Bounds for eigenfunctions of the Laplacian on noncompact Riemannian manifolds

Vladimir Maz'ya

Liverpool University

Brian Davies 65th birthday conference 8-9 December 2009, King's College London Dear Brian, many happy returns on the day!

- A. Cianchi & V.M. Bounds for eigenfunctions of the Laplacian on noncompact Riemannian manifolds, preprint.
- A.Cianchi & V.M. On the discreteness of the spectrum of complete Riemannian manifolds, in preparation

Let M be an n-dimensional Riemannian manifold (of class C^1) such that

$$\mathcal{H}^n(M) < \infty$$
.

Here, \mathcal{H}^n is the n-dimensional Hausdorff measure on M, namely, the volume measure on M induced by its Riemannian metric.

Problem: estimates for eigenfunctions of the Laplacian on M. Weak formulation: a function $u \in W^{1,2}(M)$ is an eigenfunction of the Laplacian associated with the eigenvalue γ if

$$\int_{\Omega} \nabla u \cdot \nabla \Phi \, d\mathcal{H}^n(x) = \gamma \int_{\Omega} u \Phi \, d\mathcal{H}^n(x) \tag{1}$$

for every $\Phi \in W^{1,2}(M)$.

If M is complete, then (1) is equivalent to

$$-\Delta u = \gamma u \qquad \text{on } M. \tag{2}$$

If M is an open subset of a Riemannian manifold, in particular of \mathbb{R}^n , then (1) is the weak formulation of the Neumann problem

$$\begin{cases} -\Delta u = \gamma u & \text{on } M \\ \frac{\partial u}{\partial \mathbf{n}} = 0 & \text{on } \partial M \end{cases}$$
 (3)

Case M compact.

The eigenvalue problem for the Laplacian has been extensively studied.

By the classical Rellich's Lemma , the compactness of the embedding

$$W^{1,2}(M) \to L^2(M)$$

is equivalent to the discreteness of the spectrum of the Laplacian on ${\cal M}.$

Bounds for eigenfunctions in $L^q(M)$, q > 2, and $L^{\infty}(M)$ follow via local bounds, owing to the compactness of M.

4

Pb.: noncompact M.

Much less seems to be known.

Not even the existence of eigenfunctions is guaranteed.

Major problem: the embedding $W^{1,2}(M) \to L^2(M)$ need not be compact.

Example 1.

$$M = \Omega$$

an open subset of \mathbb{R}^n endowed with the Eulcidean metric. The eigenvalue problem (2) turns into the Neumann problem

$$\begin{cases} -\Delta u = \gamma u & \text{in } \Omega \\ \frac{\partial u}{\partial \mathbf{n}} = 0 & \text{on } \partial \Omega \,. \end{cases}$$

The point here is that no regularity on $\partial\Omega$ is (a priori) assumed.

Example 2.

A noncompact manifold of revolution in \mathbb{R}^n ,

$$M = \{(r, \omega) : r \in [0, \infty), \omega \in \mathbb{S}^{n-1}\},\$$

with metric (in polar coordinates) given by

$$ds^2 = dr^2 + \varphi(r)^2 d\omega^2. \tag{4}$$

Here, $d\omega^2$ stands for the standard metric on \mathbb{S}^{n-1} , and $\varphi:[0,L)\to[0,\infty)$ is a smooth function such that $\varphi(r)>0$ for $r\in(0,L)$, and

$$\varphi(0)=0\,,\qquad {\sf and}\qquad \varphi'(0)=1\,.$$

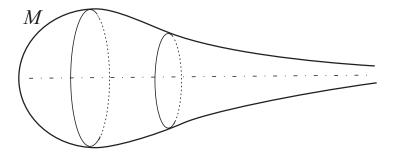
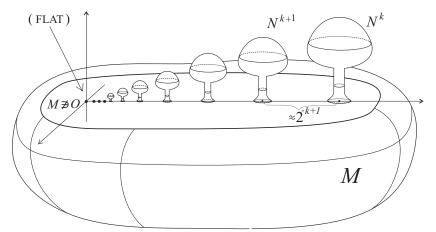


FIGURE: A manifold of revolution

Example 3.

Manifolds with a sequence of mushroom-shaped submanifolds .



٨

The integrability of eigenfunctions depends on the geometry of M.

The geometry of the manifold M can be described through either the

isocapacitary function ν_M of M,

or the

isoperimetric function λ_M of M.

Classical isoperimetric inequality [De Giorgi]

$$\mathcal{H}^{n-1}(\partial^* E) \ge n\omega_n^{1/n} |E|^{1/n'} \qquad \forall E \subset \mathbb{R}^n.$$

Here:

- $\partial^* E$ stands for the essential boundary of E,
- $|E| = \mathcal{H}^n(E)$, the Lebesgue measure of E,
- \mathcal{H}^{n-1} is the (n-1)-dimensional Hausdorff measure (the surface area).

In other words,

the ball has the least surface area among sets of fixed volume.

In general the isoperimetric function $\lambda_M:[0,\mathcal{H}^n(M)/2]\to[0,\infty)$ of M is defined as

$$\lambda_M(s) = \inf\{\mathcal{H}^{n-1}(\partial^* E) : s \le \mathcal{H}^n(E) \le \mathcal{H}^n(M)/2\},$$
for $s \in [0, \mathcal{H}^n(M)/2].$ (5)

Isoperimetric inequality on M:

$$\mathcal{H}^{n-1}(\partial^* E) \ge \lambda_M(\mathcal{H}^n(E)) \quad \forall E \subset M, \mathcal{H}^n(E) \le \mathcal{H}^n(M)/2.$$

The geometry of M is related to λ_M , and, in particular, to its asymptotic behavior at 0. For instance, if M is compact, then

$$\lambda_M(s) \approx s^{1/n'}$$
 as $s \to 0$.

Here, $f \approx g$ means that $\exists \ c, k > 0$ such that

$$cg(cs) \le f(s) \le kg(ks)$$
.

Moreover, $n' = \frac{n}{n-1}$.

Approach by isocapacitary inequalities. Standard capacity of $E \subset M$:

$$C(E)=\inf\left\{\int_M |\nabla u|^2\,dx: u\in W^{1,2}(M),\right.$$

$$"u\geq 1" \ \text{ in } E, \text{ and } u \text{ has compact support}\right\}.$$

Capacity of a condenser (E; G), $E \subset G \subset M$:

$$C(E;G) = \inf \left\{ \int_M |\nabla u|^2 dx : u \in W^{1,2}(M), \\ "u \ge 1" \text{ in } E "u \le 0" \text{ in } M \setminus G \right\}.$$

Isocapacitary function

$$u_M:[0,\mathcal{H}^n(M)/2] o [0,\infty)$$

$$\nu_M(s) = \inf\{C(E,G) : E \subset G \subset M, \ s \leq \mathcal{H}^n(E) \text{ and } \mathcal{H}^n(G) \leq \mathcal{H}^n(M)/2\}$$
 for $s \in [0,\mathcal{H}^n(M)/2].$

Isocapacitary inequality:

$$C(E,G) \ge \nu_M(\mathcal{H}^n(E)) \quad \forall \ E \subset G \subset M, \ \mathcal{H}^n(G) \le \mathcal{H}^n(M)/2.$$

If M is compact and $n \geq 3$, then

$$\nu_M(s) \approx s^{\frac{n-2}{n}}$$
 as $s \to 0$.

The isoperimetric function and the isocapacitary function of a manifold ${\cal M}$ are related by

$$\frac{1}{\nu_M(s)} \le \int_s^{\mathcal{H}^n(M)/2} \frac{dr}{\lambda_M(r)^2} \quad \text{for } s \in (0, \mathcal{H}^n(M)/2). \tag{6}$$

A reverse estimate does not hold in general.

Roughly speaking, a reverse estimate only holds when the geometry of ${\cal M}$ is sufficiently regular.

Both the conditions in terms of ν_M , and those in terms of λ_M , for eigenfunction estimates in $L^q(M)$ or $L^\infty(M)$ to be presented are sharp in the class of manifolds M with prescribed asymptotic behavior of ν_M and λ_M at 0.

Each one of these approaches has its own advantages.

The isoperimetric function λ_M has a transparent geometric character, and it is usually easier to investigate.

The isocapacitary function ν_M is in a sense more appropriate: it not only implies the results involving λ_M , but leads to finer conclusions in general. Typically, this is the case when manifolds with complicated geometric configurations are taken into account.

Estimates for eigenfunctions.

If u is an eigenfunction of the Laplacian, then, by definition, $u \in W^{1,2}(M)$. Hence, trivially, $u \in L^2(M)$.

Problem: given $q \in (2, \infty]$, find conditions on M ensuring that any eigenfunction u of the Laplacian on M belongs to $L^q(M)$.

Theorem 1: L^q bounds for eigenfunctions

Assume that

$$\lim_{s \to 0} \frac{s}{\nu_M(s)} = 0. \tag{7}$$

Then for any $q \in (2, \infty)$ there exists a constant C such that

$$||u||_{L^{q}(M)} \le C||u||_{L^{2}(M)} \tag{8}$$

for every eigenfunction u of the Laplacian on M.

The assumption

$$\lim_{s \to 0} \frac{s}{\nu_M(s)} = 0 \tag{9}$$

is essentially minimal in Theorem 1.

Theorem 2: Sharpness of condition (9)

For any $n\geq 2$ and $q\in (2,\infty]$, there exists an n-dimensional Riemannian manifold M such that

$$u_M(s) \approx s$$
 near 0, (10)

and the Laplacian on M has an eigenfunction $u \notin L^q(M)$.

Conditions in terms of the isoperimetric function for L^q bounds for eigenfunctions can be derived via Theorem 2.

Corollary 2

Assume that

$$\lim_{s \to 0} \frac{s}{\lambda_M(s)} = 0. \tag{11}$$

Then for any $q \in (2, \infty)$ there exists a constant C such that

$$||u||_{L^q(M)} \le C||u||_{L^2(M)}$$

for every eigenfunction u of the Laplacian on M.

Assumption (12) is minimal in the same sense as the analogous assumption in terms of ν_M .

Estimate for the growth of constant in the $L^q(M)$ bound for eigenfunctions in terms of the eigenvalue.

Proposition

Assume that

$$\lim_{s \to 0} \frac{s}{\nu_M(s)} = 0. \tag{12}$$

Define

$$\Theta(s) = \sup_{r \in (0,s)} \frac{r}{\nu_M(r)} \qquad \text{for } s \in (0,\mathcal{H}^n(M)/2].$$

Then $||u||_{L^q(M)} \le C||u||_{L^2(M)}$ for any $q \in (2, \infty)$ and for every eigenfunction u of the Laplacian on M associated with the eigenvalue γ , where

$$C(\nu_M, q, \gamma) = \frac{C_1}{(\Theta^{-1}(C_2/\gamma))^{\frac{1}{2} - \frac{1}{q}}},$$

and $C_1 = C_1(q, \mathcal{H}^n(M))$ and $C_2 = C_2(q, \mathcal{H}^n(M))$.

Example.

Assume that there exists $\beta \in [(n-2)/n, 1)$ such that

$$\nu_M(s) \ge C s^{\beta}$$
.

Then there exists a constant $C = C(q, \mathcal{H}^n(M))$ such that

$$||u||_{L^q(M)} \le C\gamma^{\frac{q-2}{2q(1-\beta)}} ||u||_{L^2(M)}$$

for every eigenfunction \boldsymbol{u} of the Laplacian on M associated with the eigenvalue $\gamma.$

A digression on the discreteness of the spectrum of the Laplace operator.

Condition

$$\lim_{s\to 0}\frac{s}{\nu_M(s)}=0\,,$$

which implies $L^q(M)$ bounds for eigenfunctions, can be shown to be equivalent to the compactness of the embedding

$$W^{1,2}(M) \rightarrow L^2$$
.

When M is complete, this condition is also equivalent to the discreteness of the spectrum of the Laplacian on M.

Theorem 1: Discreteness of the spectrum

Let ${\cal M}$ be a complete Riemannian manifold. Then the spectrum of the Laplacian on ${\cal M}$ is discrete if and only if

$$\lim_{s\to 0}\frac{s}{\nu_M(s)}=0.$$

Back to bounds for eigenfunctions.

Consider now the case when $q = \infty$, namely the problem of the boundedness of the eigenfunctions.

Theorem 3: boundedness of eigenfunctions

Assume that

$$\int_0 \frac{ds}{\nu_M(s)} < \infty. \tag{13}$$

Then there exists a constant C such that

$$||u||_{L^{\infty}(M)} \le C||u||_{L^{2}(M)} \tag{14}$$

for every eigenfunction u of the Laplacian on M.

The condition

$$\int_0 \frac{ds}{\nu_M(s)} < \infty \tag{15}$$

is essentially sharp in Theorem 4.

This is the content of the next result.

Recall that $f \in \Delta_2$ near 0 if there exist constants c and s_0 such that

$$f(2s) \le cf(s)$$
 if $0 < s \le s_0$. (16)

Theorem 4: sharpness of condition (15)

Let ν be a non-decreasing function, vanishing only at 0, such that

$$\lim_{s \to 0} \frac{s}{\nu(s)} = 0, \tag{17}$$

but

$$\int_0 \frac{ds}{\nu(s)} = \infty. \tag{18}$$

Assume in addition that $\nu \in \Delta_2$ near 0 and

$$\frac{\nu(s)}{s^{\frac{n-2}{n}}}$$
 is equivalent to a non-decreasing function near 0, (19)

for some $n \geq 3$. Then, there exists an n-dimensional Riemannian manifold M fulfilling

$$\nu_M(s) \approx \nu(s)$$
 as $s \to 0$, (20)

and such that the Laplacian on ${\cal M}$ has an unbounded eigenfunction.

Assumption (19) is consistent with the fact that $\nu_M(s) \approx s^{\frac{n-2}{n}}$ near 0 if the geometry of M is nice (e.g. M compact), and that $\nu_M(s) \to 0$ faster than $s^{\frac{n-2}{n}}$ otherwise.

Owing to the inequality

$$rac{1}{
u_M(s)} \leq \int_s^{\mathcal{H}^n(M)/2} rac{dr}{\lambda_M(r)^2} \qquad ext{for } s \in (0,\mathcal{H}^n(M)/2),$$

Theorem 4 has the following corollary in terms of isoperimetric inequalities.

Corollary 3

Assume that

$$\int_0 \frac{s}{\lambda_M(s)^2} \, ds < \infty \,. \tag{21}$$

Then there exists a constant C such that

$$||u||_{L^{\infty}(M)} \le C||u||_{L^{2}(M)} \tag{22}$$

for every eigenfunction u of the Laplacian on M.

Assumption (21) is sharp in the same sense as the analogous assumption in terms of ν_M .

Estimate for the growth of constant in the $L^{\infty}(M)$ bound for eigenfunctions in terms of the eigenvalue.

Proposition

Assume that

$$\int_0 \frac{ds}{\nu_M(s)} < \infty.$$

Define

$$\Xi(s) = \int_0^s \frac{dr}{\nu_M(r)} \qquad \text{for } s \in (0, \mathcal{H}^n(M)/2].$$

Then $||u||_{L^{\infty}(M)} \leq C||u||_{L^{2}(M)}$ for every eigenfunction u of the Laplacian on M associated with the eigenvalue γ , where

$$C(\nu_M,\gamma) = \frac{C_1}{\left(\Xi^{-1}(C_2/\gamma)\right)^{\frac{1}{2}}},$$

and C_1 and C_2 are absolute constants.

Example.

Assume that there exists $\beta \in [(n-2)/n, 1)$ such that

$$\nu_M(s) \ge C s^{\beta}$$
.

Then there exists an absolute constant C such that

$$||u||_{L^{\infty}(M)} \le C\gamma^{\frac{1}{2(1-\beta)}}||u||_{L^{2}(M)}$$

for every eigenfunction \boldsymbol{u} of the Laplacian on M associated with the eigenvalue $\gamma.$

Example 4 Manifold of revolution, with metric

$$ds^2 = dr^2 + \varphi(r)^2 d\omega^2 \tag{23}$$

and $\varphi:[0,\infty)\to[0,\infty)$ such that

$$\varphi(r) = e^{-r^{\alpha}}$$
 for large r . (24)

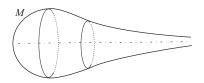


FIGURE: A manifold of revolution

The larger is α , the better is M.

One can show that

$$\lambda_M(s) pprox s ig(\log(1/s) ig) ig)^{1-1/lpha}$$
 near 0,

and

$$u_M(s) pprox \bigg(\int_s^{\mathcal{H}^n(M)/2} rac{dr}{\lambda_M(r)^2} \bigg)^{-1} pprox s ig(\log(1/s) ig)^{2-2/lpha} \qquad ext{near 0}.$$

The criteria involving λ_M tell us that all eigenfunctions of the Laplacian on M belong to $L^q(M)$ for $q < \infty$ if

$$\alpha > 1, \tag{25}$$

and to $L^{\infty}(M)$ if

$$\alpha > 2.$$
 (26)

The same conclusions follow via the criteria involving ν_M .

Moreover, if $\alpha > 1$, then there exist constants $C_1 = C_1(q)$ and $C_2 = C_2(q)$ such that

$$||u||_{L^q(M)} \le C_1 e^{C_2 \gamma^{\frac{\alpha}{2\alpha-2}}} ||u||_{L^2(M)}$$

for any eigenfunction u of the Laplacian associated with the eigenvalue $\gamma.$

If $\alpha > 2$, then there exist absolute constants C_1 and C_2 such that

$$||u||_{L^{\infty}(M)} \le C_1 e^{C_2 \gamma^{\frac{\alpha}{\alpha-2}}} ||u||_{L^2(M)}$$

for any eigenfunction u associated with γ .

Example 5

Manifolds with clustering submanifolds.

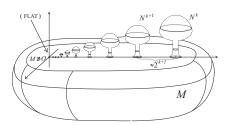


FIGURE: A manifold with a family of clustering submanifolds

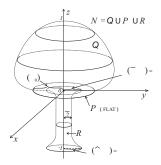


FIGURE: An auxiliary submanifold

In the sequence of mushrooms, the width of the heads and the length of the necks decay like 2^{-k} , the width of the neck decays like $\sigma(2^{-k})$ as $k \to \infty$, where

$$\lim_{s \to 0} \frac{\sigma(s)}{s} = 0.$$

Assume, for instance, that b > 1 and

$$\sigma(s) = s^b$$
 for $s > 0$.

Then the criterion involving λ_M ensures that all eigenfunctions of the Laplacian on M are bounded provided that

$$b < 2$$
.

The criterion involving ν_M yields the boundedness of eigenfunctions under the weaker assumption that

$$b < 3$$
.

This shows that the use of the isocapacitary function can actually lead to sharper conclusions than those obtained via the isoperimetric function.

By the use of ν_M we also get that if b < 3, then there exists a constant C = C(q) such that

$$||u||_{L^q(M)} \le C\gamma^{\frac{q-2}{q(3-b)}} ||u||_{L^2(M)}$$

for every $q \in (2, \infty]$ and for any eigenfunction u of the Laplacian associated with the eigenvalue γ .

Thank you very much for your attention!