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Szegő’s Theorem

Random Power
Series

Hecke’s Example

Classical Proof

L1 Proof

Natural Boundaries and Spectral Theory

Jonathan Breuer

The Hebrew University

and

Barry Simon

California Institute of Technology

In preparation



Classical Natural
Boundary

Kotani–Remling
Theory

The Main
Theorems

Gap Theorems
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Definition of Natural Boundary

If Ω ⊂ C is a connected open set and f is analytic on Ω,
z0 ∈ ∂Ω is called regular if for some r > 0, f agrees on
Ω ∩ {z | |z − z0| < r} with a function analytic near z0.
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Definition of Natural Boundary

If Ω ⊂ C is a connected open set and f is analytic on Ω,
z0 ∈ ∂Ω is called regular if for some r > 0, f agrees on
Ω ∩ {z | |z − z0| < r} with a function analytic near z0.

A point is called singular if it is not regular.
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Definition of Natural Boundary

If Ω ⊂ C is a connected open set and f is analytic on Ω,
z0 ∈ ∂Ω is called regular if for some r > 0, f agrees on
Ω ∩ {z | |z − z0| < r} with a function analytic near z0.

A point is called singular if it is not regular.

Set of regular points is open, so set of singular points is
closed.
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Definition of Natural Boundary

If Ω ⊂ C is a connected open set and f is analytic on Ω,
z0 ∈ ∂Ω is called regular if for some r > 0, f agrees on
Ω ∩ {z | |z − z0| < r} with a function analytic near z0.

A point is called singular if it is not regular.

Set of regular points is open, so set of singular points is
closed.

∂Ω is called a natural boundary if all points are singular.
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Definition of Natural Boundary

If Ω ⊂ C is a connected open set and f is analytic on Ω,
z0 ∈ ∂Ω is called regular if for some r > 0, f agrees on
Ω ∩ {z | |z − z0| < r} with a function analytic near z0.

A point is called singular if it is not regular.

Set of regular points is open, so set of singular points is
closed.

∂Ω is called a natural boundary if all points are singular.

One also says Ω is a domain of holomorphy for f .
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Weierstrass’ Example

We’ll focus on a classical case where Ω = D ≡ {z | |z | < 1}
and f is described by a Taylor series

f (z) =

∞
∑

n=0

anz
n
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Weierstrass’ Example

We’ll focus on a classical case where Ω = D ≡ {z | |z | < 1}
and f is described by a Taylor series

f (z) =

∞
∑

n=0

anz
n

From his earliest days in understanding power series
(1840s), Weierstrass understood the phenomenon.
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Weierstrass’ Example

We’ll focus on a classical case where Ω = D ≡ {z | |z | < 1}
and f is described by a Taylor series

f (z) =

∞
∑

n=0

anz
n

From his earliest days in understanding power series
(1840s), Weierstrass understood the phenomenon.

He found the simple example

f (z) =

∞
∑

n=1

zn!
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Weierstrass’ Example

We’ll focus on a classical case where Ω = D ≡ {z | |z | < 1}
and f is described by a Taylor series

f (z) =

∞
∑

n=0

anz
n

From his earliest days in understanding power series
(1840s), Weierstrass understood the phenomenon.

He found the simple example

f (z) =

∞
∑

n=1

zn!

for which, when θ = 2πp/q, p, q integral,

lim
r↑1

|f (re iθ)| = ∞
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Weierstrass’ Example

Kronecker found an example relevant to elliptic functions

f (z) =
∞

∑

n=0

zn2

has a natural boundary on |z | = 1.
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Gap Theorems

The first general theorem was the Hadamard gap theorem.
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Gap Theorems

The first general theorem was the Hadamard gap theorem.

Theorem (Hadamard, 1892). If

f (z) =

∞
∑

j=0

ajz
nj

has a finite radius of convergence and

inf
j

nj+1

nj
> 1

then the circle of convergence is a natural boundary.
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Szegő’s Theorem

Random Power
Series

Hecke’s Example

Classical Proof

L1 Proof

Gap Theorems

Fabry (1896) proved the same result needing only

lim
j→∞

nj

j
= ∞

(Fabry required nj+1 − nj → ∞, but Faber (1906) noted
that the proof extended.)



Classical Natural
Boundary

Kotani–Remling
Theory

The Main
Theorems

Gap Theorems
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Gap Theorems

Fabry (1896) proved the same result needing only

lim
j→∞

nj

j
= ∞

(Fabry required nj+1 − nj → ∞, but Faber (1906) noted
that the proof extended.)

Mordell found an especially simple proof of Hadamard’s
gap theorem.
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A Theorem of Szegő

Because I’ve been teaching complex analysis, I used Google
Books to look at discussions of gap theorems and happened
to page down and saw a remarkable theorem of Szegő:
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A Theorem of Szegő

Because I’ve been teaching complex analysis, I used Google
Books to look at discussions of gap theorems and happened
to page down and saw a remarkable theorem of Szegő:

Theorem (Szegő, 1922). If f (z) =
∑

anz
n and the set of

values of {an} is a finite set, then either |z | = 1 is a natural

boundary, or else an is eventually periodic, in which case f

is a rational function with poles on ∂D.
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A Theorem of Szegő

Because I’ve been teaching complex analysis, I used Google
Books to look at discussions of gap theorems and happened
to page down and saw a remarkable theorem of Szegő:

Theorem (Szegő, 1922). If f (z) =
∑

anz
n and the set of

values of {an} is a finite set, then either |z | = 1 is a natural

boundary, or else an is eventually periodic, in which case f

is a rational function with poles on ∂D.

When I saw this theorem, my mouth fell open.
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Why my mouth fell open: Jacobi Matrices

For the past thirty years, a major focus of my research has
been the spectral theory of Jacobi matrices and two-sided
Jacobi matrices:

J =











b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3 · · ·
...

...
...

...
. . .











and the doubly infinite analog.
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Why my mouth fell open: Jacobi Matrices

For the past thirty years, a major focus of my research has
been the spectral theory of Jacobi matrices and two-sided
Jacobi matrices:

J =











b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3 · · ·
...

...
...

...
. . .











and the doubly infinite analog.

Especially discrete Schrödinger operators where an ≡ 1.
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Why my mouth fell open: Jacobi Matrices

For the past thirty years, a major focus of my research has
been the spectral theory of Jacobi matrices and two-sided
Jacobi matrices:

J =











b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3 · · ·
...

...
...

...
. . .











and the doubly infinite analog.

Especially discrete Schrödinger operators where an ≡ 1.

One studies the relation of the a’s and b’s to properties of
the spectral measure.
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Why my mouth fell open: Kotani

In 1982, Kotani studied ergodic Jacobi matrices (actually,
he studied ergodic Schrödinger ODEs; I’m describing my
1983 results on analogs of his work for the discrete case).

That is, Q
T
−→ Q is invariant and ergodic for a probability

measure ω on Q. A : Q → (0,∞), B : Q → R bounded and
measurable, and Jω has parameters an(ω) = A(T nω),
bn(ω) = B(T nω). He proved results about a.c. spectrum
(i.e., the spectral measures have a piece that is a.c. w.r.t.
dx); I’ll say more about this later.
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Why my mouth fell open: Kotani

In 1989, using these ideas and some others, he proved:

Theorem (Kotani, 1989). If Jω is an ergodic Jacobi matrix

so that an, bn take only finitely many values, then either Jω

has no a.c. spectrum or it is periodic.
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Why my mouth fell open: Remling

This is made more explicit by a deterministic result proven
two years ago:
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Why my mouth fell open: Remling

This is made more explicit by a deterministic result proven
two years ago:

Theorem (Remling, 2007 (or 2011?)). Let J be a

(one-sided) Jacobi matrix where an and bn take only

finitely many values. Then either J has no a.c. spectrum or

an and bn are eventually periodic.
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Remling’s Theory

Remling’s paper not only had many really new results but
essentially optimal ones for no a.c. spectrum in the class
where {an}

∞
n=1 and {bn}

∞
n=1 are bounded and do not

approach constants.
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Remling’s Theory

Remling’s paper not only had many really new results but
essentially optimal ones for no a.c. spectrum in the class
where {an}

∞
n=1 and {bn}

∞
n=1 are bounded and do not

approach constants.

What Breuer and I have is an analog of Remling’s main
tool for power series, using the translation

no a.c. spectrum ∼ natural boundary



Classical Natural
Boundary

Kotani–Remling
Theory

The Main
Theorems

Gap Theorems
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Remling’s Theory

Remling’s paper not only had many really new results but
essentially optimal ones for no a.c. spectrum in the class
where {an}

∞
n=1 and {bn}

∞
n=1 are bounded and do not

approach constants.

What Breuer and I have is an analog of Remling’s main
tool for power series, using the translation

no a.c. spectrum ∼ natural boundary

Thiele and Tao have emphasized that the spectral analysis
of OPs is a kind of nonlinear Fourier transform so that
Szegő’s OP theorem (not the one above) is a nonlinear
Plancherel, and Christ–Kiselev for L2 would be a kind of
nonlinear analog of Carleson’s L2 convergence theorem.
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Szegő’s Theorem

Random Power
Series

Hecke’s Example

Classical Proof

L1 Proof

Remling’s Theory

Remling’s paper not only had many really new results but
essentially optimal ones for no a.c. spectrum in the class
where {an}

∞
n=1 and {bn}

∞
n=1 are bounded and do not

approach constants.

What Breuer and I have is an analog of Remling’s main
tool for power series, using the translation

no a.c. spectrum ∼ natural boundary

Thiele and Tao have emphasized that the spectral analysis
of OPs is a kind of nonlinear Fourier transform so that
Szegő’s OP theorem (not the one above) is a nonlinear
Plancherel, and Christ–Kiselev for L2 would be a kind of
nonlinear analog of Carleson’s L2 convergence theorem.

Just so, our result is sort of Remling theory at infinitesimal
coupling, so the proofs are much simpler.
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Why I shouldn’t have been surprised

Once Breuer and I started to look at the idea, we realized
parallels it is surprising hadn’t been noticed. Consider the
major class of natural boundary and no a.c. spectrum
results:
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Why I shouldn’t have been surprised

Once Breuer and I started to look at the idea, we realized
parallels it is surprising hadn’t been noticed. Consider the
major class of natural boundary and no a.c. spectrum
results:

Gap Theorems ∼ Sparse Potentials
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Why I shouldn’t have been surprised

Once Breuer and I started to look at the idea, we realized
parallels it is surprising hadn’t been noticed. Consider the
major class of natural boundary and no a.c. spectrum
results:

Gap Theorems ∼ Sparse Potentials

Szegő ∼ Kotani–Remling Finite Value
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Why I shouldn’t have been surprised

Once Breuer and I started to look at the idea, we realized
parallels it is surprising hadn’t been noticed. Consider the
major class of natural boundary and no a.c. spectrum
results:

Gap Theorems ∼ Sparse Potentials

Szegő ∼ Kotani–Remling Finite Value

Random Power Series ∼ Anderson Localization



Classical Natural
Boundary

Kotani–Remling
Theory

The Main
Theorems

Gap Theorems
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Dense Gδ Result

Motivated by the Wonderland theorem of Simon from
spectral theory, we found

Theorem. Fix K ⊂ C compact with more than one point.

Let K∞ be {an}
∞
n=1, an ∈ K in the product topology which

is a compact metric space. Then {a ∈ K∞ |
∑

anz
n has a

natural boundary on ∂D} is a dense Gδ. A similar result is

true for strong natural boundaries.
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Dense Gδ Result

Motivated by the Wonderland theorem of Simon from
spectral theory, we found

Theorem. Fix K ⊂ C compact with more than one point.

Let K∞ be {an}
∞
n=1, an ∈ K in the product topology which

is a compact metric space. Then {a ∈ K∞ |
∑

anz
n has a

natural boundary on ∂D} is a dense Gδ. A similar result is

true for strong natural boundaries.

The proof is only a few lines. The existence of a single
natural boundary (e.g., Weierstrass) and the weak topology
prove density, and the Vitali theorem implies the
complement is a countable union of closed sets.
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Reflectionless Jacobi Matrices

For a half-line Jacobi matrix J, its m-function is defined on
C+ = {z | Im z > 0} by

m(z ; J) = 〈δ1, (J − z)−1δ1〉
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Reflectionless Jacobi Matrices

For a half-line Jacobi matrix J, its m-function is defined on
C+ = {z | Im z > 0} by

m(z ; J) = 〈δ1, (J − z)−1δ1〉

By general principles for Lebesgue a.e. x ,
m(x + i0) = limε↓0 m(x + iε) exists.
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Reflectionless Jacobi Matrices

If J is a whole-line Jacobi matrix, setting a0 = 0 breaks J

into half-line Jacobi matrices J+
0 and J−

0 . Let m±
0 be their

m-functions.
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Reflectionless Jacobi Matrices

If J is a whole-line Jacobi matrix, setting a0 = 0 breaks J

into half-line Jacobi matrices J+
0 and J−

0 . Let m±
0 be their

m-functions.

The whole-line Jacobi matrix J is called reflectionless on
e ⊂ R if and only if

m+(x + i0) =
(

a2
0 m−

0 (x + i0)
)−1

for a.e. x ∈ e.
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Reflectionless Jacobi Matrices

If J is a whole-line Jacobi matrix, setting a0 = 0 breaks J

into half-line Jacobi matrices J+
0 and J−

0 . Let m±
0 be their

m-functions.

The whole-line Jacobi matrix J is called reflectionless on
e ⊂ R if and only if

m+(x + i0) =
(

a2
0 m−

0 (x + i0)
)−1

for a.e. x ∈ e.

For here, the point is the object on the left and the object
on the right have boundary values that determine each
other.
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Right Limits
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Right Limits

Right limits were introduced as a tool in spectral analysis
by Last–Simon (1996).
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Right Limits

Right limits were introduced as a tool in spectral analysis
by Last–Simon (1996).

If J is a one-sided Jacobi matrix with parameters
{an, bn}

∞
n=1, J(∞) a two-sided Jacobi matrix is called a

right limit for J if and only if, for some nk → ∞ and all m

(but not uniformly in m),

a
(∞)
m = lim

k→∞
am+nk

b
(∞)
m = lim

k→∞
bm+nk
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Right Limits

Right limits were introduced as a tool in spectral analysis
by Last–Simon (1996).

If J is a one-sided Jacobi matrix with parameters
{an, bn}

∞
n=1, J(∞) a two-sided Jacobi matrix is called a

right limit for J if and only if, for some nk → ∞ and all m

(but not uniformly in m),

a
(∞)
m = lim

k→∞
am+nk

b
(∞)
m = lim

k→∞
bm+nk

By compactness, if the a’s and b’s are bounded, there are
always right limits.



Classical Natural
Boundary

Kotani–Remling
Theory

The Main
Theorems

Gap Theorems
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Remling’s Key Tool

Theorem (Remling). Let J be a half-line Jacobi matrix. If

J has a.c. spectrum on e ⊂ R, then every right limit is

reflectionless on e.
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Remling’s Key Tool

Theorem (Remling). Let J be a half-line Jacobi matrix. If

J has a.c. spectrum on e ⊂ R, then every right limit is

reflectionless on e.

Earlier Kotani had proven in the ergodic case that for a.e.
ω, dµω is reflectionless on e = a.c. spectrum.
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Right Limits of Power Series

We consider power series
∑∞

n=0 anz
n with

sup
n

|an| = B < ∞
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Right Limits of Power Series

We consider power series
∑∞

n=0 anz
n with

sup
n

|an| = B < ∞

A right limit of
∑∞

n=0 anz
n is a two-sided sequence

{bn}
∞
n=−∞ so that for some mj → ∞ and each fixed n ∈ Z,

lim
j→∞

amj+n = bn



Classical Natural
Boundary

Kotani–Remling
Theory

The Main
Theorems

Gap Theorems
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Right Limits of Power Series

We consider power series
∑∞

n=0 anz
n with

sup
n

|an| = B < ∞

A right limit of
∑∞

n=0 anz
n is a two-sided sequence

{bn}
∞
n=−∞ so that for some mj → ∞ and each fixed n ∈ Z,

lim
j→∞

amj+n = bn

By compactness, right limits exist. Indeed, for any
mj → ∞, there is a sub-subsequence with convergence.
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Analytic Functions Associated to {bn}
∞
n=−∞

We do not form the Laurent series
∑∞

n=−∞ bnz
n which, in

typical examples (e.g., where both lim supn→∞|bn| 6= 0 and
lim supn→−∞|bn| 6= 0), converges nowhere. Rather, we
form two functions:

f+(z) =

∞
∑

n=0

bnz
n f−(z) =

−1
∑

n=−∞

bnz
n
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Analytic Functions Associated to {bn}
∞
n=−∞

We do not form the Laurent series
∑∞

n=−∞ bnz
n which, in

typical examples (e.g., where both lim supn→∞|bn| 6= 0 and
lim supn→−∞|bn| 6= 0), converges nowhere. Rather, we
form two functions:

f+(z) =

∞
∑

n=0

bnz
n f−(z) =

−1
∑

n=−∞

bnz
n

f+ is analytic on |z | < 1 and f− on |z | > 1.
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Analytic Functions Associated to {bn}
∞
n=−∞

We do not form the Laurent series
∑∞

n=−∞ bnz
n which, in

typical examples (e.g., where both lim supn→∞|bn| 6= 0 and
lim supn→−∞|bn| 6= 0), converges nowhere. Rather, we
form two functions:

f+(z) =

∞
∑

n=0

bnz
n f−(z) =

−1
∑

n=−∞

bnz
n

f+ is analytic on |z | < 1 and f− on |z | > 1.

Example: bn ≡ 1 ⇒ f+ = (1 − z)−1 f− = −(1 − z)−1
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Analytic Functions Associated to {bn}
∞
n=−∞

We do not form the Laurent series
∑∞

n=−∞ bnz
n which, in

typical examples (e.g., where both lim supn→∞|bn| 6= 0 and
lim supn→−∞|bn| 6= 0), converges nowhere. Rather, we
form two functions:

f+(z) =

∞
∑

n=0

bnz
n f−(z) =

−1
∑

n=−∞

bnz
n

f+ is analytic on |z | < 1 and f− on |z | > 1.

Example: bn ≡ 1 ⇒ f+ = (1 − z)−1 f− = −(1 − z)−1

Notice for this case, f+ has a continuation f̃+ outside D so
that f̃+ + f− = 0.
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Reflectionless Double Series

We call {bn}
∞
n=−∞ reflectionless on an open interval

I ⊂ ∂D if and only if there is a function g analytic in a
neighborhood, N, of I so that

g = f+ on N ∩ D g = −f− on N ∩ (C \ D)



Classical Natural
Boundary

Kotani–Remling
Theory

The Main
Theorems

Gap Theorems
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Reflectionless Double Series

We call {bn}
∞
n=−∞ reflectionless on an open interval

I ⊂ ∂D if and only if there is a function g analytic in a
neighborhood, N, of I so that

g = f+ on N ∩ D g = −f− on N ∩ (C \ D)

Thus, f+ has an analytic continuation to C∪{∞}\ (∂D \ I )
whose Laurent series at ∞ is −

∑−1
n=−∞ bnz

n.
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Reflectionless Double Series

We call {bn}
∞
n=−∞ reflectionless on an open interval

I ⊂ ∂D if and only if there is a function g analytic in a
neighborhood, N, of I so that

g = f+ on N ∩ D g = −f− on N ∩ (C \ D)

Thus, f+ has an analytic continuation to C∪{∞}\ (∂D \ I )
whose Laurent series at ∞ is −

∑−1
n=−∞ bnz

n.

As above, bn ≡ 1 is reflectionless on ∂D \ {1}.
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Reflectionless Double Series

We call {bn}
∞
n=−∞ reflectionless on an open interval

I ⊂ ∂D if and only if there is a function g analytic in a
neighborhood, N, of I so that

g = f+ on N ∩ D g = −f− on N ∩ (C \ D)

Thus, f+ has an analytic continuation to C∪{∞}\ (∂D \ I )
whose Laurent series at ∞ is −

∑−1
n=−∞ bnz

n.

As above, bn ≡ 1 is reflectionless on ∂D \ {1}.

More generally, and if bn is periodic, it is reflectionless and
f+ is rational with poles on ∂D.
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The Classical Case

Theorem (Breuer–Simon). Let supn|an| < ∞ and suppose

f (z) =
∑∞

n=0 anz
n has an analytic continuation to a

neighborhood of an open interval, I ⊂ ∂D. Then any right

limit is reflectionless on I .
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Szegő’s Theorem

Random Power
Series

Hecke’s Example

Classical Proof

L1 Proof

The Classical Case

Theorem (Breuer–Simon). Let supn|an| < ∞ and suppose

f (z) =
∑∞

n=0 anz
n has an analytic continuation to a

neighborhood of an open interval, I ⊂ ∂D. Then any right

limit is reflectionless on I .

Corollary. Let supn|an| < ∞. If there is a right limit not

reflectionless on any I ⊂ ∂D, then f (z) =
∑∞

n=0 anz
n has a

natural boundary on ∂D.
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L
1 Natural Boundaries

Theorem (Breuer–Simon). Let supn|an| < ∞ and suppose

for an open interval, I ⊂ ∂D, and f (z) =
∑∞

n=0 anz
n, we

have

sup
r<1

∫

I

|f (re iθ)|
dθ

2π
< ∞

Then any right limit is reflectionless on I .
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L
1 Natural Boundaries

Theorem (Breuer–Simon). Let supn|an| < ∞ and suppose

for an open interval, I ⊂ ∂D, and f (z) =
∑∞

n=0 anz
n, we

have

sup
r<1

∫

I

|f (re iθ)|
dθ

2π
< ∞

Then any right limit is reflectionless on I .

Corollary. Let supn|an| < ∞. If there is a right limit not

reflectionless on any I ⊂ ∂D, then f (z) =
∑∞

n=0 anz
n has a

strong natural boundary on ∂D (i.e., not H1 in any sector

and, in particular, not bounded there).
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L
1 Natural Boundaries

Theorem (Breuer–Simon). Let supn|an| < ∞ and suppose

for an open interval, I ⊂ ∂D, and f (z) =
∑∞

n=0 anz
n, we

have

sup
r<1

∫

I

|f (re iθ)|
dθ

2π
< ∞

Then any right limit is reflectionless on I .

Corollary. Let supn|an| < ∞. If there is a right limit not

reflectionless on any I ⊂ ∂D, then f (z) =
∑∞

n=0 anz
n has a

strong natural boundary on ∂D (i.e., not H1 in any sector

and, in particular, not bounded there).

Clearly, the L1 theorem ⇒ the classical theorem, but we
use the classical theorem in the proof of the L1 theorem.
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Uniform Bounds

In both theorems, one proves something stronger than just
the reflectionless property. For any right limit b, let fb(z)
be the analytic function on C ∪ {∞} \ (∂D \ I ) ≡ ΩI . Let
R be the set of right limits.
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Uniform Bounds

In both theorems, one proves something stronger than just
the reflectionless property. For any right limit b, let fb(z)
be the analytic function on C ∪ {∞} \ (∂D \ I ) ≡ ΩI . Let
R be the set of right limits.

Then for any compact K ⊂ ΩI ,

sup
b∈R

[

sup
z∈K

|fn(z)|
]

< ∞
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Uniform Bounds

In both theorems, one proves something stronger than just
the reflectionless property. For any right limit b, let fb(z)
be the analytic function on C ∪ {∞} \ (∂D \ I ) ≡ ΩI . Let
R be the set of right limits.

Then for any compact K ⊂ ΩI ,

sup
b∈R

[

sup
z∈K

|fn(z)|
]

< ∞

In particular, since R is closed under right limits, {fb}b∈R

is compact in the topology of uniform convergence on
compact sets of ΩI .
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Ultimate Gap Theorem

The main theorems give optimal results among series with
sup|an| < ∞ and an does not approach a constant.
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Ultimate Gap Theorem

The main theorems give optimal results among series with
sup|an| < ∞ and an does not approach a constant.

Theorem (Ultimate Gap Theorem). Let supn|an| < ∞.

Suppose there is nj → ∞ so that

anj+m → 0 for each m < 0 as j → ∞

anj
→ α 6= 0 as j → ∞

Then
∑∞

n=0 anz
n has a strong natural boundary on ∂D.
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Ultimate Gap Theorem

The main theorems give optimal results among series with
sup|an| < ∞ and an does not approach a constant.

Theorem (Ultimate Gap Theorem). Let supn|an| < ∞.

Suppose there is nj → ∞ so that

anj+m → 0 for each m < 0 as j → ∞

anj
→ α 6= 0 as j → ∞

Then
∑∞

n=0 anz
n has a strong natural boundary on ∂D.

Note, by compactness, we only need lim inf|anj
| 6= 0.
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Proof of the Gap Theorem
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Proof of the Gap Theorem

By hypothesis and compactness, there is a right limit {bn}
with

bn = 0 n < 0

b0 = α 6= 0
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Proof of the Gap Theorem

By hypothesis and compactness, there is a right limit {bn}
with

bn = 0 n < 0

b0 = α 6= 0

But then, f− ≡ 0 while f+ 6≡ 0, so −f− cannot be an
analytic continuation of f+.
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Proof of the Gap Theorem

By hypothesis and compactness, there is a right limit {bn}
with

bn = 0 n < 0

b0 = α 6= 0

But then, f− ≡ 0 while f+ 6≡ 0, so −f− cannot be an
analytic continuation of f+.

Notes. 1. For Fabry, density of nonzero elements is 0. We
allow examples where the density is 1!
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Proof of the Gap Theorem

By hypothesis and compactness, there is a right limit {bn}
with

bn = 0 n < 0

b0 = α 6= 0

But then, f− ≡ 0 while f+ 6≡ 0, so −f− cannot be an
analytic continuation of f+.

Notes. 1. For Fabry, density of nonzero elements is 0. We
allow examples where the density is 1!

2. This result is not new; it follows from a result of Agmon
(1951).
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Soft and Hard Edges

There is an interesting subtlety. The last theorem would
seem to contradict the following which says Fabry is
optimal!
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Soft and Hard Edges

There is an interesting subtlety. The last theorem would
seem to contradict the following which says Fabry is
optimal!

Theorem (Polya (1942), Erdös (1945)). Let nk be such

that for every bk with

0 < lim sup|bk | ≤ sup|bk | < ∞

∑∞
k=1 bkznk has a natural boundary on ∂D. Then

nk/k → ∞.
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Soft and Hard Edges

The resolution is that in the optimal gap theorem, we have
sharp transitions from an’s going to zero and those going to
nonzero.
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Soft and Hard Edges

The resolution is that in the optimal gap theorem, we have
sharp transitions from an’s going to zero and those going to
nonzero.

On the other hand, the examples of Erdös have long blocks
of n’s with a positive density of nk ’s, and one slowly ramps
up in these blocks.
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Soft and Hard Edges

The resolution is that in the optimal gap theorem, we have
sharp transitions from an’s going to zero and those going to
nonzero.

On the other hand, the examples of Erdös have long blocks
of n’s with a positive density of nk ’s, and one slowly ramps
up in these blocks.

This is reminiscent of constructions of Molchanov and
Remling who placed reflectionless solitons between gaps to
get a.c. spectrum examples with sparseness.
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Soft and Hard Edges

The resolution is that in the optimal gap theorem, we have
sharp transitions from an’s going to zero and those going to
nonzero.

On the other hand, the examples of Erdös have long blocks
of n’s with a positive density of nk ’s, and one slowly ramps
up in these blocks.

This is reminiscent of constructions of Molchanov and
Remling who placed reflectionless solitons between gaps to
get a.c. spectrum examples with sparseness.

Or rather, since Erdös is earlier, they are reminiscent of
Erdös.
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Nondeterminism Implies NB

Theorem (Breuer–Simon). If there exists mj → ∞ and

nj → ∞ so that anj
− amj

→ b 6= 0, anj+m − amj+m → 0,
either all m < 0 or all m > 0, then

∑∞
n=0 anz

n has a strong

natural boundary.
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Nondeterminism Implies NB

Theorem (Breuer–Simon). If there exists mj → ∞ and

nj → ∞ so that anj
− amj

→ b 6= 0, anj+m − amj+m → 0,
either all m < 0 or all m > 0, then

∑∞
n=0 anz

n has a strong

natural boundary.

Proof. Two right limits; same f−, different f+(0), or same
f+, different f ′−(∞).
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Rudin–Shapiro Series

Definition.

P0(x) = Q0(x) = 1; deg(Pn) = deg(Qn) = 2n−1

Pn+1(x) = Pn(x) + x2n

Qn(x) Qn+1(x) = Pn(x) − x2n

qn(x)
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Rudin–Shapiro Series

Definition.

P0(x) = Q0(x) = 1; deg(Pn) = deg(Qn) = 2n−1

Pn+1(x) = Pn(x) + x2n

Qn(x) Qn+1(x) = Pn(x) − x2n

qn(x)

Theorem (Brillheart, 1973). f (x) = limn→∞ Pn(x) has a

natural boundary at |x | = 1.
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Rudin–Shapiro Series

Definition.

P0(x) = Q0(x) = 1; deg(Pn) = deg(Qn) = 2n−1

Pn+1(x) = Pn(x) + x2n

Qn(x) Qn+1(x) = Pn(x) − x2n

qn(x)

Theorem (Brillheart, 1973). f (x) = limn→∞ Pn(x) has a

natural boundary at |x | = 1.

Proof. f has PnQn, so Pn−1(Qn−1)Pn−1(−Qn−1).
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Szegő’s Theorem

Random Power
Series

Hecke’s Example

Classical Proof

L1 Proof

Rudin–Shapiro Series

Definition.

P0(x) = Q0(x) = 1; deg(Pn) = deg(Qn) = 2n−1

Pn+1(x) = Pn(x) + x2n

Qn(x) Qn+1(x) = Pn(x) − x2n

qn(x)

Theorem (Brillheart, 1973). f (x) = limn→∞ Pn(x) has a

natural boundary at |x | = 1.

Proof. f has PnQn, so Pn−1(Qn−1)Pn−1(−Qn−1).

Remark. Brillheart uses Szegő.
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Szegő’s Theorem

Random Power
Series

Hecke’s Example

Classical Proof

L1 Proof

Proof of Szegő’s Theorem

This follows in part ideas of Boas. Used in the Jacobi case,
it provides an interesting alternative to Kotani’s analysis of
the analog.
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Proof of Szegő’s Theorem

This follows in part ideas of Boas. Used in the Jacobi case,
it provides an interesting alternative to Kotani’s analysis of
the analog.

Lemma. If an is a sequence with finitely many values and

which is not eventually periodic, then ∀N ∀p, ∃n,m ≥ N so

that

aj+n = aj+m j = 0, 1, 2, . . . , p − 1

ap+n 6= ap+m
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Proof of Szegő’s Theorem

Proof of Lemma. Suppose not. Then, because there are
only finitely many p blocks, ∃N∃P so that every p block
determines the next 1, then by induction, 2, . . . full p

block. That is, there is a function F on p blocks, so F (p
block) = next p block.
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Proof of Szegő’s Theorem

Proof of Lemma. Suppose not. Then, because there are
only finitely many p blocks, ∃N∃P so that every p block
determines the next 1, then by induction, 2, . . . full p

block. That is, there is a function F on p blocks, so F (p
block) = next p block.

For some k, ran(F k) = ran(F k+1) = . . . since the set of p

blocks is finite. So for some k, ran(F k) = ran(F k+1), so
then all equal.
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Proof of Szegő’s Theorem

Proof of Lemma. Suppose not. Then, because there are
only finitely many p blocks, ∃N∃P so that every p block
determines the next 1, then by induction, 2, . . . full p

block. That is, there is a function F on p blocks, so F (p
block) = next p block.

For some k, ran(F k) = ran(F k+1) = . . . since the set of p

blocks is finite. So for some k, ran(F k) = ran(F k+1), so
then all equal.

Once F is a bijection, on a finite set, F ℓ = 1 for some ℓ, so
eventually periodic.
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Proof of Szegő’s Theorem

To get Szegő, if an is not eventually periodic, there are, by
the lemma, two right limits, ã and b̃ so ãj = b̃j for j ≤ 0,
but a1 6= b1, so at most one is reflectionless, so not
periodic ⇒ natural boundary.
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Classical Results

Theorem (Steinhaus, 1929). Suppose that
∑

anz
n has a

finite radius of convergence. {ωn}
∞
n=0 are iidrv with uniform

distribution on ∂D. For a.e. choice,
∑

anωnz
n has a

natural boundary on radius of convergence.
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Classical Results

Theorem (Steinhaus, 1929). Suppose that
∑

anz
n has a

finite radius of convergence. {ωn}
∞
n=0 are iidrv with uniform

distribution on ∂D. For a.e. choice,
∑

anωnz
n has a

natural boundary on radius of convergence.

Theorem (Paley–Zygmund, 1932). Same result for

ωn = ±1 equidistribution.
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Classical Results

Theorem (Steinhaus, 1929). Suppose that
∑

anz
n has a

finite radius of convergence. {ωn}
∞
n=0 are iidrv with uniform

distribution on ∂D. For a.e. choice,
∑

anωnz
n has a

natural boundary on radius of convergence.

Theorem (Paley–Zygmund, 1932). Same result for

ωn = ±1 equidistribution.

Various irv extensions by Kahane (1968 book)



Classical Natural
Boundary

Kotani–Remling
Theory

The Main
Theorems

Gap Theorems
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Reflectionless View

From our point of view, these results are “obvious” (so long
as everything is bounded and doesn’t go to a constant!).
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Reflectionless View

From our point of view, these results are “obvious” (so long
as everything is bounded and doesn’t go to a constant!).

For reflectionless, {bn}
−1
n=−∞ determines b0. But if b0 is

“truly” random, e.g., independent and nonconstant, it is
not determined. We are still trying to figure out the
optimal statements of theorems–but here are two:
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Reflectionless View

From our point of view, these results are “obvious” (so long
as everything is bounded and doesn’t go to a constant!).

For reflectionless, {bn}
−1
n=−∞ determines b0. But if b0 is

“truly” random, e.g., independent and nonconstant, it is
not determined. We are still trying to figure out the
optimal statements of theorems–but here are two:

Theorem (Breuer–Simon). Let an(ω) be a stationary,

ergodic, bounded, nondeterministic process. Then for a.e.

ω,
∑∞

n=0 an(ω)zn has a strong natural boundary.
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Reflectionless View

Theorem (Breuer–Simon). Let an(ω) be independent (but

not necessarily identically distributed) uniformly bounded

random variable so that for some nj → ∞,

Var(anj
(ω)) → c 6= 0. Then for a.e. ω,

∑∞
n=0 an(ω)zn has

a strong natural boundary.
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Reflectionless View

Theorem (Breuer–Simon). Let an(ω) be independent (but

not necessarily identically distributed) uniformly bounded

random variable so that for some nj → ∞,

Var(anj
(ω)) → c 6= 0. Then for a.e. ω,

∑∞
n=0 an(ω)zn has

a strong natural boundary.

For example, for n 6= nj , an can be nonrandom.
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Pólya–Carleson Theorem

Theorem (Pólya–Carleson, 1921). If {an}
∞
n=0 are all

integers, then either
∑∞

n=0 anz
n is rational or has a natural

boundary on its radius of convergence.
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Pólya–Carleson Theorem

Theorem (Pólya–Carleson, 1921). If {an}
∞
n=0 are all

integers, then either
∑∞

n=0 anz
n is rational or has a natural

boundary on its radius of convergence.

These an are unbounded so, in general, we can’t hope to
prove this.
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Hecke’s Example

Determining which case one is in may not be easy.
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Hecke’s Example

Determining which case one is in may not be easy.

Theorem (Hecke, 1921). Let α ∈ R \ Q. Let [. . . ] =
integral part of . . . . Then

∑∞
n=0[αn]zn has a natural

boundary on the unit circle.
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Hecke’s Example

Determining which case one is in may not be easy.

Theorem (Hecke, 1921). Let α ∈ R \ Q. Let [. . . ] =
integral part of . . . . Then

∑∞
n=0[αn]zn has a natural

boundary on the unit circle.

Since
∑∞

n=0 αnzn = α/(1 − z)2, this is equivalent to
∑∞

n=0{αn}zn having a natural boundary, and that is a
bounded sequence, so we can hope to prove this. Here
{y} = y − [y ].
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Damanik–Killip Theorem

Theorem (Damanik–Killip, 2005). Consider a Jacobi

matrix, J(θ), with an ≡ 1 and bn(θ) = g(αn + θ) where α
is irrational, g is bounded and periodic with period 1, and

on [0, 1], g is continuous except at finitely many points, at

one of which it has different right and left limit. Then for

a.e. θ, J(θ) has no a.c. spectrum.
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Our Result

Theorem (Breuer–Simon). Let g be as in Damanik–Killip.

Then for all θ,
∑∞

n=0 g(αn + θ)zn has a strong natural

boundary.
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Our Result

Theorem (Breuer–Simon). Let g be as in Damanik–Killip.

Then for all θ,
∑∞

n=0 g(αn + θ)zn has a strong natural

boundary.

Corollary. Hecke’s result
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Our Result

Theorem (Breuer–Simon). Let g be as in Damanik–Killip.

Then for all θ,
∑∞

n=0 g(αn + θ)zn has a strong natural

boundary.

Corollary. Hecke’s result

Sketch. Suppose θ0 is a point of discontinuity. By finding
nj and mj so {αnj} → θ0 from below and {αmj} → θ0

from above, we get two right limits, b and b̃, so that
b0 6≡ b̃0, but bn 6= b̃n for finitely many n’s. By shifting, we
can suppose bn = b̃n for n ≤ −1 but b0 6= b̃0. They cannot
both be reflectionless across the same interval.
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M. Riesz’s Lemma

Lemma (M. Riesz, 1916). Suppose supn|an| = A < ∞ and

f (z) =
∑∞

n=0 anz
n has an analytic continuation to D ∪ S

where (for R > 1 and α < β),

S = {z | 0 < |z | < R , α < arg(z) < β}

continuous on S̄ with M = supz∈S̄ |f (z)|. Let z1 = e iα,

z2 = e iβ.
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M. Riesz’s Lemma

Lemma (M. Riesz, 1916). Suppose supn|an| = A < ∞ and

f (z) =
∑∞

n=0 anz
n has an analytic continuation to D ∪ S

where (for R > 1 and α < β),

S = {z | 0 < |z | < R , α < arg(z) < β}

continuous on S̄ with M = supz∈S̄ |f (z)|. Let z1 = e iα,

z2 = e iβ.

Define, for N = 0, 1, 2, . . . ,

SN
+ (z) =

∞
∑

n=0

an+Nzn SN
− (z) =

−1
∑

n=−N

an+Nzn
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M. Riesz’s Lemma

Then SN
+ has an analytic continuation to D ∪ S, continuous

on S̄, and for N ≥ 1,

sup
S̄

|(z − z1)(z − z2)S
N
+ (z)| ≤ (A + M)(1 + R)2(R − 1)−1
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M. Riesz’s Lemma

Then SN
+ has an analytic continuation to D ∪ S, continuous

on S̄, and for N ≥ 1,

sup
S̄

|(z − z1)(z − z2)S
N
+ (z)| ≤ (A + M)(1 + R)2(R − 1)−1

Note. For later purposes, we note SN
+ has a continuation to

S̄ \ {0} and that on S̄ \ {0},

SN
+ + SN

− = z−Nf (z) (∗)
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Riesz’s Proof

By the maximum principle, we only need the bound on
∂S \ {z1, z2}. Let g(z) = (z − z1)(z − z2)S

N
+ (z).
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Riesz’s Proof

By the maximum principle, we only need the bound on
∂S \ {z1, z2}. Let g(z) = (z − z1)(z − z2)S

N
+ (z).

On {z | 0 ≤ |z | = r < 1; arg(z) = α or β},

|g(z)| ≤ (1−r)(2)

∞
∑

n=0

Arn = 2A ≤ (A+M)(1+R)2(R−1)−1
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Riesz’s Proof

By the maximum principle, we only need the bound on
∂S \ {z1, z2}. Let g(z) = (z − z1)(z − z2)S

N
+ (z).

On {z | 0 ≤ |z | = r < 1; arg(z) = α or β},

|g(z)| ≤ (1−r)(2)

∞
∑

n=0

Arn = 2A ≤ (A+M)(1+R)2(R−1)−1

On |z | > 1,

|SN
− (z)| ≤ A|z |−1(1 − |z |−1)−1

= A(|z | − 1)−1



Classical Natural
Boundary

Kotani–Remling
Theory

The Main
Theorems

Gap Theorems
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Riesz’s Proof

On {z | 1 < |z | < R ; arg(z) = α or β}, by (∗),

|g(z)| ≤ [M|z |−N + A(|z | − 1)−1][(|z | − 1)(1 + R)]

≤ (A + M)(1 + R) ≤ (A + M)(1 + R)2(R − 1)−1

since |z |−N(|z | − 1) < 1.
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Riesz’s Proof

On {|z | = R ; arg(z) ∈ [α, β]}, by (∗),

|g(z)| ≤ [MR−N + A(R − 1)−1](1 + R)2

≤ (A + M)(1 + R)2(R − 1)−1

since R−N ≤ (R − 1)−1.
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Breuer–Simon Proof

By Riesz, if Nj → ∞, {SN
+} are uniformly bounded on

compact subsets of S . By right limit, SN
+ converges on D.

So, by Vitali, S+ → f+ on D ∪ S .
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Breuer–Simon Proof

By Riesz, if Nj → ∞, {SN
+} are uniformly bounded on

compact subsets of S . By right limit, SN
+ converges on D.

So, by Vitali, S+ → f+ on D ∪ S .

By (∗), on S ∩ {|z | > 1}, f+ + f− = 0, so Q.E.D.



Classical Natural
Boundary

Kotani–Remling
Theory

The Main
Theorems

Gap Theorems
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E
1 (Sector)

We need the following facts about a function f analytic on
D obeying sup0<r<1

∫ β

α
|f (re iθ)|dθ

2π
< ∞:
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E
1 (Sector)

We need the following facts about a function f analytic on
D obeying sup0<r<1

∫ β

α
|f (re iθ)|dθ

2π
< ∞:

It has nontangential boundary values f (e iθ) on (α, β).
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E
1 (Sector)

We need the following facts about a function f analytic on
D obeying sup0<r<1

∫ β

α
|f (re iθ)|dθ

2π
< ∞:

It has nontangential boundary values f (e iθ) on (α, β).

f is L1 on each (α + ε, β − ε).



Classical Natural
Boundary

Kotani–Remling
Theory

The Main
Theorems

Gap Theorems
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E
1 (Sector)

We need the following facts about a function f analytic on
D obeying sup0<r<1

∫ β

α
|f (re iθ)|dθ

2π
< ∞:

It has nontangential boundary values f (e iθ) on (α, β).

f is L1 on each (α + ε, β − ε).

For each such ε, the convergence is also in L1-norm.
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E
1 (Sector)

We need the following facts about a function f analytic on
D obeying sup0<r<1

∫ β

α
|f (re iθ)|dθ

2π
< ∞:

It has nontangential boundary values f (e iθ) on (α, β).

f is L1 on each (α + ε, β − ε).

For each such ε, the convergence is also in L1-norm.

F (z) =
∫ β−ε

α+ε
f (e iθ)(e iθ − z)−1 dθ

2π
is analytic on

C \{e iθ | α+ ε < θ < β − ε} with a jump discontinuity

F (e iθ(1 − 0)) − F (e iθ(1 + 0)) = f (e iθ)
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E
1 (Sector)

We need the following facts about a function f analytic on
D obeying sup0<r<1

∫ β

α
|f (re iθ)|dθ

2π
< ∞:

It has nontangential boundary values f (e iθ) on (α, β).

f is L1 on each (α + ε, β − ε).

For each such ε, the convergence is also in L1-norm.

F (z) =
∫ β−ε

α+ε
f (e iθ)(e iθ − z)−1 dθ

2π
is analytic on

C \{e iθ | α+ ε < θ < β − ε} with a jump discontinuity

F (e iθ(1 − 0)) − F (e iθ(1 + 0)) = f (e iθ)

These all follow from results in Chapter 10 of Duren’s
Hp-spaces book on E 1 (interior of a rectifiable Jordan
curve)
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Painlevé’s Theorem

We need the following generalized Painlevé’s theorem:
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Painlevé’s Theorem

We need the following generalized Painlevé’s theorem:

Theorem. Let f+ be analytic in D, f− in C \ D with

sup0<r<1

∫ β

α
|f+(re iθ)|dθ

2π
< ∞ and that

sup1<r<2

∫ β

α
|f−(re iθ)|dθ

2π
< ∞. Suppose f+(e iθ) = f−(e iθ)

a.e. on (α, β). Then there is a function F (z) analytic on

C \ [∂D \ (α, β)] equal to f+ on D.



Classical Natural
Boundary

Kotani–Remling
Theory

The Main
Theorems

Gap Theorems
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Painlevé’s Theorem

We need the following generalized Painlevé’s theorem:

Theorem. Let f+ be analytic in D, f− in C \ D with

sup0<r<1

∫ β

α
|f+(re iθ)|dθ

2π
< ∞ and that

sup1<r<2

∫ β

α
|f−(re iθ)|dθ

2π
< ∞. Suppose f+(e iθ) = f−(e iθ)

a.e. on (α, β). Then there is a function F (z) analytic on

C \ [∂D \ (α, β)] equal to f+ on D.

This is an easy Morera-like argument.
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Breuer–Simon Proof

Fix ε > 0 and let F be the function given by the Cauchy
integral of f (e iθ) ↾ (α + ε, β − ε). Let

bn =

∫ β−ε

α+ε

e−inθf (e iθ)
dθ

2π

Then F has Taylor expansions
∑∞

n=0 bnz
n near 0 and

∑−1
n=−∞ bnz

n near ∞.
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Breuer–Simon Proof

Fix ε > 0 and let F be the function given by the Cauchy
integral of f (e iθ) ↾ (α + ε, β − ε). Let

bn =

∫ β−ε

α+ε

e−inθf (e iθ)
dθ

2π

Then F has Taylor expansions
∑∞

n=0 bnz
n near 0 and

∑−1
n=−∞ bnz

n near ∞.

Moreover, bn → 0 as |n| → ∞ by the Riemann–Lebesgue
lemma. In particular, supn|bn| < ∞.
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Breuer–Simon Proof

Let cn = an − bn and f+(z) =
∑∞

n=0 cnz
n, so

lim
r↑1

f+(re iθ) = f (e iθ) − F ((1 − 0)e iθ)
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Breuer–Simon Proof

Let cn = an − bn and f+(z) =
∑∞

n=0 cnz
n, so

lim
r↑1

f+(re iθ) = f (e iθ) − F ((1 − 0)e iθ)

Let f− = −
∑−1

n=−∞ bnz
n so its boundary values are

lim
r↑1

f−(re iθ) = −F ((1 + 0)e iθ)
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Breuer–Simon Proof

Let cn = an − bn and f+(z) =
∑∞

n=0 cnz
n, so

lim
r↑1

f+(re iθ) = f (e iθ) − F ((1 − 0)e iθ)

Let f− = −
∑−1

n=−∞ bnz
n so its boundary values are

lim
r↑1

f−(re iθ) = −F ((1 + 0)e iθ)

Thus, by the discontinuity of F , Painlevé’s theorem applies
and f−(z) has an analytic continuation through
(α + ε, β − ε). Since bn → 0 right limits of {an} are the
same as right limits of {cn} so the classical result implies
the L1 result.
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