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Matrix pth Root

X is a pth root (p ∈ Z
+) of A ∈ C

n×n ⇐⇒ X p = A .

Number of pth roots may be zero, finite or infinite.

Definition

For A ∈ C
n×n with no eigenvalues on R

− = {x ∈ R : x ≤ 0}
the principal pth root, A1/p is unique pth root X with

spectrum in the wedge |arg(λ(X ))| < π/p.
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Matrix pth Root

X is a pth root (p ∈ Z
+) of A ∈ C

n×n ⇐⇒ X p = A .

Number of pth roots may be zero, finite or infinite.

Definition

For A ∈ C
n×n with no eigenvalues on R

− = {x ∈ R : x ≤ 0}
the principal pth root, A1/p is unique pth root X with

spectrum in the wedge |arg(λ(X ))| < π/p.

Definition

For A ∈ C
n×n with no eigenvalues on R

− the

principal logarithm , log(A) , is unique solution of eX = A

with | Im λ(X )| < π.

MIMS Nick Higham Roots of Matrices 2 / 37

http://www.mims.manchester.ac.uk/


Arbitrary Power

Definition

For A ∈ C
n×n with no eigenvalues on R

− and s ∈ [0,∞),
As = es log A, where log A is the principal logarithm.

As =
sin(sπ)

sπ
A

∫

∞

0

(t1/sI + A)−1 dt , s ∈ (0, 1).
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Arbitrary Power

Definition

For A ∈ C
n×n with no eigenvalues on R

− and s ∈ [0,∞),
As = es log A, where log A is the principal logarithm.

As =
sin(sπ)

sπ
A

∫

∞

0

(t1/sI + A)−1 dt , s ∈ (0, 1).

Applications:

Pricing American options (Berridge & Schumacher,

2004).

Finite element discretizations of fractional Sobolev

spaces (Arioli & Loghin, 2009).

Computation of geodesic-midpoints in neural networks

(Fiori, 2008).
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Approximate Diagonalization

If A = XDX−1, D = diag(di), then f (A) = Xf (D)X−1.

OK numerically if X is well conditioned.

For any A, let E = ǫ randn(n), A + E = XDX−1. Then

(Davies, 2007)

f (A) ≈ Xf (D)X−1 .

Especially useful for As.

A Test Problem for Computations of Fractional Powers

of Matrices (Davies, 2008).
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Root Oddities (1)

Turnbull (1927): A3
n = In, where

A4 =









−1 1 −1 1

−3 2 −1 0

−3 1 0 0

−1 0 0 0









.

B2
n = In, where

B4 =









1 1 1 1

0 −1 −2 −3

0 0 1 3

0 0 0 −1









.

Arises in BDF solvers for ODEs.
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Root Oddities (2)

Bambaii & Chowla (1946): Bn+1
n = In where

B4 =









−1 −1 −1 −1

1 0 0 0

0 1 0 0

0 0 1 0









.

Hill (1932): US patent for involutory matrices in

cryptography.

Bauer (2002): “since then the value of mathematical

methods in cryptology has been unchallenged.”

Real square roots of −I:

[

a 1 + a2

−1 −a

]2

=

[

−1 0

0 −1

]

, a ∈ C.
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Markov Models

Discrete-time Markov process with transition probability

matrix P, time unit 1. Unit is 1 year in credit risk

modelling.

Transition matrix for fractional time unit α is Pα.

If P is embeddable, P = eQ for generator Q with

qij ≥ 0 (i 6= j),
∑n

j=1 qij = 0. Then Pα = eαQ.

Problems:

P may not be embeddable.

P1/k may not be a stochastic matrix.

Is there a stochastic root?
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Email from a Power Company

The problem has arisen through proposed

methodology on which the company will incur

charges for use of an electricity network.
...

I have the use of a computer and Microsoft Excel.
...

I have an Excel spreadsheet containing the

transition matrix of how a company’s [Standard &

Poor’s] credit rating changes from one year to the

next. I’d like to be working in eighths of a year, so

the aim is to find the eighth root of the matrix.
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R. B. Israel, J. S. Rosenthal & J. Z. Wei. Finding

generators for Markov chains via empirical

transition matrices, with applications to credit

ratings. Mathematical Finance, 2001.

D. T. Crommelin & E. Vanden-Eijnden. Fitting

timeseries by continuous-time Markov chains: A

quadratic programming approach. J. Comp. Phys.,

2006.

T. Charitos, P. R. de Waal, & L. C. van der Gaag.

Computing short-interval transition matrices of a

discrete-time Markov chain from partially observed

data. Statistics in Medicine, 2008.

M. Bladt & M. Sørensen. Efficient estimation of

transition rates between credit ratings from

observations at discrete time points. Quantitative

Finance, 2009.
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HIV to Aids Transition

Estimated 6-month transition matrix.

Four AIDS-free states and 1 AIDS state.

2077 observations (Charitos et al., 2008).

P =













0.8149 0.0738 0.0586 0.0407 0.0120

0.5622 0.1752 0.1314 0.1169 0.0143

0.3606 0.1860 0.1521 0.2198 0.0815

0.1676 0.0636 0.1444 0.4652 0.1592

0 0 0 0 1













.

Want to estimate the 1-month transition matrix.

Λ(P) = {1, 0.9644, 0.4980, 0.1493,−0.0043}.

MIMS Nick Higham Roots of Matrices 10 / 37

http://www.mims.manchester.ac.uk/


Toolbox of Matrix Functions

Want techniques for evaluating interesting f at matrix

arguments.

Example:

d2y

dt2
+ Ay = 0, y(0) = y0, y ′(0) = y ′

0

⇒ y(t) = cos(
√

At)y0 +
(
√

A
)−1

sin(
√

At)y ′

0,

where
√

A is any square root of A.

MATLAB has expm, logm, sqrtm, funm and ^
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Visser Iteration for A1/2

Xk+1 = Xk + α(A − X 2
k ), X0 = (2α)−1I.

Used with α = 1/2 by Visser (1932) to show positive

operator on Hilbert space has a positive square root.

Enables proof of existence of A1/2 without using

spectral theorem.

Likewise in functional analysis texts, e.g. Riesz &

Sz.-Nagy (1956).

Iteration used computationally by Liebl (1965),

Babuška, Práger & Vitásek (1966), Späth (1966), Duke

(1969), Elsner (1970).

Elsner proves cgce for A ∈ C
n×n with real, positive

eigenvalues if 0 < α ≤ ρ(A)−1/2.
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Visser Convergence

Xk+1 = Xk + α(A − X 2
k ), X0 = (2α)−1I.

Theorem (H, 2008)

Let A ∈ C
n×n and α > 0. If Λ(I − 4α2A) lies in the cardioid

D = {2z − z2 : z ∈ C, |z| < 1 }

then A1/2 exists and Xk → A1/2 linearly.

−4 −3 −2 −1 0 1 2

−2

−1

0

1

2
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Iteration for A1/p

Rice (1982):

Xk+1 = Xk +
1

p
(A − X

p
k ), X0 = 0.

For Hermitian pos def A, 0 ≤ Xk ≤ Xk+1 for all k and

Xk → A1/p.
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Existence of pth Roots

Theorem (Psarrakos, 2002)

A ∈ C
n×n has a pth root iff for every integer ν ≥ 0 no more

than one element of the ascent sequence” d1, d2, . . .
defined by

di = dim(null(Ai)) − dim(null(Ai−1))

lies strictly between pν and p(ν + 1).

For J = J(0) ∈ C
n×n , dim(null(Jk)) = k , k = 0 : n,

{di} = {1, 1, . . . , 1}; no pth root for p ≥ 2.
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Existence of Real pth Roots of Real A

Theorem

A ∈ R
n×n has a real pth root iff it satisfies the ascent

sequence condition and, if p is even, A has an even number

of Jordan blocks of each size for every negative eigenvalue.
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Block Triangular Case

Lemma

Let

A =

[

A11 A12

0 A22

]

∈ C
n×n,

where Λ(A11) ∩ Λ(A22) = ∅. Then any pth root of A has the

form

X =

[

X11 X12

0 X22

]

,

where X
p
ii = Aii , i = 1, 2 and X12 is the unique solution of the

Sylvester equation A11X12 − X12A22 = X11A12 − A12X22.

Proof reduces A to diag(A11, A22).
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Classification of pth Roots of A ∈ C
n×n

Jordan canonical form Z−1AZ = J = diag(J0, J1).
All pth roots of A are given by A = Zdiag(X0, X1)Z

−1, where

X
p
1 = J1 (have characterization),

X
p
0 = J0 (no nice characterization).

History:

Cayley (1858, 1872).

Sylvester (1882, 1883).

Gantmacher (1959).

Higham (1987).
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Stochastic Matrices

A ∈ R
n×n, A ≥ 0, Ae = e.

Theorem

Let A ∈ R
n×n be stochastic. Then

ρ(A) = 1;

1 is a semisimple eigenvalue of A with eigenvector e;

if A is irreducible, then 1 is a simple eigenvalue of A.
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Nonneg Root may not be Stochastic

X p = A and X ≥ 0 imply that ρ(X ) = ρ(A)1/p = 1 is an ei’val

with ei’vec v ≥ 0 (Perron–Frobenius) but not that v = e:

A =





1/2 1/2 0

1/2 1/2 0

0 0 1



 , Λ(A) = {1, 1, 0}.

A = X 2k for

X =





0 0 2−1/2

0 0 2−1/2

2−1/2 2−1/2 0



 , Λ(X ) = {1, 0,−1}.
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. . . but OK for Irreducible

Lemma

Let A ∈ R
n×n be an irreducible stochastic matrix. Then for

any nonnegative X with X p = A, Xe = e.
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. . . but OK for Irreducible

Lemma

Let A ∈ R
n×n be an irreducible stochastic matrix. Then for

any nonnegative X with X p = A, Xe = e.

In fact . . .

Theorem

Let C ≥ 0 be irreducible with e’vec x > 0 corr. to ρ(C).
Then A = ρ(C)−1D−1CD is stochastic, where D = diag(x).
Moreover, if C = Y p with Y nonnegative then A = X p,

where X = ρ(C)−1/pD−1YD is stochastic.
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M-Matrix Connection

Definition of Nonsingular M-matrix A ∈ R
n×n

A = sI − B with B ≥ 0 and s > ρ(B).
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M-Matrix Connection

Definition of Nonsingular M-matrix A ∈ R
n×n

A = sI − B with B ≥ 0 and s > ρ(B).

Theorem

If the stochastic matrix A ∈ R
n×n is the inverse of an

M-matrix then A1/p exists and is stochastic for all p.

Proof

Since M = A−1 is “M”, Re λi(M) > 0 so M1/p exists.

M1/p is an M-matrix for all p (Fiedler & Schneider,

1983)

Thus A1/p = (M1/p)−1 ≥ 0 for all p, and A1/pe = e

(shown via JCF arguments), so A1/p is stochastic.
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Example 1

A =









1
1
2

1
2

...
...

. . .
1
n

1
n

· · · 1
n









.

A−1 =













1

−1 2

0 −2 3
...

...
. . .

. . .

0 0 · · · −(n − 1) n













.

A−1 is an M-matrix so A1/p is stochastic for all p > 0.
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Example 2

Y 2 =









0 0 0 1

0 0 1 1

0 1 1 1

1 1 1 1









2

=









1 1 1 1

1 2 2 2

1 2 3 3

1 2 3 4









= M .

λk(M) = 1
4

sec(kπ/(2n + 1))2, k = 1 : n.

Positive e’vec x for ρ(M).

A = ρ(M)−1D−1MD is stochastic, where D = diag(x),
has stochastic sq. root X = ρ(M)−1/2D−1YD.

Note: X is indefinite.

But A has another stochastic sq. root: A1/2, by previous

theorem!
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Example 2 cont.

For n = 4:








0.1206 0.2267 0.3054 0.3473

0.0642 0.2412 0.3250 0.3696

0.0476 0.1790 0.3618 0.4115

0.0419 0.1575 0.3182 0.4825









=









0 0 0 1.0000

0 0 0.4679 0.5321

0 0.2578 0.3473 0.3949

0.1206 0.2267 0.3054 0.3473









2

=









0.2994 0.2397 0.2315 0.2294

0.0679 0.3908 0.2792 0.2621

0.0361 0.1538 0.4705 0.3396

0.0277 0.1117 0.2626 0.5980









2

.
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Facts
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Facts

A stochastic matrix may have no pth root for any p.
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Facts

A stochastic matrix may have no pth root for any p.

A stochastic matrix may have pth roots but no

stochastic pth root.
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Facts

A stochastic matrix may have no pth root for any p.

A stochastic matrix may have pth roots but no

stochastic pth root.

A stochastic matrix may have a stochastic principal pth

root as well as a stochastic nonprimary pth root.
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Facts

A stochastic matrix may have no pth root for any p.

A stochastic matrix may have pth roots but no

stochastic pth root.

A stochastic matrix may have a stochastic principal pth

root as well as a stochastic nonprimary pth root.

A stochastic matrix may have a stochastic principal pth

root but no other stochastic pth root.
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Facts

A stochastic matrix may have no pth root for any p.

A stochastic matrix may have pth roots but no

stochastic pth root.

A stochastic matrix may have a stochastic principal pth

root as well as a stochastic nonprimary pth root.

A stochastic matrix may have a stochastic principal pth

root but no other stochastic pth root.

The principal pth root of a stochastic matrix with

distinct, real, positive eigenvalues is not necessarily

stochastic.
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Facts cont.

A (row) diagonally dominant stochastic matrix may not

have a stochastic principal pth root.

A =





9.9005 × 10−1 9.9005 × 10−7 9.9500 × 10−3

9.9005 × 10−7 9.9005 × 10−1 9.9500 × 10−3

4.9750 × 10−3 4.9750 × 10−3 9.9005 × 10−1



 .

None of the 8 square roots of A is nonnegative.
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Facts cont.

A (row) diagonally dominant stochastic matrix may not

have a stochastic principal pth root.

A =





9.9005 × 10−1 9.9005 × 10−7 9.9500 × 10−3

9.9005 × 10−7 9.9005 × 10−1 9.9500 × 10−3

4.9750 × 10−3 4.9750 × 10−3 9.9005 × 10−1



 .

None of the 8 square roots of A is nonnegative.

A stochastic matrix whose principal pth root is not

stochastic may still have a primary stochastic pth root.

A =





0 1 0

0 0 1

1 0 0



 =





0 0 1

1 0 0

0 1 0





2

= X 2.

Λ(A) = Λ(X ) = {e±2π/3, 1}.
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Embeddability Problem

When can nonsingular stochastic A be written A = eQ with

qij ≥ 0 for i 6= j and
∑

j qij = 0, i = 1 : n?

Kingman (1962): holds iff for every positive integer p there

exists some stochastic X such that A = X p.

Conditions (e.g.)

det(A) > 0

det(A) ≤ ∏

i aii

are necessary for embeddability of a stochastic A but not

necessary for existence of a stochastic pth root for a

particular p.

New classes of embeddable matrices.
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Inverse Eigenvalue Approach

Karpelevič (1951) determined

Θn = {λ : λ ∈ Λ(A), A ∈ R
n×n stochastic }.

Theorem

Θn ⊆ unit disk and intersects unit circle at e2iπa/b, all a, b s.t.

0 ≤ a < b ≤ n. Boundary of Θn is curvilinear arcs defined

by

λq(λs − t)r = (1 − t)r ,

(λb − t)d = (1 − t)dλq,

where 0 ≤ t ≤ 1, and b, d , q, s, r ∈ Z
+ determined from

certain specific rules.
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n = 3, 4

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Θ
3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Θ
4
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Necessary Condition

If A and X are stochastic and X p = A then it is necessary

that

λi(A) ∈ Θp
n := {λp : λ ∈ Θn} for all i .
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Powers 2, 3, 4, 5 for n = 3

−1 0 1
−1

−0.5

0

0.5

1

Θ
3

4

−1 0 1
−1

−0.5

0

0.5

1

Θ
3

2

−1 0 1
−1

−0.5

0

0.5

1

Θ
3

5

−1 0 1
−1

−0.5

0

0.5

1

Θ
3

3
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Powers 2, 3, 4, 5 for n = 4

−1 0 1
−1

−0.5

0

0.5

1

Θ
4

4

−1 0 1
−1

−0.5

0

0.5

1

Θ
4

2

−1 0 1
−1

−0.5

0

0.5

1

Θ
4

5

−1 0 1
−1

−0.5

0

0.5

1

Θ
4

3
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Example

A =









1/3 1/3 0 1/3

1/2 0 1/2 0

10/11 0 0 1/11

1/4 1/4 1/4 1/4









.

−1 0 1
−1

−0.5

0

0.5

1
p = 12

−1 0 1
−1

−0.5

0

0.5

1
p = 52

A cannot have a stochastic 12th root, but may have a

stochastic 52nd root. None of the 52nd roots is stochastic;

A1/12 and A1/52 both have negative elements.
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Dependence on n

Θ3 ⊆ Θ4 ⊆ Θ5 ⊆ . . . .

# points at which Θn intersects unit circle increases

rapidly with n: 23 intersection points for Θ8 and 80 for

Θ16.

As n increases the region Θn and its powers tend to fill

the unit circle.
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Practicalities

HIV-Aids matrix has spectrum

Λ(P) = {1, 0.9644, 0.4980, 0.1493,−0.0043}.

No real pth root for even p.

Practitioners regularize the principal pth root—several

approaches.

Practitioners probably unaware of existence of a

non-principal stochastic root.
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Conclusions

Literature on roots of stochastic matrices emphasizes

computational aspects over theory.

Identified two classes of stochastic matrices for which

A1/p is stochastic for all p.

Wide variety of possibilities for existence and

uniqueness, in particular re. primary versus nonprimary

roots.

Gave some necessary spectral conditions for

existence.

More work needed on theory and algorithms.

N. J. Higham and L. Lin. On pth roots of stochastic

matrices. MIMS EPrint 2009.21, March 2009.
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