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Szeg®'s Theorem as a Variational

Principle

Szeg®'s Theorem was proven by him in 1914 as a statement
about Toeplitz Determinants as we discuss below.

In 1920�21, he rephrased it as a variational principle in
OPUC. This (two-part) paper essentially invented the
general theory of OPUC.

In these papers, Szeg® assumed dµ was purely a.c. The
addition of a singular continuous part is a discovery of
Verblunsky in 1934�35 but his work was largely ignored and
he didn't get credit until about �fteen years ago when, in a
di�erent context, Killip and Simon rediscovered his proof
and then his paper.
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Szeg®'s Theorem as a Variational

Principle

Φn has a variational form. Since Φn = Proj of zn onto the
orthogonal complement of {1, . . . , zn−1},

‖Φn‖ = dist of zn to span of {1, . . . , zn−1}

= min{‖P‖ | P monic , degP = n}

= min{‖P‖ | P (0) = 1,degP ≤ n}

since P monic ⇔ P ∗(0) = 1.

This implies ‖Φn+1‖ ≤ ‖Φn‖ which is obvious from
‖Φn‖ = ρ0 ρ1 . . . ρn−1 and ρj ≤ 1.



Variational
Principle

Sum Rule

Toeplitz
Determinant
Asymptotics

Polynomials
Dense

Proof Strategy

Upper Bound

Bernstein�Szeg®
Case

Szeg® Integral as
an Entropy

Variational
Principle for S

End of the Proof

Szeg®'s Theorem as a Variational

Principle

Thus, clearly, limn→∞‖Φn‖ exists and

lim
n→∞

‖Φn‖ = inf{‖P‖ | P (0) = 1, P is a polynomial }

Szeg® Theorem for OPUC. Let

dµ = f(θ)
dθ

2π
+ dµs

be an arbitrary probability measure. Then (NOTE THE

SQUARE)

inf{‖P‖2 | P (0) = 1, P is a polynomial }

= exp

(∫
log f(θ)

dθ

2π

)
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Szeg®'s Theorem as a Variational

Principle

This innocuous-looking theorem will have remarkable
consequences as we'll see, in part because it has multiple
equivalent forms.

Because
∫
f(θ) dθ2π <∞, the integral cannot diverge to

+∞, but it can to −∞ in which case, we interpret
exp(∗ ∗ ∗) as 0. Indeed, by Jensen's inequality and the
concavity of log, the integral is non-positive and the
exponential in [0, 1] as it must be given that ‖Φ0‖ = 1.

One remarkable aspect of this theorem is that dµs doesn't
enter!

Before turning to the proof, we consider some equivalent
forms and consequences.
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Szeg®'s Theorem as a Sum Rule

As we've seen, ‖Φn‖ = ρ1 . . . ρn−1 so

lim‖Φn‖2 =

∞∏
j=0

(
1− |αj |2

)
Szeg® Theorem (Sum Rule Version). If
dµ = f(θ) dθ2π + dµs, then

∞∑
j=0

log
(
1− |αj |2

)
=

∫
log
(
f(θ)

)dθ
2π

This is a precursor of KdV sum rules. It is clearly equivalent
to the variational form.
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Szeg®'s Theorem as a Sum Rule

Corollary.
∑∞

j=0|αj |2 <∞⇔
∫

log
(
f(θ)

)
dθ
2π > −∞.

A consequence of this is that dµs can be more or less
arbitrary while one still has

∑∞
j=0|αj |2 <∞; for example, if∫

dµs = η < 1, (1− η) dθ2π + dµs = dµ has∑∞
j=0|αj(µ)|2 <∞.

This is remarkable because we'll see in a future lecture that∑∞
j=0|αj | <∞⇒ dµ is purely a.c. and ε < |f(θ)| < ε−1

for some ε > 0 and all θ.

It is also remarkable because it is not easy to construct
operators with mixed spectrum and potential decay.
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Szeg®'s Theorem and Toeplitz

Determinant Asymptotics

Given {cn}∞n=−∞, the corresponding N ×N Toeplitz matrix
TN (c) has the form

c0 c1 . . . cN−1
c−1 c0 . . . cN
...

. . .
...

c−N+1 c−N+2 . . . c0


i.e.,

(
TN (c)

)
ij

= cj−i. If µ is a measure, we set

cj =
∫
e−ijθdµ(θ) and write (µ is called the symbol)

DN (µ) = det
(
TN+1(µ)

)
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Szeg®'s Theorem and Toeplitz

Determinant Asymptotics

Notice that in the L2(dµ) inner product,(
TN
)
kj

= 〈eikθ, eijθ〉 = 〈zk, zj〉

Writing ΦN = zN+ l.o. and using sums of rows and
columns, one sees that

DN (µ) = det
(
〈Φj ,Φk〉

)
0≤j, k≤N

= ‖Φ0‖2 · · · ‖ΦN‖2
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Szeg®'s Theorem and Toeplitz

Determinant Asymptotics

Since ‖Φj‖ ↓, one sees that

lim
N→∞

DN (µ)1/N+1 = lim
N→∞

‖ΦN‖2

Thus,

Toeplitz Determinant Form of Szeg®'s Theorem. For

any µ,

lim
N→∞

1

N + 1
logDN (µ) =

∫
log f(θ)

dθ

2π
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Szeg®'s Theorem and Toeplitz

Determinant Asymptotics

Aside: It is known that if dµs = 0 and

log
(
f(θ)

)
≡

∞∑
n=−∞

L̂n e
inθ

and
∞∑
n=1

n|L̂n|2 <∞

then

logDN (µ) = (N + 1)L̂0 +

∞∑
n=1

n|L̂n|2 + o(1)

This is the Strong Szeg® Theorem. [OPUC1], Chap. 6 has
many proofs of this.
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When are Polynomials Dense in

L2(∂D, dµ)?

By Weierstrass' Theorem, for any µ of compact support on
R, the polynomials in x are dense in L2(R, dµ).

But this is not true for ∂D. Indeed, if dµ = dθ
2π , the closure

of the polynomials are those functions in L2 whose negative
Fourier coe�cient

∫
e−inθ f(eiθ) dθ2π = 0 for n ≤ −1. On the

other hand, we'll see soon that if supp(dµ) 6= ∂D, the
polynomials are dense.
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When are Polynomials Dense in

L2(∂D, dµ)?

Theorem (Kolmogorov-Krein). If dµ = f dθ2π + dµs, then
the polynomials in z are dense in L2(∂D, dµ) if and only if∫

log f(eiθ) dθ2π = −∞.

They found this because this density result was relevant to
their theory of prediction for stochastic processes.

Given Szeg®'s Theorem, the proof is almost trivial for

inf
P
‖z−1 − P‖2L2 = inf

P
‖1− zP‖2L2

= inf
Q|Q(0)=1

‖Q‖2L2 = exp
(∫

log f
dθ

2π

)
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When are Polynomials Dense in

L2(∂D, dµ)?

So z−1 ∈ closure of polys ⇔
∫

log f dθ2π = −∞.

Thus, if the integral is �nite, z−1 /∈ closure of polys and
thus, polynomials are not dense.

On the other hand, if z−1 = limPn, then
z−2 = limn→∞ Pn

[
limm↑∞ Pm

]
so all polynomials in z and

z−1 are in closure of polys and they are dense (by
Weierstrass' other density theory).

Krein used this to show (see [SzThm], p. 319) that on R, if
dρ = Fdx+ dρν , then {eiαx}α≥0 are dense in

L2 ⇔
∫ logF (x)

1+x2
dx = −∞. This, in turn, implies that if∫

|x|n dρ(x) <∞, the moment problem is indeterminate if
the integral is �nite, for example,

dρ(x) = e−|x|
α
dx, α < 1
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Strategy of the Proof

As with all good proofs of equalities, we'll prove two
inequalities. We'll use �entropy term� for exp

[∫
log f dθ2π

]
for

reasons that will become clear soon.

The proof that limn→∞‖Φ∗n‖2 is an upper bound will be
variational. We'll show that for any polynomial with
P (0) = 1, we have ‖P‖2 ≥ entropy term.
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Strategy of the Proof

The lower bound on the entropy term will come from the
fact that µ 7→ entropy term is weakly upper-semicontinuous
(usc), i.e., µn → µ⇒ S(µ) ≥ lim supS(µn).

We'll prove that S(µ) =
∏∞
j=0

(
1− |αj |2

)1/2
for

Bernstein�Szego measures by direct calculation and then
use this and usc to get the other inequality.
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Upper Bound

Lemma. For any polynomial P , with P (0) 6= 0, we have
that ∫

log|P (eiθ)|dθ
2π
≥ log|P (0)|

Remark. One proof notes that log
(
P (z)

)
is subharmonic.

Proof. If {zj}mj=1 are zeros in D, let

Q(z) =

m∏
j=1

1− z̄jz
z − zj

P (z)

Then log Q(z) is analytic in D, so
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Upper Bound

log |Q(0)| = lim
r↑1

∫
log |Q(reiθ)| dθ

2π
=

∫
log |Q(eiθ)| dθ

2π

=

∫
log |P (eiθ)|dθ

2π

But, |Q(0)| =
∏m
j=1|zj |−1 |P (0)| ≥ |P (0)|.
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Upper Bound

For any polynomial, P , with P (0) 6= 0, dµ = f dθ2π + dµs, we
have∫
|P (eiθ)|2 dµ(θ) ≥

∫
|P (eiθ)|2f(θ)

dθ

2π

=

∫
exp
[
2 log|P (eiθ)|+ log

(
f(θ)

)]dθ
2π

≥ exp

(∫
2 log

(
|P (eiθ)|dθ

2π

)
exp
(∫

log f
dθ

2π

))
(by Jensen) ≥ |P (0)|2 exp

(∫
log|f(θ)|dθ

2π

)
by the Lemma. Thus

inf
P |P (0)=1

∫
|P (eiθ)|2 dµ ≥ exp

(∫
log
(
f(θ)

))dθ
2π
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Upper Bound

One can also get a variational upper bound to complete the
proof. The idea is to consider the function

D(z) = exp

(∫
eiθ + z

eiθ − z
log(f(θ))

dθ

4π

)
Formally, and we'll see later that D is actually in H2(D)
and has boundary values, D(eiθ) = limr→∞D(reiθ) exists
for a.e. θ and |D(eiθ)|2 = f(θ).

If dµs = 0, we have P (z) = D(0)/D(z) has P (0) = 0 and∫
|P (z)|2 dµ = D(0)2

∫
f(θ)−2

[
f(θ)

dθ

2π

]
= D(0)2

= exp
(∫

log(f(0))
dθ

2π

)
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Upper Bound

P isn't a polynomial but one can approximate by
polynomials . Handling dµs is a separate issue, but it can
be done (see [OPUC1], Section 2.5 and [SzThm], Section
2.12).



Variational
Principle

Sum Rule

Toeplitz
Determinant
Asymptotics

Polynomials
Dense

Proof Strategy

Upper Bound

Bernstein�Szeg®
Case

Szeg® Integral as
an Entropy

Variational
Principle for S

End of the Proof

The Bernstein�Szeg® Case

Suppose αj = 0 for j ≥ N . Then, we've seen that

dµ = f(θ)
dθ

2π
, f(θ) = |ϕ∗N (eiθ)|−2

Thus,

log f(θ) = −2 log|ϕ∗N (eiθ)| = log‖Φ∗N‖2 − 2 log|Φ∗N (eiθ)|

Since Φ∗N (z) is analytic in a nbhd of D̄, so is log
(
Φ∗N (z)

)
, so∫

dθ

2π
log|Φ∗N (eiθ)| = log|Φ∗N (0)| = 0

Thus,∫
log f(θ)

dθ

2π
= log‖Φ∗N‖2 = log

N−1∏
j=0

(
1− |αj |2

)1/2
proving Szeg®'s Theorem in this case.
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The Szeg® Integral as an Entropy

Given two prob. measures on ∂D, we de�ne their relative
entropy by

S(µ | ν) =

{
−∞ if µ is not ν-a.c.

−
∫

log
(dµ
dν

)
dµ if µ is ν-a.c.

For example, S(gdν | dν) = −
∫
g log(g)dν

Usually ν is �xed and we vary µ.
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The Szeg® Integral as an Entropy

We claim that

S

(
dθ

2π

∣∣∣∣ f dθ2π
+ dµs

)
=

∫
log
(
f(θ)

)dθ
2π

For µ is ν-a.c. i� f(θ) 6= 0 for dθ
2π -a.e. θ. If f(θ) = 0 on a

positive Lebesgue measure set, the integral is −∞, so both
sides are −∞.

If f(θ) 6= 0 for a.e. θ, dµdν = f−1χS where χS is a set with
dµs(S) = 0 and |S| = 1. Clearly

−
∫

log
(dµ
dν

)
=

∫
log
(
f(θ)

)dθ
2π
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Variational Principle for S

Here is a basic fact which we'll make plausible but not
formally prove (but see Section 2.2 of [SzThm]).

Theorem. Let E(∂D) be the continuous strictly positive
functions on ∂D. Then

S(µ | ν) = inf
f∈E(∂D)

S(f ;µ, ν)
where

S(f ;µ, ν) =

∫
f(x)dν(x)−

∫
1 + log

(
f(x)

)
dµ

Proof. If dµ = gdν with g ∈ E(∂D), then

S(g; gdν, ν) = 1− 1−
∫

log
(
g(x)

)
dµ = S(gdν | ν)

By an approximation argument (and control of dµs) one
obtains

S(µ | ν) ≥ inf S
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Variational Principle for S

Let's prove S(f ;µ, ν) ≥ S(µ | ν) in case dµs = 0 so

dν = g−1dµ

so that

S(f ;µ, ν) =

∫
Qg(x)

(
f(x)

)
dµ(x)

where
Qb(x) = xb−1 − 1− log x

Then

Q′b(x) = b−1 − x−1, Q′′b (x) = x−2 ≥ 0

so Qb is convex, Q
′
b(b) = 0, so Qb(x) ≥ Qb(b), i.e.,

Qb(x) ≥ − log(b)
Thus

S(f ;µ, ν) ≥ −
∫

log
(
g(x)

)
dµ(x) = S(µ | ν)
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Variational Principle for S

For each �xed f in E(∂D), S(f ;µ, ν) is linear and weakly
continuous so the inf is concave and weakly usc, i.e.

Theorem. S(µ | ν) is jointly converse and jointly weakly

usc in µ and ν.

Corollary. De�ne Sz(µ) =
∫

log f dθ2π if dµ = f dθ2π + dµs.
Then µ 7→ Sz(µ) is weakly usc.
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The end of the proof

Let µ have Verblunsky coe�cients, {αn}∞n=0. Let µn be the
Bernstein�Szeg® approximation.

We've proven above that

Sz(µn) =

n−1∏
j=0

ρ2j

By weak usc

Sz(µ) ≥ limSz(µn) =

∞∏
j=0

ρ2j

which is the other inequality that we needed to prove.
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