Probabilistic Weyl laws for quantized tori

The Brian Davies 65th Birthday Conference

TJ Christiansen and M Zworski

University of Missouri and UC Berkeley

December 9, 2009

In a series of recent papers Hager-Sjöstrand 2006, Sjöstrand 2008, and Bordeaux Montrieux-Sjöstrand 2009, established

In a series of recent papers Hager-Sjöstrand 2006, Sjöstrand 2008, and Bordeaux Montrieux-Sjöstrand 2009, established almost sure Weyl asymptotics for small random perturbations of non-self-adjoint elliptic operators

In a series of recent papers Hager-Sjöstrand 2006, Sjöstrand 2008, and Bordeaux Montrieux-Sjöstrand 2009, established almost sure Weyl asymptotics for small random perturbations of non-self-adjoint elliptic operators

We would like to present of a related simpler result in a simpler setting...

In a series of recent papers Hager-Sjöstrand 2006, Sjöstrand 2008, and Bordeaux Montrieux-Sjöstrand 2009, established almost sure Weyl asymptotics for small random perturbations of non-self-adjoint elliptic operators

We would like to present of a related simpler result in a simpler setting...

Hager 2007 (unpublished) already explained how this result follows from the results in the papers above.

In a series of recent papers Hager-Sjöstrand 2006, Sjöstrand 2008, and Bordeaux Montrieux-Sjöstrand 2009, established almost sure Weyl asymptotics for small random perturbations of non-self-adjoint elliptic operators

We would like to present of a related simpler result in a simpler setting...

Hager 2007 (unpublished) already explained how this result follows from the results in the papers above.

But the proof is different, hopefully simpler...

The simpler setting is the semiclassical quantization of a torus, a special form of the Berezin-Toeplitz quantization:

The simpler setting is the semiclassical quantization of a torus, a special form of the Berezin-Toeplitz quantization:

$$
\mathbb{T}=S_{x}^{1} \times S_{\xi}^{1}
$$

The simpler setting is the semiclassical quantization of a torus, a special form of the Berezin-Toeplitz quantization:

$$
\mathbb{T}=S_{x}^{1} \times S_{\xi}^{1}
$$

To a function $f \in C^{\infty}(\mathbb{T})$ we will associate a family of $N \times N$ matrices, f_{N},

$$
f \longmapsto f_{N}
$$

with the following properties:

The simpler setting is the semiclassical quantization of a torus, a special form of the Berezin-Toeplitz quantization:

$$
\mathbb{T}=S_{x}^{1} \times S_{\xi}^{1}
$$

To a function $f \in C^{\infty}(\mathbb{T})$ we will associate a family of $N \times N$ matrices, f_{N},

$$
f \longmapsto f_{N}
$$

with the following properties:

- $\left\|f_{N}\right\|_{\ell^{2} \rightarrow \ell^{2}}=\sup _{\mathbb{T}}|f|+o(1)$,

The simpler setting is the semiclassical quantization of a torus, a special form of the Berezin-Toeplitz quantization:

$$
\mathbb{T}=S_{x}^{1} \times S_{\xi}^{1}
$$

To a function $f \in C^{\infty}(\mathbb{T})$ we will associate a family of $N \times N$ matrices, f_{N},

$$
f \longmapsto f_{N}
$$

with the following properties:

- $\left\|f_{N}\right\|_{\ell^{2} \rightarrow \ell^{2}}=\sup _{\mathbb{T}}|f|+o(1)$,
- $2 \pi i N\left[f_{N}, g_{N}\right]=\{f, g\}_{N}+\mathcal{O}_{\ell^{2} \rightarrow \ell^{2}}(1 / N)$,

The simpler setting is the semiclassical quantization of a torus, a special form of the Berezin-Toeplitz quantization:

$$
\mathbb{T}=S_{x}^{1} \times S_{\xi}^{1}
$$

To a function $f \in C^{\infty}(\mathbb{T})$ we will associate a family of $N \times N$ matrices, f_{N},

$$
f \longmapsto f_{N}
$$

with the following properties:

- $\left\|f_{N}\right\|_{\ell^{2} \rightarrow \ell^{2}}=\sup _{\mathbb{T}}|f|+o(1)$,
- $2 \pi i N\left[f_{N}, g_{N}\right]=\{f, g\}_{N}+\mathcal{O}_{\ell^{2} \rightarrow \ell^{2}}(1 / N)$,
where $\{\bullet, \bullet\}$ is the Poisson bracket on \mathbb{T} :

The simpler setting is the semiclassical quantization of a torus, a special form of the Berezin-Toeplitz quantization:

$$
\mathbb{T}=S_{x}^{1} \times S_{\xi}^{1}
$$

To a function $f \in C^{\infty}(\mathbb{T})$ we will associate a family of $N \times N$ matrices, f_{N},

$$
f \longmapsto f_{N}
$$

with the following properties:

- $\left\|f_{N}\right\|_{\ell^{2} \rightarrow \ell^{2}}=\sup _{\mathbb{T}}|f|+o(1)$,
- $2 \pi i N\left[f_{N}, g_{N}\right]=\{f, g\}_{N}+\mathcal{O}_{\ell^{2} \rightarrow \ell^{2}}(1 / N)$,
where $\{\bullet, \bullet\}$ is the Poisson bracket on \mathbb{T} :

$$
\{f, g\}=\partial_{\xi} f \partial_{x} g-\partial_{x} f \partial_{\xi} g
$$

How to define f_{N} ?

How to define f_{N} ?
Take $f(x, \xi)=f(x)$.

How to define f_{N} ?
Take $f(x, \xi)=f(x)$.
Then define

How to define f_{N} ?
Take $f(x, \xi)=f(x)$.
Then define

$$
f_{N}=\left[\begin{array}{cccc}
f(0) & 0 & \cdots & 0 \\
0 & f(1 / N) & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & f((N-1) / N)
\end{array}\right]
$$

How to define f_{N} ?
Take $f(x, \xi)=f(x)$.
Then define

$$
f_{N}=\left[\begin{array}{cccc}
f(0) & 0 & \cdots & 0 \\
0 & f(1 / N) & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & f((N-1) / N)
\end{array}\right]
$$

which is just a discretization of f.

How to define f_{N} ?
Suppose now $f(x, \xi)=f(\xi)$.

How to define f_{N} ?
Suppose now $f(x, \xi)=f(\xi)$.
Then define

How to define f_{N} ?
Suppose now $f(x, \xi)=f(\xi)$.
Then define

$$
f_{N}=\mathcal{F}_{N}^{*}\left[\begin{array}{cccc}
f(0) & 0 & \cdots & 0 \\
0 & f(1 / N) & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & f((N-1) / N)
\end{array}\right] \mathcal{F}_{N}
$$

How to define f_{N} ?
Suppose now $f(x, \xi)=f(\xi)$.
Then define

$$
\begin{gathered}
f_{N}=\mathcal{F}_{N}^{*}\left[\begin{array}{cccc}
f(0) & 0 & \cdots & 0 \\
0 & f(1 / N) & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & f((N-1) / N)
\end{array}\right] \mathcal{F}_{N} \\
\mathcal{F}_{N}(k, \ell)=\frac{\exp (2 \pi i k \ell / N)}{\sqrt{N}} .
\end{gathered}
$$

A simple example of the classical/quantum correspondence:

A simple example of the classical/quantum correspondence:

$$
\operatorname{tr} g_{N}=
$$

A simple example of the classical/quantum correspondence:

$$
\operatorname{tr} g_{N}=N \int_{\mathbb{T}} g+\mathcal{O}\left(N^{-\infty}\right)
$$

for $g \in C^{\infty}\left(\mathbb{T}^{n}\right)$.

$$
f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$$
f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$\operatorname{Spec}\left(f_{100}\right)$:

$$
f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$\operatorname{Spec}\left(f_{100}\right)$:

The spectrum is very unstable and its structure is related to the analytic continuation of f.

Similarly we can quantize \mathbb{T}^{2} :

Similarly we can quantize \mathbb{T}^{2} :

$$
C^{\infty}\left(\mathbb{T}^{2}\right)=C^{\infty}(\mathbb{T}) \otimes C^{\infty}(\mathbb{T})
$$

Similarly we can quantize \mathbb{T}^{2} :

$$
\begin{gathered}
C^{\infty}\left(\mathbb{T}^{2}\right)=C^{\infty}(\mathbb{T}) \otimes C^{\infty}(\mathbb{T}), \\
f \otimes g \longmapsto f_{N} \otimes g_{N}: \mathbb{C}^{N} \otimes \mathbb{C}^{N} \longrightarrow \mathbb{C}^{N} \otimes \mathbb{C}^{N} \simeq \mathbb{C}^{N^{2}} .
\end{gathered}
$$

Similarly we can quantize \mathbb{T}^{2} :

$$
\begin{gathered}
C^{\infty}\left(\mathbb{T}^{2}\right)=C^{\infty}(\mathbb{T}) \otimes C^{\infty}(\mathbb{T}) \\
f \otimes g \longmapsto f_{N} \otimes g_{N}: \mathbb{C}^{N} \otimes \mathbb{C}^{N} \longrightarrow \mathbb{C}^{N} \otimes \mathbb{C}^{N} \simeq \mathbb{C}^{N^{2}}
\end{gathered}
$$

The semiclassical parameter is still

$$
h=\frac{1}{2 \pi N}
$$

in the sense that

$$
2 \pi i N\left[F_{N}, G_{N}\right]=\{F, G\}_{N}+\mathcal{O}_{\ell^{2} \rightarrow \ell^{2}}(1 / N), \quad F, G \in C^{\infty}\left(\mathbb{T}^{2}\right)
$$

Similarly we can quantize \mathbb{T}^{2} :

$$
\begin{gathered}
C^{\infty}\left(\mathbb{T}^{2}\right)=C^{\infty}(\mathbb{T}) \otimes C^{\infty}(\mathbb{T}) \\
f \otimes g \longmapsto f_{N} \otimes g_{N}: \mathbb{C}^{N} \otimes \mathbb{C}^{N} \longrightarrow \mathbb{C}^{N} \otimes \mathbb{C}^{N} \simeq \mathbb{C}^{N^{2}}
\end{gathered}
$$

The semiclassical parameter is still

$$
h=\frac{1}{2 \pi N}
$$

in the sense that

$$
2 \pi i N\left[F_{N}, G_{N}\right]=\{F, G\}_{N}+\mathcal{O}_{\ell^{2} \rightarrow \ell^{2}}(1 / N), \quad F, G \in C^{\infty}\left(\mathbb{T}^{2}\right)
$$

And it works the same for $\mathbb{T}^{n} \ldots$

$$
F\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)=\cos 2 \pi x_{1}+i \cos 2 \pi \xi_{2} .
$$

$$
F\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)=\cos 2 \pi x_{1}+i \cos 2 \pi \xi_{2} .
$$

$\operatorname{Spec}\left(F_{20}\right)$:

$$
F\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)=\cos 2 \pi x_{1}+i \cos 2 \pi \xi_{2} .
$$

$\operatorname{Spec}\left(F_{20}\right)$:

The spectrum is very stable and its structure is is related to F.
$\operatorname{Spec}\left(f_{100}\right)$

$\operatorname{Spec}\left(F_{20}\right)$

$\operatorname{Spec}\left(f_{100}+100^{-2} R(100)\right)$

$\operatorname{Spec}\left(F_{20}+20^{-2} R(400)\right)$

$\operatorname{Spec}\left(f_{100}+100^{-2} R(100)\right)$

Instability
$\operatorname{Spec}\left(F_{20}+20^{-2} R(400)\right)$

Stability

Theorem (Hörmander 1960, •• , Davies 1999, Zworski 2001, Dencker-Sjöstrand-Zworski 2004, Chapman-Trefethen 2004, Borthwick-Uribe 2004)

Theorem (Hörmander 1960, •. ., Davies 1999, Zworski 2001, Dencker-Sjöstrand-Zworski 2004, Chapman-Trefethen 2004, Borthwick-Uribe 2004)
Suppose that $z_{0}=f\left(x_{0}, \xi_{0}\right)$ and that

$$
\{\operatorname{Re} f, \operatorname{Im} f\}\left(x_{0}, \xi_{0}\right)<0
$$

Theorem (Hörmander 1960, •• , Davies 1999, Zworski 2001, Dencker-Sjöstrand-Zworski 2004, Chapman-Trefethen 2004, Borthwick-Uribe 2004)
Suppose that $z_{0}=f\left(x_{0}, \xi_{0}\right)$ and that

$$
\{\operatorname{Re} f, \operatorname{Im} f\}\left(x_{0}, \xi_{0}\right)<0
$$

Then there exist $u_{N} \in \ell^{2}\left(\mathbb{Z}_{N}\right),\left\|u_{N}\right\|_{\ell^{2}}=1$, microlocalized to $\left(x_{0}, \xi_{0}\right)$ such that

$$
\left\|\left(f_{N}-z_{0}\right) u_{N}\right\|=\mathcal{O}\left(N^{-\infty}\right)
$$

Theorem (Hörmander 1960, •. , Davies 1999, Zworski 2001, Dencker-Sjöstrand-Zworski 2004, Chapman-Trefethen 2004, Borthwick-Uribe 2004)
Suppose that $z_{0}=f\left(x_{0}, \xi_{0}\right)$ and that

$$
\{\operatorname{Re} f, \operatorname{Im} f\}\left(x_{0}, \xi_{0}\right)<0
$$

Then there exist $u_{N} \in \ell^{2}\left(\mathbb{Z}_{N}\right),\left\|u_{N}\right\|_{\ell^{2}}=1$, microlocalized to $\left(x_{0}, \xi_{0}\right)$ such that

$$
\left\|\left(f_{N}-z_{0}\right) u_{N}\right\|=\mathcal{O}\left(N^{-\infty}\right)
$$

When f is real analytic $\mathcal{O}\left(N^{-\infty}\right)$ can be replaced by $e^{-N / C}$. In both cases, theorem states that z_{0} is "almost" an eigenvalue.

What does it mean to be microlocalized to $\left(x_{0}, \xi_{0}\right)$?

What does it mean to be microlocalized to $\left(x_{0}, \xi_{0}\right)$?
We say that the family $u_{N},\left\|u_{N}\right\|_{\ell^{2}}=1$, is microlocalized to $\left(x_{0}, \xi_{0}\right) \in \mathbb{T}$ if

What does it mean to be microlocalized to $\left(x_{0}, \xi_{0}\right)$?
We say that the family $u_{N},\left\|u_{N}\right\|_{\ell^{2}}=1$, is microlocalized to $\left(x_{0}, \xi_{0}\right) \in \mathbb{T}$ if

$$
g \in C^{\infty}(\mathbb{T}), \quad g \equiv 0 \text { near }\left(x_{0}, \xi_{0}\right) \Longrightarrow\left\|g_{N} u_{N}\right\|_{\ell^{2}}=\mathcal{O}\left(N^{-\infty}\right)
$$

A more systematic quantization procedure:

A more systematic quantization procedure:

$$
\partial_{x, \xi}^{\alpha} a=\mathcal{O}(1), \quad \forall \alpha \in \mathbb{N}^{2 n}
$$

A more systematic quantization procedure:

$$
\begin{gathered}
\partial_{x, \xi}^{\alpha} a=\mathcal{O}(1), \quad \forall \alpha \in \mathbb{N}^{2 n} \\
a \longmapsto a^{w}(x, h D): \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)
\end{gathered}
$$

A more systematic quantization procedure:

$$
\begin{gathered}
\partial_{x, \xi}^{\alpha} a=\mathcal{O}(1), \quad \forall \alpha \in \mathbb{N}^{2 n} \\
a \longmapsto a^{w}(x, h D): \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right) \\
a^{w}(x, h D) u=\frac{1}{(2 \pi h)^{n}} \iint a\left(\frac{x+y}{2}, \xi\right) e^{\frac{i}{h}\langle x-y, \xi\rangle} u(y) d y d \xi
\end{gathered}
$$

A more systematic quantization procedure:

$$
\begin{gathered}
\partial_{x, \xi}^{\alpha} a=\mathcal{O}(1), \quad \forall \alpha \in \mathbb{N}^{2 n} \\
a \longmapsto a^{w}(x, h D): \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right) \\
a^{w}(x, h D) u=\frac{1}{(2 \pi h)^{n}} \iint a\left(\frac{x+y}{2}, \xi\right) e^{\frac{i}{h}\langle x-y, \xi\rangle} u(y) d y d \xi
\end{gathered}
$$

Here $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ if $x^{\beta} \partial^{\alpha} u=\mathcal{O}(1)$.

A more systematic quantization procedure:

$$
\begin{gathered}
\partial_{x, \xi}^{\alpha} a=\mathcal{O}(1), \quad \forall \alpha \in \mathbb{N}^{2 n} \\
a \longmapsto a^{w}(x, h D): \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \\
a^{w}(x, h D) u=\frac{1}{(2 \pi h)^{n}} \iint a\left(\frac{x+y}{2}, \xi\right) e^{\frac{i}{h}\langle x-y, \xi\rangle} u(y) d y d \xi
\end{gathered}
$$

Here \mathcal{S}^{\prime} is the dual of \mathcal{S}.

$$
a^{w}(x, h D) u=\frac{1}{(2 \pi h)^{n}} \iint a\left(\frac{x+y}{2}, \xi\right) e^{\frac{i}{h}\langle x-y, \xi\rangle} u(y) d y d \xi
$$

Key property

$$
a^{w}(x, h D) u=\frac{1}{(2 \pi h)^{n}} \iint a\left(\frac{x+y}{2}, \xi\right) e^{\frac{i}{h}\langle x-y, \xi\rangle} u(y) d y d \xi
$$

Key property

$$
\frac{i}{h}\left[a^{w}(x, h D), b^{w}(x, h D)\right]=\{a, b\}^{w}(x, h D)+h^{2} c^{w}(x, h D, h)
$$

$$
a^{w}(x, h D) u=\frac{1}{(2 \pi h)^{n}} \iint a\left(\frac{x+y}{2}, \xi\right) e^{\frac{i}{h}\langle x-y, \xi\rangle} u(y) d y d \xi
$$

Key property

$$
\begin{gathered}
\frac{i}{h}\left[a^{w}(x, h D), b^{w}(x, h D)\right]=\{a, b\}^{w}(x, h D)+h^{2} c^{w}(x, h D, h) \\
\partial_{x, \xi}^{\alpha} c(x, \xi, h)=\mathcal{O}(1)
\end{gathered}
$$

$$
a^{w}(x, h D) u=\frac{1}{(2 \pi h)^{n}} \iint a\left(\frac{x+y}{2}, \xi\right) e^{\frac{i}{h}\langle x-y, \xi\rangle} u(y) d y d \xi
$$

Key property

$$
\begin{gathered}
\frac{i}{h}\left[a^{w}(x, h D), b^{w}(x, h D)\right]=\{a, b\}^{w}(x, h D)+h^{2} c^{w}(x, h D, h) \\
\partial_{x, \xi}^{\alpha} c(x, \xi, h)=\mathcal{O}(1) \\
{[\bullet, \bullet] \longleftrightarrow\{\bullet, \bullet\}}
\end{gathered}
$$

What is the connection with the previous quantization?

What is the connection with the previous quantization? A function $f \in C^{\infty}(\mathbb{T})$ can be identified with a periodic function on $\mathbb{R} \times \mathbb{R}$.

What is the connection with the previous quantization? A function $f \in C^{\infty}(\mathbb{T})$ can be identified with a periodic function on $\mathbb{R} \times \mathbb{R}$. What about states u_{N} ?

What is the connection with the previous quantization? A function $f \in C^{\infty}(\mathbb{T})$ can be identified with a periodic function on $\mathbb{R} \times \mathbb{R}$. What about states u_{N} ?
We look for $u \in \mathcal{S}^{\prime}(\mathbb{R})$ which are period in x and in ξ :

What is the connection with the previous quantization? A function $f \in C^{\infty}(\mathbb{T})$ can be identified with a periodic function on $\mathbb{R} \times \mathbb{R}$. What about states u_{N} ?
We look for $u \in \mathcal{S}^{\prime}(\mathbb{R})$ which are period in x and in ξ :

$$
\mathcal{F}_{h} u(\xi+2 \pi k)=\mathcal{F}_{h} u(\xi), \quad k \in \mathbb{Z}
$$

What is the connection with the previous quantization?
A function $f \in C^{\infty}(\mathbb{T})$ can be identified with a periodic function on $\mathbb{R} \times \mathbb{R}$. What about states u_{N} ?
We look for $u \in \mathcal{S}^{\prime}(\mathbb{R})$ which are period in x and in ξ :

$$
\begin{aligned}
& \mathcal{F}_{h} u(\xi+2 \pi k)=\mathcal{F}_{h} u(\xi), \quad k \in \mathbb{Z} \\
& \mathcal{F}_{h} u(\xi)=\frac{1}{\sqrt{2 \pi h}} \int u(x) e^{\frac{i}{h}\langle\xi, x\rangle} d x
\end{aligned}
$$

What is the connection with the previous quantization?
A function $f \in C^{\infty}(\mathbb{T})$ can be identified with a periodic function on $\mathbb{R} \times \mathbb{R}$. What about states u_{N} ?
We look for $u \in \mathcal{S}^{\prime}(\mathbb{R})$ which are period in x and in ξ :

$$
\begin{aligned}
& \mathcal{F}_{h} u(\xi+2 \pi k)=\mathcal{F}_{h} u(\xi), \quad k \in \mathbb{Z} \\
& \mathcal{F}_{h} u(\xi)=\frac{1}{\sqrt{2 \pi h}} \int u(x) e^{\frac{i}{h}\langle\xi, x\rangle} d x
\end{aligned}
$$

Poisson summation formula shows that such distributions (elements of \mathcal{S}^{\prime}) exist only for $h=1 / 2 \pi N$ and form a space of dimension N.

What is the connection with the previous quantization?
A function $f \in C^{\infty}(\mathbb{T})$ can be identified with a periodic function on $\mathbb{R} \times \mathbb{R}$. What about states u_{N} ?
We look for $u \in \mathcal{S}^{\prime}(\mathbb{R})$ which are period in x and in ξ :

$$
\begin{aligned}
& \mathcal{F}_{h} u(\xi+2 \pi k)=\mathcal{F}_{h} u(\xi), \quad k \in \mathbb{Z} \\
& \mathcal{F}_{h} u(\xi)=\frac{1}{\sqrt{2 \pi h}} \int u(x) e^{\frac{i}{h}\langle\xi, x\rangle} d x
\end{aligned}
$$

Poisson summation formula shows that such distributions (elements of \mathcal{S}^{\prime}) exist only for $h=1 / 2 \pi N$ and form a space of dimension N.

$$
a_{N}=a^{w}(x, h D), \text { acting on this space }
$$

$$
f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$$
f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$\operatorname{Spec}\left(f_{100}+10^{-2-\text { linspace }(10,0,50)} R_{100}(\omega), \quad\left\|R_{100}(\omega)\right\|=1\right.$.

$$
f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$\operatorname{Spec}\left(f_{100}+10^{-2-\operatorname{linspace}(10,0,50)} R_{100}(\omega), \quad\left\|R_{100}(\omega)\right\|=1\right.$.

$$
f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$$
f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$\operatorname{Spec}\left(f_{N}+N^{-2} R_{N}(\omega), \quad\left\|R_{N}(\omega)\right\|=1, \quad 20 \leq N \leq 520\right.$.

$$
f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$\operatorname{Spec}\left(f_{N}+N^{-2} R_{N}(\omega), \quad\left\|R_{N}(\omega)\right\|=1, \quad 20 \leq N \leq 520\right.$.

Theorem
Let $R_{N}(\omega)$ be random $N^{n} \times N^{n}$ matrices with complex $N(0,1)$ i.i.d. entries and let $f \in C^{\infty}\left(\mathbb{T}^{n}\right)$.

Theorem
Let $R_{N}(\omega)$ be random $N^{n} \times N^{n}$ matrices with complex $N(0,1)$ i.i.d. entries and let $f \in C^{\infty}\left(\mathbb{T}^{n}\right)$. Suppose that $\Omega \subset \bar{\Omega} \Subset \mathbb{C}$ and that for $z \in \partial \Omega$

Theorem
Let $R_{N}(\omega)$ be random $N^{n} \times N^{n}$ matrices with complex $N(0,1)$ i.i.d. entries and let $f \in C^{\infty}\left(\mathbb{T}^{n}\right)$. Suppose that $\Omega \subset \bar{\Omega} \Subset \mathbb{C}$ and that for $z \in \partial \Omega$

$$
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1
$$

Theorem
Let $R_{N}(\omega)$ be random $N^{n} \times N^{n}$ matrices with complex $N(0,1)$ i.i.d. entries and let $f \in C^{\infty}\left(\mathbb{T}^{n}\right)$. Suppose that $\Omega \subset \bar{\Omega} \Subset \mathbb{C}$ and that for $z \in \partial \Omega$

$$
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1
$$

for some $1<\kappa \leq 2$.

Theorem
Let $R_{N}(\omega)$ be random $N^{n} \times N^{n}$ matrices with complex $N(0,1)$ i.i.d. entries and let $f \in C^{\infty}\left(\mathbb{T}^{n}\right)$. Suppose that $\Omega \subset \bar{\Omega} \Subset \mathbb{C}$ and that for $z \in \partial \Omega$

$$
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1
$$

for some $1<\kappa \leq 2$. Then for any $p>n+1 / 2$,

Theorem
Let $R_{N}(\omega)$ be random $N^{n} \times N^{n}$ matrices with complex $N(0,1)$ i.i.d. entries and let $f \in C^{\infty}\left(\mathbb{T}^{n}\right)$. Suppose that $\Omega \subset \bar{\Omega} \Subset \mathbb{C}$ and that for $z \in \partial \Omega$

$$
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1
$$

for some $1<\kappa \leq 2$. Then for any $p>n+1 / 2$,
$\mathbb{E}_{\omega}\left(\left|\operatorname{Spec}\left(f_{N}+N^{-p} R_{N}(\omega)\right) \cap \Omega\right|\right)=$

Theorem
Let $R_{N}(\omega)$ be random $N^{n} \times N^{n}$ matrices with complex $N(0,1)$ i.i.d. entries and let $f \in C^{\infty}\left(\mathbb{T}^{n}\right)$. Suppose that $\Omega \subset \bar{\Omega} \Subset \mathbb{C}$ and that for $z \in \partial \Omega$

$$
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1
$$

for some $1<\kappa \leq 2$. Then for any $p>n+1 / 2$,
$\mathbb{E}_{\omega}\left(\left|\operatorname{Spec}\left(f_{N}+N^{-p} R_{N}(\omega)\right) \cap \Omega\right|\right)=N^{n} \operatorname{vol}_{\mathbb{T}^{n}}\left(f^{-1}(\Omega)\right)$

Theorem
Let $R_{N}(\omega)$ be random $N^{n} \times N^{n}$ matrices with complex $N(0,1)$ i.i.d. entries and let $f \in C^{\infty}\left(\mathbb{T}^{n}\right)$. Suppose that $\Omega \subset \bar{\Omega} \Subset \mathbb{C}$ and that for $z \in \partial \Omega$

$$
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1
$$

for some $1<\kappa \leq 2$. Then for any $p>n+1 / 2$,
$\mathbb{E}_{\omega}\left(\left|\operatorname{Spec}\left(f_{N}+N^{-p} R_{N}(\omega)\right) \cap \Omega\right|\right)=N^{n} \operatorname{vol}_{\mathbb{T}^{n}}\left(f^{-1}(\Omega)\right)+\mathcal{O}\left(N^{n-\beta}\right)$

Theorem
Let $R_{N}(\omega)$ be random $N^{n} \times N^{n}$ matrices with complex $N(0,1)$ i.i.d. entries and let $f \in C^{\infty}\left(\mathbb{T}^{n}\right)$. Suppose that $\Omega \subset \bar{\Omega} \Subset \mathbb{C}$ and that for $z \in \partial \Omega$

$$
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1
$$

for some $1<\kappa \leq 2$. Then for any $p>n+1 / 2$,
$\mathbb{E}_{\omega}\left(\left|\operatorname{Spec}\left(f_{N}+N^{-p} R_{N}(\omega)\right) \cap \Omega\right|\right)=N^{n} \operatorname{vol}_{\mathbb{T}^{n}}\left(f^{-1}(\Omega)\right)+\mathcal{O}\left(N^{n-\beta}\right)$
where

$$
\beta=\frac{\kappa-1}{\kappa+1} .
$$

Theorem
Let $R_{N}(\omega)$ be random $N^{n} \times N^{n}$ matrices with complex $N(0,1)$ i.i.d. entries and let $f \in C^{\infty}\left(\mathbb{T}^{n}\right)$. Suppose that $\Omega \subset \bar{\Omega} \Subset \mathbb{C}$ and that for $z \in \partial \Omega$

$$
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1
$$

for some $1<\kappa \leq 2$. Then for any $p>n+1 / 2$,
$\mathbb{E}_{\omega}\left(\left|\operatorname{Spec}\left(f_{N}+N^{-p} R_{N}(\omega)\right) \cap \Omega\right|\right)=N^{n} \operatorname{vol}_{\mathbb{T}^{n}}\left(f^{-1}(\Omega)\right)+\mathcal{O}\left(N^{n-\beta}\right)$
where

$$
\beta=\frac{\kappa-1}{\kappa+1} .
$$

This means that $\operatorname{Spec}\left(f_{N}+N^{-p} R_{N}(\omega)\right)$, unlike $\operatorname{Spec}\left(f_{N}\right)$, displays a probabilistic Weyl law for the eigenvalues.

A numerical illustration:

A numerical illustration:

$$
f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi, \quad N=100
$$

A numerical illustration:

$$
f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi, \quad N=100 .
$$

A numerical illustration:

$$
f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi, \quad N=100
$$

The left figure is from Embree-Trefethen.

A numerical illustration:

A numerical illustration:

$$
\Omega=\Omega_{r}=\{|z|<r\}, \quad f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

A numerical illustration:

$$
\Omega=\Omega_{r}=\{|z|<r\}, \quad f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$$
N=100
$$

A numerical illustration:

$$
\Omega=\Omega_{r}=\{|z|<r\}, \quad f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$$
N=100
$$

A numerical illustration:

$$
\Omega=\Omega_{r}=\{|z|<r\}, \quad f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$$
N=100
$$

blue line: $N \operatorname{vol}_{\mathbb{T}}\left(f^{-1}\left(\Omega_{r}\right)\right)$, red lines: $\left|\operatorname{Spec}\left(f_{N}+N^{-2} R_{N}(\omega)\right) \cap \Omega_{r}\right|$.

A numerical illustration:

$$
\Omega=\Omega_{r}=\{|z|<r\}, \quad f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$$
N=200
$$

blue line: $N \operatorname{vol}_{\mathbb{T}}\left(f^{-1}\left(\Omega_{r}\right)\right)$, red lines: $\left|\operatorname{Spec}\left(f_{N}+N^{-2} R_{N}(\omega)\right) \cap \Omega_{r}\right|$.

A numerical illustration:

$$
\Omega=\Omega_{r}=\{|z|<r\}, \quad f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$$
N=300
$$

blue line: $N \operatorname{vol}_{\mathbb{T}}\left(f^{-1}\left(\Omega_{r}\right)\right)$, red lines: $\left|\operatorname{Spec}\left(f_{N}+N^{-2} R_{N}(\omega)\right) \cap \Omega_{r}\right|$.

$$
\frac{1}{N} \mathbb{E}_{\omega}\left(\left|\operatorname{Spec}\left(f_{N}+N^{-p} R_{N}(\omega)\right) \cap \Omega\right|\right)
$$

Not surprisingly we see none of the strange boundary behaviour for the normal operators:

Not surprisingly we see none of the strange boundary behaviour for the normal operators:

$$
F(x, \xi)=\cos 2 \pi x_{1}+i \cos 2 \pi \xi_{2}, \quad N=20
$$

blue line: $N \operatorname{vol}_{\mathbb{T}^{2}}\left(F^{-1}\left(\Omega_{r}\right)\right)$, red lines: $\left|\operatorname{Spec}\left(F_{N}\right) \cap \Omega_{r}\right|$.

Not surprisingly we see none of the strange boundary behaviour for the normal operators:

$$
F(x, \xi)=\cos 2 \pi x_{1}+i \cos 2 \pi \xi_{2}, \quad N=50
$$

blue line: $N \operatorname{vol}_{\mathbb{T}^{2}}\left(F^{-1}\left(\Omega_{r}\right)\right)$, red lines: $\left|\operatorname{Spec}\left(F_{N}\right) \cap \Omega_{r}\right|$.

Interestingly the false eigenvalues computed by MATLAB also satisfy this Weyl law:

Interestingly the false eigenvalues computed by MATLAB also satisfy this Weyl law:

Another example (pointed out by Bordeaux Montrieux):

Another example (pointed out by Bordeaux Montrieux):

$$
f(x, N)= \begin{cases}0 & x \leq 3 / 2 N \\ 1 & x>3 / 2 N\end{cases}
$$

(or a smoothed out version of $f(x, N)$ since that does not affect $\left.f_{N}\right)$

Another example (pointed out by Bordeaux Montrieux):

$$
f(x, N)= \begin{cases}0 & x \leq 3 / 2 N \\ 1 & x>3 / 2 N\end{cases}
$$

(or a smoothed out version of $f(x, N)$ since that does not affect f_{N})

$$
g(\xi)=\exp (2 \pi i \xi)
$$

Another example (pointed out by Bordeaux Montrieux):

$$
f(x, N)= \begin{cases}0 & x \leq 3 / 2 N \\ 1 & x>3 / 2 N\end{cases}
$$

(or a smoothed out version of $f(x, N)$ since that does not affect f_{N})

$$
g(\xi)=\exp (2 \pi i \xi)
$$

Then $f_{N} g_{N}$ is the $N \times N$ Jordan matrix.

Another example (pointed out by Bordeaux Montrieux):

$$
f(x, N)= \begin{cases}0 & x \leq 3 / 2 N \\ 1 & x>3 / 2 N\end{cases}
$$

(or a smoothed out version of $f(x, N)$ since that does not affect f_{N})

$$
g(\xi)=\exp (2 \pi i \xi)
$$

Then $f_{N} g_{N}$ is the $N \times N$ Jordan matrix.

The theorem does not apply but a singular Weyl law still holds:

The theorem does not apply but a singular Weyl law still holds:

$$
N=100
$$

The theorem does not apply but a singular Weyl law still holds:

$$
N=300
$$

The theorem does not apply but a singular Weyl law still holds:

$$
N=300
$$

This is in agreement with the results of Davies-Hager and seems to hold for more general Toeplitz operators even though the theorem in the current form does not apply (Bordeaux Montrieux).

$$
f(x, N)= \begin{cases}0 & x \leq 7 / 2 N \\ 1 & x>7 / 2 N\end{cases}
$$

or a smoothed out version of $f(x, N)$.

$$
f(x, N)= \begin{cases}0 & x \leq 7 / 2 N \\ 1 & x>7 / 2 N\end{cases}
$$

or a smoothed out version of $f(x, N)$.

$$
g(\xi)=1+2 \exp (2 \pi i \xi)+3 \exp (4 \pi i \xi)
$$

$$
f(x, N)= \begin{cases}0 & x \leq 7 / 2 N \\ 1 & x>7 / 2 N\end{cases}
$$

or a smoothed out version of $f(x, N)$.

$$
g(\xi)=1+2 \exp (2 \pi i \xi)+3 \exp (4 \pi i \xi)
$$

$$
f(x, N)= \begin{cases}0 & x \leq 7 / 2 N \\ 1 & x>7 / 2 N\end{cases}
$$

or a smoothed out version of $f(x, N)$.

$$
g(\xi)=1+2 \exp (2 \pi i \xi)+3 \exp (4 \pi i \xi)
$$

Then $f_{N} g_{N}$ is a (slightly truncated) $N \times N$ Toeplitz matrix.

$$
f(x, N)= \begin{cases}0 & x \leq 7 / 2 N \\ 1 & x>7 / 2 N\end{cases}
$$

or a smoothed out version of $f(x, N)$.

$$
g(\xi)=1+2 \exp (2 \pi i \xi)+3 \exp (4 \pi i \xi)
$$

Then $f_{N} g_{N}$ is a (slightly truncated) $N \times N$ Toeplitz matrix.

$$
f(x, N)= \begin{cases}0 & x \leq 7 / 2 N \\ 1 & x>7 / 2 N\end{cases}
$$

or a smoothed out version of $f(x, N)$.

$$
g(\xi)=1+2 \exp (2 \pi i \xi)+3 \exp (4 \pi i \xi)
$$

Then $f_{N} g_{N}$ is a (slightly truncated) $N \times N$ Toeplitz matrix.

blue line: $100 \operatorname{vol}_{\mathbb{T}}\left((f g)^{-1}\left(\Omega_{r}\right)\right)$,
red lines: $\left|\operatorname{Spec}\left(f_{100} g_{100}+100^{-2} R_{100}(\omega)\right) \cap \Omega_{r}\right|$.

Conjecture:

Conjecture:

Define random probability measures:

Conjecture:

Define random probability measures:

$$
\mu_{N}(\omega)=\frac{1}{N^{n}} \sum_{z \in \operatorname{Spec}\left(f_{N}+N^{-p} R_{N}(\omega)\right)} \delta_{z} .
$$

Conjecture:

Define random probability measures:

$$
\mu_{N}(\omega)=\frac{1}{N^{n}} \sum_{z \in \operatorname{Spec}\left(f_{N}+N^{-p} R_{N}(\omega)\right)} \delta_{z} .
$$

Then, almost surely in ω,

$$
\mu_{N}(\omega) \longrightarrow f_{*}\left(\sigma^{n} / n!\right), \quad N \longrightarrow \infty
$$

Conjecture:

Define random probability measures:

$$
\mu_{N}(\omega)=\frac{1}{N^{n}} \sum_{z \in \operatorname{Spec}\left(f_{N}+N^{-p} R_{N}(\omega)\right)} \delta_{z} .
$$

Then, almost surely in ω,

$$
\begin{aligned}
& \mu_{N}(\omega) \longrightarrow f_{*}\left(\sigma^{n} / n!\right), \quad N \longrightarrow \infty \\
& \sigma=\sum_{k=1}^{n} d \xi_{k} \wedge d x_{k}, \quad(x, \xi) \in \mathbb{T}^{n} .
\end{aligned}
$$

Theorem:

Theorem:
Suppose that for $z \in \partial \Omega$

Theorem:
Suppose that for $z \in \partial \Omega$

$$
\begin{equation*}
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1 \tag{1}
\end{equation*}
$$

Theorem:
Suppose that for $z \in \partial \Omega$

$$
\begin{equation*}
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1 \tag{1}
\end{equation*}
$$

for some $1<\kappa \leq 2$.

Theorem:
Suppose that for $z \in \partial \Omega$

$$
\begin{equation*}
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1 \tag{1}
\end{equation*}
$$

for some $1<\kappa \leq 2$. Then

Theorem:
Suppose that for $z \in \partial \Omega$

$$
\begin{equation*}
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1 \tag{1}
\end{equation*}
$$

for some $1<\kappa \leq 2$. Then

$$
\frac{1}{N^{n}} \mathbb{E}_{\omega}\left(\mu_{N}(\omega)[\Omega]\right)=f_{*}\left(\sigma^{n} / n!\right)[\Omega]+\mathcal{O}\left(N^{-\beta}\right), \quad \beta=\frac{\kappa-1}{\kappa+1} .
$$

Theorem:
Suppose that for $z \in \partial \Omega$

$$
\begin{equation*}
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1 \tag{1}
\end{equation*}
$$

for some $1<\kappa \leq 2$. Then

$$
\frac{1}{N^{n}} \mathbb{E}_{\omega}\left(\mu_{N}(\omega)[\Omega]\right)=f_{*}\left(\sigma^{n} / n!\right)[\Omega]+\mathcal{O}\left(N^{-\beta}\right), \quad \beta=\frac{\kappa-1}{\kappa+1}
$$

Remarks:

Theorem:
Suppose that for $z \in \partial \Omega$

$$
\begin{equation*}
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1 \tag{1}
\end{equation*}
$$

for some $1<\kappa \leq 2$. Then

$$
\frac{1}{N^{n}} \mathbb{E}_{\omega}\left(\mu_{N}(\omega)[\Omega]\right)=f_{*}\left(\sigma^{n} / n!\right)[\Omega]+\mathcal{O}\left(N^{-\beta}\right), \quad \beta=\frac{\kappa-1}{\kappa+1} .
$$

Remarks:

- Condition (1) appears in Sjöstrand-Hager with $\kappa>0$.

Theorem:
Suppose that for $z \in \partial \Omega$

$$
\begin{equation*}
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1 \tag{1}
\end{equation*}
$$

for some $1<\kappa \leq 2$. Then

$$
\frac{1}{N^{n}} \mathbb{E}_{\omega}\left(\mu_{N}(\omega)[\Omega]\right)=f_{*}\left(\sigma^{n} / n!\right)[\Omega]+\mathcal{O}\left(N^{-\beta}\right), \quad \beta=\frac{\kappa-1}{\kappa+1} .
$$

Remarks:

- Condition (1) appears in Sjöstrand-Hager with $\kappa>0$.
- If $\left.d f \wedge d \bar{f}\right|_{f-1(z)} \neq 0$ then it holds with $\kappa=2$.

Theorem:
Suppose that for $z \in \partial \Omega$

$$
\begin{equation*}
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1 \tag{1}
\end{equation*}
$$

for some $1<\kappa \leq 2$. Then

$$
\frac{1}{N^{n}} \mathbb{E}_{\omega}\left(\mu_{N}(\omega)[\Omega]\right)=f_{*}\left(\sigma^{n} / n!\right)[\Omega]+\mathcal{O}\left(N^{-\beta}\right), \quad \beta=\frac{\kappa-1}{\kappa+1} .
$$

Remarks:

- Condition (1) appears in Sjöstrand-Hager with $\kappa>0$.
- If $d f \wedge d \bar{f} \upharpoonright_{f^{-1}(z)} \neq 0$ then it holds with $\kappa=2$.
- For analytic functions function it always holds with some $\kappa>0$: a version of a Łojasiewicz inequality (via resolutions of singularities by Bierstone-Milman and other analytic geometers).

$$
\begin{equation*}
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1 \tag{1}
\end{equation*}
$$

The weaker assumption (1) allows z to belong to the boundary points of $f\left(\mathbb{T}^{n}\right)$ at which necessarily $\left.d f \wedge d \bar{f}\right|_{f-1}(z)=0$.

$$
\begin{equation*}
\operatorname{vol}_{\mathbb{T}^{n}}(\{\rho:|f(\rho)-z| \leq t\}) \leq t^{\kappa}, \quad 0 \leq t \ll 1 \tag{1}
\end{equation*}
$$

The weaker assumption (1) allows z to belong to the boundary points of $f\left(\mathbb{T}^{n}\right)$ at which necessarily $\left.d f \wedge d \bar{f}\right|_{f-1(z)}=0$.

We can think of f as a map from \mathbb{T}^{n} to \mathbb{R}^{2} and the condition $d f \wedge d \bar{f}\left\lceil_{f-1(z)} \neq 0\right.$ means that z is a regular value of f. Hence by the Morse-Sard Theorem, the set of z 's at which $d f \wedge d \bar{f}_{f_{f-1}(z)} \neq 0$ holds has full Lebesgue measure in \mathbb{C}.

$$
\Omega=\Omega_{r}=\{|\operatorname{Re} z|<r\}, \quad f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$$
N=100
$$

blue line: $N \operatorname{vol}_{\mathbb{T}}\left(f^{-1}\left(\Omega_{r}\right)\right)$, red lines: $\left|\operatorname{Spec}\left(f_{N}+N^{-2} R_{N}(\omega)\right) \cap \Omega_{r}\right|$.

$$
\Omega=\Omega_{r}=\{|\operatorname{Re} z|<r\}, \quad f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$$
N=200
$$

blue line: $N \operatorname{vol}_{\mathbb{T}}\left(f^{-1}\left(\Omega_{r}\right)\right)$, red lines: $\left|\operatorname{Spec}\left(f_{N}+N^{-2} R_{N}(\omega)\right) \cap \Omega_{r}\right|$.

$$
\Omega=\Omega_{r}=\{|\operatorname{Re} z|<r\}, \quad f(x, \xi)=\cos 2 \pi x+i \cos 2 \pi \xi
$$

$$
N=500
$$

Here we added one more plot: numerically computed eigenvalues of f_{500} : the Weyl law appears for the numerically computed false eigenvalues!
"Proof of Theorem"
$\left|\operatorname{Spec}\left(f_{N}\right) \cap \Omega\right|=\frac{1}{2 \pi i} \int_{\partial \Omega} \operatorname{tr}\left(f_{N}-z\right)^{-1} d z$

$$
\begin{aligned}
& "=" N^{n} \frac{1}{2 \pi i} \int_{\partial \Omega} \int_{\mathbb{T}^{n}}(f(\rho)-z)^{-1} d \mathcal{L}(\rho) d z+o\left(N^{n}\right) \\
& =N^{n} \int_{\mathbb{T}^{n}}\left(\frac{1}{2 \pi i} \int_{\partial \Omega}(f(\rho)-z)^{-1} d z\right) d \mathcal{L}(\rho) d z+o\left(N^{n}\right) \\
& =N^{n} \operatorname{vol}_{\mathbb{T}^{n}}\left(f^{-1}(\Omega)\right)+o\left(N^{n}\right)
\end{aligned}
$$

Here we tried to use the fact that

Here we tried to use the fact that

$$
\operatorname{tr} g_{N}=N^{n} \int_{\mathbb{T}^{n}} g+\mathcal{O}\left(N^{-\infty}\right)
$$

for $g \in C^{\infty}\left(\mathbb{T}^{n}\right)$.

Here we tried to use the fact that

$$
\operatorname{tr} g_{N}=N^{n} \int_{\mathbb{T}^{n}} g+\mathcal{O}\left(N^{-\infty}\right)
$$

for $g \in C^{\infty}\left(\mathbb{T}^{n}\right)$.
The trouble is that

$$
\left(f_{N}-z\right)^{-1} \neq g_{N}
$$

for a nice function $g \in C^{\infty}\left(\mathbb{T}^{n}\right)$.

Here we tried to use the fact that

$$
\operatorname{tr} g_{N}=N^{n} \int_{\mathbb{T}^{n}} g+\mathcal{O}\left(N^{-\infty}\right)
$$

for $g \in C^{\infty}\left(\mathbb{T}^{n}\right)$.
The trouble is that

$$
\left(f_{N}-z\right)^{-1} \neq g_{N}
$$

for a nice function $g \in C^{\infty}\left(\mathbb{T}^{n}\right)$.

A random perturbation allows this argument to go through on the level of expected values.

We use the singular value decomposition of f_{N} to obtain a reduction to a nicer family of operators.

$$
f_{N}=U_{N} S_{N} V_{N}^{*}
$$

where U_{N} and V_{N} are unitary and S_{N} is diagonal with non-negative entries.

We use the singular value decomposition of f_{N} to obtain a reduction to a nicer family of operators.

$$
f_{N}=U_{N} S_{N} V_{N}^{*}
$$

where U_{N} and V_{N} are unitary and S_{N} is diagonal with non-negative entries.
We note that

$$
\left(f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}\right)^{-1}=\mathcal{O}(1 / \alpha): \ell^{2} \longrightarrow \ell^{2}
$$

if $\psi \geq 0$ is 1 near 0 .

We use the singular value decomposition of f_{N} to obtain a reduction to a nicer family of operators.

$$
f_{N}=U_{N} S_{N} V_{N}^{*}
$$

where U_{N} and V_{N} are unitary and S_{N} is diagonal with non-negative entries.
We note that

$$
\left(f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}\right)^{-1}=\mathcal{O}(1 / \alpha): \ell^{2} \longrightarrow \ell^{2}
$$

if $\psi \geq 0$ is 1 near 0 .
This is obvious once we note that

$$
\psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}=U_{N} \psi\left(\left(S_{N} / \alpha\right)^{2}\right) V_{N}^{*}
$$

Reduction to an invertible deterministic problem:

Reduction to an invertible deterministic problem:
Suppose $0 \in \partial \Omega$ and γ is a small segment of $\partial \Omega$ around 0 , $|\gamma| \simeq \alpha,|z| \ll \alpha$. Assume that $\delta \ll 1 / N^{3}$ and $\delta \ll \alpha$. Then

Reduction to an invertible deterministic problem:
Suppose $0 \in \partial \Omega$ and γ is a small segment of $\partial \Omega$ around 0 , $|\gamma| \simeq \alpha,|z| \ll \alpha$. Assume that $\delta \ll 1 / N^{3}$ and $\delta \ll \alpha$. Then

$$
\begin{gathered}
\int_{\gamma} \mathbb{E}_{\omega} \operatorname{tr}\left(f_{N}+\delta R_{N}(\omega)-z\right)^{-1} d z= \\
\int_{\gamma} \mathbb{E}_{\omega} \operatorname{tr}\left(f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}+\delta R_{N}(\omega)-z\right)^{-1} d z+\mathcal{O}\left(d \log \left(\frac{\alpha}{\delta}\right)\right) \\
=\int_{\gamma} \operatorname{tr}\left(f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}-z\right)^{-1}+\mathcal{O}\left(\frac{\delta}{\alpha} N^{n}+d \log \left(\frac{\alpha}{\delta}\right)\right),
\end{gathered}
$$

where

$$
d=\operatorname{rank} \psi\left(\frac{f_{N} f_{N}^{*}}{\alpha^{2}}\right)
$$

Lemma

Let A be a constant $d \times d$ matrix.

Lemma

Let A be a constant $d \times d$ matrix. Then

Lemma

Let A be a constant $d \times d$ matrix. Then

$$
\int_{0}^{1}\left|\mathbb{E}_{\omega}\left(\operatorname{tr}\left(t A+\delta R_{d}(\omega)\right)^{-1} A\right)\right| d t \leq C \operatorname{tr}\left(\frac{|A|}{\delta+|A|} \log \left(1+\frac{|A|}{\delta}\right)\right)
$$

Lemma

Let A be a constant $d \times d$ matrix. Then

$$
\int_{0}^{1}\left|\mathbb{E}_{\omega}\left(\operatorname{tr}\left(t A+\delta R_{d}(\omega)\right)^{-1} A\right)\right| d t \leq C \operatorname{tr}\left(\frac{|A|}{\delta+|A|} \log \left(1+\frac{|A|}{\delta}\right)\right)
$$ where $|A|=\sqrt{A A^{*}}$, with C independent of d and A.

Lemma

Let A be a constant $d \times d$ matrix. Then
$\int_{0}^{1}\left|\mathbb{E}_{\omega}\left(\operatorname{tr}\left(t A+\delta R_{d}(\omega)\right)^{-1} A\right)\right| d t \leq C \operatorname{tr}\left(\frac{|A|}{\delta+|A|} \log \left(1+\frac{|A|}{\delta}\right)\right)$,
where $|A|=\sqrt{A A^{*}}$, with C independent of d and A.

Lemma

Let A be a constant $d \times d$ matrix. Then

$$
\int_{0}^{1}\left|\mathbb{E}_{\omega}\left(\operatorname{tr}\left(t A+\delta R_{d}(\omega)\right)^{-1} A\right)\right| d t \leq C \operatorname{tr}\left(\frac{|A|}{\delta+|A|} \log \left(1+\frac{|A|}{\delta}\right)\right)
$$ where $|A|=\sqrt{A A^{*}}$, with C independent of d and A.

Lemma

Let A be a constant $d \times d$ matrix. Then
$\int_{0}^{1}\left|\mathbb{E}_{\omega}\left(\operatorname{tr}\left(t A+\delta R_{d}(\omega)\right)^{-1} A\right)\right| d t \leq C \operatorname{tr}\left(\frac{|A|}{\delta+|A|} \log \left(1+\frac{|A|}{\delta}\right)\right)$,
where $|A|=\sqrt{A A^{*}}$, with C independent of d and A.

We use this plus deformation arguments based on

$$
\partial_{t} \operatorname{tr}(t A+F(z))^{-1} F^{\prime}(z)=\partial_{z} \operatorname{tr}(t A+F(z))^{-1} A
$$

Lemma

Let A be a constant $d \times d$ matrix. Then
$\int_{0}^{1}\left|\mathbb{E}_{\omega}\left(\operatorname{tr}\left(t A+\delta R_{d}(\omega)\right)^{-1} A\right)\right| d t \leq C \operatorname{tr}\left(\frac{|A|}{\delta+|A|} \log \left(1+\frac{|A|}{\delta}\right)\right)$,
where $|A|=\sqrt{A A^{*}}$, with C independent of d and A.

We use this plus deformation arguments based on

$$
\partial_{t} \operatorname{tr}(t A+F(z))^{-1} F^{\prime}(z)=\partial_{z} \operatorname{tr}(t A+F(z))^{-1} A
$$

to obtain a reduction, à la Schur, to the operator on the previous slide:

Lemma

Let A be a constant $d \times d$ matrix. Then
$\int_{0}^{1}\left|\mathbb{E}_{\omega}\left(\operatorname{tr}\left(t A+\delta R_{d}(\omega)\right)^{-1} A\right)\right| d t \leq C \operatorname{tr}\left(\frac{|A|}{\delta+|A|} \log \left(1+\frac{|A|}{\delta}\right)\right)$,
where $|A|=\sqrt{A A^{*}}$, with C independent of d and A.

We use this plus deformation arguments based on

$$
\partial_{t} \operatorname{tr}(t A+F(z))^{-1} F^{\prime}(z)=\partial_{z} \operatorname{tr}(t A+F(z))^{-1} A
$$

to obtain a reduction, à la Schur, to the operator on the previous slide:

$$
f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*} .
$$

We now work in an α size neighbourhood, γ, in $\partial \Omega$, of a point on $\partial \Omega$ (0 for convenience)

We now work in an α size neighbourhood, γ, in $\partial \Omega$, of a point on $\partial \Omega$ (0 for convenience) and choose

$$
\alpha=h^{\rho}, \quad 0<\rho<\frac{1}{2}, \quad h=\frac{1}{2 \pi N} .
$$

We now work in an α size neighbourhood, γ, in $\partial \Omega$, of a point on $\partial \Omega$ (0 for convenience) and choose

$$
\alpha=h^{\rho}, \quad 0<\rho<\frac{1}{2}, \quad h=\frac{1}{2 \pi N} .
$$

We need to show that

$$
\begin{aligned}
& \int_{\gamma} \operatorname{tr}\left(f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}-z\right)^{-1}= \\
& \quad N^{n} \int_{\gamma} \int_{\mathbb{T}^{n}}(f(\rho)-z)^{-1} d \mathcal{L}(\rho) d z+o\left(|\gamma| N^{n}\right)
\end{aligned}
$$

The problem is that $f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}$ is not a microlocally characterized operator,

The problem is that $f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}$ is not a microlocally characterized operator, even in some nasty class.

The problem is that $f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}$ is not a microlocally characterized operator, even in some nasty class.

We are saved by simple linear algebra: if $A=U S V^{*}$ then

The problem is that $f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}$ is not a microlocally characterized operator, even in some nasty class.

We are saved by simple linear algebra: if $A=U S V^{*}$ then

$$
\left(1-\tilde{\psi}\left(A^{*} A\right)\right)\left(A+\psi\left(A A^{*}\right) U V^{*}\right)^{-1}=\left(1-\tilde{\psi}\left(A^{*} A\right)\right) A^{*}\left(A A^{*}+\psi\left(A A^{*}\right)\right)^{-1}
$$

The problem is that $f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}$ is not a microlocally characterized operator, even in some nasty class.

We are saved by simple linear algebra: if $A=U S V^{*}$ then
$\left(1-\tilde{\psi}\left(A^{*} A\right)\right)\left(A+\psi\left(A A^{*}\right) U V^{*}\right)^{-1}=\left(1-\tilde{\psi}\left(A^{*} A\right)\right) A^{*}\left(A A^{*}+\psi\left(A A^{*}\right)\right)^{-1}$ provided that $\tilde{\psi} \psi=\psi$.

The problem is that $f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}$ is not a microlocally characterized operator, even in some nasty class.

We are saved by simple linear algebra: if $A=U S V^{*}$ then
$\left(1-\tilde{\psi}\left(A^{*} A\right)\right)\left(A+\psi\left(A A^{*}\right) U V^{*}\right)^{-1}=\left(1-\tilde{\psi}\left(A^{*} A\right)\right) A^{*}\left(A A^{*}+\psi\left(A A^{*}\right)\right)^{-1}$ provided that $\tilde{\psi} \psi=\psi$.
The choice of α shows that $\operatorname{rank} \tilde{\psi}\left(f_{N} f_{N}^{*} / \alpha^{2}\right) \leq C h^{-n+\kappa \rho}$ and hence we only need to study

The problem is that $f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}$ is not a microlocally characterized operator, even in some nasty class.

We are saved by simple linear algebra: if $A=U S V^{*}$ then
$\left(1-\tilde{\psi}\left(A^{*} A\right)\right)\left(A+\psi\left(A A^{*}\right) U V^{*}\right)^{-1}=\left(1-\tilde{\psi}\left(A^{*} A\right)\right) A^{*}\left(A A^{*}+\psi\left(A A^{*}\right)\right)^{-1}$
provided that $\tilde{\psi} \psi=\psi$.
The choice of α shows that $\operatorname{rank} \tilde{\psi}\left(f_{N} f_{N}^{*} / \alpha^{2}\right) \leq C h^{-n+\kappa \rho}$ and hence we only need to study

$$
\operatorname{tr} f_{N}^{*}\left(f_{N} f_{N}^{*}+\alpha^{2} \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right)\right)^{-1}
$$

The problem is that $f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}$ is not a microlocally characterized operator, even in some nasty class.

We are saved by simple linear algebra: if $A=U S V^{*}$ then
$\left(1-\tilde{\psi}\left(A^{*} A\right)\right)\left(A+\psi\left(A A^{*}\right) U V^{*}\right)^{-1}=\left(1-\tilde{\psi}\left(A^{*} A\right)\right) A^{*}\left(A A^{*}+\psi\left(A A^{*}\right)\right)^{-1}$
provided that $\tilde{\psi} \psi=\psi$.
The choice of α shows that $\operatorname{rank} \tilde{\psi}\left(f_{N} f_{N}^{*} / \alpha^{2}\right) \leq C h^{-n+\kappa \rho}$ and hence we only need to study

$$
\operatorname{tr} f_{N}^{*}\left(f_{N} f_{N}^{*}+\alpha^{2} \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right)\right)^{-1}
$$

which is a pseudodifferential operator in a slightly exotic class (similar to the one appearing in Hager-Sjöstrand 2008).

Using pseudodifferential calculus in that class we show that

$$
\begin{gathered}
\operatorname{tr} f_{N}^{*}\left(f_{N} f_{N}^{*}+\alpha^{2} \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right)\right)^{-1}= \\
N^{n} \int_{\mathbb{T}^{n}} \frac{\bar{f}(\rho) d \mathcal{L}(\rho)}{|f(\rho)|^{2}+\alpha^{2} \psi\left(|f(\rho)|^{2} / \alpha^{2}\right)}+\mathcal{O}\left(h^{-n+1-2 \rho}+h^{-n+(\kappa-1) \rho}\right)= \\
N^{n} \int_{\mathbb{T}^{n}} \frac{d \mathcal{L}(\rho)}{f(\rho)}++\mathcal{O}\left(N^{n-1+2 \rho}+N^{n-(\kappa-1) \rho}\right) .
\end{gathered}
$$

Using pseudodifferential calculus in that class we show that

$$
\begin{gathered}
\operatorname{tr} f_{N}^{*}\left(f_{N} f_{N}^{*}+\alpha^{2} \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right)\right)^{-1}= \\
N^{n} \int_{\mathbb{T}^{n}} \frac{\bar{f}(\rho) d \mathcal{L}(\rho)}{|f(\rho)|^{2}+\alpha^{2} \psi\left(|f(\rho)|^{2} / \alpha^{2}\right)}+\mathcal{O}\left(h^{-n+1-2 \rho}+h^{-n+(\kappa-1) \rho}\right)= \\
N^{n} \int_{\mathbb{T}^{n}} \frac{d \mathcal{L}(\rho)}{f(\rho)}++\mathcal{O}\left(N^{n-1+2 \rho}+N^{n-(\kappa-1) \rho}\right)
\end{gathered}
$$

Small modifications based on the estimates of the ranks of $\psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right)$ and $\psi\left(\left(f_{N}-z\right)\left(f_{N}-z\right)^{*} / \alpha^{2}\right)$ give

Using pseudodifferential calculus in that class we show that

$$
\begin{gathered}
\operatorname{tr} f_{N}^{*}\left(f_{N} f_{N}^{*}+\alpha^{2} \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right)\right)^{-1}= \\
N^{n} \int_{\mathbb{T}^{n}} \frac{\bar{f}(\rho) d \mathcal{L}(\rho)}{|f(\rho)|^{2}+\alpha^{2} \psi\left(|f(\rho)|^{2} / \alpha^{2}\right)}+\mathcal{O}\left(h^{-n+1-2 \rho}+h^{-n+(\kappa-1) \rho}\right)= \\
N^{n} \int_{\mathbb{T}^{n}} \frac{d \mathcal{L}(\rho)}{f(\rho)}++\mathcal{O}\left(N^{n-1+2 \rho}+N^{n-(\kappa-1) \rho}\right)
\end{gathered}
$$

Small modifications based on the estimates of the ranks of $\psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right)$ and $\psi\left(\left(f_{N}-z\right)\left(f_{N}-z\right)^{*} / \alpha^{2}\right)$ give

$$
\operatorname{tr}\left(f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}-z\right)^{-1}=N^{n} \int_{\mathbb{T}^{n}} \frac{d \mathcal{L}(\rho)}{f(\rho)-z}+\mathcal{O}\left(N^{n-\beta}\right)
$$

Using pseudodifferential calculus in that class we show that

$$
\begin{gathered}
\operatorname{tr} f_{N}^{*}\left(f_{N} f_{N}^{*}+\alpha^{2} \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right)\right)^{-1}= \\
N^{n} \int_{\mathbb{T}^{n}} \frac{\bar{f}(\rho) d \mathcal{L}(\rho)}{|f(\rho)|^{2}+\alpha^{2} \psi\left(|f(\rho)|^{2} / \alpha^{2}\right)}+\mathcal{O}\left(h^{-n+1-2 \rho}+h^{-n+(\kappa-1) \rho}\right)= \\
N^{n} \int_{\mathbb{T}^{n}} \frac{d \mathcal{L}(\rho)}{f(\rho)}++\mathcal{O}\left(N^{n-1+2 \rho}+N^{n-(\kappa-1) \rho}\right)
\end{gathered}
$$

Small modifications based on the estimates of the ranks of $\psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right)$ and $\psi\left(\left(f_{N}-z\right)\left(f_{N}-z\right)^{*} / \alpha^{2}\right)$ give

$$
\operatorname{tr}\left(f_{N}+\alpha \psi\left(f_{N} f_{N}^{*} / \alpha^{2}\right) U_{N} V_{N}^{*}-z\right)^{-1}=N^{n} \int_{\mathbb{T}^{n}} \frac{d \mathcal{L}(\rho)}{f(\rho)-z}+\mathcal{O}\left(N^{n-\beta}\right)
$$

$$
\beta=\frac{\kappa-1}{\kappa+1}
$$

Summing up over γ 's covering $\partial \Omega$ and putting together all the error terms we get, for $p>p(n)$,

$$
\mathbb{E}_{\omega}\left(\left|\operatorname{Spec}\left(f_{N}+N^{-p} R_{N}(\omega)\right) \cap \Omega\right|\right)=
$$

Summing up over γ 's covering $\partial \Omega$ and putting together all the error terms we get, for $p>p(n)$,

$$
\mathbb{E}_{\omega}\left(\left|\operatorname{Spec}\left(f_{N}+N^{-p} R_{N}(\omega)\right) \cap \Omega\right|\right)=
$$

$$
\frac{1}{2 \pi i} \int_{\partial \Omega} \mathbb{E}_{\omega} \operatorname{tr}\left(f_{N}+N^{-p} R_{N}(\omega)-z\right)^{-1} d z=
$$

$$
\frac{1}{2 \pi i} \int_{\partial \Omega} N^{n} \int_{\mathbb{T}^{n}} \frac{d \mathcal{L}(\rho)}{f(\rho)-z} d z+o\left(N^{n}\right)=
$$

$$
N^{n} \int_{\mathbb{T}^{n}} \frac{1}{2 \pi i} \int_{\partial \Omega} \frac{d z}{f(\rho)-z} d \mathcal{L}(\rho)+o\left(N^{n}\right)
$$

$$
=N^{n} \operatorname{vol}_{\mathbb{T}^{n}}\left(f^{-1}(\Omega)\right)+o\left(N^{n}\right)
$$

