

Phase Transitions with a Minimal Number of Jumps in the Singular Limits of Higher Order Theories

P. I. Plotnikov & J. F. Toland Russian Academy of Sciences & University of Bath

Class of Functions W Parametrized by $\theta \in \mathbb{R}^n$

• For all
$$\theta \in \mathbb{R}^d$$
,

$$W(\phi, heta)
ightarrow \infty$$
 as $\phi \searrow 0$ or as $\phi \nearrow \infty$

- W(·, θ) has never more than three critical points, depending on the value of θ ∈ ℝ^d
- $\mathbb{R}^d = G_1 \cup G_2 \cup G_3$ and $G_3^0 \subset G_3$, defined as follows:

Graph of $W(\cdot, heta)$, $heta \in {\mathcal{G}}_1 \subset {\mathbb{R}}^d$

Graph of $W(\cdot, \theta), \ \theta \in G_2$

Graph of $W(\cdot, \theta), \ \theta \in G_3 \subset \mathbb{R}^d$

Graph of $W(\cdot, \theta), \ \theta \in G_3^0 \subset \mathbb{R}^d$

Minimizers

When $\vartheta : \mathbb{R} \to \mathbb{R}^d$ is a given continuous *L*-periodic function

$$\inf_{\varphi \in L^{\infty}_{per}} \int_{0}^{L} W(\varphi(s), \vartheta(s)) \, ds$$

is attained at a minimizers φ ; indeed

- If ϑ(s) is never in G₃⁰, then the minimizer is unique, continuous and φ(s) is the global minimizer of W(·, ϑ(s)).
- If $\vartheta(s)$ crosses G_3^0 transversally at s_0 , then φ must jump through $|\phi^-(\vartheta(s_0)) \phi^+(\vartheta(s_0))|$ at s_0 .
- If $\vartheta(s) \in G_3^0$ for $s \in [a, b]$, then $\varphi(s)$ can take any value between $\phi^-(\vartheta(s))$ and $\phi^+(\vartheta(s))$ on [a, b]
- For a general function ϑ , minimizers need not be continuous and may have infinitely many jumps.

Piecewise Regular Minimizers

For a piecewise regular minimizer there is a sequence $\{S_n\}$:

- invariant with respect to $s \rightarrow s + L$
- $0 < k \leq S_{n+1} S_n \leq K < \infty \ \forall \ n.$
- $\vartheta(S_n) \in G_3^0$, $n \in \mathbb{Z}$,
- $\varphi \in H^1(S_n, S_{n+1})$ for all n
- $\lim_{s\to S_n\pm 0} \varphi(s) \in \{\phi_s^-(\vartheta(S_n)), \phi_s^+(\vartheta(S_n))\}$
- The function φ has a jump at S_n with magnitude

$$\phi_s^+(\vartheta(S_n)) - \phi_s^-(\vartheta(S_n))$$

More about the Set $G_3^0 \subset \mathbb{R}^d$

If W is real-analytic, G_3^0 is a real-analytic variety. More generally, G_3^0 is typically the closure of a union of manifolds with dimensions d - 1, or less (except in non-generic situations possibly due to symmetries) When d = 1, G_3^0 is often a discrete set of points. Let B be smooth and strictly increasing

A weighted measure of the jump at $\theta \in G_3^0$

$$\wp(\theta) = \frac{1}{\sqrt{2}} \int_{\phi_s^-(\theta)}^{\phi_s^+(\theta)} B'(\lambda) \sqrt{W(\lambda,\theta) - A} \, d\lambda$$

where $A = W(\phi_s^{\pm}(\theta), \theta)$ Our hypotheses on *B* and *W* guarantee that $\wp(\theta)$ is bounded below by a positive constant, $\theta \in G_3^0$. If d = 1 and G_3^0 is a discrete set of points, then \wp takes a finite set of positive values

Counting Jumps

The actual number of jumps of φ per period is

$$\mathcal{N}(arphi) = \sum_{[0,L) \cap \{S_n\}} 1 = ext{card } \mathcal{Q}(arphi)$$

The weighted number of jumps of φ per period is

$$\mathcal{W}(arphi) = \sum_{s \in \mathcal{Q}(arphi)} \wp(artheta(s)),$$

where

$$\mathcal{Q}(\varphi) = [0, L) \cap \{S_n : n \in \mathbb{N}\}$$

Let

 $\mathcal{W}_{\min} = \inf \{ \mathcal{W}(\varphi) : \varphi \text{ is piecewise regular} \}$

Minimal Number of Jumps

Lemma

If there exists a piecewise regular minimizer,

then there exists a piecewise regular minimizer with a minimal weighted number of jumps.

Let

$$\mathcal{N}^* = \max_{\varphi_{\min}} \mathcal{N}(\varphi_{\min}),$$

where the maximum of the actual number of jumps is taken over all piecewise regular minimizers with minimal weighted number of jumps.

Then there exists $\delta > 0$ such that $\mathcal{N}(\varphi) \leq \mathcal{N}^*$ if $\mathcal{W}(\varphi) \leq \mathcal{W}_{\min} + \delta$.

Regularized Variational Problems

Suppose throughout that $E \subset (0,\infty)$ has a limit point at 0

We are interested in how often piecewise regular minimizers arise as limits of regularized problems

Let \mathcal{H}^1_{per} denote the Sobolev space of *L*-periodic functions which, with their weak derivatives, are in $L^2_{loc}(\mathbb{R})$ Let $\vartheta_{\varepsilon} \rightharpoonup \vartheta$ in $(\mathcal{H}^1_{per})^d$ as $E \ni \varepsilon \searrow 0$, $d \ge 1$ For $\varepsilon \ge 0$ consider the non-autonomous variational problem for an

L- periodic function $\varphi : \mathbb{R} \to \mathbb{R}$

$$\mathfrak{E}(arepsilon) = \inf_{arphi \in H^1_{\mathsf{per}}} \int\limits_0^L \left(rac{arepsilon}{2} (B(arphi)')^2 + W(arphi, artheta_arepsilon)
ight) ds$$

where B is a strictly increasing smooth function

The Euler-Lagrange Equation

Suppose that $\varepsilon > 0$ and that $\mathfrak{E}(\varepsilon)$ is attained at φ_{ε} :

$$\mathfrak{E}(arepsilon) = \int\limits_{0}^{L} \left(rac{arepsilon}{2} (B(arphi_arepsilon)')^2 + W(arphi_arepsilon, artheta_arepsilon)
ight) ds$$

Then φ_{ε} satisfies the Euler-Lagrange equation

$$arepsilon B'(arphi_arepsilon(s))(B'(arphi_arepsilon))arphi(s)-\partial_\phi W(arphi_arepsilon(s),artheta_arepsilon(s)))=0 ext{ on } \mathbb{R}$$

The limiting equation, with $\varepsilon = 0$ is

$$\partial_\phi W(arphi(s),artheta(s))=0 ext{ on } \mathbb{R}$$

Our purpose is to study the limit as $\varepsilon \searrow 0$ of φ_{ε} A peculiarity of the problem is that a weak* limit of φ_{ε} need not satisfy the limiting equation with $\varepsilon = 0$ It satisfies a relaxed form of the limiting equation instead. W^{**} - the relaxation of W

Example: Cahn-Hilliard Theory

from phase separation theory

$$W(arphi,artheta)=rac{1}{4}(arphi^2-1)^2-arthetaarphi,$$

where ϑ is the chemical potential.

If φ and ϑ are L-periodic, the total mesoscopic energy per period is

$$\mathcal{J}_{\varepsilon}(\varphi)\colon =\int_{0}^{L}\left(rac{\varepsilon}{2}{arphi'^2}+rac{1}{4}(arphi^2-1)^2-arthetaarphi
ight)\,dx,\quad arepsilon>0,$$

 $\varepsilon \varphi'^2/2$ corresponds to the energy of phase interactions small $\sqrt{\varepsilon}$ characterizes the width of interfaces between phases Critical points of $\mathcal{J}_{\varepsilon}$ satisfy

$$-arepsilon arphi''(x)+arphi(x)^3-arphi(x)=artheta(x),\quad x\in\mathbb{R}.$$

Questions in Cahn Hilliard Theory Two questions about weak* limits in L_{per}^{∞} of minimizers as $\varepsilon \to 0$

(1) How to characterise weak* limits of minimizers ?

(2) Is there is a so-called macroscopic variational problem with minimizers that coincide with these weak* limits?

A common belief is that both issues can be resolved using Γ -convergence theory,

We think that this is not always the case

Gamma Convergence on a Metric Space X

A sequence of functionals $F_{\varepsilon} : X \to [\alpha, \infty]$, $\alpha > -\infty$ has Γ -limit $F : X \to [\alpha, \infty]$ if, for every φ_0 and $\varphi_{\varepsilon} \to \varphi_0$,

$$F(\varphi_0) \leq \liminf_{\varepsilon \to 0} F_{\varepsilon}(\varphi_{\varepsilon})$$

and there exists a sequence $\bar{\varphi}_{\varepsilon} \rightarrow \varphi_0$ so that

$$F(\varphi_0) = \lim_{\varepsilon \to 0} F_{\varepsilon}(\bar{\varphi}_{\varepsilon}).$$

Let $\mathcal{M}F_{\varepsilon}$ and $\mathcal{M}F$ be the set of minimizers of F_{ε} and Frespectively $\mathcal{L}F$ be the limit points of sequences $x_{\varepsilon} \in \mathcal{M}F_{\varepsilon}$ as $\varepsilon \to 0$ It is clear that $\mathcal{L}F \subset \mathcal{M}F$, but they are not equal in general. In the mesoscopic theory of phase transitions F_{ε} would represent the total free energy and $\varphi_{\varepsilon} \in \mathcal{M}F_{\varepsilon}$ the corresponding stable equilibrium states.

If a macroscopic theory is to be regarded as a limit of mesoscopic theory, then macroscopic stable equilibria should belong to \mathcal{LF} with the Γ -limit F interpreted as macroscopic free energy. The validity of such an approach depends on the size of $\mathcal{MF} \setminus \mathcal{LF}$. If it is not empty, an additional selection principle is needed to identify the solutions of the macroscopic problem that are relevant to the mesoscopic theory particularly if \mathcal{LF} is small in \mathcal{MF}

particularly if $\mathcal{L}F$ is small in $\mathcal{M}F$

Examples of different relations between $\mathcal{M}F$ and $\mathcal{L}F$

 ϑ is a given, continuous *L*-periodic function

 L_{per}^{p} or L_{per}^{∞} is the space of *L*-periodic functions with restrictions that are p^{th} -power integrable or essentially bounded on (0, L)Problem I: to minimize

$$\mathcal{J}_{arepsilon}(arphi^*) = \min_{arphi \in L^4_{ ext{per}}} \mathcal{J}_{arepsilon}(arphi) \coloneqq \int_0^L \left\{ arepsilon {arphi'}^2 + rac{1}{4} (arphi^2 - 1)^2 - arphi artheta)
ight\} \, ds.$$

Problem II: to minimize

$$\mathfrak{J}_arepsilon(\psi^*) = \min_{\psi \in L^4_{\mathsf{per}}} \mathfrak{J}_arepsilon(\psi) := \int_0^L \left(\sqrt{arepsilon} {\psi'}^2 + rac{1}{4\sqrt{arepsilon}} (\psi^2-1)^2 - \psi artheta
ight) \, ds.$$

If ϑ in $\mathcal{J}_{\varepsilon}$ is replaced by $\sqrt{\varepsilon}\vartheta$, problem I is transformed into problem II but there is an essential difference between the two as they stand

$\ensuremath{\mathcal{J}}$ and its Minimizers

 $X = L_{per}^4$ with the weak topology - bounded sets are metrizable

The Γ -limit $\mathcal J$ of $\mathcal J_{\varepsilon}$ is

$$\mathcal{J}(\varphi) =: \operatorname{\mathsf{\Gamma-lim}} \mathcal{J}_{\varepsilon}(\varphi) = \int_0^L W^{**}(\varphi, \vartheta) \, ds,$$

where $W^{**}(\cdot, \theta)$ denotes the convex envelope of $W(\cdot, \theta)$. Since W is bounded below, the set of minimizers of \mathcal{J} is non-empty and there are various possibilities.

- The minimizer may be unique as when the set of zeros of ϑ is discrete
- Alternatively, there may be an infinite set of minimizers, as when ϑ vanishes on some interval.
- A minimizer may be discontinuous at every point of such an interval.

$\boldsymbol{\mathfrak{J}}$ and its Minimizers

 $X = L_{per}^4$ with the weak topology - bounded sets are metrizable

$$\Gamma - \lim \mathfrak{J}_{\varepsilon}(\psi) = \mathfrak{J}(\psi) := \begin{cases} \varphi_0 \, \mathcal{N}(\psi) - \int_0^L \psi \vartheta \, ds \text{ if } |\psi| = 1\\ \text{almost everywhere on } [0, L)\\ \text{and } \psi \text{ is piecewise constant,} \\ +\infty \quad \text{otherwise,} \end{cases}$$

where $\mathcal{N}(\psi)$ is the number of discontinuities of ψ in [0, L) and

$$\wp_0 = 2 \int_{-1}^1 \sqrt{\frac{1}{4}(\phi^2 - 1)^2} d\phi = \frac{4}{3}.$$

Elements of $\mathcal{M}\mathfrak{J}$ are piecewise constant functions ψ with a finite number of jumps and $\mathcal{N}(\psi)\wp_0$ is a weighted count of jumps per period.

Roughly speaking the first term strives to minimize the number of jumps, but this process is controlled by ϑ .

A difference between $\mathcal{MJ}_{\varepsilon}$ and $\mathcal{MJ}_{\varepsilon}$

Elements of $\mathcal{MJ}_{\varepsilon}$ have a regularity property independent of ε because the set

 $\{\Phi(\psi_{arepsilon}) \ \psi_{arepsilon} \in \mathcal{M} \mathfrak{J}_{arepsilon}, \ arepsilon \in (0,1)\}\,, \ \ ext{where} \ \ \Phi(\phi) = \int_{0}^{\phi} |s^2 - 1| \, ds,$

is bounded in the Sobolev space $W_{\text{per}}^{1,1}$. In contrast, minimizers of $\mathcal{J}_{\varepsilon}$ have no regularity independent of ε .

An analysis of the relation between \mathcal{MJ} and \mathcal{LJ} is consequently more difficult and is our concern here

To Get Around This

note that the Euler-Lagrange equation implies that $\mathcal{A}'_{\varepsilon}(s) = \partial_{\vartheta} W(\varphi_{\varepsilon}(s), \vartheta_{\varepsilon}(s)) \vartheta'_{\varepsilon}(s)$ where the adiabatic variable

$$\mathcal{A}_arepsilon(oldsymbol{s}):=W(arphi_arepsilon(oldsymbol{s}),artheta_arepsilon(oldsymbol{s}))-rac{arepsilon}{2}ig(B(arphi_arepsilon)'(oldsymbol{s})ig)^2.$$

and we have the estimates

$$M^{-1} \leq \varphi_{\varepsilon}(s), \ \varphi(s) \leq M \text{ for } s \in \mathbb{R}, \quad \|\mathcal{A}_{\varepsilon}\|_{H^{1}_{per}} \leq M,$$

Therefore, if periodic solutions φ_{ε} converge weak* in L_{per}^{∞} to φ , then, after passing to a subsequence, $(\mathcal{A}_{\varepsilon}, \vartheta_{\varepsilon})$ converges weakly in $(\mathcal{H}_{\text{per}}^{1})^{d+1}$ to some (\mathcal{A}, ϑ) . The idea is to obtain a representation for weak* limits of solutions in terms of \mathcal{A} and ϑ Of course ϑ and \mathcal{A} are both unknown

The Result - in a Nut Shell

 $\mathcal{LJ} \text{ under the assumption that the limiting problem, with } \varepsilon = 0,$ has at least one piecewise continuous minimizer

There exists a set $E \subset (0,1)$ which is Lebesgue dense at 0

$$\lim_{t\searrow 0}\frac{\operatorname{meas} E\cap [0,t]}{t}=1$$

with the following property:

Elements of \mathcal{LJ} which arise from sequences in E are true minimizers of

$$\inf_{\varphi \in L^{\infty}_{per}} \int_{0}^{L} W(\varphi(s), \vartheta(s)) \, ds$$

not only of the relaxed problem

and are piecewise continuous functions with the minimal weighted number of jumps

Ignoring Variational Structure

Suppose that $artheta_{arepsilon},\ arepsilon\in {\it E}$ is bounded in $({\it H}^1_{
m per})^d$, and that

 $\varepsilon B'(\varphi_\varepsilon(s))(B'(\varphi_\varepsilon)\varphi'_\varepsilon)'(s) - \partial_\phi W(\varphi_\varepsilon(s),\vartheta_\varepsilon(s)) = 0 \text{ on } \mathbb{R},$

It is easily shown that

 $\|artheta_arepsilon\|_{(H^1_{
m per})^d} \leq M \ \Rightarrow \ C(M)^{-1} \leq arphi_arepsilon(s) \leq C(M) ext{ for } s \in \mathbb{R},$

Thus

 $\{ \vartheta_{\varepsilon} : \varepsilon \in E \} \text{ is weakly relatively compact in } (H^{1}_{\text{per}})^{d}, \\ \{ \varphi_{\varepsilon} : \varepsilon \in E \} \text{ is weak* relatively compact in } L^{\infty}_{\text{per}}. \\ \text{Therefore, for a sequence of } E \ni \varepsilon \searrow 0,$

$$\vartheta_{\varepsilon} \rightharpoonup \vartheta$$
 in $(H^1_{per})^d$ and hence uniformly on \mathbb{R} ,
and $\varphi_{\varepsilon} \rightharpoonup^* \varphi$ in $\mathcal{L}^{\infty}_{per}$,

where ϑ and φ depend on the sequence.

Bounding the Weighted Number of Jumps Without variational characterization of φ_{ε}

Theorem

$$\liminf_{E \ni \varepsilon \searrow 0} \frac{\sqrt{\varepsilon}}{2} \int_{[0,L]} \left(B(\varphi_{\varepsilon}(s))' \right)^2 ds \ge \sum_{s \in \mathcal{O}} \wp(\vartheta(s)),$$

where

$$\mathcal{O} = \{ s \in [0, L) : \varphi \text{ is discontinuous} \}.$$

If \mathcal{O} is infinite, then both sides are infinite. Recall that $\wp(\vartheta(s))$ is bounded below by a positive constant. Therefore if left side tends to zero as $\varepsilon \to 0$, the limit is continuous. In general: he left hand limit bounds the <u>number of jumps</u> of the weak^{*} limit function φ .

Limiting Behaviour of Minimizers

 Suppose the ε = 0 variational problem has at least one piecewise regular minimizer with a finite number of jumps

Does the weak* limit φ of minimizers φ_{ε} have a finite number of jumps?

We need a hypothesis on the dependence of ϑ_{ε} on ε

$$\|artheta_arepsilon - artheta\|_{(L^1_{ ext{per}})^d} = oig(\sqrt{arepsilon})$$
 as $arepsilon\searrow 0$

and, for almost all $arepsilon\in(0,1)$,

$$\liminf_{\lambda\searrow 0} \frac{\|\vartheta_{\varepsilon-\lambda} - \vartheta_{\varepsilon}\|_{(L^1_{\mathrm{per}})^d}}{\lambda} = \Lambda(\varepsilon) \text{ where } \sqrt{\varepsilon}\Lambda(\varepsilon) \to 0.$$

This is automatic of ϑ_{ε} is a C^1 -function of ε ; in particular when $\vartheta_{\varepsilon} = \vartheta$, independent of ε

Asymptotic Behavior of the Energy

Recall that

$$\mathfrak{E}(\varepsilon) = \inf_{\varphi \in \mathcal{H}^{1}_{\mathsf{per}}} \int_{0}^{L} \left(\frac{\varepsilon}{2} (B(\varphi)')^{2} + W(\varphi, \vartheta_{\varepsilon}) \right) ds, \quad \varepsilon > 0,$$

 $\mathfrak{E}(0) = \int_{0}^{L} \mathcal{A}(s) ds \text{ where } \mathcal{A}(s) = \inf_{\phi} W(\phi, \vartheta(s)).$

Theorem

If a piecewise regular minimizer φ exists then

$$\limsup_{E \ni \varepsilon \searrow 0} \frac{\mathfrak{E}(\varepsilon) - \mathfrak{E}(0)}{\sqrt{\varepsilon}} \leq 2 \sum_{s \in \mathcal{Q}(\varphi)} \wp(\vartheta(S_n)) =: 2\mathcal{W}(\varphi)$$

 $\mathcal{W}(arphi)$ is the weighted number of jumps of arphi

Minimal Principle

Our main corollary of these observations is that, *almost always*, solutions to the variational problem converge weak* to piecewise regular minimizers with a minimal number of jumps, in the following sense:

Theorem

For any $\delta > 0$ there is a set $E_{\delta} \subset (0,1]$ which is dense at 0 with the following property. If a sequence $\{\varphi_{\varepsilon_n}\}, E_{\delta} \ni \varepsilon_n \to 0$, of minimizers converges weak* in L_{per}^{∞} to some function φ , then φ is an actual minimizer with weighted number of jumps $\mathcal{W}(\varphi) \leq \mathcal{W}_{\min} + \delta$.

Theorem

There exists a piecewise regular minimizer with a minimal weighted number of jumps.

Let

$$\mathcal{N}^* = \max_{arphi_{\mathsf{min}}} \mathcal{N}(arphi_{\mathsf{min}}),$$

where the maximum number of actual jumps is taken over all piecewise regular minimizers with minimal weighted number of jumps.

Then, $\mathcal{N}^* < \infty$ and for any $\delta > 0$, E_{δ} can be chosen such that

$$\mathcal{N}(arphi) \leq \mathcal{N}^*$$

where $\mathcal{N}(\varphi)$ is the actual number of jumps of φ in the preceding theorem.

