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A Minimization Problem

inf
ϕ∈L∞

per

L
∫

0

W (ϕ(s), ϑ(s)) ds

Class of Functions W Parametrized by θ ∈ R
n

• For all θ ∈ R
d ,

W (φ, θ) → ∞ as φ↘ 0 or as φ↗ ∞

• W (·, θ) has never more than three critical points, depending
on the value of θ ∈ R

d

• R
d = G1 ∪ G2 ∪ G3 and G 0

3 ⊂ G3, defined as follows:



Graph of W (·, θ), θ ∈ G1 ⊂ R
d

φ = φs(θ)



Graph of W (·, θ), θ ∈ G2

φ = φmu(θ)

φ = φs(θ)



Graph of W (·, θ), θ ∈ G3 ⊂ R
d

φ = φm(θ)

φ = φs(θ)

φ = φu(θ)



Graph of W (·, θ), θ ∈ G 0
3 ⊂ R

d

φ = φ−

s (θ) φ = φ+
s (θ)



Minimizers

When ϑ : R → R
d is a given continuous L-periodic function

inf
ϕ∈L∞

per

L
∫

0

W (ϕ(s), ϑ(s)) ds

is attained at a minimizers ϕ; indeed

• If ϑ(s) is never in G 0
3 , then the minimizer is unique,

continuous and ϕ(s) is the global minimizer of W (·, ϑ(s)).

• If ϑ(s) crosses G 0
3 transversally at s0, then ϕ must jump

through |φ−(ϑ(s0)) − φ+(ϑ(s0))| at s0 .

• If ϑ(s) ∈ G 0
3 for s ∈ [a, b], then ϕ(s) can take any value

between φ−(ϑ(s)) and φ+(ϑ(s)) on [a, b]

• For a general function ϑ, minimizers need not be continuous
and may have infinitely many jumps.



Piecewise Regular Minimizers

For a piecewise regular minimizer there is a sequence {Sn}:
• invariant with respect to s → s + L

• 0 < k ≤ Sn+1 − Sn ≤ K <∞ ∀ n.

• ϑ(Sn) ∈ G 0
3 , n ∈ Z,

• ϕ ∈ H1(Sn,Sn+1) for all n

• lim
s→Sn±0

ϕ(s) ∈ {φ−s (ϑ(Sn)), φ+
s (ϑ(Sn))}

• The function ϕ has a jump at Sn with magnitude

φ+
s (ϑ(Sn)) − φ−s (ϑ(Sn))



More about the Set G 0
3 ⊂ R

d

If W is real-analytic, G 0
3 is a real-analytic variety.

More generally, G 0
3 is typically the closure of a union of manifolds

with dimensions d − 1, or less (except in non-generic situations
possibly due to symmetries)
When d = 1, G 0

3 is often a discrete set of points.
Let B be smooth and strictly increasing

A weighted measure of the jump at θ ∈ G 0
3

℘(θ) =
1√
2

φ+
s (θ)
∫

φ−s (θ)

B ′(λ)
√

W (λ, θ) − A dλ

where A = W (φ±s (θ), θ) Our hypotheses on B and W guarantee
that ℘(θ) is bounded below by a positive constant, θ ∈ G 0

3 .
If d = 1 and G 0

3 is a discrete set of points, then ℘ takes a finite set
of positive values



A weighted measure of the jump at θ ∈ G 0
3

φ−

s (θ) φ+
s (θ)

A = W (φ+
s (θ

℘(θ) =
1√
2

φ+
s

(θ)
∫

φ
−

s (θ)

B′(λ)
√

W (λ, θ) − Adλ



Counting Jumps

The actual number of jumps of ϕ per period is

N (ϕ) =
∑

[0,L)∩{Sn}

1 = card Q(ϕ)

The weighted number of jumps of ϕ per period is

W(ϕ) =
∑

s∈Q(ϕ)

℘(ϑ(s)),

where
Q(ϕ) = [0,L) ∩ {Sn : n ∈ N}

Let
Wmin = inf{W(ϕ) : ϕ is piecewise regular}



Minimal Number of Jumps

Lemma
If there exists a piecewise regular minimizer,

then there exists a piecewise regular minimizer with a minimal

weighted number of jumps.

Let

N ∗ = max
ϕmin

N (ϕmin),

where the maximum of the actual number of jumps is taken over

all piecewise regular minimizers with minimal weighted number of

jumps.

Then there exists δ > 0 such that N (ϕ) ≤ N ∗ if

W(ϕ) ≤ Wmin + δ.



Regularized Variational Problems
Suppose throughout that E ⊂ (0,∞) has a limit point at 0

We are interested in how often piecewise regular minimizers arise
as limits of regularized problems
Let H1

per denote the Sobolev space of L-periodic functions which,
with their weak derivatives, are in L2

loc(R)
Let ϑε ⇀ ϑ in (H1

per)
d as E 3 ε↘ 0, d ≥ 1

For ε ≥ 0 consider the non-autonomous variational problem for an
L- periodic function ϕ : R → R

E(ε) = inf
ϕ∈H1

per

L
∫

0

(ε

2
(B(ϕ)′)2 + W (ϕ, ϑε)

)

ds

where B is a strictly increasing smooth function



The Euler-Lagrange Equation
Suppose that ε > 0 and that E(ε) is attained at ϕε:

E(ε) =

L
∫

0

(ε

2
(B(ϕε)

′)2 + W (ϕε, ϑε)
)

ds

Then ϕε satisfies the Euler-Lagrange equation

εB ′(ϕε(s))(B
′(ϕε)ϕ

′
ε)

′(s) − ∂φW (ϕε(s), ϑε(s)) = 0 on R

The limiting equation, with ε = 0 is

∂φW (ϕ(s), ϑ(s)) = 0 on R

Our purpose is to study the limit as ε↘ 0 of ϕε
A peculiarity of the problem is that a weak* limit of ϕε need not
satisfy the limiting equation with ε = 0
It satisfies a relaxed form of the limiting equation instead.



W ∗∗ - the relaxation of W

θ ∈ G1

φ = φs(θ)

Graph of W
∗∗
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φ = φs(θ)

φ = φu(θ)
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3

φ = φ−

s (θ) φ = φ+
s (θ)



Example: Cahn-Hilliard Theory
from phase separation theory

W (ϕ, ϑ) =
1

4
(ϕ2 − 1)2 − ϑϕ,

where ϑ is the chemical potential.
If ϕ and ϑ are L-periodic, the total mesoscopic energy per period is

Jε(ϕ) : =

∫ L

0

(

ε

2
ϕ′2 +

1

4
(ϕ2 − 1)2 − ϑϕ

)

dx , ε > 0,

εϕ′2/2 corresponds to the energy of phase interactions
small

√
ε characterizes the width of interfaces between phases

Critical points of Jε satisfy

−εϕ′′(x) + ϕ(x)3 − ϕ(x) = ϑ(x), x ∈ R.



Questions in Cahn Hilliard Theory
Two questions about weak* limits in L

∞

per of minimizers as ε → 0

(1) How to characterise weak* limits of minimizers ?

(2) Is there is a so-called macroscopic variational problem with
minimizers that coincide with these weak* limits?

A common belief is that both issues can be resolved using
Γ-convergence theory,

We think that this is not always the case



Gamma Convergence
on a Metric Space X

A sequence of functionals Fε : X → [α,∞], α > −∞ has Γ-limit
F : X → [α,∞] if,
for every ϕ0 and ϕε → ϕ0,

F (ϕ0) ≤ lim inf
ε→0

Fε(ϕε)

and there exists a sequence ϕ̄ε → ϕ0 so that

F (ϕ0) = lim
ε→0

Fε(ϕ̄ε).

Let MFε and MF be the set of minimizers of Fε and F

respectively
LF be the limit points of sequences xε ∈ MFε as ε→ 0
It is clear that LF ⊂ MF , but they are not equal in general.



In the mesoscopic theory of phase transitions Fε would represent
the total free energy and ϕε ∈ MFε the corresponding stable
equilibrium states.
If a macroscopic theory is to be regarded as a limit of mesoscopic
theory, then macroscopic stable equilibria should belong to LF

with the Γ-limit F interpreted as macroscopic free energy.
The validity of such an approach depends on the size of MF \ LF .
If it is not empty, an additional selection principle is needed to
identify the solutions of the macroscopic problem that are relevant
to the mesoscopic theory
particularly if LF is small in MF



Examples of different relations between

MF and LF

ϑ is a given, continuous L-periodic function

L
p
per or L∞per is the space of L-periodic functions with restrictions

that are pth-power integrable or essentially bounded on (0,L)
Problem I: to minimize

Jε(ϕ∗) = min
ϕ∈L4

per

Jε(ϕ) :=

∫ L

0

{

εϕ′2 +
1

4
(ϕ2 − 1)2 − ϕϑ

)

ds.

Problem II: to minimize

Jε(ψ
∗) = min

ψ∈L4
per

Jε(ψ) :=

∫ L

0

(√
εψ′2 +

1

4
√
ε
(ψ2 − 1)2 − ψϑ

)

ds.

If ϑ in Jε is replaced by
√
εϑ, problem I is transformed into

problem II
but there is an essential difference between the two as they stand



J and its Minimizers
X = L

4
per with the weak topology - bounded sets are metrizable

The Γ-limit J of Jε is

J (ϕ) =: Γ- limJε(ϕ) =

∫ L

0
W ∗∗(ϕ, ϑ) ds,

where W ∗∗(·, θ) denotes the convex envelope of W (·, θ).
Since W is bounded below, the set of minimizers of J is
non-empty and there are various possibilities.

• The minimizer may be unique as when the set of zeros of ϑ is
discrete

• Alternatively, there may be an infinite set of minimizers, as
when ϑ vanishes on some interval.

• A minimizer may be discontinuous at every point of such an
interval.



J and its Minimizers
X = L

4
per with the weak topology - bounded sets are metrizable

Γ- limJε(ψ) = J(ψ) :=























℘0 N (ψ) −
∫ L

0 ψϑ ds if |ψ| = 1
almost everywhere on [0,L)
and ψ is piecewise constant,

+∞ otherwise,

where N (ψ) is the number of discontinuities of ψ in [0,L) and

℘0 = 2

∫ 1

−1

√

1

4
(φ2 − 1)2dφ =

4

3
.

Elements of MJ are piecewise constant functions ψ with a finite
number of jumps and N (ψ)℘0 is a weighted count of jumps per
period.
Roughly speaking the first term strives to minimize the number of
jumps, but this process is controlled by ϑ.



A difference between MJε and MJε

Elements of MJε have a regularity property independent of ε
because the set

{Φ(ψε) ψε ∈ MJε, ε ∈ (0, 1)} , where Φ(φ) =

∫ φ

0
|s2 − 1| ds,

is bounded in the Sobolev space W
1,1
per .

In contrast, minimizers of Jε have no regularity independent of ε.

An analysis of the relation between MJ and LJ is consequently
more difficult and is our concern here



To Get Around This

note that the Euler-Lagrange equation implies that
A′
ε(s) = ∂ϑW (ϕε(s), ϑε(s))ϑ

′
ε(s) where the adiabatic variable

Aε(s) := W (ϕε(s), ϑε(s)) −
ε

2

(

B(ϕε)
′(s)

)2
.

and we have the estimates

M−1 ≤ ϕε(s), ϕ(s) ≤ M for s ∈ R, ‖Aε‖H1
per

≤ M,

Therefore, if periodic solutions ϕε converge weak* in L∞per to ϕ,
then, after passing to a subsequence, (Aε, ϑε) converges weakly in
(H1

per)
d+1 to some (A, ϑ).

The idea is to obtain a representation for weak* limits of solutions
in terms of A and ϑ
Of course ϑ and A are both unknown



The Result - in a Nut Shell
LJ under the assumption that the limiting problem, with ε = 0,

has at least one piecewise continuous minimizer

There exists a set E ⊂ (0, 1) which is Lebesgue dense at 0

lim
t↘0

meas E ∩ [0, t]

t
= 1

with the following property:
Elements of LJ which arise from sequences in E are true
minimizers of

inf
ϕ∈L∞

per

L
∫

0

W (ϕ(s), ϑ(s)) ds

not only of the relaxed problem
and are piecewise continuous functions with the minimal weighted
number of jumps



Ignoring Variational Structure

Suppose that ϑε, ε ∈ E is bounded in (H1
per)

d , and that

εB ′(ϕε(s))(B
′(ϕε)ϕ

′
ε)

′(s) − ∂φW (ϕε(s), ϑε(s)) = 0 on R,

It is easily shown that

‖ϑε‖(H1
per)

d ≤ M ⇒ C (M)−1 ≤ ϕε(s) ≤ C (M) for s ∈ R,

Thus
{ϑε : ε ∈ E} is weakly relatively compact in

(

H1
per

)d
,

{ϕε : ε ∈ E} is weak* relatively compact in L∞per.
Therefore, for a sequence of E 3 ε↘ 0,

ϑε ⇀ ϑ in (H1
per)

d and hence uniformly on R,

and ϕε ⇀
∗ ϕ in L∞per,

where ϑ and ϕ depend on the sequence.



Bounding the Weighted Number of Jumps
Without variational characterization of ϕε

Theorem

lim inf
E3ε↘0

√
ε

2

∫

[0,L]

(

B(ϕε(s))
′
)2

ds ≥
∑

s∈O

℘(ϑ(s)),

where

O = {s ∈ [0,L) : ϕ is discontinuous}.

If O is infinite, then both sides are infinite.
Recall that ℘(ϑ(s)) is bounded below by a positive constant.
Therefore if left side tends to zero as ε→ 0, the limit is continuous.
In general: he left hand limit bounds the number of jumps of the
weak* limit function ϕ.



Limiting Behaviour of Minimizers

• Suppose the ε = 0 variational problem has at least one
piecewise regular minimizer with a finite number of jumps

Does the weak* limit ϕ of minimizers ϕε have a finite number of
jumps?
We need a hypothesis on the dependence of ϑε on ε

‖ϑε − ϑ‖(L1
per

)d = o
(√
ε
)

as ε↘ 0

and, for almost all ε ∈ (0, 1),

lim inf
λ↘0

‖ϑε−λ − ϑε‖(L1
per

)d

λ
= Λ(ε) where

√
εΛ(ε) → 0.

This is automatic of ϑε is a C 1-function of ε; in particular when
ϑε = ϑ, independent of ε



Asymptotic Behavior of the Energy
Recall that

E(ε) = inf
ϕ∈H1

per

L
∫

0

(ε

2
(B(ϕ)′)2 + W (ϕ, ϑε)

)

ds, ε > 0,

E(0) =

L
∫

0

A(s) ds where A(s) = infφW (φ, ϑ(s)).

Theorem
If a piecewise regular minimizer ϕ exists then

lim sup
E3ε↘0

E(ε) − E(0)√
ε

≤ 2
∑

s∈Q(ϕ)

℘(ϑ(Sn)) =: 2W(ϕ)

W(ϕ) is the weighted number of jumps of ϕ



Minimal Principle

Our main corollary of these observations is that, almost always,

solutions to the variational problem converge weak* to piecewise
regular minimizers with a minimal number of jumps, in the
following sense:

Theorem
For any δ > 0 there is a set Eδ ⊂ (0, 1] which is dense at 0 with

the following property.

If a sequence {ϕεn}, Eδ 3 εn → 0, of minimizers converges weak*

in L∞per to some function ϕ, then ϕ is an actual minimizer with

weighted number of jumps W(ϕ) ≤ Wmin + δ.



Theorem
There exists a piecewise regular minimizer with a minimal weighted

number of jumps.

Let

N ∗ = max
ϕmin

N (ϕmin),

where the maximum number of actual jumps is taken over all

piecewise regular minimizers with minimal weighted number of

jumps.

Then, N ∗ <∞ and for any δ > 0, Eδ can be chosen such that

N (ϕ) ≤ N ∗

where N (ϕ) is the actual number of jumps of ϕ in the preceding

theorem.




