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1 Introduction and main results

An inequality of the Markov-type is an inequality of the form ‖f (ν)‖ ≤ C‖f‖ for
f in the linear space Pn of all algebraic polynomials with complex coefficients of
degree at most n. Here f (ν) denotes the νth derivative. The best possible constant
C depends on n, ν, and the norm ‖ · ‖, and the determination and estimation of
C has been the subject of numerous investigations since Andrei Markov’s paper
[27] (ν = 1 and ‖ · ‖ being the L∞ norm on a bounded interval) and paper [28]
by his brother Vladimir Markov (ν ≥ 2 and the same L∞ norm). We refer to [4],
[19], [30], [31] for more on the early history and for recent developments.

This paper is devoted to the constant C in the two cases where ‖ · ‖ is the
L2 norm with the Laguerre weight tαe−t on (0,∞) or the L2 norm with the
Gegenbauer (= ultraspherical) weight (1−t2)α on (−1, 1). Thus, we are interested

in the best possible constants λ
(ν)
n such that

‖f (ν)‖ ≤ λ(ν)
n ‖f‖ for all f ∈ Pn (1)
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where

‖f‖2 =

∫ ∞
0

|f(t)|2tαe−t dt (2)

and in the best possible constants γ
(ν)
n for which

‖f (ν)‖ ≤ γ(ν)
n ‖f‖ for all f ∈ Pn (3)

provided

‖f‖2 =

∫ 1

−1

|f(t)|2(1− t2)α dt. (4)

In both cases α > −1 is a real number. We consider α as fixed and therefore
suppress dependence on α in our notations.

We remark that, as already observed in [10], [33], [34], the problem is trivial for
the Hermite weight e−t

2
on (−∞,∞). Indeed, in that case the normalized Hermite

polynomials hk constitute an orthonormal basis {h0, h1, . . . , hn} in Pn and the

best possible constant C, which will be denoted by η
(ν)
n , is the spectral norm of

the matrix representation of the operator f 7→ f (ν) in this basis. The kth column
of this matrix consists of the coefficients in h

(ν)
k = c0,kh0 + c1,kh1 + . . . + ck,khk,

and since

h
(ν)
k =

√
2νν!

(
k

ν

)
hk−ν =

√
2ν

Γ(k + 1)

Γ(k − ν + 1)
hk−ν ,

the only nonzero entries of this matrix are on the νth superdiagonal, the maximum
modulus of these entries being

η(ν)
n =

√
2ν

Γ(n+ 1)

Γ(n− ν + 1)

for 1 ≤ ν ≤ n. In particular, limn→∞ η
(ν)
n /nν/2 = 2ν/2.

In 1932, Erhard Schmidt [32] considered the case of the Legendre weight (that

is, the Gegenbauer weight with α = 0) and discovered that γ
(1)
n /n2 → 1/π. Hille,

Szegö, and Tamarkin [21] studied the Legendre case with the norm (4) replaced

by its Lp analogue and also obtained that γ
(1)
n /n2 → 1/π for p = 2, mentioning

that this result was already announced without proof in [32]. In 1944, Schmidt
[33] derived, again under the assumption that α = 0, the sharper asymptotic
formulas

λ(1)
n =

2n+ 1

π

(
1− π2

24(2n+ 1)2
+

Rn

(2n+ 1)4

)−1

with −8/3 < Rn < 4/3 for n ≥ 2 and

γ(1)
n =

(n+ 3/2)2

π

(
1− π2 − 3

12(n+ 3/2)2
+

Rn

(n+ 3/2)4

)−1
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with −6 < Rn < 13 for n ≥ 5. Thus, for α = 0 we have

lim
n→∞

λ
(1)
n

n
=

2

π
, lim

n→∞

γ
(1)
n

n2
=

1

π
. (5)

Subsequently, Turán [39] showed that in the case α = 0 the exact value of λ
(1)
n is

λ(1)
n =

(
2 sin

π

4n+ 2

)−1

for all n ≥ 1. Shampine [34] studied second derivatives and established the
estimate

n2

k2
0

√
1− k4

0

2n
+

k4
0

6n2
≤ λ(2)

n ≤
n2

k2
0

for α = 0, where k0 = 1.8751041 . . . is the smallest positive root of the equation
1 + cos k cosh k = 0. Clearly, this implies that λ

(2)
n /n2 → 1/k2

0. Shampine also

proved that γ
(2)
n /n4 → 1/(4k2

0) for α = 0. Papers [11], [12], [14] are concerned

with λ
(ν)
n if either ν or α are arbitrary. In [11] it is shown that if α = 0, then

1

2Γ(ν + 1)

√
4

2ν + 1
≤ lim inf

n→∞

λ
(ν)
n

nν
≤ lim sup

n→∞

λ
(ν)
n

nν
≤ 1

2Γ(ν + 1)

√
2ν

2ν − 1
,

paper [12] contains the bounds

1√
(α + 1)(α + 3)

≤ lim inf
n→∞

λ
(1)
n

n
≤ lim sup

n→∞

λ
(1)
n

n
≤ 1√

2(α + 1)

for arbitrary α > −1, and the result of [14] is that λ
(1)
n /n converges to the inverse

of the smallest positive zero of the Bessel function J(α−1)/2. We also want to
mention paper [29] which deals with (1), (2) under the assumption that f ∈ Pn
has exact degree n and nonnegative real coefficients. Finally, see the very recent
paper [24] by Kroó for the exact value of γ

(1)
n in the case α = 0.

Here are our main results.

Theorem 1.1 We have

lim
n→∞

λ
(ν)
n

nν
= ‖Lν‖∞, lim

n→∞

γ
(ν)
n

n2 ν
= ‖Gν‖∞

where Lν and Gν are the Volterra integral operators on L2(0, 1) that are defined
by

(Lνf)(x) =
1

Γ(ν)

∫ 1

x

xα/2y−α/2(y − x)ν−1f(y) dy,

(Gνf)(x) =
1

2ν−1Γ(ν)

∫ 1

x

x1/2+αy1/2−α(y2 − x2)ν−1f(y) dy

and ‖ · ‖∞ denotes the operator norm.
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Note that ‖Lν‖∞ = ‖L∗ν‖∞ and ‖Gν‖∞ = ‖G∗ν‖∞ where

(L∗νf)(x) =
1

Γ(ν)

∫ x

0

x−α/2yα/2(x− y)ν−1f(y) dy,

(G∗νf)(x) =
1

2ν−1Γ(ν)

∫ x

0

x1/2−αy1/2+α(x2 − y2)ν−1f(y) dy.

For α = 0 and the weight (2), this theorem was established in [5], and in the
case where α = 0 and ν ≤ 2, such a result is implicitly already in Shampine’s
papers [34], [35]. The message of Theorem 1.1 is the existence of the limits and
the identification of the limits as the operator norms of explicitly given integral
operators. The following result shows that, rather surprisingly, the Gegenbauer
case can be completely reduced to the Laguerre case. In the form λ

(ν)
n /γ

(ν)
n ∼

2ν/nν as n→∞ and for α = 0, this result was already conjectured by Shampine
[34].

Theorem 1.2 The norms of Lν and Gν are related by the equality

‖Gν‖∞ =
1

2ν
‖Lν‖∞.

Finding explicit and useful exact expressions for the norms ‖Lν‖∞ for general
ν and α seems to be impossible. For α = 0, the problem is well known at least
since [20] and has been studied by many authors. Numerical values, tight bounds,
and the asymptotic formula ‖Lν‖∞ ∼ 1/(2Γ(ν + 1)) (ν → ∞) can be found in
[1], [5], [17], [18], [23], [25], [26], [38]. Paper [5] contains a sketch of the recent
history of the subject. The notation xν ∼ yν means that xν/yν → 1.

The following result gives a complete answer for ν = 1 and general α > −1.
For τ > −1, let Jτ be the Bessel function

Jτ (x) =
∞∑
k=0

(−1)k

Γ(k + 1)Γ(k + 1 + τ)

(x
2

)2k+τ

.

The emergence of eigenvalues of differential operators in connection with the
singular values of integral operators is standard, and accordingly zeros of Bessel
functions have occurred in this context in several places, in [2], [3], [14], [15], [16],

[20] for example. In particular, in [14] it was shown that the limit of λ
(1)
n /n is the

inverse of the first positive zero of J(α−1)/2. The method used there is different
from the arguments we will employ here.

Theorem 1.3 A number µ > 0 is a singular value of the operator L1 if and
only if J(α−1)/2(1/µ) = 0 and a singular value of the operator G1 if and only if
J(α−1)/2(1/(2µ)) = 0. In particular, ‖L1‖∞ is the inverse of the smallest positive
zero of J(α−1)/2 and ‖G1‖∞ is half of the inverse of the first positive zero of
J(α−1)/2.
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Note that (5) follows from Theorems 1.1 and 1.3 for α = 0. For general
ν ≥ 1 and α > −1, ‖Lν‖∞ can be shown to be the largest µ > 0 such that the
differential equation

(−1)ν(x−αg(ν)(x))(ν) =
1

µ2
x−αg(x) (6)

with the boundary conditions

g(j)(0) = 0 and (x−αg(ν)(x))(j)|x=1 = 0 for j = 0, 1, . . . , ν − 1 (7)

has a nontrivial solution. A function g satisfies (6), (7) if and only if the function
f given by f(x) = x−α/2g(x) is an L2 solution of the equation L∗νLνf = µ2f .

The first of the following two theorems gives asymptotically sharp bounds
and hence also the asymptotics of the norms ‖Lν‖∞ as ν → ∞, and the sec-
ond provides us with even better bounds for these norms. We define numbers
Cν ,Γν(α), Iν(α) by

Cν =
1

Γ(ν)
, Γν(α)2 =

Γ(α + 1)Γ(2ν − 1)

Γ(α + 2ν)
,

Iν(α)4 =

∫ 1

0

x−α
∫ x

0

y−α
(∫ y

0

tα (x− t)ν−1 (y − t)ν−1 dt

)2

dy dx.

Theorem 1.4 For every α > −1 and ν ≥ 1,

CνΓν(α)√
2ν + α + 1

≤ ‖Lν‖∞ ≤
CνΓν(α)√

2ν
. (8)

In particular, as ν →∞,

‖Lν‖∞ ∼
CνΓν(α)√

2ν
∼
√

Γ(α + 1)

21+α/2

1

Γ(ν) ν1+α/2
. (9)

Theorem 1.5 Suppose ν ≥ 1 and α > −1. Let k ≥ 1 be the integer given by

k <
Γν(α)4

8 ν2Iν(α)4
≤ k + 1.

Then

C2
νΓν(α)2

2(k + 1)ν

(
1 +

√
1

k

(
8 (k + 1)ν2Iν(α)4

Γν(α)4
− 1

) )
≤ ‖Lν‖2∞ ≤

√
2C2

νIν(α)2.

Theorem 1.5 is illustrated by three tables. In the first two tables, the indi-
cated digits are correct because the two bounds coincide in these digits. The third
table concerns the case α = 100 and shows the value of the number k and the
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α = −99/100 α = −1/2
ν = 2 4.962172 . . . 0.5128 . . .
ν = 3 2.02007003 . . . 0.18357 . . .
ν = 4 0.582089421 . . . 0.0486021 . . .
ν = 10 6.055474637 . . .× 10−6 3.941630 . . .× 10−7

ν = 20 1.272658121668 . . .× 10−17 6.9354560 . . .× 10−19

ν = 30 1.426637958642 . . .× 10−31 7.0212160 . . .× 10−33

The values of ‖Lν‖∞ for several choices of ν and α.

α = 1/2 α = 1 α = 5
ν = 2 0.190 . . . 0.139 . . . 0.034 . . .
ν = 3 0.05502 . . . 0.0368 . . . 0.0055 . . .
ν = 4 0.012512 . . . 0.00782 . . . 0.00077 . . .
ν = 10 6.3093 . . .× 10−8 3.15873 . . .× 10−8 6.839 . . .× 10−10

ν = 20 7.8023 . . .× 10−20 3.290333 . . .× 10−20 1.996116 . . .× 10−22

ν = 30 6.4361031 . . .× 10−34 2.4538736 . . .× 10−34 6.882594 . . .× 10−37

The values of ‖Lν‖∞ for another set of choices of ν and α.

ν = 1 k = 51 0.0098 < ‖Lν‖∞ < 0.0263
ν = 2 k = 10 0.00020 < ‖Lν‖∞ < 0.00038
ν = 3 k = 5 4.013× 10−6 < ‖Lν‖∞ < 6.040× 10−6

ν = 4 k = 3 7.422× 10−8 < ‖Lν‖∞ < 9.932× 10−8

ν = 10 k = 1 1.803× 10−18 < ‖Lν‖∞ < 1.832× 10−18

ν = 20 k = 1 9.038× 10−37 < ‖Lν‖∞ < 9.044× 10−37

ν = 30 k = 1 1.24847× 10−55 < ‖Lν‖∞ < 1.24858× 10−55

The values of k and the bounds delivered by Theorem 1.5 for α = 100.

two bounds from Theorem 1.5 for several values of ν. For α = 0, numerical val-
ues for ‖Lν‖∞ obtained on the basis of three completely different computational
strategies are in [18], [38], [25], and [5]. Notice that the case ν = 1 is settled by
Theorem 1.3.

This paper is a continuation of our paper [5]. The approach used in [5] and
here is based on two ideas. The first is from [10] and consists in representing
the operator Dν : Pn → Pn, f 7→ f (ν) by a matrix in an orthogonal basis in Pn
which is formed by orthogonal polynomials. The best constant in question is
then just the operator norm and thus the maximal singular value of this matrix
on Cn+1 with the `2 norm. Schmidt [33] and Shampine [34], [35] did not work
with the matrix of the operator Dν but rather with the maximal eigenvalue of the
symmetric matrix representing (Dν)∗Dν . Since those symmetric matrices become
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quite complicated as ν increases, we have the limitation to ν = 1 and ν = 2 in
[33], [34], [35].

The second idea goes back to Harold Widom [40], [41], [42] and indepen-
dently again to Lawrence Shampine [34], [35]. They proposed that in order to
study spectral properties of a sequence of n × n matrices one could replace the
matrices by integral operators with piecewise constant kernels on L2(0, 1) and
then show that, after appropriate scaling, these integral operators converge to
some limiting integral operator as n goes to infinity. Interestingly, Lao and Whit-
ley [25] proceeded in the reverse direction: they approximated Volterra integral
operators by integral operators with piecewise constant kernels and thus by ma-
trices and then numerically computed the norm of the matrices in order to get
approximations for the norm of the integral operators. That we can go much
further than Schmidt and Shampine is based on the exploitation of the fact that
the replacement of matrices by integral operators is an algebraic homomorphism.
Thus, we do not replace (Dν)∗Dν by an integral operator but rather transform
the sole D into an integral operator Kn and then simply prove that Kn → K in
order to conclude that (Kν

n)∗Kν
n → (Kν)∗Kν .

Finally, we should remark that in contrast to [5] (and [6] and [7]) the matrices
we are encountering here are in general no longer Toeplitz.

The paper is organized as follows. In Sections 2 and 3 we derive the matrix
representations of the operator of differentiation in orthogonal bases formed by
Laguerre and Gegenbauer polynomials. In Section 4 we pass from matrices to
integral operators and prove Theorems 1.1 and 1.2. Section 5 contains the proof
of Theorem 1.3. In Section 6 we present the proof of Theorems 1.4 and 1.5.

We have not been able to find the asymptotics of the entries of the matrix
representation of the operator of differentiation in Jacobi polynomials, that is,
with the weight (4) replaced by (1 − t)α1(1 + t)α2 . The entries themselves were
computed in [9]. However, the results of Sections 4 to 6 are all proved in a
setting that is more general than necessary in order to dispose of the Laguerre
and Gegenbauer cases. In this way we can treat these two cases simultaneously
on the one hand, and if some day it will turn out that for Jacobi weights the
asymptotic behavior of the entries is of the form (18), then our results will at
once cover the Jacobi case on the other. In particular, the theorems proved in
Sections 4 to 6 are more general than Theorems 1.1 to 1.5.

Acknowledgement. We thank Hermann Brunner for a useful discussion and
his valuable hints to the literature on norms of Volterra operators.
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2 Laguerre polynomials

Fix α > −1. The kth Laguerre polynomial is

Rk(t) =
1

Γ(k + 1)
t−αet

dk

dtk
(
tk+αe−t

)
and the kth normalized Laguerre polynomial is given by

rk(t) =

√
Γ(k + 1)

Γ(k + α + 1)
Rk(t).

The set E = {r0, r1, . . . , rn} is an orthonormal basis in Pn with the norm (2).
Using the well known identity R′k = −R0 − R1 − . . . − Rk−1 we obtain that, for
0 ≤ k ≤ n,

r′k =
k−1∑
j=0

cjkrj with cjk = −

√
Γ(j + α + 1)

Γ(j + 1)

Γ(k + 1)

Γ(k + α + 1)
. (10)

Consequently, the operator Pn → Pn, f 7→ f ′ is in the basis E represented by the
matrix

Dn+1 =


0 c01 c02 . . . c0n

0 c12 . . . c1n
. . .

cn−1,n

0

 . (11)

The best constant λ
(ν)
n in (1) is therefore just the norm of Dν

n+1 as an operator
on Cn+1 with the `2 norm. We may clearly ignore the minus sign in (10), and
hence we consider

An+1 = (ajk)
n
j,k=0 with ajk = −cjk

instead of Dn+1. Stirling’s formula implies that if ξ and η are real numbers, then

Γ(m+ ξ)

Γ(m+ η)
= mξ−η (1 +O (1/m)) as m→∞. (12)

Thus, for the nonzero entries of An+1 we have

ajk = jα/2k−α/2 (1 +O (1/j)) (1 +O (1/k)) . (13)
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3 Gegenbauer polynomials

Fix α > −1 and consider Pn with the norm (4). This time an orthonormal basis
F = {p0, p1, . . . , pn} in Pn is given by the normalized Gegenbauer polynomials

pk(t) =

√
(2k + 2α + 1)Γ(k + 1)Γ(k + 2α + 1)

22α+1Γ(k + α + 1)2
Pk(t)

where Pk is the polynomial

Pk(t) =
(−1)k

2kΓ(k + 1)
(1− t2)−α dk

dtk
[
(1− t2)k+α

]
.

Finding the coefficients cjk in the decomposition

p′k =
k−1∑
j=0

cjkpj

is not as easy as in the Laguerre case. This computation can be found in [8] or
[9], where it was shown that cjk = 0 if j + k is even and

cjk =
√

(2j + 2α + 1)(2k + 2α + 1)

√
Γ(j + 2α + 1)

Γ(j + 1)

Γ(k + 1)

Γ(k + 2α + 1)
(14)

if j + k is odd. With these cjk’s, the matrix Dn+1 representing the operator of
differentiation in the basis F is of the form (11). Again the operator norm of

Dν
n+1 coincides with the best possible constant γ

(ν)
n in (3).

To come up with the complications caused by the chessboard structure of
Dn+1, we assume that n is odd and put n + 1 = 2m. Note that, obviously,

γ
(ν)
n−1 ≤ γ

(ν)
n ≤ γ

(ν)
n+1 for all n, so that it suffices to prove Theorem 1.1 in the case

where the limit is taken over odd n only. The chessboard matrix Dn+1 is unitarily
equivalent through permutation matrices to the matrix

D̃n+1 =

(
0 Am
Bm 0

)
where Am and Bm are the m×m matrices


c01 c03 . . . c0,2m−1

c23 . . . c2,2m−1

. . .
...
c2m−2,2m−1

 ,


0 c12 c14 . . . c1,2m−2

0 c34 . . . c3,2m−2

. . .
...

. . . c2m−3,2m−2

0

 ,
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respectively. It follows that D2
n+1, D

3
n+1, D

4
n+1, . . . are unitarily equivalent to(

AmBm 0
0 BmAm

)
,

(
0 AmBmAm

BmAmBm 0

)
,(

AmBmAmBm 0
0 BmAmBmAm

)
, . . . . (15)

The operator norms of these matrices are the maximum of the operator norms of
the two nonzero blocks.

Writing Am = (ajk)
m−1
j,k=0 and Bm = (bjk)

m−1
j,k=0 we have

ajk = c2j,2k+1, bjk = c2j+1,2k.

From (12) and (14) we therefore obtain that

ajk = 4 j1/2+αk1/2−α (1 +O (1/j)) (1 +O (1/k)) (16)

for the nonzero entries of Am and that the nonzero entries bjk are also equal to
the right-hand side of (16).

4 From matrices to integral operators

Our task is to find the asymptotic behavior of the norms of products of upper-
triangular N × N matrices AN whose entries are of the form (13) and (16). As
already said, we tackle this problem by having recourse to an idea by Widom
[40], [41], [42] and Shampine [34], [35], which consists in replacing the matrices
by integral operators with piecewise constant kernels and subsequently analyz-
ing whether the sequence of integral operators converges to a limiting integral
operator. This approach was also pursued in [5], [6], [7].

The operator norm ‖A‖∞ of a matrix or an operator A is defined as the supre-
mum of ‖Ax‖ over all x of norm 1. All concrete operators A we are encountering
in this paper are compact operators on a separable Hilbert space and hence their
operator norm is simply the largest singular value, that is, the positive square
root of the largest eigenvalue of A∗A, where A∗ stands for the adjoint operator. In
linear algebra, the operator norm is called the spectral norm. A compact operator
A on a separable Hilbert space is said to be a Hilbert-Schmidt operator if

∑
` µ

2
` ,

the sum of the squares of its singular values counted with algebraic multiplicity,
is finite, in which case the Hilbert-Schmidt norm is defined by ‖A‖22 =

∑
` µ

2
` .

Operators induced by finite matrices A = (ajk) are always Hilbert-Schmidt, their
Hilbert-Schmidt norm is frequently referred to as the Frobenius norm, and we
have ‖A‖22 =

∑
j,k |ajk|2. If A is an integral operator on L2(0, 1) of the form

(Af)(x) =
∫ 1

0
k(x, y)f(y)dy, then A is Hilbert-Schmidt if and only if∫ 1

0

∫ 1

0

|k(x, y)|2 dxdy <∞. (17)
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If the number (17) is finite, it coincides with ‖A‖22. Let finally B(L2(0, 1)) denote
the C∗-algebra of all bounded linear operators on L2(0, 1).

Lemma 4.1 (Widom and Shampine) For A = (ajk)
N−1
j,k=0 ∈ CN×N , let WA be

the integral operator on L2(0, 1) whose kernel is k(x, y) = N a[Nx],[Ny], where [ · ]
denotes the integral part. Then the map

W : CN×N → B(L2(0, 1)), A 7→ WA

is an algebraic homomorphism which preserves both operator norms and Hilbert-
Schmidt norms.

Proof. Let Ik be the interval (k/N, (k + 1)/N), denote by χk the characteristic
function of Ik, and consider the operators

U : CN → L2(0, 1), {xk}N−1
k=0 7→

√
N

N−1∑
k=0

xkχk,

V : L2(0, 1)→ CN , f 7→
{√

N

∫
Ik

f(x)dx

}N−1

k=0

.

It can be readily verified that ‖U‖∞ = ‖V ‖∞ = 1, that V U is the identity
operator on CN , and that UAV = WA for every A ∈ CN×N . This implies that

WαA+βB = αWA + βWB, WAB = WAWB

for all A,B ∈ CN×N and all α, β ∈ C. Since

‖WA‖∞ = ‖UAV ‖∞ ≤ ‖A‖∞ = ‖V WA U‖∞ ≤ ‖WA‖∞,
‖WA‖2 = ‖UAV ‖2 ≤ ‖A‖2 = ‖V WA U‖2 ≤ ‖WA‖2,

it follows that ‖A‖∞ = ‖WA‖∞ and ‖WA‖2 = ‖A‖2 for all A ∈ CN×N . �

Let ajk (j ≥ 0, k ≥ 0) be complex numbers such that

ajk =

{
jδkβ(1 +O(1/j))(1 +O(1/k)) for j ≤ k,
0 for j > k,

(18)

where δ and β are real numbers. Here O(1/j) stands for a family of numbers bjk
(0 ≤ j ≤ k) such that |bjk| ≤ C/j for all j, k ≥ 1 with some constant C that
is independent of j and k. The term O(1/k) has an analogous meaning. Put
AN = (ajk)

N−1
j,k=0 and denote by T the integral operator over (0, 1) with the kernel

%(x, y) =

{
xδyβ for 0 < x < y,
0 for 0 < y < x.

(19)
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Theorem 4.2 If 2δ+ 1 > 0 and σ := β + δ+ 1 > 0, then T is a Hilbert-Schmidt
operator on L2(0, 1) and

‖N−σWAN − T‖2 → 0 as N →∞. (20)

Proof. We have

‖T‖22 =

∫ 1

0

∫ y

0

x2δy2β dx dy =
1

2σ(2δ + 1)
<∞, (21)

which shows that T is Hilbert-Schmidt. To prove (20), we divide the square
(0, 1)2 into the N2 squares

Qjk =

(
j

N
,
j + 1

N

)
×
(
k

N
,
k + 1

N

)
(j, k = 0, . . . , N − 1).

Then

‖N−σWAN − T‖22 =
N−1∑
j,k=0

∫∫
Qjk

∣∣∣ ajk
Nβ+δ

− %(x, y)
∣∣∣2 dx dy, (22)

the integrals on the right-hand side of (22) being zero for j > k. We first check
the right-hand side of (22) along the boundary of the triangle 0 < x < y < 1
and subsequently inside this triangle. In what follows we will repeatedly use the
inequality |a− %|2 ≤ 2(|a|2 + |%|2).

Let first j = k = 0. Taking into account that∫∫
Q00

∣∣∣ a00

Nβ+δ

∣∣∣2 dx dy =
|a00|2

N2(β+δ)

1

N2
=
|a00|2

N2σ
,∫∫

Q00

|%(x, y)|2 dx dy =

∫ 1/N

0

∫ y

0

x2δy2β dx dy =
1

2σ(2δ + 1)

1

N2σ
,

we see that the j = k = 0 term on the right of (22) goes to zero. We now consider
the terms with j = 0 and k ≥ 1. We have

N−1∑
k=1

∫∫
Q0k

∣∣∣ a0k

Nβ+δ

∣∣∣2 dx dy =
N−1∑
k=1

O(k2β)

N2(β+δ)

1

N2
,

and this is O(1/N2δ+1) for β 6= −1/2 and O((logN)/N2σ) for β = −1/2. Fur-
thermore,

N−1∑
k=1

∫∫
Q0k

|%(x, y)|2 dx dy =

∫ 1

1/N

∫ 1/N

0

|%(x, y)|2 dx dy

=

∫ 1

1/N

∫ 1/N

0

x2δy2β dx dy =
1

2δ + 1

1

N2δ+1

∫ 1

1/N

y2βdy,

12



which is O(1/N2δ+1) + O(1/N2σ) for β 6= −1/2 and O((logN)/N2δ+1) for β =
−1/2. Thus, the sum over the terms 0, k with 1 ≤ k ≤ N − 1 also goes to zero.
We next turn to the terms with j = k ≥ 1. Clearly,

N−1∑
k=1

∫∫
Qkk

∣∣∣ akk
Nβ+δ

∣∣∣2 dx dy = O

(
N−1∑
k=1

k2β+2δ

N2(β+δ)

1

N2

)
= O

(
1

N

)
.

For the corresponding term with |%|2 we get

N−1∑
k=1

∫∫
Qkk

|%(x, y)|2 dx dy ≤
N−1∑
k=1

∫ (k+1)/N

k/N

∫ (k+1)/N

k/N

x2δy2β dx dy

=
N−1∑
k=1

(
k + ξk
N

)2δ (
k + ηk
N

)2β
1

N2
(23)

with 0 ≤ ξk ≤ 1 and 0 ≤ ηk ≤ 1. It follows that (23) is at most

N−1∑
k=1

k2δk2β

N2δ+2β

1

N2

(
1 +O

(
1

k

))
= O

(
N−1∑
k=1

k2β+2δ

N2σ

)
,

which is O(1/N) for β + δ 6= −1/2 and O((logN)/N2σ) for β + δ = −1/2.
Consequently, the sum of the k, k terms on the right of (22) goes to zero, too. It
remains to consider the terms with 1 ≤ j < k ≤ N − 1. The sum of these terms
is

N−1∑
j=1

N−1∑
k=j+1

∫ 1

0

∫ 1

0

∣∣∣∣ ajkNβ+δ
− %

(
j + x

N
,
k + y

N

)∣∣∣∣2 dx dy. (24)

For 0 < x, y < 1,

%

(
j + x

N
,
k + y

N

)
=

(
j + x

N

)δ (
k + y

N

)β
=

jδkβ

Nβ+δ

(
1 +O

(
1

j

))(
1 +O

(
1

k

))
=

jδkβ

Nβ+δ

(
1 +O

(
1

j

)
+O

(
1

k

))
.

This and (18) yield that∣∣∣∣ ajkNβ+δ
− %

(
j + x

N
,
k + y

N

)∣∣∣∣2 =
j2δk2β

N2(β+δ)

(
O

(
1

j

)
+O

(
1

k

))2

=
j2δk2β

N2(β+δ)

(
O

(
1

j2

)
+O

(
1

k2

))
.

Thus, (24) is at most a constant times

1

N2(β+δ)

(
N−1∑
j=1

j2δ−2

N−1∑
k=j+1

k2β +
N−1∑
j=1

j2δ

N−1∑
k=j+1

k2β−2

)
1

N2

≤ 1

N2σ

N−1∑
j=1

j2δ−2

N−1∑
k=1

k2β +
1

N2σ

N−1∑
j=1

j2δ

N−1∑
k=1

k2β−2 =: S1 + S2.

13



It is easily seen that S1 is O(1/N2) if δ 6= 1/2 and β 6= −1/2 and at most
O((logN)2/N2) if δ = 1/2 or β = −1/2. The term S2 is O(1/N2) for β 6= 1/2
and O((logN)/N2) for β = 1/2. �

Corollary 4.3 Let A
(`)
N = (a

(`)
jk )N−1

j,k=0 (` = 1, . . . , ν) be matrices whose entries
satisfy

a
(`)
jk =

{
jδkβ(1 +O(1/j))(1 +O(1/k)) for j ≤ k,
0 for j > k.

Put σ := β + δ + 1 and suppose σ > 0 and 2δ + 1 > 0. Denote by Tν and T ∗ν the
integral operators on L2(0, 1) that are defined by

(Tνf)(x) =
1

σν−1Γ(ν)

∫ 1

x

xδyβ(yσ − xσ)ν−1f(y) dy,

(T ∗ν f)(x) =
1

σν−1Γ(ν)

∫ x

0

xβyδ(xσ − yσ)ν−1f(y) dy.

Then Tν and T ∗ν are Hilbert-Schmidt operators and

lim
N→∞

1

Nσν
‖A(1)

N . . . A
(ν)
N ‖∞ = ‖Tν‖∞ = ‖T ∗ν ‖∞. (25)

Proof. Since |yσ − xσ| ≤ 2, we see from (21) that Tν and thus also its adjoint
operator T ∗ν are Hilbert-Schmidt. Theorem 4.2 shows that

‖N−σW
A

(`)
N
− T1‖∞ ≤ ‖N−σWA

(`)
N
− T1‖2 = o(1)

for each `, which together with Lemma 4.1 implies that

‖N−σνW
A

(1)
N ...A

(ν)
N
− T ν1 ‖∞ → 0.

Therefore the limit in (25) equals ‖T ν1 ‖∞ = ‖(T ∗1 )ν‖∞. If K is a Volterra integral
operator of the form

(Kf)(x) =

∫ x

0

a(x)b(y)f(y) dy,

then the νth power Kν is the Volterra integral operator given by

(Kνf)(x) =
1

Γ(ν)

∫ x

0

a(x)b(y)

(∫ x

y

a(t)b(t) dt

)ν−1

f(y) dy.

Letting K = T ∗1 , a(x) = xβ, b(y) = yδ we conclude that (T ∗1 )ν is nothing but the
operator T ∗ν and that, consequently, T ν1 = Tν . �

We are now in a position to prove Theorem 1.1. In the Laguerre case,

λ(ν)
n = ‖Dν

n+1‖∞ = ‖Aνn+1‖∞,
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and the entries of An+1 satisfy (13) for j ≤ k. Corollary 4.3 with N = n + 1,
δ = α/2, β = −α/2, σ = 1 therefore immediately gives the assertion. Now
consider the Gegenbauer case. As already said in Section 3, we may confine
ourselves to odd n. We have

γ(ν)
n = ‖Dν

n+1‖∞ = ‖D̃ν
n+1‖∞,

and the matrices D̃ν
n+1 are given by (15). Taking into account that the entries

of the matrices Am and Bm satisfy (16), we deduce from Corollary 4.3 with
N = m = (n + 1)/2, δ = 1/2 + α, β = 1/2 − α, σ = 2 that the operator
norm of a product of the form AmBmAm . . . or BmAmBm . . . with ν factors is
asymptotically equal to 4ν ‖Gν‖∞m2ν ∼ ‖Gν‖∞n2ν ; note that in contrast to (18)
there is the additional factor 4 in (16). As the operator norms of the matrices
(15) are the maxima of the operator norms of their two nonzero blocks, it follows

that ‖D̃ν
n+1‖∞ ∼ ‖Gν‖∞n2ν , as asserted.

Theorem 4.4 Suppose 2δ+1 > 0 and σ := β+ δ+1 > 0. Let Tν be the operator
given by

(Tνf)(x) =
1

σν−1Γ(ν)

∫ 1

x

xδyβ(yσ − xσ)ν−1f(y) dy,

put α = (δ − β)/σ, and consider the operator

(Lνf)(x) =
1

Γ(ν)

∫ 1

x

xα/2y−α/2(y − x)ν−1f(y) dy.

Then α > −1 and the two operators σνTν and Lν are unitarily equivalent.

Proof. It is clear that α > −1. The operator given on L2(0, 1) by

(Uf)(x) = σ1/2x(σ−1)/2f(xσ), (U−1f)(x) = σ−1/2x(1−σ)/(2σ)f(x1/σ)

is unitary. Denote the kernel of Lν by k(x, y). We have

(ULνU
−1f)(x) = σ1/2x(σ−1)/2

∫ 1

xσ
k(xσ, t)(U−1f)(t) dt

= σ1/2x(σ−1)/2

∫ 1

x

k(xσ, yσ)(U−1f)(yσ)σ yσ−1 dy

= σ1/2x(σ−1)/2

∫ 1

x

k(xσ, yσ)σ−1/2y(1−σ)/2f(y)σ yσ−1 dy

= σ

∫ 1

x

x(σ−1)/2y(σ−1)/2k(xσ, yσ)f(y) dy

=
σ

Γ(ν)

∫ 1

x

xδyβ(yσ − xσ)ν−1f(y) dy = σν (Tνf)(x),

which proves the assertion. �

Theorem 4.4 with β = 1/2 − α and δ = 1/2 + α immediately implies Theo-
rem 1.2.
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5 Zeros of Bessel functions

In this section we prove Theorem 1.3. The following theorem is not terribly
new and the proof is based on standard arguments. For example, in the cases
where β = −1/2 and δ = 1/2, the theorem is in [2], while under the additional
assumption 2β + 1 = 2δ − 1 it can be found in [15] and [16]. For the reader’s
convenience, we give a full proof.

Theorem 5.1 Suppose β and δ are real numbers satisfying σ := β + δ + 1 > 0
and 2δ + 1 > 0. Then a number µ > 0 is a singular value of the operator T1

defined on L2(0, 1) by

(T1f)(x) =

∫ 1

x

xδyβf(y) dy

if and only if

J− 1+2β
2σ

(
1

σµ

)
= 0. (26)

Proof. We have (T ∗1 f)(x) =
∫ x

0
xβyδf(y) dy and hence

(T ∗1 T1f)(x) =

∫ x

0

xβtδ
∫ 1

t

tδyβf(y) dy dt

=

∫ x

0

xβ
∫ y

0

t2δ dt yβf(y) dy +

∫ 1

x

xβ
∫ x

0

t2δ dt yβf(y) dy

=
xβ

2δ + 1

∫ x

0

yβ+2δ+1f(y) dy +
xβ+2δ+1

2δ + 1

∫ 1

x

yβf(y) dy.

Let µ > 0 and suppose µ is a singular value of T1. Then T ∗1 T1f = µ2f for
some nonzero f ∈ L2(0, 1), that is,∫ x

0

yβ+2δ+1f(y) dy + x2δ+1

∫ 1

x

yβf(y) dy = (2δ + 1)µ2x−βf(x). (27)

Put g(x) = x−βf(x). By assumption, 2δ+1 > 0 and 2β+4δ+3 = 2σ+2δ+1 > 0.
Thus, if β 6= −1/2 then

x4δ+2

∣∣∣∣∫ 1

x

yβf(y) dy

∣∣∣∣2 ≤ x4δ+2

∫ 1

x

y2β dy

∫ 1

0

|f(y)|2dy

=
x4δ+2 − x2β+4δ+3

2β + 1

∫ 1

0

|f(y)|2dy = o(1)

as x→ 0, while if β = −1/2 then

x4δ+2

∣∣∣∣∫ 1

x

y−1/2f(y) dy

∣∣∣∣2 ≤ x4δ+2

∫ 1

x

dy

y

∫ 1

0

|f(y)|2dy

= x4δ+2| log x|
∫ 1

0

|f(y)|2dy = o(1).
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Furthermore,∣∣∣∣∫ x

0

yβ+2δ+1f(y) dy

∣∣∣∣2 ≤ ∫ x

0

y2β+4δ+2 dy

∫ 1

0

|f(y)|2dy = o(1)

as x → 0. It follows that the left-hand side of (27) is an absolutely continuous
function of x that goes to zero as x→ 0. Consequently,

g(0) := lim
x→0

g(x) = 0. (28)

We write (27) in the form∫ x

0

y2σ−1g(y) dy + x2δ+1

∫ 1

x

y2βg(y) dy = (2δ + 1)µ2g(x). (29)

As in (29) all functions of x are absolutely continuous, we may differentiate to
get

(2δ + 1)x2δ

∫ 1

x

y2βg(y) dy = (2δ + 1)µ2g′(x). (30)

The function y2βg(y) = yβf(y) belongs to L1(ε, 1) for each ε > 0 and therefore
g′(x) is absolutely continuous and satisfies

g′(1) := lim
x→1

g′(x) = 0. (31)

Writing (30) in the form ∫ 1

x

y2βg(y) dy = µ2x−2δg′(x)

and taking into account that both sides of this equality are absolutely continuous,
we obtain after differentiation that

−x2βg(x) = µ2(−2δ)x−2δ−1g′(x) + µ2x−2δg′′(x)

or equivalently,

x2g′′(x)− 2δxg′(x) +
1

µ2
x2σg(x) = 0. (32)

In summary, if f ∈ L2(0, 1) satisfies (27), then g(x) = x−βf(x) is a solution of
(32) with the boundary conditions (28) and (31).

The general solution of (32) is known to be

g(x) = x(1+2δ)/2 Zτ

(
xσ

σµ

)
, τ :=

2δ + 1

2σ
, (33)
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where Zτ = C1Jτ + C2Yτ (see, e.g., [22, No. 2.163]). Because

Jτ (z) ∼ 1

Γ(τ + 1)

(z
2

)τ
, Yτ (z) ∼ −Γ(τ)

π

(
2

z

)τ
(34)

as z → 0, condition (28) implies that C2 = 0. We may therefore assume that
C1 = 1. It follows that

g(x1/σ) = x(1+2δ)/(2σ)Jτ

(
x

σµ

)
= xτJτ

(
x

σµ

)
.

From (31) we see that

d

dx
g(x1/σ)

∣∣∣∣
x=1

= g′(x1/σ)
x1/σ−1

σ

∣∣∣∣
x=1

= g′(1)/σ = 0.

Since (zτJτ (αz))′ = αzτJτ−1(αz), we therefore obtain that

0 =
d

dx

[
xτJτ

(
x

σµ

)]
x=1

=
1

σµ
xτJτ−1

(
x

σµ

)∣∣∣∣
x=1

=
1

σµ
Jτ−1

(
1

σµ

)
.

As τ − 1 = −(1 + 2β)/(2σ) we arrive at (26).

Conversely, suppose (26) holds. Define g(x) by (33) with Zτ = Jτ and put
f(x) = xβg(x). We have

d

dx

[
xτJτ

(
x

σµ

)]
x=1

=
1

σµ
Jτ−1

(
1

σµ

)
= 0

and hence

g′(1) = σ
d

dx
g(x1/σ)

∣∣∣∣
x=1

= 0,

that is, (31) holds. But from (32) and (31) we get (30). The first formula in (34)
shows that g(x) is asymptotically a constant times

x(1+2δ)/2xστ = x(1+2δ)/2x(1+2δ)/2 = x1+2δ = o(1)

as x→ 0 and that xβg(x) is asymptotically a constant times

xβ+1+2δ = xσ+(2δ+1)/2−1/2

as x → 0. Thus, g(0) = 0 and f(x) = xβg(x) is a function in L2(0, 1). Since
(30) and (28) give (27), we arrive at the conclusion that f ∈ L2(0, 1) satisfies
T ∗1 T1f = µ2f . �

Corollary 5.2 If β and δ are real numbers satisfying σ := β + δ + 1 > 0 and
2δ + 1 > 0 and if T1 is given by

(T1f)(x) =

∫ 1

x

xδyβf(y) dy

on L2(0, 1), then ‖T1‖∞ = ‖T ∗1 ‖∞ equals 1/σ times the inverse of the smallest
positive zero of the function J−(1+2β)/(2σ).
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Proof. This is immediate from Theorem 5.1. �

Theorem 1.3 is a straightforward consequence of Theorem 5.1 and Corol-
lary 5.2: in the Laguerre case we have δ = α/2, β = −α/2, σ = 1 and in the
Gegenbauer case the parameters are δ = 1/2 + α, β = 1/2− α, σ = 2. Note that
the part of Theorem 1.3 concerning the operator G1 can also be derived from
Theorem 5.1 and Corollary 5.2 for δ = α/2, β = −α/2, σ = 1 (Laguerre case) and
Theorem 1.2.

Finally, by 2ν times differentiating the equation L∗νLνf = µ2f and justifying
the steps by arguments as in the proof of Theorem 5.1, one can derive equation (6)
with the boundary conditions (7).

6 Bounds for the norms of Volterra operators

This section is devoted to the proofs of Theorems 1.4 and 1.5. Our approach
follows [5] and [13].

Fix a real number α > −1, let Cν ,Γν(α), Iν(α) be as in Section 1, and abbre-
viate Γν(α) and Iν(α) to Γν and Iν .

Lemma 6.1 We have

‖Lν‖22 =
C2
νΓ2

ν

2 ν
, ‖L∗νLν‖22 = 2C4

νI
4
ν .

Proof. Obviously,

‖Lν‖22 = ‖L∗ν‖22 = C2
ν

∫ 1

0

∫ x

0

x−αyα(x− y)2ν−2 dy dx

= C2
ν

∫ 1

0

x2ν−1 dx

∫ 1

0

tα(1− t)2ν−2 dt =
C2
ν

2ν

Γ(α + 1)Γ(2ν − 1)

Γ(α + 2ν)
=
C2
νΓ2

ν

2ν
.

It can be verified straightforwardly that (L∗νLνf)(x) = C2
ν

∫ 1

0
c(x, y)f(y) dy where

the symmetric kernel c(x, y) is

c(x, y) = x−α/2y−α/2
∫ y

0

tα(x− t)ν−1(y − t)ν−1dt

for y < x. This implies that

‖L∗νLν‖22 = 2C4
ν

∫ 1

0

∫ x

0

|c(x, y)|2dy dx = 2C4
νI

4
ν . �

Lemma 6.2 For every ν ≥ 1,

Γ4
ν

4 ν(2 ν + α + 1)
≤ I4

ν ≤
Γ4
ν

8 ν2
.
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Proof. The upper bound is obvious because

I4
ν =

1

2C4
ν

‖L∗νLν‖22 ≤
1

2C4
ν

‖Lν‖42 =
1

2C4
ν

C4
νΓ4

ν

4ν2
=

Γ4
ν

8ν2

due to Lemma 6.1. To obtain the lower bound, note that x − ys ≥ x − xs ≥ 0
for 0 ≤ y ≤ x and 0 ≤ s ≤ 1, so that the definition of I4

ν gives

I4
ν =

∫ 1

0

x−α
∫ x

0

y−α
(∫ y

0

tα(x− t)ν−1(y − t)ν−1dt

)2

dy dx

=

∫ 1

0

x−α
∫ x

0

y−α
(∫ 1

0

yαsα(x− ys)ν−1yν−1(1− s)ν−1y ds

)2

dy dx

≥
∫ 1

0

x−α
∫ x

0

y−α
(∫ 1

0

xν−1yα+νsα(1− s)2ν−2ds

)2

dy dx

= Γ4
ν

∫ 1

0

x2ν−α−2

∫ x

0

yα+2νdy dx =
Γ4
ν

4ν(2ν + α + 1)
. �

We are now in a position to prove Theorem 1.4. From Lemma 6.1 and the
inequalities

‖L∗νLν‖22
‖Lν‖22

≤ ‖Lν‖2∞ ≤ ‖Lν‖22

we immediately obtain the estimates

4 ν C2
νI

4
ν

Γ2
ν

≤ ‖Lν‖2∞ ≤
C2
νΓ2

ν

2 ν
,

and replacing the I4
ν in the lower bound by the lower bound from Lemma 6.2, we

arrive at (8). From (8) and (12) we infer that

‖Lν‖∞ =
CνΓν√

2 ν

(
1 +O

(
1

ν

))
=

√
Γ(α + 1)

21+α/2

1

Γ(ν) ν1+α/2

(
1 +O

(
1

ν

))
,

which implies (9).

To prove Theorem 1.5 we employ the following result.

Proposition 6.3 Let T be a nonzero integral operator of the form (Tf)(x) =∫ 1

0
h(x, y)f(y) dy on L2(0, 1) and suppose T is Hilbert-Schmidt and the kernel

h(x, y) assumes only real values. If ‖T‖42/‖T ∗T‖22 = 1 then ‖T‖2∞ = ‖T‖22,
whereas if

k <
‖T‖42
‖T ∗T‖22

≤ k + 1 (35)

for a natural number k ≥ 1, then

‖T‖2∞ ≥
‖T‖22
k + 1

+

√
1

k(k + 1)

(
‖T ∗T‖22 −

‖T‖42
k + 1

)
. (36)
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Proof. If ‖T‖42/‖T ∗T‖22 = 1, we have ‖T‖22 = ‖T ∗T‖2 ≤ ‖T‖∞‖T‖2 ≤ ‖T‖22,
which shows that ‖T‖2∞ = ‖T‖22. So suppose (35) holds for some integer k ≥ 1.
In the case where ‖T‖42/‖T ∗T‖22 = k + 1, inequality (36) amounts to the trivial
inequality

‖T‖2∞ ≥
‖T‖22
k + 1

=
‖T ∗T‖22
‖T‖22

.

Thus, assume ‖T‖42/‖T ∗T‖22 < k+1. Let {ej}∞j=1 be an orthonormal basis of real-
valued functions in L2(0, 1), e.g., the orthonormal basis formed by cosines and
sines, and denote by PN the orthogonal projection of L2(0, 1) onto the subspace
spanned by e1, . . . , eN . Since PNTPN converges to T both in the operator norm
and the Hilbert-Schmidt norm, it suffices to prove that if (35) is satisfied for some
real N × N matrix T , then (36) is true for this matrix. But this was shown in
[36], [37], [13]. �

Combining Lemma 6.1 and Proposition 6.3 we arrive after an elementary
computation at the lower bound in Theorem 1.5. The upper bound in that
theorem results from the inequality ‖Lν‖2∞ ≤ ‖L∗νLν‖2 and Lemma 6.1.

We remark that for ν = 1 and ν = 2 one gets

I4
1 =

1

4

1

(α + 1)2(α + 3)
,

I4
2 =

1

4

5α2 + 44α + 99

(α + 1)2(α + 2)2(α + 3)2(α + 5)(α + 6)(α + 7)
.

From Lemmas 6.1 and 6.2 we also see that

‖Lν‖42
‖L∗νLν‖22

=
Γ4
ν

8 ν2 I4
ν

≤ 2 ν + α + 1

2 ν

does not exceed 2 whenever α ≤ 2 ν − 1. Consequently, for −1 < α ≤ 2 ν − 1 we
may take k = 1 in Theorem 1.5.
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