

Phase Transitions
 with a Minimal Number of Jumps in the Singular Limits of Higher Order Theories

P. I. Plotnikov \& J. F. Toland

Russian Academy of Sciences \& University of Bath

A Minimization Problem

$$
\inf _{\varphi \in L_{\text {per }}^{\infty}} \int_{0}^{L} W(\varphi(s), \vartheta(s)) d s
$$

Class of Functions W Parametrized by $\theta \in \mathbb{R}^{n}$

- For all $\theta \in \mathbb{R}^{d}$,

$$
W(\phi, \theta) \rightarrow \infty \text { as } \phi \searrow 0 \text { or as } \phi \nearrow \infty
$$

- $W(\cdot, \theta)$ has never more than three critical points, depending on the value of $\theta \in \mathbb{R}^{d}$
- $\mathbb{R}^{d}=G_{1} \cup G_{2} \cup G_{3}$ and $G_{3}^{0} \subset G_{3}$, defined as follows:

Graph of $W(\cdot, \theta), \theta \in G_{1} \subset \mathbb{R}^{d}$

Graph of $W(\cdot, \theta), \quad \theta \in G_{2}$

Graph of $W(\cdot, \theta), \quad \theta \in G_{3} \subset \mathbb{R}^{d}$

Graph of $W(\cdot, \theta), \quad \theta \in G_{3}^{0} \subset \mathbb{R}^{d}$

Minimizers

When $\vartheta: \mathbb{R} \rightarrow \mathbb{R}^{d}$ is a given continuous L-periodic function

$$
\inf _{\varphi \in L_{\text {per }}^{\infty}} \int_{0}^{L} W(\varphi(s), \vartheta(s)) d s
$$

is attained at a minimizers φ; indeed

- If $\vartheta(s)$ is never in G_{3}^{0}, then the minimizer is unique, continuous and $\varphi(s)$ is the global minimizer of $W(\cdot, \vartheta(s))$.
- If $\vartheta(s)$ crosses G_{3}^{0} transversally at s_{0}, then φ must jump through $\left|\phi^{-}\left(\vartheta\left(s_{0}\right)\right)-\phi^{+}\left(\vartheta\left(s_{0}\right)\right)\right|$ at s_{0}.
- If $\vartheta(s) \in G_{3}^{0}$ for $s \in[a, b]$, then $\varphi(s)$ can take any value between $\phi^{-}(\vartheta(s))$ and $\phi^{+}(\vartheta(s))$ on $[a, b]$
- For a general function ϑ, minimizers need not be continuous and may have infinitely many jumps.

Piecewise Regular Minimizers

For a piecewise regular minimizer there is a sequence $\left\{S_{n}\right\}$:

- invariant with respect to $s \rightarrow s+L$
- $0<k \leq S_{n+1}-S_{n} \leq K<\infty \forall n$.
- $\vartheta\left(S_{n}\right) \in G_{3}^{0}, n \in \mathbb{Z}$,
- $\varphi \in H^{1}\left(S_{n}, S_{n+1}\right)$ for all n
- $\lim _{s \rightarrow S_{n} \pm 0} \varphi(s) \in\left\{\phi_{s}^{-}\left(\vartheta\left(S_{n}\right)\right), \quad \phi_{s}^{+}\left(\vartheta\left(S_{n}\right)\right)\right\}$
- The function φ has a jump at S_{n} with magnitude

$$
\phi_{s}^{+}\left(\vartheta\left(S_{n}\right)\right)-\phi_{s}^{-}\left(\vartheta\left(S_{n}\right)\right)
$$

More about the Set $G_{3}^{0} \subset \mathbb{R}^{d}$

If W is real-analytic, G_{3}^{0} is a real-analytic variety.
More generally, G_{3}^{0} is typically the closure of a union of manifolds with dimensions $d-1$, or less (except in non-generic situations possibly due to symmetries)
When $d=1, G_{3}^{0}$ is often a discrete set of points.
Let B be smooth and strictly increasing
A weighted measure of the jump at $\theta \in G_{3}^{0}$

$$
\wp(\theta)=\frac{1}{\sqrt{2}} \int_{\phi_{s}^{-}(\theta)}^{\phi_{s}^{+}(\theta)} B^{\prime}(\lambda) \sqrt{W(\lambda, \theta)-A} d \lambda
$$

where $A=W\left(\phi_{s}^{ \pm}(\theta), \theta\right)$ Our hypotheses on B and W guarantee that $\wp(\theta)$ is bounded below by a positive constant, $\theta \in G_{3}^{0}$. If $d=1$ and G_{3}^{0} is a discrete set of points, then \wp takes a finite set of positive values

A weighted measure of the jump at $\theta \in G_{3}^{0}$

Counting Jumps

The actual number of jumps of φ per period is

$$
\mathcal{N}(\varphi)=\sum_{[0, L) \cap\left\{S_{n}\right\}} 1=\operatorname{card} \mathcal{Q}(\varphi)
$$

The weighted number of jumps of φ per period is

$$
\mathcal{W}(\varphi)=\sum_{s \in \mathcal{Q}(\varphi)} \wp(\vartheta(s))
$$

where

$$
\mathcal{Q}(\varphi)=[0, L) \cap\left\{S_{n}: n \in \mathbb{N}\right\}
$$

Let

$$
\mathcal{W}_{\min }=\inf \{\mathcal{W}(\varphi): \varphi \text { is piecewise regular }\}
$$

Minimal Number of Jumps

Lemma

If there exists a piecewise regular minimizer, then there exists a piecewise regular minimizer with a minimal weighted number of jumps.
Let

$$
\mathcal{N}^{*}=\max _{\varphi_{\min }} \mathcal{N}\left(\varphi_{\min }\right)
$$

where the maximum of the actual number of jumps is taken over all piecewise regular minimizers with minimal weighted number of jumps.
Then there exists $\delta>0$ such that $\mathcal{N}(\varphi) \leq \mathcal{N}^{*}$ if
$\mathcal{W}(\varphi) \leq \mathcal{W}_{\text {min }}+\delta$.

Regularized Variational Problems

Suppose throughout that $E \subset(0, \infty)$ has a limit point at 0

We are interested in how often piecewise regular minimizers arise as limits of regularized problems
Let $H_{\text {per }}^{1}$ denote the Sobolev space of L-periodic functions which, with their weak derivatives, are in $L_{\text {loc }}^{2}(\mathbb{R})$
Let $\vartheta_{\varepsilon} \rightharpoonup \vartheta$ in $\left(H_{\text {per }}^{1}\right)^{d}$ as $E \ni \varepsilon \searrow 0, d \geq 1$
For $\varepsilon \geq 0$ consider the non-autonomous variational problem for an
L - periodic function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$

$$
\mathfrak{E}(\varepsilon)=\inf _{\varphi \in H_{\mathrm{per}}^{1}} \int_{0}^{L}\left(\frac{\varepsilon}{2}\left(B(\varphi)^{\prime}\right)^{2}+W\left(\varphi, \vartheta_{\varepsilon}\right)\right) d s
$$

where B is a strictly increasing smooth function

The Euler-Lagrange Equation

Suppose that $\varepsilon>0$ and that $\mathfrak{E}(\varepsilon)$ is attained at φ_{ε} :

$$
\mathfrak{E}(\varepsilon)=\int_{0}^{L}\left(\frac{\varepsilon}{2}\left(B\left(\varphi_{\varepsilon}\right)^{\prime}\right)^{2}+W\left(\varphi_{\varepsilon}, \vartheta_{\varepsilon}\right)\right) d s
$$

Then φ_{ε} satisfies the Euler-Lagrange equation

$$
\varepsilon B^{\prime}\left(\varphi_{\varepsilon}(s)\right)\left(B^{\prime}\left(\varphi_{\varepsilon}\right) \varphi_{\varepsilon}^{\prime}\right)^{\prime}(s)-\partial_{\phi} W\left(\varphi_{\varepsilon}(s), \vartheta_{\varepsilon}(s)\right)=0 \text { on } \mathbb{R}
$$

The limiting equation, with $\varepsilon=0$ is

$$
\partial_{\phi} W(\varphi(s), \vartheta(s))=0 \text { on } \mathbb{R}
$$

Our purpose is to study the limit as $\varepsilon \searrow 0$ of φ_{ε}
A peculiarity of the problem is that a weak* limit of φ_{ε} need not satisfy the limiting equation with $\varepsilon=0$
It satisfies a relaxed form of the limiting equation instead.
$W^{* *}$ - the relaxation of W

Graph of $W^{* *}$

Example: Cahn-Hilliard Theory

from phase separation theory

$$
W(\varphi, \vartheta)=\frac{1}{4}\left(\varphi^{2}-1\right)^{2}-\vartheta \varphi
$$

where ϑ is the chemical potential.
If φ and ϑ are L-periodic, the total mesoscopic energy per period is

$$
\mathcal{J}_{\varepsilon}(\varphi):=\int_{0}^{L}\left(\frac{\varepsilon}{2} \varphi^{\prime 2}+\frac{1}{4}\left(\varphi^{2}-1\right)^{2}-\vartheta \varphi\right) d x, \quad \varepsilon>0
$$

$\varepsilon \varphi^{\prime 2} / 2$ corresponds to the energy of phase interactions small $\sqrt{\varepsilon}$ characterizes the width of interfaces between phases Critical points of $\mathcal{J}_{\varepsilon}$ satisfy

$$
-\varepsilon \varphi^{\prime \prime}(x)+\varphi(x)^{3}-\varphi(x)=\vartheta(x), \quad x \in \mathbb{R}
$$

Questions in Cahn Hilliard Theory

Two questions about weak* limits in $L_{\text {per }}^{\infty}$ of minimizers as $\varepsilon \rightarrow 0$
(1) How to characterise weak* limits of minimizers ?
(2) Is there is a so-called macroscopic variational problem with minimizers that coincide with these weak* limits?

A common belief is that both issues can be resolved using Γ-convergence theory,

We think that this is not always the case

Gamma Convergence on a Metric Space X

A sequence of functionals $F_{\varepsilon}: X \rightarrow[\alpha, \infty], \alpha>-\infty$ has Γ-limit $F: X \rightarrow[\alpha, \infty]$ if, for every φ_{0} and $\varphi_{\varepsilon} \rightarrow \varphi_{0}$,

$$
F\left(\varphi_{0}\right) \leq \liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(\varphi_{\varepsilon}\right)
$$

and there exists a sequence $\bar{\varphi}_{\varepsilon} \rightarrow \varphi_{0}$ so that

$$
F\left(\varphi_{0}\right)=\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(\bar{\varphi}_{\varepsilon}\right)
$$

Let $\mathcal{M} F_{\varepsilon}$ and $\mathcal{M} F$ be the set of minimizers of F_{ε} and F respectively
$\mathcal{L} F$ be the limit points of sequences $x_{\varepsilon} \in \mathcal{M} F_{\varepsilon}$ as $\varepsilon \rightarrow 0$ It is clear that $\mathcal{L} F \subset \mathcal{M} F$, but they are not equal in general.

In the mesoscopic theory of phase transitions F_{ε} would represent the total free energy and $\varphi_{\varepsilon} \in \mathcal{M} F_{\varepsilon}$ the corresponding stable equilibrium states.
If a macroscopic theory is to be regarded as a limit of mesoscopic theory, then macroscopic stable equilibria should belong to $\mathcal{L F}$ with the Γ-limit F interpreted as macroscopic free energy. The validity of such an approach depends on the size of $\mathcal{M F} \backslash \mathcal{L F}$. If it is not empty, an additional selection principle is needed to identify the solutions of the macroscopic problem that are relevant to the mesoscopic theory particularly if $\mathcal{L} F$ is small in $\mathcal{M F}$

Examples of different relations between

$\mathcal{M F}$ and $\mathcal{L F}$

ϑ is a given, continuous L-periodic function
$L_{\text {per }}^{p}$ or $L_{\text {per }}^{\infty}$ is the space of L-periodic functions with restrictions that are $p^{\text {th }}$-power integrable or essentially bounded on ($0, L$) Problem I: to minimize

$$
\mathcal{J}_{\mathcal{J}}\left(\varphi^{*}\right)=\min _{\varphi \in L_{\text {per }}^{4}} \mathcal{J}_{\mathcal{J}}(\varphi):=\int_{0}^{L}\left\{\varepsilon \varphi^{\prime 2}+\frac{1}{4}\left(\varphi^{2}-1\right)^{2}-\varphi \vartheta\right) d s .
$$

Problem II: to minimize
$\mathfrak{J}_{\varepsilon}\left(\psi^{*}\right)=\min _{\psi \in L_{\text {per }}^{4}} \mathfrak{J}_{\varepsilon}(\psi):=\int_{0}^{L}\left(\sqrt{\varepsilon} \psi^{\prime 2}+\frac{1}{4 \sqrt{\varepsilon}}\left(\psi^{2}-1\right)^{2}-\psi \vartheta\right) d s$.
If ϑ in $\mathcal{J}_{\varepsilon}$ is replaced by $\sqrt{\varepsilon} \vartheta$, problem I is transformed into problem II
but there is an essential difference between the two as they stand

\mathcal{J} and its Minimizers

$$
X=L_{\text {per }}^{4} \text { with the weak topology - bounded sets are metrizable }
$$

The「-limit \mathcal{J} of $\mathcal{J}_{\varepsilon}$ is

$$
\mathcal{J}(\varphi)=:\left\lceil-\lim \mathcal{J}_{\mathcal{J}}(\varphi)=\int_{0}^{L} W^{* *}(\varphi, \vartheta) d s,\right.
$$

where $W^{* *}(\cdot, \theta)$ denotes the convex envelope of $W(\cdot, \theta)$. Since W is bounded below, the set of minimizers of \mathcal{J} is non-empty and there are various possibilities.

- The minimizer may be unique as when the set of zeros of ϑ is discrete
- Alternatively, there may be an infinite set of minimizers, as when ϑ vanishes on some interval.
- A minimizer may be discontinuous at every point of such an interval.

\mathfrak{J} and its Minimizers

$X=L_{\text {per }}^{4}$ with the weak topology - bounded sets are metrizable

$$
\Gamma-\lim \mathfrak{J}_{\varepsilon}(\psi)=\mathfrak{J}(\psi):=\left\{\begin{array}{l}
\wp_{0} \mathcal{N}(\psi)-\int_{0}^{L} \psi \vartheta d s \text { if }|\psi|=1 \\
\text { almost everywhere on }[0, L) \\
\text { and } \psi \text { is piecewise constant } \\
+\infty \quad \text { otherwise, }
\end{array}\right.
$$

where $\mathcal{N}(\psi)$ is the number of discontinuities of ψ in $[0, L)$ and

$$
\wp_{0}=2 \int_{-1}^{1} \sqrt{\frac{1}{4}\left(\phi^{2}-1\right)^{2}} d \phi=\frac{4}{3} .
$$

Elements of $\mathcal{M J}$ are piecewise constant functions ψ with a finite number of jumps and $\mathcal{N}(\psi)_{\wp_{0}}$ is a weighted count of jumps per period.
Roughly speaking the first term strives to minimize the number of jumps, but this process is controlled by ϑ.

A difference between $\mathcal{M} \mathfrak{J}_{\varepsilon}$ and $\mathcal{M} \mathcal{J}_{\varepsilon}$

Elements of $\mathcal{M} \mathfrak{J}_{\varepsilon}$ have a regularity property independent of ε because the set

$$
\left\{\Phi\left(\psi_{\varepsilon}\right) \psi_{\varepsilon} \in \mathcal{M} \mathfrak{J}_{\varepsilon}, \varepsilon \in(0,1)\right\}, \text { where } \quad \Phi(\phi)=\int_{0}^{\phi}\left|s^{2}-1\right| d s
$$

is bounded in the Sobolev space $W_{\text {per }}^{1,1}$.
In contrast, minimizers of $\mathcal{J}_{\varepsilon}$ have no regularity independent of ε.

An analysis of the relation between $\mathcal{M} \mathcal{J}$ and $\mathcal{L} \mathcal{J}$ is consequently more difficult and is our concern here

To Get Around This

note that the Euler-Lagrange equation implies that $\mathcal{A}_{\varepsilon}^{\prime}(s)=\partial_{\vartheta} W\left(\varphi_{\varepsilon}(s), \vartheta_{\varepsilon}(s)\right) \vartheta_{\varepsilon}^{\prime}(s)$ where the adiabatic variable

$$
\mathcal{A}_{\varepsilon}(s):=W\left(\varphi_{\varepsilon}(s), \vartheta_{\varepsilon}(s)\right)-\frac{\varepsilon}{2}\left(B\left(\varphi_{\varepsilon}\right)^{\prime}(s)\right)^{2}
$$

and we have the estimates

$$
M^{-1} \leq \varphi_{\varepsilon}(s), \varphi(s) \leq M \text { for } s \in \mathbb{R}, \quad\left\|\mathcal{A}_{\varepsilon}\right\|_{H_{\text {per }}^{1}} \leq M
$$

Therefore, if periodic solutions φ_{ε} converge weak* in $L_{\text {per }}^{\infty}$ to φ, then, after passing to a subsequence, $\left(\mathcal{A}_{\varepsilon}, \vartheta_{\varepsilon}\right)$ converges weakly in $\left(H_{\text {per }}^{1}\right)^{d+1}$ to some (\mathcal{A}, ϑ).
The idea is to obtain a representation for weak* limits of solutions in terms of \mathcal{A} and ϑ
Of course ϑ and \mathcal{A} are both unknown

The Result - in a Nut Shell

$\mathcal{L} \mathcal{J}$ under the assumption that the limiting problem, with $\varepsilon=0$, has at least one piecewise continuous minimizer

There exists a set $E \subset(0,1)$ which is Lebesgue dense at 0

$$
\lim _{t \backslash 0} \frac{\operatorname{meas} E \cap[0, t]}{t}=1
$$

with the following property:
Elements of $\mathcal{L} \mathcal{J}$ which arise from sequences in E are true minimizers of

$$
\inf _{\varphi \in L_{\text {per }}^{\infty}} \int_{0}^{L} W(\varphi(s), \vartheta(s)) d s
$$

not only of the relaxed problem and are piecewise continuous functions with the minimal weighted number of jumps

Ignoring Variational Structure

Suppose that $\vartheta_{\varepsilon}, \varepsilon \in E$ is bounded in $\left(H_{\text {per }}^{1}\right)^{d}$, and that

$$
\varepsilon B^{\prime}\left(\varphi_{\varepsilon}(s)\right)\left(B^{\prime}\left(\varphi_{\varepsilon}\right) \varphi_{\varepsilon}^{\prime}\right)^{\prime}(s)-\partial_{\phi} W\left(\varphi_{\varepsilon}(s), \vartheta_{\varepsilon}(s)\right)=0 \text { on } \mathbb{R}
$$

It is easily shown that

$$
\left\|\vartheta_{\varepsilon}\right\|_{\left(H_{\text {per }}^{1}\right)^{d}} \leq M \Rightarrow C(M)^{-1} \leq \varphi_{\varepsilon}(s) \leq C(M) \text { for } s \in \mathbb{R}
$$

Thus
$\left\{\vartheta_{\varepsilon}: \varepsilon \in E\right\}$ is weakly relatively compact in $\left(H_{\text {per }}^{1}\right)^{d}$, $\left\{\varphi_{\varepsilon}: \varepsilon \in E\right\}$ is weak* relatively compact in $L_{\text {per }}^{\infty}$.
Therefore, for a sequence of $E \ni \varepsilon \searrow 0$,

$$
\begin{aligned}
& \vartheta_{\varepsilon} \rightharpoonup \vartheta \text { in }\left(H_{\mathrm{per}}^{1}\right)^{d} \text { and hence uniformly on } \mathbb{R}, \\
& \text { and } \varphi_{\varepsilon} \rightharpoonup^{*} \varphi \text { in } L_{\mathrm{per}}^{\infty},
\end{aligned}
$$

where ϑ and φ depend on the sequence.

Bounding the Weighted Number of Jumps

Without variational characterization of φ_{ε}

Theorem

$$
\liminf _{E \ni \varepsilon \searrow 0} \frac{\sqrt{\varepsilon}}{2} \int_{[0, L]}\left(B\left(\varphi_{\varepsilon}(s)\right)^{\prime}\right)^{2} d s \geq \sum_{s \in \mathcal{O}} \wp(\vartheta(s)),
$$

where

$$
\mathcal{O}=\{s \in[0, L): \varphi \text { is discontinuous }\} .
$$

If \mathcal{O} is infinite, then both sides are infinite. Recall that $\wp(\vartheta(s))$ is bounded below by a positive constant. Therefore if left side tends to zero as $\varepsilon \rightarrow 0$, the limit is continuous. In general: he left hand limit bounds the number of jumps of the weak* limit function φ.

Limiting Behaviour of Minimizers

- Suppose the $\varepsilon=0$ variational problem has at least one piecewise regular minimizer with a finite number of jumps

Does the weak* limit φ of minimizers φ_{ε} have a finite number of jumps?
We need a hypothesis on the dependence of ϑ_{ε} on ε

$$
\left\|\vartheta_{\varepsilon}-\vartheta\right\|_{\left(L_{\mathrm{per}}^{1}\right)^{d}}=o(\sqrt{\varepsilon}) \text { as } \varepsilon \searrow 0
$$

and, for almost all $\varepsilon \in(0,1)$,

$$
\liminf _{\lambda \searrow 0} \frac{\left\|\vartheta_{\varepsilon-\lambda}-\vartheta_{\varepsilon}\right\|_{\left(L_{\mathrm{per}}^{1}\right)^{d}}}{\lambda}=\Lambda(\varepsilon) \text { where } \sqrt{\varepsilon} \Lambda(\varepsilon) \rightarrow 0
$$

This is automatic of ϑ_{ε} is a C^{1}-function of ε; in particular when $\vartheta_{\varepsilon}=\vartheta$, independent of ε

Asymptotic Behavior of the Energy

Recall that

$$
\begin{aligned}
& \mathfrak{E}(\varepsilon)=\inf _{\varphi \in H_{\text {per }}^{1}} \int_{0}^{L}\left(\frac{\varepsilon}{2}\left(B(\varphi)^{\prime}\right)^{2}+W\left(\varphi, \vartheta_{\varepsilon}\right)\right) d s, \quad \varepsilon>0 \\
& \mathfrak{E}(0)=\int_{0}^{L} \mathcal{A}(s) d s \text { where } \mathcal{A}(s)=\inf _{\phi} W(\phi, \vartheta(s))
\end{aligned}
$$

Theorem
If a piecewise regular minimizer φ exists then

$$
\limsup _{E \ni \varepsilon \searrow 0} \frac{\mathfrak{E}(\varepsilon)-\mathfrak{E}(0)}{\sqrt{\varepsilon}} \leq 2 \sum_{s \in \mathcal{Q}(\varphi)} \wp\left(\vartheta\left(S_{n}\right)\right)=: 2 \mathcal{W}(\varphi)
$$

$\mathcal{W}(\varphi)$ is the weighted number of jumps of φ

Minimal Principle

Our main corollary of these observations is that, almost always, solutions to the variational problem converge weak* to piecewise regular minimizers with a minimal number of jumps, in the following sense:

Theorem
For any $\delta>0$ there is a set $E_{\delta} \subset(0,1]$ which is dense at 0 with the following property.
If a sequence $\left\{\varphi_{\varepsilon_{n}}\right\}, E_{\delta} \ni \varepsilon_{n} \rightarrow 0$, of minimizers converges weak* in $L_{\text {per }}^{\infty}$ to some function φ, then φ is an actual minimizer with weighted number of jumps $\mathcal{W}(\varphi) \leq \mathcal{W}_{\min }+\delta$.

Theorem

There exists a piecewise regular minimizer with a minimal weighted number of jumps.
Let

$$
\mathcal{N}^{*}=\max _{\varphi_{\min }} \mathcal{N}\left(\varphi_{\min }\right)
$$

where the maximum number of actual jumps is taken over all piecewise regular minimizers with minimal weighted number of jumps.
Then, $\mathcal{N}^{*}<\infty$ and for any $\delta>0, E_{\delta}$ can be chosen such that

$$
\mathcal{N}(\varphi) \leq \mathcal{N}^{*}
$$

where $\mathcal{N}(\varphi)$ is the actual number of jumps of φ in the preceding theorem.

