potential Theory Regular Measures

Ratio Asym

Closely related to ratio asymptotics (because the conclusions imply ratio asymptotics) are

Rakhmanov's Theorem. If  $d\mu = f(\theta) \frac{d\theta}{2\pi} + d\mu_s$  and  $f(\theta) > 0$  for a.e.  $\theta$ , then  $\alpha_n \to 0$ .

Denisov-Rakhamanov Theorem. If  $d\mu = f(x) dx + d\mu_s$  and f(x) > 0 on [-2,2] and  $\sigma_{\rm ess}(J) = [-2,2]$ , then  $a_n \to 1$ ,  $b_n \to 0$ .

I hope to say more about this in Lecture 11 or 12.

Moral is ratio and Szegő asymptotics unusual. Expect oscillations.