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1 Introduction

This course is meant as introduction to what is widely considered to be the most beau-
tiful and imaginative physical theory ever devised: General Relativity.1 It is well-known
as the brain-child of Einstein who developed it most or less single-handedly in the years
leading up to its publication in 1915. It seems that everyone knows something about it.
Perhaps most impressively the theory was developed without any experimental input
(although it immediately explained at least one known observational anomaly). Rather
Einstein made ‘thought experiments’ 2 which led him to the notion of the equivalence
principle and then the hypothesis that spacetime is curved. From here one simply adapts
Newton’s famous F = ma law to predict Newton’s gravitational law F = −GNm1m2/r

2

along with corrections. In this way the motion of falling apples, astronauts, moons,
planets and stars are simply tracing the natural ‘straight lines’ of a curved spacetime.
Furthermore it opened up the entire Universe and its history to study in the form of
Cosmology which is now a highly developed scientific field.

The plan of the course is as follows. We will first review Special Relativity. It is
assumed that you have a reasonable knowledge of this as well as tensors such as those
encountered in Electromagnetism (e.g. Fµν). We will review (or perhaps introduce) co-
variant index notation and spacetime. Next we will discuss Einstein’s famous thought
experiment and follow his logic that leads to the notion that, in the presence of gravity,
spacetime is curved. We will then spend some time developing the mathematics needed
to understand curved spaces. These are known as manifolds in the mathematical litera-
ture although we will try to avoid using the abstract mathematical machinery. We will
then have to spend some getting used to tensors in curved spacetime. This includes the
all important notions of covariant derivative and curvature.

We can then write down Einstein’s theory. For the rest of the course we will examine
two classic solutions. The first is the Schwarzchild solution that models the curvature
about a spherical mass. Here we can derive Newton’s gravitational law as the leading
order effect. However we will see that there are corrections which lead to new predictions.
The first is the so called perihelion shift. This is where the planets depart slightly
from a pure elliptical orbit about the sun. This explained observational anomaly of
Mercury that was known already since the 1800’s (although a triumph in retrospect at
the time it was not clear that there wasn’t another explanation, such as a new planet).
Secondly we will see that light is bent as it passes by the sun. This was a signature
prediction of General Relativity and was confirmed in 1919 thereby establishing the
theory and confirming the picture of spacetime as curved.The second solution that
we will discuss is the Freedman-Robertson-Walker (FRW) metric which describes the
cosmological structure of the entire Universe, predicting that it started with a Big Bang.

Thats quite a lot for one idea!

1WARNING: this course can make you want to do theoretical physics for the rest of your life.
2Unfortunately this has inspired generations of crackpots ever since.
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2 Special Relativity

Let us start by a review of Special Relativity. To do physics one introduces a coordinate
system typically x, y, z and t. Using such a coordinate system one can measure positions
and velocities, make predictions and test them. That is physics. Here t of course
represents time and x, y, z space. Before Einstein it was thought that time was absolute.
And space was absolute. That meant that everyone surely agreed on the passage of time.
And space was, in some sense, a solid object that we all play around in. Of course the
coordinate systems that people use need not agree. However there are well defined rules
that tell you how to convert quantities in one coordinate system (sometimes called a
frame) to those of another. But time was always just time and measured in seconds,
minutes, hours, days,.... and we surely all agree on the absolute passage of time no?...

A fundamental idea of special relativity is that the law of physics do not depend on
any particular choice of frame. This is so much a part of modern physics that its hard
to think otherwise. It is formulated in the so-called principle of relativity. To quote
Einstein himself:

• Principle of Relativity: If a system of coordinates K is chosen so that, in relation
to it, physical laws hold good in their simplest form, the same laws hold good
in relation to any other system of coordinates K’ moving in uniform translation
relatively to K.

Here moving in uniform translation relatively to K means that it moves with a constant
velocity with respect to K. In the modern parlance we’d say that the laws of physics are
covariant with respect to coordinate transformations.

One important feature of the principle of relativity is that there is no preferred frame
that the universe uses. Although it is now almost forgotten the prevailing view in the
19th century was that there must be some medium throughout space and time, called
the ether, where electromagnetic waves ’wave’ in. This then defines a preferred reference
frame. However it is well-known that the famous Michelson-Morley experiment failed
to detect any motion of the earth through the ether. Einstein’s theory simply did away
with the ether.

Apart from this the Principle of Relativity alone is not so new and the older theory
theories of Newton and others satisfy a form of relativity known as Galilean relativity.
In Galilean relativity if the coordinates of K are (x, y, z, t) and those of K’ (x′, y′, z′, t′)
and K’ is moving along the x-axis with speed v then the relation is

t′ = t

x′ = x+ vt (2.1)

y′ = y

z′ = z

There are also other possible transformations, for example the spatial coordinates (x′, y′, z′)
could be related to those of K by a rotation. But t′ = t assuming you measure time in
seconds in both frames!
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Note that with this change of coordinates we can compute the ‘addition’ rule of
velocities. Suppose in frame K a particle is moving with speed u along the x-axis. If at
t1 = 0 it is at x1 = 0 then at time t2 it will be at x2 = ut2. In frame K ′ we find that it
is still at x′1 = 0 when t′1 = 0 but now at time t′2 = t2 it is at x′2 = ut2 + vt2. Thus in
the frame K’ one observes the speed

u′ = x′2/t
′
2 = u+ v

which of course is the familiar rule for addition of velocities.
The second idea is more radical and defines Special Relativity:

• Principle of a constant speed of light: The speed of light as measured in any two
frames that are move with constant velocity respect to each other is the same
universal constant called c

What made Einstein think of this? Well the answer is that Maxwell’s equations of
electromagnetism (developed while Maxwell was at King’s) have a factor of c−1 on the
right-hand-side. Thus they don’t make any sense in a frame where c = 0. Thus they
can’t be Galilean invariant.

Clearly this violates the usual rules of changing frames where one would simply adds
the velocities. This leads to a new set of rules about how to transform between K and
K’. In fact Maxwell’s equations were known to be invariant under a set of coordinate
transformations known Lorentz transformations which predates Einstein. However Ein-
stein saw that Maxwell’s equations and Lorentz transformations were fundamental (thus
in a sense King’s College is the birth place of Relativity). In particular for a frame K’
moving along the x-axis of a frame K the Lorentz transformations are

x′ = γ(x+ vt)

t′ = γ(t+ vx/c2) (2.2)

y′ = y z′ = z

where γ = 1/
√

1− v2/c2.

Problem: Show that the addition law for velocities is

u′ =
u+ v

1 + uv/c2

Indeed one sees from this that c′ = c and also u′ < c provided that u, v < c. Thus
one can never go faster than the speed of light by switching from one frame to another
(assuming no frame is moving faster than the speed of light). This transformation also
leads to the well-known effects of time-dilation and length contraction. We will not
review these calculations here as they appear in any course on Special Relativity.

Soon afterwards a deeper geometrical structure was shown by Minkowski to underlie
Special Relativity. In particular one sees from the Lorentz transformations that t′ 6= t
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and furthermore t′ is mixed into t and x. Thus time is no longer separate and distinct
from space. Indeed given the principle of relativity one cannot even pick frame with a
preferred or absolute notion of time.

Rather Minkowski introduced spacetime which consists of all four coordinates to-
gether: (t, x, y, z). It is helpful (on dimensional grounds) to introduce the coordinates

x0 = ct

along with x1 = x, x2 = y and x3 = z. Now three-dimensional Euclidean space can be
thought of as R3 where the rule for calculating lengths is

∆l2 = (∆x)2 + (∆y)2 + (∆z)2

It is important to note that length is a ’scalar’ quantity, meaning that in any admissible
frame all observers will agree on the length of an object. Minkowski generalized this to
spacetime with

∆s2 = −c2(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 = ηµν∆x
µ∆xν

where

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The key idea now is that ∆s is a scalar quantity that all observers will agree on. Note
the minus sign. Although time can be, in some sense, be rotated into space, it is also
clearly different.

An important part of Minkowski spacetime is that (∆s)2 can be negative, positive
or zero. Vectors with such lengths are called timelike, spacelike or null respectively In
particular the set of vectors with null length defines a surface known as the lightcone
centred at the origin. Thus spacetime is split into two distinct areas that are separated
by the lightcone.

The point is that signals can only travel at or below the speed of light and thus must
be timelike. This means that an event located at the origin can only be seen in the
t > 0 timelike (interior of the light cone) region. And conversely only events in the t < 0
timelike (interior of the lightcone) can be seen by an observer at the origin. The rest of
Minksowski space (the spacelike region outside the lightcone) cannot communicate with
the origin. It is said to not be in causal contact with the origin whereas the interior
region is in causal contact.

In ordinary three-dimensional space observers do not agree on the length of an object
along along a given axis, such as the x-axis, because they disagree on what they’ve called
the x-axis. For example if you take a rod and rotate it you can change its ’length’ along
any given axis that is, for example defined by the walls of the room you are in. The
overall length, as measured by ∆l is of course invariant but the projection of the length
onto a particular axis can be changed by a choice of frame.
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This all happens in Minkowski space too. The only difference is now time is another
coordinate that can be ‘rotated’ in to the spatial directions. Thus the projection of the
length of a rod onto a spatial or temporal axis can change. This is the origin of length
contraction and time dilation. However there are invariant notions of length defined by
∆s.

From this perspective the Lorentz transformations arise from requiring that ∆s is
the same in all frames. Thus if x′µ = Λµ

νx
ν then we must have that

(∆s′)2 = ηµν∆x
′µ∆x′

ν

= ηµνΛ
µ
σΛν

ρ∆x
σ∆xρ (2.3)

= (∆s)2

= ησρ∆x
σ∆xρ

Here we have used Einstein’s summation convention whereby a repeat upstairs and
downstairs index is summed over. Thus we must have, since ∆xµ is arbitrary,

ησρ = ηµνΛ
µ
σΛν

ρ .

If we think in term of matrices then this equation is simply η = ΛTηΛ where we have
used matrix multiplication.

More generally a tensor, such as the electromagnetic field strength, transforms in the
same, covariant, way: F ′λσ = FµνΛ

µ
σΛν

ρ. Thus in a sense the rule Special Relativity is
that the metric tensor is invariant under Lorentz transformations (however other tensors
are not).

Problem: Consider a transformation of the form

x′
0

= ax0 + bx1

x′
1

= cx0 + dx1 (2.4)

x′
2

= x2 x′
3

= x3

Show that the condition (2) implies that we can parameterize (for simplicity assume
that a, d > 0)

a = d = cosh β b = c = sinh β

for some parameter β. Using this rederive the Lorentz transformations by writing
tanh β = v/c.

This was the situation about just before 1915. However it has the problem in that
it cannot describe acceleration and therefore, according to Newtons laws, any force.
Although if will work in situations where the acceleration is small and also for electro-
magnetism which is relativistic. Thus Einstein was led to a more general principle of
relatively.

The new principle is motivated by the following thought experiment (slightly mod-
ernised): You’ve seen pictures of the astronauts in the space shuttle. They are weightless
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but why? The naive answer is that it is because they are in outer space away from the
pull of earth’s gravity. But then if this is the case, why do they say in orbit about the
earth? This is clearly not the case. Rather what happens is that in Newtons laws one
has

F = ma = −GNMm

r2

where M is the mass of the earth, GN is Newtons constant, r the distance from the
centre of the earth and m the mass of the astronaut. But m is also the mass of anything
else in the space shuttle. The point is that m drops out from this equations and one
simply has

a = −GNM

r2

for all objects, astronauts or otherwise. Thus, in free fall, they all follow the same
path, i.e. there is a universal path valid for all observers in free fall. This of course is
essentially just the famous leaning tower of Pisa experiment of Galileo, revisited many
many years later. Einstein;s genius (amoung other things) was to notice that this is a
rather strange feature that points to a deeper more fundamental interpretation.

There is a well-known issue here that I am not going to give much time to. It could
be argued that the m that appears in F = ma is different from the m that appears in
F = −GNMm/r2. The former is known as the inertial mass mi whereas the later is
called the gravitational mass mg. It should clear from our discussion that we are heavily
relying on the assumption that

mi = mg

for all objects. All I can say is: “yes we are”. But all evidence, to a high degree of
accuracy suggests that this is true. So let us say no more about this.

Conversely if we sit in a car and it accelerates we feel a force, just like the force
of gravity, only it acts to push us backwards, rather than down. The great realisation
of Einstein was that a single observer cannot perform any local experiment which can
tell if s/he is in free fall in a gravitational field or if there is no gravitational force at
all. Conversely they also cannot tell, using local experiments, the differences between
acceleration and a gravitational field.

The important concept here is locally. Obviously a freely falling observer can tell
that they are in the gravitation field of the earth if they can see the whole earth, along
with their orbit. Certainly they will know if they ever hit the earth. The point is that
the laws of physics should be local, i.e. they should only depend on the properties of
spacetime and fields as evaluated at each single point independently. This leads to the
‘happiest thought of Einsteins life’, the famous principle of equivalence

• Principle of Equivalance: The the laws of physics cannot distinguish between
motion in a gravitational field and acceleration

Thus we aim to reconcile the following observation. A particle which is freely falling
in a gravitational field is physically equivalent to a particle which feels no force. And
furthermore the paths followed by all free-falling object are the same. Now by Newton’s
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law no force should mean that the particle does not accelerate, that it moves in a
‘straight line’. The key idea here is to realise that spacetime must therefore be curved
and that ‘straight lines’ are not actually straight in the familiar sense of the word. The
space shuttle moves in orbit around the earth because locally, that is from one instant
to the next, it is following a straight path - the path of shortest length - in a spacetime
that is curved. Just as an airplane travels in a great circle that passes over Greenland
whenever it flies from Washington DC to London.

Mathematically we can impose these ideas by noting that a curved space is described
by the concept of a manifold. Roughly speaking a manifold is a space that in a neigh-
bourhood of each point looks like IRn for some n. Here we have n = 4. For infinitessimal
variations dxµ the proper distance is

ds2 = gµνdx
µdxν (2.5)

where gµν is called the metric and locally determines the geometry of spacetime be
determining the lengths and angles in an infinitessimal neighbourhood of each point.
By definition gµν is symmetric: gµν = gνµ. We will review manifolds and their tensors
in more detail soon.

The general principle of relativity states that the laws of physics are invariant under
an arbitrary - but invertable - coordinate transformation (not just linear)

xµ −→ x′µ = x′µ(xν) (2.6)

under which we have that ds2 is invariant. The same calculation as above leads to

ds′2 = g′µνdx
′µdx′ν (2.7)

= g′µν
∂x′µ

∂xρ
dxρ

∂x′ν

∂xσ
dxσ (2.8)

= gρσdx
ρdxσ (2.9)

Note that the transformation needs to be invertable so that the Jacobian

Λµ
ρ =

∂x′µ

∂xρ
(2.10)

is an invertable 4 matrix whose inverse is

Λ ν
σ =

∂xν

∂x′σ
(2.11)

since

δµλ =
∂x′µ

∂xρ
∂xρ

∂x′λ
and δµλ =

∂x′ρ

∂xλ
∂xµ

∂x′ρ
(2.12)

Such a change of variables is called a diffeomorhism. We now see that the invariance of
the infinitessimal proper distance implies that

g′ρσ =
∂xµ

∂x′ρ
∂xν

∂x′σ
gµν (2.13)
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This is the defining property of a tensor field and we will discuss these in more detail
soon.

Thus we see that we have generalised the linear transformation property x′µ = Λµ
νx

ν

of Special Relativity to arbitrary, but invertable, transformations by including a general
metric gµν(x) rather than a fixed one ηµν (this is essentially the same as gauging in a
gauge theory). The theory of General Relativity treats the metric gµν as a dynamical
object and its evolution is obtained from Einstein’s equation.

3 Elementary geometry

3.1 IR2 the hard way

To understand these ideas we need to get used to metrics and curved spaces. We will
start with an example that we all know, where there is a non-constant metric, although
the space is not curved: polar coordinates for IR2. The Euclidean rule for lengths is

ds2 = dx2 + dy2

So here the metric is (using matrix notation)

g =
(

1 0
0 1

)
However one frequently wants to use so-called polar coordinates:

x = r cos θ y = r sin θ

What is the metric in these coordinates? Well we can easily compute that

dx = dr cos θ − r sin θdθ dy = dr sin θ + r cos θdθ

and thus we see that

ds2 = (dr cos θ − r sin θdθ)2 + (dr sin θ + r cos θdθ)2

= dr2 + r2dθ2 . (3.1)

We now have (again using matrix notation)

g =
(

1 0
0 r2

)
and thus has non-constant components. But we are clearly still just taking about Eu-
clidean IR2!

These coordinates are good for somethings, but not everything. Indeed they actually
suffer a pathology at r = 0. Here θ is not defined. In particular the inverse map is

r =
√
x2 + y2 θ = arctan(y/x)

10



but y/x is ambiguous at r = 0 i.e. x = y = 0 (you might object to x = 0 but it is clear
that θ = ±π/2 there, depending on the sign of y). Thus this coordinate system is not
‘global’ meaning that it does not cover all of the space one is interested in. In particular
it doesn’t cover r = 0. However this is sufficiently simple that one can work around it
and pretend as if all is okay.

In physics we are often interested in two types of computation. The first is to solve
differential equations such as

∇2Φ = J

where Φ is some field and J is some source. For example in electrostatics Maxwell’s
equation for the time-component of the vector potential is ∇2A0 = ρ, where ρ is the
charge density. In Cartesian coordinates we have (in IR2)

∇2Φ =

(
∂2

∂x2
+

∂2

∂y2

)
Φ

let us see what this is in polar coordinates. We first note that, by the chain rule,3

∂

∂x
=

∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ

=
x

r

∂

∂r
− y

x2
1

1 + y2/x2
∂

∂θ
(3.2)

= cos θ
∂

∂r
− 1

r
sin θ

∂

∂θ

Similarly
∂

∂y
= sin θ

∂

∂r
+

1

r
cos θ

∂

∂θ

Next we find

∂2

∂x2
=

(
cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ

)(
cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ

)

= cos2 θ
∂2

∂r2
+

1

r2
sin2 θ

∂2

∂θ2
+

2

r2
sin θ cos θ

∂

∂θ
+

1

r
sin2 θ

∂

∂r
(3.3)

and similarly

∂2

∂y2
=

(
sin θ

∂

∂r
+

1

r
cos θ

∂

∂θ

)(
sin θ

∂

∂r
+

1

r
cos θ

∂

∂θ

)

= sin2 θ
∂2

∂r2
+

1

r2
cos2 θ

∂2

∂θ2
− 2

r2
sin θ cos θ

∂

∂θ
+

1

r
cos2 θ

∂

∂r
(3.4)

Thus we find

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

3As well as the fact that (arctan z)′ = 1/(1 + z2).
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which is often rewritten as

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2

Hopefully you’ve seen that (or maybe the 3D version) before.
The second thing one needs to do is compute integrals of some quantity over some

region of space. Suppose that one has some function f(x, y) that we want to integrate
over some region: ∫

f =
∫ ∫

dxdyf(x, y)

But let us now do it in polar coordinates. We have already computed dx and dy in
terms of dr and dθ. From calculus you know that to change the integration measure
you must introduce the jacobian factor∫

f =
∫ ∫

drdθ

∣∣∣∣∣det

(
∂(x, y)

∂(r, θ)

)∣∣∣∣∣ f(r, θ)

Here ∂(x, y)/∂(r, θ) is the matrix formed by taking all derivatives:(
∂(x, y)

∂(r, θ)

)
=

(
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)

=
(

cos θ −r sin θ
sin θ r cos θ

)
(3.5)

Thus we see that

det

(
∂(x, y)

∂(r, θ)

)
= r

and so ∫
f =

∫ ∫
drdθrf(r, θ)

The thing to notice here is that r =
√

det g (using a matrix notation for the metric).
Why am I bothering to go through this, what’s it got to do with curved space?

Well although this space is not curved, in these coordinates the Laplacian and volume
form have non-trivial form due to the non-constant metric. We will recover these forms
later from so-called covariant derivatives and more general considerations of Riemannian
geometry.

Problem: Consider spherical coordinates on IR3:

x = r sin θ cosϕ y = r sin θ sinϕ z = r cos θ

Following the same steps show that

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2

and ∫
f =

∫ ∫ ∫
drdθdϕ

√
det gf(r, θ, ϕ)
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3.2 S2

Let us next consider something slightly less trivial that is curved: S2. To construct S2

of radius R we start in IR3 and impose the constraint

x2 + y2 + z3 = R2

We can solve this by taking

x = R sin θ cosϕ y = R sin θ sinϕ z = R cos θ

Problem: Show that the entire space is covered by taking θ ∈ [0, π] and ϕ ∈ [0, 2π).
Show that the coordinates break down at θ = 0, π.

We start with the normal Euclidean metric on IR3:

ds3 = dx2 + dy2 + dz2

We now substitute in

dx = R cos θ cosϕdθ−sin θ sinϕdϕ dy = R cos θ sinϕdθ+sin θ cosϕdϕ dz = −R sin θdθ

to find (note first that the cross dθdϕ terms cancel)

ds2 = R2
(
cos2 θdθ2 + sin2 θdϕ2 + sin2 θdθ2

)
= R2(dθ2 + sin2 θdϕ2) (3.6)

This looks similar to polar coordinates on IR2 with r = θ except that the metric coeffi-
cient of dϕ2 is sin2 r and not r2. Thus in effect there are two origins: one at θ = 0 and
the other at θ = π. Both of these are so-called coordinate singularities where ϕ is not
well-defined.

Another way to think of this is that at a fixed value of θ there is a circle defined by
the ϕ ∈ [0, 2π) coordinate with radius R sin θ. At θ = 0 this circle has shrunk to zero
size. As we increase θ the circle grows until it reaches at maximum size at θ = π/2 and
then it shrinks again until it disappears at θ = π

Let us see now why airplanes take the paths they do when flying. Suppose we consider
a flight path defined by a curve θ = f(ϕ). The infinitessimal length of a segment of this
curve is

ds = R
√
f ′2 + sin2 fdϕ

and hence the total length is

l = R
∫ √

f ′2 + sin2 fdϕ
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We wish to minimize this integral. To do this we can simply use the Euler-Lagrange
equation which gives:

− d

dϕ

 f ′√
f ′2 + sin2 f

+
sin f cos f√
f ′2 + sin2 f

= 0

This is clearly a rather tough looking equation. However we can find at least one solution
by setting f to a constant. This implies f = 0, π/2, π. The first and last case mean
that there is no curve at all: the plane is stuck at the north or south pole (in fact the
coordinates break down there and also the denominator vanishes so we should ignore
it). The middle case implies that it circles the equator.

In fact, with a little thought, this is enough. Since the sphere has an SO(3) symmetry
we can always pick our coordinates so that Washington DC and London both lie on the
‘equator’ defined by θ = π/2.4 We see that the shortest path is then a so-called ‘great
circle’ between two points. That is a circle whose circumference is R. That is indeed
the path that planes take (when air traffic control lets them and without volcanoes).
We will return to this example later when we have some more experience.

4 Manifolds and Tensors

Warning: This is a physicists version of a deep and beautiful mathematical subject.
You won’t need to know more in the course but if you’d like to know more you can take
Manifolds (CM437Z/CMMS18). No apologies will be made here for brutalizing this
subject, I will just say a few words in passing before we simply go ahead and develop
tensor calculus without knowing what we are really doing.

4.1 Manifolds

We have studied some elementary examples of differential geometry. However in the S2

case we thought of it as embedded inside IR3. It then inherited its geometry from the
Euclidean metric of IR3. This is said to be extrinsic geometry. However one need not
think this way. One can simply through away the embedding and think if S2 as its own
object with its own intrinsic geometry.

An n-dimensional manifold is a space that locally looks like IRn.
Formally the definition involves taking an open cover of a topological space M,

that is a set of pairs (Ui, φi) where Ui is an open set of M and φi : Ui → IRn is a
homeomorphsm onto its image, i.e. it is continuous, invertable (when restricted to its
image in IRn) and its inverse is continuous. These are subject to two key constraints:

i) M = ∪iUi
4This of course is not the standard equator that is used in geography. It may seem politically

motivated but we simply want to find the simplest mathematical solution.
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ii) If Ui∩Uj 6= ∅ then φj ◦φ−1i : φi(Ui∩Uj) ⊂ IRn → φj(Ui∩Uj) ⊂ IRn is differentiable
(for our purpose we assume that all the partial derivatives exist to all orders).

What does this mean? Each point p ∈M is contained in an open set Ui ⊂M called
a neighbourhood. The map φi then provides coordinates for the point p and all the
other points in that neighbourhood:

φi(p) = (x1(p), x2(p), x3(p), ..., xn(p)) ∈ IRn (4.1)

The key point of manifolds is that there can be many possible coordinate systems for the
same point and its neighbourhood, corresponding to different choices of φi. Furthermore
a particular coordinate system does not have to (and in general won’t) cover the whole
manifold. The second point guarantees that if two coordinate systems overlap then the
transformation between one and the other is smooth.

The classic example of a manifold is the surface of a sphere, such as the earth.
Common coordinates are longitude and lattitude. However these don’t cover the

whole space as the north and south poles do not have a well defined longitude.
We are in addition interested in Riemannian (or technically pseudo-Riemannian)

manifold which means that we also have a metric gµν this is an invertable matrix located
at each point which determines lengths and angles of vector fields at that point, viz:

||V (x)||2 = gµν(x)V µ(x)V ν(x) (4.2)

Thus if we think of V µ(x) as the infinitessimal variation of a curve V µ = dxµ then
we recover the definition above for the lenght of an infinitessimally small curve passing
through the point xµ

ds2 = gµνdx
µdxν (4.3)

4.2 Tensors

We now need to develop the rules that the ‘good’ (covariant) objects will obey whenwe
pass from one coordinate system to another. Such objects are called tensors. A tensor
is ‘something that transforms like a vector’. Indeed it is just a generalisaton of a vector
field. You have probably already encountered these in a course on Electromagetism (Fµν
is a tensor) but in the special case that the transformation between coordinates is linear
(i.e. Lorentz trnasformations).

We saw earlier that for the notion of the proper distance to be invariant under
coordinate transformations, i.e. diffeomorphisms, the metric had to transform as

g′ρσ =
∂xµ

∂x′ρ
∂xν

∂x′σ
gµν (4.4)

This is an example of a (0, 2)-tensor. We could also consider the inverse metric, that is
the object gρσ which is the matix inverse of gµν :

gµνg
νσ = δσµ (4.5)
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Problem: Show that

g′νσ =
∂x′ν

∂xµ
∂x′σ

∂xλ
gµλ (4.6)

Thus we can define a (p, q)-tensor, or rank (p, q) tensor, on a manfold to be an object
T µ1µ2µ3...µp ν1ν2ν3...νq with p upstair indices and q downstairs indices that transforms under
a diffeomorphsm xµ −→ x′µ(xν) as

T ′(x′)µ1µ2µ3...µp ν1ν2ν3...νq

=

(
∂x′µ1

∂xρ1
∂x′µ2

∂xρ2
∂x′µ3

∂xρ3
...
∂x′µq

∂xρq

)(
∂xλ1

∂x′ν1
∂xλ2

∂x′ν2
∂xλ3

∂x′ν3
...
∂xλq

∂x′νq

)
T (x)

ρ1ρ2ρ3...ρp
λ1λ2λ3...λq

(4.7)

N.B.: Note the positions of the primed and unprimed coordinates! So the inverse metric

is an example of a (2, 0)-tensor.

A tensor field is simply a tensor which is defined at each point on the manifold.

Thus a scalar is a (0, 0)-tensor;

φ′(x′) = φ(x) (4.8)

a vector is a (1, 0)-tensor;

V ′µ(x′) =
∂x′µ

∂xν
V ν(x) (4.9)

and a covector is a (0, 1)-tensor;

A′µ(x′) =
∂xν

∂x′µ
Aν(x) (4.10)

In older books the upstairs and downstairs indices are referred to as contravariant and
covariant respectively.

Given two tensors we can obtain a new one is various ways. If they have the same
rank then any linear combination of them is also a tensor.

In addition a (p, q)-tensor can be multiplied by an (r, s)-tensor to produce a (p +
r, q + s)-tensor.

Finally a (p, q)-tensor T (x)
ρ1ρ2ρ3...ρp

λ1λ2λ3...λq
with p, q ≥ 1 can be contracted to form

a (p− 1, q − 1)-tensor:

T (x)
ρ2ρ3...ρp

λ2λ3...λq
= T (x)

µρ2ρ3...ρp
µλ2λ3...λq

(4.11)

Clearly this can be done in pq ways depending on which pair of indices we sum over
Also since we have a metric gµν and its inverse gµν we can lower and raise indices

on a tensor (this doesn’t really create a new tensor so it keeps the same symbol). For
example if V µ is a vector then

Vµ = gµνV
ν (4.12)
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is a covector.

Problem: What are the mistakes in the following equation:

A νλ
µν B µσ

ρνπρ − 34C λσ
µρπ = D σ

ρπ (4.13)

We can also take the symmetric and anti-symmetric parts of a tensor. Consider a
(0, q)-tensor Tµ1µ2µ3...µq then we have

T(µ1µ2µ3...µq) =
1

q!

(
Tµ1µ2µ3...µq + Tµ2µ1µ3...µq + ...

)
T[µ1µ2µ3...µq ] =

1

q!

(
Tµ1µ2µ3...µq − Tµ2µ1µ3...µq + ...

)
(4.14)

where the sum is over all permutations of the indices and in the second line the plus
(minus) sign occurs for even (odd) permutations.

4.3 Covariant Derivatives

Having introduced tensors we can consider their derivatives. However the partial deriva-
tive of a tensor is not a tensor. To see this we can consider a vector field:

∂

∂x′ν
V ′µ =

∂xλ

∂x′ν
∂

∂xλ

(
∂x′µ

∂xρ
V ρ

)

=
∂xλ

∂x′ν
∂x′µ

∂xρ
∂

∂xλ
V ρ +

∂xλ

∂x′ν
∂2x′µ

∂xρ∂xλ
V ρ

(4.15)

The first term is fine but the second one isn’t. Although we note that the derivative of
a scalar is a vector, i.e. a (0, 1)-tensor. To correct for this we must introduce the notion
of a covariant derivative which respect the tensorial property.

The solution to this is well-known in physics. We introduce a so-called connection
which modifies the derivative into a so-called covariant derivative and transforms in such
a way that the covariant derivative of a tensor is again a tensor. Thus we introduce Γµλρ
- called a connection - and define

DνV
µ = ∂νV

µ + ΓµνρV
ρ (4.16)

We then require that under a diffeomorphism Γµλρ transforms as

Γ′λµν =
∂xρ

∂x′µ
∂xσ

∂x′ν
∂x′λ

∂xτ
Γτρσ −

∂xσ

∂x′µ
∂xρ

∂x′ν
∂2x′λ

∂xσ∂xρ
(4.17)
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We then see that

D′νV
′µ =

∂xλ

∂x′ν
∂x′µ

∂xρ
∂

∂xλ
V ρ +

∂xλ

∂x′ν
∂2x′µ

∂xρ∂xλ
V ρ

+

(
∂xλ

∂x′ν
∂xσ

∂x′µ
∂x′µ

∂xρ
Γρλσ −

∂xσ

∂x′µ
∂xρ

∂x′ν
∂2x′λ

∂xσ∂xρ

)
∂x′µ

∂xπ
V π

=
∂x′µ

∂xρ
∂xλ

∂x′ν
DλV

ρ +
∂xλ

∂x′ν
∂2x′µ

∂xρ∂xλ
V ρ − δσπ

∂xρ

∂x′ν
∂2x′λ

∂xσ∂xρ
V π (4.18)

=
∂x′µ

∂xρ
∂xλ

∂x′ν
DλV

ρ (4.19)

Problem: Show that we can also write

Γ′λµν =
∂xρ

∂x′µ
∂xσ

∂x′ν
∂x′λ

∂xτ
Γτρσ +

∂x′λ

∂xσ
∂2xσ

∂x′ν∂x′µ

(HINT: consider the chain rule on the second term of the original expression for Γ′λµν and
note the identity ∂M−1M = −M−1∂M for matrices)

For covectors we define
DλVµ = ∂λVµ − ΓρλµVρ (4.20)

This ensures that the scalar obtained by contracting V µ and Uµ satisfies

Dλ(V
µUµ) = DλV

µUµ + V µDλUµ = ∂λ(V
µUµ) (4.21)

as we expect for scalars.
The covariant derivative is then defined on a general (p, q)-tensor to be

DµT
ρ1ρ2ρ3...ρp

λ1λ2λ3...λq
= ∂µT

ρ1ρ2ρ3...ρp
λ1λ2λ3...λq

+Γρ1µνT
νρ2ρ3...ρp

λ1λ2λ3...λq
+ ...

−Γνµλ1T
ρ1ρ2ρ3...ρp

νλ2λ3...λq
− ... (4.22)

where each index gets contracted with Γµνλ

Problem: Convince yourself that the covariant derivative of a (p, q)-tensor is a (p, q+1)-
tensor.

Note that the anti-symmetric part of a connection Γλ[µν] is a (1, 2)-tensor (why?).
This is called the torsion and it is usually set to zero. In addition the difference between
any two connections is a (1, 2)-tensor.

To determine the connection Γλµν we impose another condition, namely that the
metric is covariantly constant, Dλgµν = 0. This is called the Levi-Civita connection. It
is the unique connection which annihilates the metric and is torsion free.
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To determine it (and show that it is unique) we consider the following

Dλgµν = ∂λgµν − Γρλµgρν − Γρλνgµρ = 0

Dµgνλ = ∂µgνλ − Γρµνgρλ − Γρµλgνρ = 0

Dνgλµ = ∂νgλµ − Γρνλgρµ − Γρνµgλρ = 0

(4.23)

Next we take the sum of the 2nd and 3rd equation minus the 1st (and use the fact that
Γλµν = Γλνµ):

0 = ∂νgλµ + ∂µgνλ − ∂λgµν − 2Γρµνgρλ (4.24)

Thus we find that the Levi-Civita is

Γλµν =
1

2
gλρ(∂µgρν + ∂νgρµ − ∂ρgµν) (4.25)

Thus we see that this is indeed symmetric in its lower two indices. It is easy to verify
that

Dλgµν = ∂λgµν − Γρλµgρν − Γρλνgµρ

= ∂λgµν −
1

2
(∂µgλν + ∂λgµν − ∂νgλµ)− 1

2
(∂νgλµ + ∂λgµν − ∂µgλν)

= 0 (4.26)

The last thing to do is prove that Γλµν indeed transforms as it should. To do this we
note that, from (4.24), we have, by construction,

0 = ∂′νg
′
λµ + ∂′µg

′
νλ − ∂′λg′µν − 2Γ′ρµνg

′
ρλ (4.27)

in the new coordinates. Now we know that

g′λµ =
∂xτ

∂x′λ
∂xσ

∂x′µ
gτσ ∂′ν =

∂xρ

∂x′ν
∂

∂xρ

We just need to substitute this into (4.27) and determine Γ′λµν .

Problem: Show that Γλµν indeed transforms as a connection (HINT: first consider the
case where the matrices ∂xµ/∂x′ν are constant).

Problem: Compute the components of Γλµν for S2.

Problem: Consider polar coordinates of IR2. Compute gµνDµDνf for an arbitrary
function f(r, θ) and show that this agrees with ∇2f computed above.
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4.4 Geodesics

We wish to find paths which minimize their proper length, what we can think of as the
analogues of straight lines. If Xµ(τ) is a path in spacetime where τ parameterizes the
curve and runs from τ = a to τ = b we need to minimize the functional

l =
∫ b

a
ds =

∫ b

a

√
|gµνdxµdxν | =

∫ b

a

√
|gµνẊµẊν |dτ

We do not worry about boundary terms, as we wish to find a local condition on the
curve Xµ(τ). This is simply a variational problem that you should have encountered in
classical mechanics where the equations of motion are determined by extremizing the

Lagrangian L =
√
|gµνẊµẊν |.

This turns out to have a technically subtle because it is so non-linear. I don’t want
to bother you with the full details (except as a problem!) so a quick way to avoid this
is note that we can just as well use the ‘Lagrangian’ L2 and hence extremize

“l2” =
∫
gνλẊ

νẊλdτ

The Euler-Lagrange equations give

−2
d

dτ

(
gµνẊ

ν
)

+
∂gλν
∂xµ

ẊλẊν = 0 (4.28)

Expanding things out a bit we find

0 = −2gµνẌ
ν −

(
2
∂gµν
∂xλ

− ∂gλν
∂xµ

)
ẊλẊν

= −2

(
gµνẌ

ν +
1

2

∂gµν
∂xλ

+
1

2

∂gµλ
∂xν

− 1

2

∂gλν
∂xµ

)
ẊλẊν

= −2gµν
(
Ẍµ + ΓµλνẊ

λẊν
)

(4.29)

This is equivalent to
Ẍµ + ΓµλνẊ

λẊν = 0 (4.30)

A geodesic that satisfies (4.30) is said to be affinely parameterized and in what follows
we will always assume this to be the case.

The technical point that we skipped is that one can find geodesics which don’t
satisfy this. If we compute the Euler-Lagrange equations that arise from minimizing l

then there will be factors of
√
gµνẊµẊν in the denominator. We can ignore these if they

are constant. And this is just what happens:

Theorem: Along an affinely parameterized geodesic gµνẊ
µẊν is constant
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Proof: We simply differentiate

d

dτ

(
gµνẊ

µẊν
)

= ∂λgµνẊ
λẊµẊν + 2gµνẊ

µẌν

= ∂λgµνẊ
λẊµẊν − 2gµνẊ

µΓνλρẊ
λẊρ

= (∂λgµν − ∂νgµλ − ∂λgµν + ∂µgλν) Ẋ
λẊµẊν

= 0 (4.31)

Thus ds = const.×dτ along and affinely parameterised geodesic and hence we can think
of s and τ as the same, up to an overall constant.

In the original calculation we see that l does not depend on the choice of the param-
eterization Xµ(τ). This is because we can redefine the variable τ → τ(τ ′). As such we
see that

Ẋµ =
dτ ′

dτ

dXµ

dτ ′
dτ =

dτ

dτ ′
dτ ′

and hence

l =
∫ b

a

√
|gµνẊµẊν |dτ

=
∫ τ−1(b)

τ−1(a)

√√√√∣∣∣∣∣gµν dτ ′dτ dX
µ

dτ ′
dτ ′

dτ

dXν

dτ ′

∣∣∣∣∣ dτdτ ′dτ ′ (4.32)

=
∫ τ−1(b)

τ−1(a)

√√√√∣∣∣∣∣gµν dXµ

dτ ′
dXν

dτ ′

∣∣∣∣∣dτ ′
where the factors of dτ/dτ ′ have canceled. The new curve, viewed as a function of τ ′

won’t satisfy (4.30). However one can show that there is always a choice of τ so that
the geodesic does satisfy (4.30).

Problem: Show this.

Note that this does not work in the expression for “l2”. “l2” only works if we use
affine parameterization.

Let us return to our sphere example again. Here we have

l = R
∫ √

θ̇2 + sin2 θϕ̇2dτ

Before we imagined that θ = f(ϕ) which in this language means that we choose τ = ϕ.
This is possible since we have reparameterization invariance, however other choices, such
as an affine parameter, might be better. Let us exam things in the new way using

“l2” = R2
∫
θ̇2 + sin2 θϕ̇2dτ (4.33)

Since we don’t have reparameterization invariance (we must use an affine parameter)
we can’t choose τ how we like. We must proceed keeping τ general.
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This is just an Euler-Lagrange system for two fields θ and ϕ. However let us note a
simplification. The “Lagrangian” L = R2(θ̇2 + sin2 θϕ̇2) depends on ϕ̇ but not directly
on ϕ (there is a symmetry ϕ → ϕ + const). This means that there is a conserved
quantity:

L =
∂L
∂ϕ̇

= R2 sin2 θϕ̇ (4.34)

it’s called L because it is related the angular momentum of the motion. The equation
of motion now reduces to the equation of motion for θ:

θ̈ − sin θ cos θϕ̇2 = θ̈ − L2

R4

cos θ

sin3 θ
= 0

Maybe this doesn’t seem much better than what we had before. There is still the
constant solution at θ = π/2 but now ϕ = Lτ/R4.

One trick is step back a bit and notice that this is the equation of motion for a
particle with position θ moving in a potential V = L2/R4 sin2 θ. Indeed multiplying by
θ̇ and integrating once leads to

1

2
θ̇2 +

L2

2R4 sin2 θ
= E

where E is a constant (the total energy). Alternatively we can just substitute (4.34)
into (4.33). So even if we can’t solve the equation we can get a good picture of the
behaviour of the solutions by thinking of a particle moving in the potential L2/R4 sin2 θ.

Actually one can solve this equation by substituting θ = f(y) for some y so that
θ̇ = f ′ẏ. The equation can now be written as

1

2
f ′2ẏ2 +

L2

2R4 sin2 f
= E

If we choose f ′ = L/R2 sin f then we get

ẏ2 + 1 =
2ER4

L2
sin2 f

Now the solution to sin ff ′ = L/R2 is − cos f = Ly/R2 and hence sin2 f = 1−L2y2/R4.
In this way we find

ẏ2 + 2Ey2 =
2ER4

L2
− 1

Since the left hand side is positive definite we require that E > L/2R2 and the solutions
are then simply

y =

(
R4

L2
− 1

2E

)
cos

(√
2E(τ − τ0)

)
Finally we put the pieces back together to find

θ = arccos

cos θ0 cos

√2EL

R2
(τ − τ0)
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where cos θ0 = L/2ER2 −R2/L. We can also compute ϕ by noting that

ϕ̇ =
L

R4 sin2 θ
=

L

R4

1

1− cos2 θ0 cos2
(√

2EL
R2 (τ − τ0)

)
This can be integrated to give

ϕ = ϕ0 +

√
L

2ER6
csc θ0arccot

sin θ0 cot

√2EL

R2
(τ − τ0)


4.5 Causal Curves Again

We have been a but cavalier with the expression
√
| − gµνdxµdxν |. Since gµν is a sym-

metric matrix it has real eigenvalues. Furthermore in flat spacetime (in the usual coor-
dinates) we have

gµν = ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.35)

Note that since gµν must be invertable its eigenvalues can never pass through zero. Thus
gµν always has one negative eigenvalue and three positive ones. The eigenvector associ-
ated to the negative eigenvalue is ‘time’. Thus vectors can have a length-squared which
is positive, negative or zero. These are called space-like, time-like or null respectively.
This is the same as in Special relativity.

If Xµ(τ) is a curve, i.e. a map from some interval in IR toM, then we can construct
the ‘tangent’ vector at a point Xµ(τ0) along the curve to be

T µ =
dXµ

dτ

∣∣∣
τ=τ0

(4.36)

The length of this vector is determined by the metric

||T ||2 = gµν(X(τ0))
dXµ

dτ

∣∣∣
τ=τ0

dXν

dτ

∣∣∣
τ=τ0

(4.37)

An important consequence of this is that ||T ||2 can be positive, negative or zero.
Indeed for a static curve, where only the time coordinate is changing, ||T 2|| < 0. For
light rays we have ||T ||2 = 0. Finally curves for which every point is at the same ‘time’
have ||T ||2 > 0. Similarly curves are call time-like, null and space-like respectively if
their tangent vectors are everywhere time-like, null or spacelike repectively.

The familiar statement of Special Relativity that nothing can travel faster than the
speed of light is the statement that physical observes always follow time-like curves, in
particular time-like geodesics, that is curves for which (at all points)

gµνẊ
µẊν < 0 (4.38)
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where the derivative is with respect to the coordinate along the particles world-line.
Similarly light travels along null curves:

gµνẊ
µẊν = 0 (4.39)

at each point.
Two events, i.e. two points in spacetime, are said to be causally related if there is

a time-like or null curve that passes through them. In which case the earlier one (as
defined by the coordinate of the worldline) can influence the later one. If no such curve
exists then the two points are said to be spacelike seperated and an obeserver at one
cannot know anything about the events at the other.

4.6 Integration

Let us look at how to compute the integral of some scalar quantity f over spacetime
(or a part of spacetime). We need the integral to be well defined, i.e. independent of
coordinate transformations. We first note that, under a diffeomorphism, xµ → x′µ(x)

d4x′ = det

(
∂x′

∂x

)
d4x (4.40)

This transformation can be cancelled by noting that

√
− det(g′µν) =

√√√√− det

(
∂xλ

∂x′µ
∂xρ

∂x′ν
gλρ

)

=

√√√√det

(
∂xλ

∂x′µ

)√√√√det

(
∂xρ

∂x′ν

)√
− det(g′λρ)

= det

(
∂x

∂x′

)√
− det(g′) (4.41)

Here we have neglected indices and viewed the various two-index expressions as matrices.
Thus we have that

d4x′
√
− det(g′) = d4x

√
− det(g) (4.42)

is a coordinate independent measure and so the a coordinate system invariant expression
for the integral of f is ∫

f =
∫
d4x

√
− det(g)f (4.43)

4.7 Riemann Normal Coordinates

There is a local coordinate choice that we can use to set Γλµν = 0 at any given point p.
Note that this is not possible for a tensor which vanishes at p in all coordinates systems
if it vanishes in one. From Dλgµν = 0 this is equivalent to ∂λgµν = 0 at p. If we suppose
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that the coordinates of p correspond to xµ = 0 then this means that the metric has the
form

gµν(x) = gµν(0) +O(x2)

To arrange this we start with a general metric

gµν(x) = gµν(0) +Gµνλx
λ +O(x2)

and consider a coordinate transformation

x′µ = xµ + Cµ
νλx

νxλ +O(x2)

Note that without loss of generality we have that Cµ
νλ is symmetric in ν, λ. Thus it has

the same symmetries and index structure as Γµνλ so one may hope to use it to, locally
at p, set Γ′µνλ = 0. Indeed we compute

∂x′µ

∂xν
= δµν + 2Cµ

νλx
λ ∂2x′σ

∂xν∂xµ
= 2Cσ

µν

We also need ∂xµ/∂x′ν but all we need is the very lowest order in xµ and this is simply
obtained as the inverse to ∂x′µ/∂xν :

∂xµ

∂x′ν
= δµν +O(x)

Next we recall that

Γ′λµν =
∂xρ

∂x′µ
∂xσ

∂x′ν
∂x′λ

∂xτ
Γτρσ −

∂xσ

∂x′µ
∂xρ

∂x′ν
∂2x′λ

∂xσ∂xρ
(4.44)

We want to show that if Γλµν = Γλµν(0) +O(x) we can chose Cλ
µν so that Γ′λµν = 0 +O(x).

This leads to the condition

0 +O(x) = Γλµν(0) +O(x)− 2Cλ
µν +O(x)

and hence we simply take Cλ
µν = 1

2
Γλµν(0).

Such a coordinate system is called the Riemann normal coordinate system about p.
Note that if we consider geodesics that start at p then they take the simple form

Xµ(τ) = T µτ +O(τ 3)

for a constant vector T µ. Thus the simple flows along the coordinates are geodesics to
lowest order in τ
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4.8 Curvature

Partial derivatives commute: [∂µ, ∂ν ] = ∂µ∂ν − ∂ν∂µ = 0. However this is not the case
with covariant derivatives. Indeed

[Dµ, Dν ]Vλ = Dµ (∂νVλ − ΓρνλVρ)− (µ↔ ν)

= ∂µ(∂νVλ − ΓρνλVρ)− Γσµν(∂σVλ − ΓρσλVρ)

−Γσµλ(∂νVσ − ΓρνσVρ)− (µ↔ ν)

= −∂µ(ΓρνλVρ)− Γσµλ(∂νVσ − ΓρνσVρ)− (µ↔ ν)

= −∂µΓρνλVρ + ΓσµλΓ
ρ
νσVρ − (µ↔ ν)

= R ρ
µνλ Vρ (4.45)

where
R ρ
µνλ = −∂µΓρνλ + ∂νΓ

ρ
µλ − ΓσνλΓ

ρ
µσ + ΓσµλΓ

ρ
νσ (4.46)

is the Riemann curvature.

N.B.: Different books have different conventions for R ρ
µνλ .

For higher tensors one finds that

[Dµ, Dν ]T
ρ1ρ2ρ3...ρp

λ1λ2λ3...λq
= R π

µνλ1
T
ρ1ρ2ρ3...ρp

πλ2λ3...λq
+ ...

−R ρ1
µνπ T

πρ2ρ3...ρp
λ1λ2λ3...λq

− ...
(4.47)

R ρ
µνλ is a tensor. To see this we note that [Dµ, Dν ]Vλ is a (0, 3)-tensor for any Vλ.

Thus under a diffeomorphsim

R′
ρ

µνλ V
′
ρ =

∂xσ

∂x′µ
∂xτ

∂x′ν
∂xπ

∂x′λ
R ρ
στπ Vρ (4.48)

Now since

Vρ =
∂x′θ

∂xρ
V ′θ (4.49)

we see that

R′
ρ

µνλ V
′
ρ =

∂xσ

∂x′µ
∂xτ

∂x′ν
∂xπ

∂x′λ
R ρ
στπ

∂x′θ

∂xρ
V ′π (4.50)

Since Vρ is arbitrary we deduce that R ρ
στπ is a (1, 3)-tensor;

R′
ρ

µνλ =
∂xσ

∂x′µ
∂xτ

∂x′ν
∂xπ

∂x′λ
∂x′ρ

∂xθ
R θ
στπ (4.51)

It has some identities:

R ρ
(µν)λ = 0 , R ρ

[µνλ] = 0 , Rµνλρ = Rλρµν , D[τR
ρ

µν]λ = 0 (4.52)
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The first identity is obvious.
To establish the other identities use Riemann Normal coordinates to find a system

of coordinates such that Γλµν = 0 at some point p (but not everywhere). Thus at this
point p

R ρ
µνλ = −∂µΓρνλ + ∂νΓ

ρ
µλ (4.53)

and so

Rµνλρ = −gρτ∂µΓτνλ + gρτ∂νΓ
τ
µλ

=
1

2
(−∂µ∂λgρν − ∂µ∂νgρλ + ∂µ∂ρgνλ + ∂ν∂λgρµ + ∂ν∂µgρλ − ∂ν∂ρgµλ)

=
1

2
(−∂µ∂λgρν + ∂µ∂ρgνλ + ∂ν∂λgρµ − ∂ν∂ρgµλ) (4.54)

Here we can simply check that, at p, R[µνλ]ρ = 0 and Rµνλρ − Rλρµν = 0. Furthermore
since these are tensors if they vanishes at p in one coordinate system then it vanishes
in all. Finally there was nothing special about the point p. Therefore the identities
everywhere.

Problem: Prove the final identity D[τR
ρ

µν]λ = 0.

From the Riemann tensor we can construct the Ricci tensor by contraction

Rµν = R ρ
µρν (4.55)

and it follows that Rµν = Rνµ. And lastly there is the Ricci scalar which requires us to
contract using the metric

R = gµνRµν (4.56)

Problem: Show that

Dµ
(
Rµν −

1

2
gµνR

)
= 0 (4.57)

Problem: Compute Rµνλ
ρ, Rµν and R for S2. Recall that previously you should have

computed

Γθϕϕ = − sin θ cos θ Γϕθϕ = Γϕϕθ = cot θ (4.58)

(HINT: The only independent component is Rθϕθ
ϕ.)

Problem: Show that in two dimensions one always has

Rµν −
1

2
gµνR = 0
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5 General Relativity

We are finally in a position to write down Einstein’s equation that determines the
dynamics of the metric field gµν and examine some physical consequences.

Einstein’s idea was that matter causes spacetime to become curved so that geodesics
in the presence of large masses can explain the motion of bodies in a gravitational field.
The next important step is to postulate an equation for the metric in the presence of
matter (or energy since they are interchangable in relativity). In addition since gravity
is universal the coupling of geometry to matter should only depend on the mass and
energy present and not what kind of matter it is.

Thus we need to look for an equation of the form

Geometry = Matter (5.1)

The bulk properties of matter are described by the energy-momentum tensor Tµν . Fur-
thermore we want an equation that is second order in derivatives of the metric tensor
(since we want to mimic a Newtonian style force law). Another hint comes from the fact
that in flat space the energy-momentum tensor is conserved ∂µTµν = 0. Since this is
not covariant we postulate that the general expression is DµTµν = 0 Given the identity

Dµ
(
Rµν −

1

2
gµνR

)
= 0 (5.2)

an obvious choice is

Rµν −
1

2
gµνR + Λgµν = κ2Tµν (5.3)

where Λ and κ are constants. We won’t fix κ in this course. For the curious it can be
computed by comparing to the Newtonian Theory and one finds κ2 = 8πGN/c

4 where
GN is Newton’s constant.

Here we have included an additional term which is obviously covariantly conserved:
Dµgµν = 0.There is a long story about Λ - the so-called cosmological constant. It is in
fact the biggest mystery in the exact sciences. The problem is that we don’t know why
the cosmological constant is so small, by a factor of 10−120 from what one would expect.
Furthermore recent observations strongly imply that it is just slightly greater than zero.

Nowadays one usually absorbs the cosmological constant term into the energy mo-
mentum tensor Tµν → Tµν + Λκ−2gµν where it is identified with the energy density of
the vacuum. We will do the same. Thus we take Einstein’s equation to be

Rµν −
1

2
gµνR = κ2Tµν (5.4)

It is often said that this equations says “matter tells space how to bend and space tells
matter how to move”. It turns out that this guess is at least mathematically good: it is
not overdetermined, i.e. as a set of differential equations it is well posed with a suitable
set of initial conditions. This would not be the case if we hadn’t chosen the left hand
side to be covariantly conserved.
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Problem: Show that Einstein’s equation is equivalent to

Rµν = κ2Tµν −
1

2
κ2gµνT (5.5)

6 Schwarzschild Solution

Let us look for a time-independent and spherically symmetric solution to Einstein’s
equation with Tµν = 0. We take the anstaz:

ds2 = −e2A(r)c2dt2 + e2B(r)dr2 + r2(dθ2 + sin2 θdϕ2) (6.1)

Note that we could have allowed for terms of the form gtr(r)dtdr. This would still
be time-independent and spherically symmetric but it turns out we can ignore it and
this will save us a lot of work. Technically having a time-independent metric is called
stationary and a stationary metric which has no dtdx terms (for any spatial coordinate
x) is called static. The difference between the two is like the difference between a lake
and a river: both are constant in time yet a river is somehow moving and transferring
momentum whereas the lake is truly static.

So we have

gµν =


−c2e2A 0 0 0

0 e2B 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 , gµν =


−c−2e−2A 0 0 0

0 e−2B 0 0
0 0 1

r2
0

0 0 0 1
r2 sin2 θ


(6.2)

We start by calculating the non-vanishing Christoffel coefficients. There are two (equiv-
alent) ways to do this. The first is to use the formula (4.25). The other is to consider the
equations for geodesics using the action “l2” introduced above, from the Euler-Lagrange
equations one can read off the components of Γλµν from the terms in the Xλ equation
that are first order in derivatives. For the metric we have we find the “l2” Lagrangian is

L = e2A(r)c2ṫ2 − e2B(r)ṙ2 − r2θ̇2 − r2 sin2 θϕ̇2

and thus the Euler-Lagange equations are (suitably normalized so that the coefficient
of the second order term is one):

ẗ+ 2A′ṙṫ = 0

r̈ +B′ṙṙ − re−2B θ̇θ̇ − r sin2 θe−2Bϕ̇ϕ̇+ A′e2(A−B)c2ṙṫ = 0

θ̈ +
2

r
ṙθ̇ − sin θ cos θϕ̇ϕ̇ = 0

ϕ̈+
2

r
ṙϕ̇+ cot θθ̇ϕ̇ = 0 (6.3)

This leads to (note the factors of 1/2 in Γλµν when µ 6= ν).

Γϕrϕ =
1

r
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Γϕθϕ = Γϕϕθ = cot θ

Γθϕϕ = − sin θ cos θ

Γθrθ = Γθθr =
1

r
Γrϕϕ = −r sin2 θe−2B

Γrθθ = −re−2B

Γrrr = B′

Γrtt = A′e2(A−B)c2

Γtrt = Γttr = A′ (6.4)

Next we calculate Rµν from

Rµν = R ρ
µρν = −∂µΓρνρ + ∂ρΓ

ρ
µν − ΓσρνΓ

ρ
µσ + ΓσµνΓ

ρ
σρ (6.5)

The non-vanishing components are

Rϕϕ =
(
(rB′ − rA′ − 1)e−2B + 1

)
sin2 θ

Rθθ = (rB′ − rA′ − 1)e−2B + 1

Rrr = −A′′ − A′2 + A′B′ +
2

r
B′

Rtt =
(
A′′ + A′2 − A′B′ + 2

r
A′
)
e2(A−B)c2 (6.6)

Next we see that Rrr = 0 and Rtt = 0 imply B′ = −A′. Hence B = a− A for some
constant a. In fact we can remove this constant a by rescaling t (which is equivalent to
shifing A by a constant). This leaves us with two equations

A′′ + 2A′2 +
2

r
A′ = 0

−(2rA′ + 1)e2A + 1 = 0 (6.7)

We can solve the second one by writing it as

r(e2A)′ + e2A − 1 = 0 (6.8)

so if e2A = 1 +X then rX ′ = −X hence we find

e2A = 1− R

r
(6.9)

for an arbitrary R. Lastly we must check that the second order equation is satisfed.
Again to see this note that it can be written as

(e2A)′′ +
2

r
(e2A)′ = 0 (6.10)
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which is just the harmonic equation for e2A in three dimensions. Thus our final answer
is

ds2 = −
(

1− R

r

)
c2dt2 +

dr2

1− R
r

+ r2(dθ2 + sin2 θdϕ2) (6.11)

This seems like a miracle since we solved two equations for a single function A.
However the second order equation was guaranteed to be solved if the first order one
is. This is a consequence of the Bianchi identity (why?) and ensures that the Einstein
equations are well posed.

The Schwarzschild metric is in fact it is unique, given our assumptions:

Theorem: (Birkhoff) The Schwarzchild metric is the unique, up to diffeomorphisms,
stationary and spherically symmetric solution to the vacuum Einstrien equations.

We will not prove this theorem here, it simply follows from the Einstein equations. It
is an elementary version of a ‘no-hair’ theorem. The surprising thing about it is that the
solution contains no information about what makes up the matter. The result remains
true if more complicated matter terms are added to the Lagrangian.

It seems as if there is a problem at r = R and also at r = 0. Certainly we can’t use
the metric at r = R. If you calculate some curvature invariant, such as R ρ

µνλ Rµνλ
ρ

then there is no apparent problem at r = 2R but there is a divergence at r = 0. For
r < R we can still use the Schwarzchild solution. But note that the role of ‘time’ is
played by r. In particular, for r < R, the metric is no longer time-independent. To
understand more we must look at geodesics. We will do this later.

For now it is important to note that we do not have to consider the Schwarzchild
metric to be valid everywhere. For example it is also the unique solution outside a static
spherically symmetry distribution of matter, whose total mass is M . In particular it
describes the spacetime geometry outside a star such as the sun or a planet such as the
earth (ignoring their rotation).

Problem: Using the expressions for Rµν and setting B = −A but not imposing any
condition on A, show that the components of Gµν = Rµν − 1

2
gµνR are

Gϕϕ = r2 sin2 θe2A
(
A′′ + 2A′2 +

2

r
A′
)

Gθθ = r2e2A
(
A′′ + 2A′2 +

2

r
A′
)

Grr = −e−2A
(

2

r
A′e2A +

1

r2
e2A − 1

r2

)
Gtt = −c2e2A

(
2

r
A′e2A +

1

r2
e2A − 1

r2

)
(6.12)

6.1 Geodesics

Now we need to physically examine this solution. We start by looking at Geodesics,
which, according to Einstein, are the paths of free-falling observers. As we have discussed
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we can obtain these from the modify action

S = −
∫
dτgµνẊ

µẊν

=
∫
dτc2

(
1− R

r

)
ṫ2 −

(
1− R

r

)−1
ṙ2 − r2θ̇2 − r2 sin2 θϕ̇2 (6.13)

If we think of this as a Lagrangian for four fields t(τ), r(τ), θ(τ) and ϕ(τ), then t and θ
do not have and ‘potential’ terms. Thus it follows that

E = c2
(

1− R

r

)
ṫ (6.14)

and
L = r2 sin2 θϕ̇ (6.15)

are constant along any geodesic.
We still have the θ equation. We note here that θ = π/2 is guaranteed to be a

solution to the Euler-Lagrange equations (why?). Thus we can simply take θ = π/2. In
fact one can argue that this is sufficient. Just as in the case of Newtonian physics in
a spherically symmetric potential, the conservation of angular momentum implies that
the motion takes place in a plane. This turns out to be true here too so we simply take
that plane to be θ = π/2.

We have not identified what τ is but from our discussion of affinely parameterized
geodesic we saw that ds ∝ dτ . The exact constant of proportionality doesn’t matter so
there are three distinct cases: ds2 < 0, ds2 = 0 and ds2 > 0 corresponding to timelike,
null or spacelike geodesics. In this case we find

ε = −
(
ds

dτ

)2

=
(

1− R

r

)−1 E2

c2
−
(

1− R

r

)−1
ṙ2 − L2

r2
(6.16)

where ε = 1 for timelike, ε = 0 for null and ε = −1 for spacelike geodesics. A little
rearranging leads us to

1

2
ṙ2 +

1

2

(
ε+

L2

r2

)(
1− R

r

)
=

1

2c2
E2 (6.17)

This is the equation for a particle with position r in a potential

V =
1

2

(
ε+

L2

r2

)(
1− R

r

)

=
1

2
ε− εR

2r
+
L2

2r2
− RL2

2r3
(6.18)

The 1/r and 1/r2 terms are the usual Newtonian potential if we take ε = 1 for a timelike
falling observer (the first ε term is an irrelevant constant), but we see that there are
relativistic corrections due to the additional 1/r3 term.
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6.2 Newtonian Limit

Let us look at radial (L = 0) timelike (ε = 1) geodesics at large r >> R. This
corresponds to a massive object falling straight down to earth or what ever the source
of the curvature is. In this case the leading order equations are

E = c2ṫ
1

2
ṙ2 − R

2r
=
E2

2c2
− 1

Now for a slowly moving observer (slow compared to c) it is sensible to take ct = τ , so
that the curve is parameterized by time, or what an observer at infinity would call time.
Note the factor of c. This is needed on dimensional grounds as we choose τ to have the
same dimensions as the proper length s and radius r (we did this when we set ε = 1).
Thus E = c. Differentiating the second equation we recover Newton’s law:

r̈ =
1

c2
d2r

dt2
= − R

2r2

provided that we identify R = 2GNM/c2.
With this in mind we have fixed the Schwarzschild metric to the more familiar form:

ds2 = −
(

1− 2GNM/c2

r

)
c2dt2 +

dr2

1− 2GNM/c2

r

+ r2(dθ2 + sin2 θdϕ2) (6.19)

But in addition we have recovered Newton’s gravitation law F = −GNMm/r2 as the
leading order effect of the curvature of spacetime.

6.3 Perihilion Shift of Mercury

The higher order corrections to Newton’s law that lead to two classic predictions of
General Relativity which we now discuss in detail

The first effect is that planets no longer move in elliptical orbits about the sun.
This deviation is extremely small for most planets but it was already observed prior to
Einstein that the closest planet to the sun, namely Mercury, does not follow an exactly
elliptical path. Rather the ’ellipse’ slowly rotates. This is called the perihelion shift of
Mercury.

To start with lets recover the elliptical motion in the Newtonian limit. Here we look
for geodesics with L 6= 0. Now it is more helpful to think of r as a function of ϕ. Thus
we have

ṙ =
dϕ

dτ

dr

dϕ
= Lr′/r2

where r′ = dr/dϕ. Let us introduce u = 1/r so that ṙ = −Lu′. The equation for ṙ
becomes

1

2
L2u′2 − GNM

c2
u+

1

2
L2u2 − GNML2

c2
u3 =

1

2c2
E2 − 1

2
(6.20)
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At large orbits u is small so we can neglect the u3 term. If we write u = GNM/c2L2 + ũ
and drop the u3 term then we find

1

2
L2ũ′2 +

1

2
L2ũ2 =

1

2c2
E2 − 1

2
− 1

2

G2
NM

2

c4L2

To clean this up we write E2 = c2 +G2
NM

2/c2L2 +G2
NM

2E2
0/c

2L2 and obtain

ũ′2 + ũ2 =
G2
NM

2E2
0

c4L4

which has the solutions (putting back the original variables)

u =
1

r
=
GNM

c2L2
(1 + E0 cos(ϕ− ϕ0)) (6.21)

This is the classic Kepler-Newtonian orbit with eccentricity E0. It is an ellipse if E0 < 1
(a circle if E0 = 0) , parabola if E0 = 1 or a hyperbola if E0 > 1

Problem: Show that this indeed describes elliptical, parabolic or hyperbolic orbits
depending on E0.

Next we need to consider the effect of including the u3 term. Let us start by taking
the derivative of (6.20) so that we find

L2u′′ −GNM/c2 + L2u− 3
GNML2

c2
u2 = 0

Now we expand u = u0 + δu where u0 is the solution we found in (6.21). Expanding
this all out gives

L2u′′0−
GNM

c2
+L2u0−

3GNML2

c2
u20+L2δu′′+L2δu− 6GNML2

c2
u0δu−

3GNML2

c2
(δu)2 = 0

The first three terms vanish since u0 is a solution of the Newtonian problem. We also
drop the u0δu and (δu)2 terms since we assume that both u0 and δu are small but also
that δu << u0. Thus the leading order correction comes from u20 rather than u0δu0.
The (δu)2 term gives an even smaller correction. Thus we need to solve

δu′′ + δu =
3GNM

c2
u20

If we substitute in the exact solution for u0 (setting ϕ0 = 0 for simplicity) we find

δu′′ + δu =
3G3

NM
3

c6L4

(
1 + 2E0 cosϕ+

E2
0

2
(cos(2ϕ) + 1)

)

The solution to this is

δu =
3G3

NM
3

c2L4

(
(1 +

1

2
E2

0) + E0ϕ sinϕ− 1

6
E2

0 cos(2ϕ)
)
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Ugh. However the interesting thing is the ϕ sinϕ term that grows without bound. This
arises because the cosϕ term is acting as a source for the harmonic oscillator but at
the resonant frequency. Thus ultimately this term will grow large and invalidate the
assumption that δu is a small perturbation. Certainly it will be the dominant correction.
From the point of view of the full solution nothing too dramatic can happen. The
interpretation of this term is to observe that

GNME0

c2L2
cos

((
1− 6G2

NM
2

c4L2

)
ϕ

)
=
GNME0

c2L2
cosϕ+

3G3
NM

3E0

c6L4
ϕ sinϕ+ . . .

Thus this term can be interpreted as changing the periodicity of the solution. In par-
ticular we find

u =
1

r
=
GNM

c2L2

(
1 + E0 cos

((
1 +

3G2
NM

2

c4L2

)
ϕ

))
+ . . .

where the ellipsis denotes smaller terms.
This gives the perihilion shift of Mercury (it’s too small for other planets to obeserve).

We see that the minimum distance of Mercury to the sun occurs at

cos

((
1 +

3G2
NM

2

c4L2

)
ϕ

)
= 1

We have normalized things so that at ϕ = 0 Mercury is at its closest point to the sun.
But the next time this happens is

ϕ = 2π

(
1 +

3G2
NM

2

c4L2

)−1
= 2π − 6πG2

NM
2

c4L2
+ . . .

Thus the orbit is ‘rotating’ forwards.

6.4 Bending of Light

The second prediction of General Relativity beyond the Newtonian theory is that a light
ray passing close by the sun will bend. It is not clear in the Newtonian theory how to
calculate the bending of light since it has no mass. You might try to interpret it as a
particle and assign some effective mass for it due to its energy, i.e. by including effects
of Special Relativity. However the amount predicted is only half that observed. But in
General Relativity it is clear what to do: we look for geodesics with ε = 0 but L 6= 0.
So we just follow the steps that we did for the perihilion shift of Mercury. The equation
is now

1

2
ṙ2 +

L2

2r2
− GNML2

c2r3
=

1

2c2
E2 (6.22)

which in terms of u is

1

2
L2u′2 +

1

2
L2u2 − GNML2

c2
u3 =

1

2c2
E2 (6.23)
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Again we start by neglecting the u3 term. This time we take for our solution (let us
set, with out loss of generality, ϕ0 = 0)

u =
1

r
=

E

cL
sinϕ (6.24)

This represents a light ray that comes in from infinity at ϕ = 0 and then out again to
infinity at ϕ = π. In particular if we write x = r cosϕ and y = r sinϕ then the solution
is just

y =
cL

E
Thus the light ray is undeflected and its closest distance to the run is rmin = cL/E.

Let us consider the effect of the u3 term that comes from General Relativity. Again
writing u = u0 + δu, where u0 is the solution (6.24), and differentiating we obtain the
equation

L2(u′′0 + δu′′) + L2(u0 + δu)− 3GNML2

c2
(u0 + δu)2 = 0

Once again we only need the term that is linear in δu (again the terms linear in u0
vanish since u0 is a solution). This gives

δu′′ + δu =
3GNM

c2
u20 + . . .

Substituting in for u0 we find

δu′′ + δu =
3GNME2

2c4L2
(1− cos(2ϕ))

so the solution is

δu =
3GNME2

2c4L2
+
GNME2

2c4L2
cos(2ϕ)

or

1

r
=

E

cL
sinϕ+

3GNME2

2c4L2
+
GNME2

2c4L2
cos(2ϕ)

=
E

cL
sinϕ+

3GNME2

2c4L2
+
GNME2

2c4L2
(1− 2 sin2 ϕ) (6.25)

Next we need to study this solution in the asymptotic regions where r → ∞. This
gives a quadratic equation for sinϕ:

sin2 ϕ− c3L

GNME
sinϕ− 2 = 0

The solutions are

sinϕ =
c3L

2GNME
± 1

2

√
c6L2

G2
NM

2E2
+ 8

=
c3L

2GNME

(
1± 1± 1

2

8G2
NM

2E2

c6L2
+ . . .

)
(6.26)
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Now the effect needs to be small as GNM → 0 and thus only the lower sign solution
makes sense (i.e. has | sinϕ| ≤ 1):

sinϕ = −2GNME

c3L

Expanding for small ϕ we find the ray comes in at

ϕ1 = −2GNME

c3L
+ . . .

and leaves at

ϕ2 = π +
2GNME

c3L
+ . . .

Corresponding to a deflection angle of

∆ϕ =
4GNME

c3L
+ . . .

Note that E an be related to the smallest value of r that the light ray takes. In the
unperturbed solution we see that the minimum value of r is rmin = cL/E. To leading
order this is unchanged in the perturbed solution so that

∆ϕ =
4GNM

c2rmin
+ . . .

6.5 Gravitational Redshift and Time Dilation

There are other important effects of General Relativity. Just as in Special Relativity
spacetime has the ‘ability’ to cause time dilation and Doppler-like red-shifts. Let us
look at a two observers. For simplicity we assume that they are both are at a constant
value of r. Each observer sits at a constant values of r, θ and ϕ. To them time is ‘proper
time’ in the sense that (∆s)2 = −c2∆t2i and hence

∆ti =

√
1− 2GNM/c2

ri
∆t

for i = 1, 2. This leads to

∆t1√
1− 2GNM/c2

r1

=
∆t2√

1− 2GNM/c2

r2

More generally we have (as long as g00 is time-independent)

∆t1
∆t2

=

√√√√g00(x1)

g00(x2)
.
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A standard notion of a clock is given by the (inverse) frequency of light: ∆t = 1/ν.
Suppose that an observer at r = r1 emits a light ray that escapes to some larger value
of r2 > r1. If the frequency of emitted light is ν1 this corresponds to taking ∆t1 = 1/ν1.
However at infinity an observer will measure:

ν2 =

√√√√√1− 2GNM/c2

r1

1− 2GNM/c2

r2

ν1

Thus ν2 < ν1. This is known as a red-sift since light will sign as more red (lower
frequency) at infinity than it is as seen from where it was emitted. In the limit that
r2 →∞ we get

ν∞ =

√
1− 2GNM/c2

r1
ν1

and in particular ν∞ < ν1 if 2GNM/c2 < r1 <∞. Thus the light seen at infinity has a
lower frequency, ie it has been red-shifted.

6.6 Schwarzchild Solution as a Black Hole

So far we have been treating the Schwarzschild solution at distances r > 2GNM/c2.
However it is most famous for it’s behaviour at r < 2GNM/c2. Let us look at radial
geodesics, these correspond to in-falling observers traveling at constant values of θ and
ϕ. Recall that our effective dynamical system is

1

2
ṙ2 +

1

2
ε− GNMε

r
=

1

2c2
E2 (6.27)

There is nothing special from this equation about r = 2GNM/c2. Indeed only r = 0
seems singular (there is an infinite potential there). It follows from general considerations
that one will pass through r = 2GNM/c2 in a finite affine time (that is a finite value of
τ). In addition one will hit r = 0 too. However these geodesics are parameterized by
the proper time τ , which is the time that the in-falling observer feels. Let us consider
what an observer at a safe distance from r = 2GNM/c2 sees.

Thus we want to consider dr/dt as opposed to dr/dτ . We simply note that

dr

dτ
=

dt

dτ

dr

dt

= ṫ
dr

dt

=
E

c2

(
1− 2GNM/c2

r

)−1
dr

dt

(6.28)

From here we see that the geodesic equation is

1

2c4
E2

(
dr

dt

)2

=

(
1− 2GNM/c2

r

)2 (
1

2c2
E2 − 1

2
ε

(
1− 2GNM/c2

r

))
(6.29)
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Near r → ∞ this modification does not do much as t ∼ Eτ . However as we approach
r = 2GNM/c2 we see that

1

2c2
E2

(
dδr

dt

)2

=
1

2
E2

(
1− 2GNM/c2

2GNM/c2 + δr

)2

+ . . .

=
1

2

E2

4G2
NM

2/c4
(δr)2 + . . .

(6.30)

where r = 2GNM/c2 + δr. Thus we see that

dδr

dt
= − δr

2GNM/c2
+ . . . (6.31)

and hence, near r = 2GNM/c2 we have

δr = e
− t−t0

2GNM/c
2 (6.32)

This shows that r never reaches r = 2GNM/c2 for any finite value of t. Thus an observer
at infinity, for whom t is the time variable, will never see an in-falling observer reach
r = 2GNM/c2. Whereas we saw that the in-falling observer will pass smoothly through
r = 2GNM/c2 in a finite proper time.

This is gravitational red-shifting gone mad. If we fix one observer at infinity, r1 =∞
then our red-shifting formula states that, for every one second in our frame the in-falling
observe has

∆t2 =
1

1− 2GNM/c2

r2

→∞

as r2 → 2GNM/c2. Thus to an observer at infinity the clocks on the in-falling observe
slow down to zero as they get closer and closer to r = 2GNM/c2. They appear to
become frozen and live for ever.

Thus to an outside observer the region r ≤ 2GNM/c2 is causally disconnected, they
cannot send in any probe, say a light beam or an astronaut, which will be able to go into
this region and return. The surface r = 2GNM/c2 is called the event horizon because
observers outside the horizon will never be able to probe what is beyond r = 2GNM/c2,
whereas a freely falling observer will smoothly pass though in a finite time. Of course it
also can be shown that, as is well known, no signal inside r = 2GNM/c2 can reach the
outside. This is the classic example of a black hole.

Clearly we need to understand the spacetime near r = 2GNM/c2 better. In particular
the coordinates are breaking down but this does not mean that spacetime is breaking
down. This could be, and in fact is, just a coordinate singularity.

To find a new set of coordinates let us consider a coordinate that is well-suited to
the in-falling observer. In particular consider such an observer who is lightlike, so that
ds2 = 0

0 = −
(

1− 2GNM/c2

r

)
c2dt2 +

dr2

1− 2GNM/c2

r
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This gives

±cdt =
dr(

1− 2GNM/c2

r

)2 = dr +
2GNM/c2

r − 2GNM/c2
dr

We can integrate both sides of this to find

±ct = r +
2GNM

c2
ln

(
c2

2GNM
r − 1

)

Here we see that t → ∞ as r → 2GNM/c2, just as we argued above for the timelike
case. Therefore we can choose to use the new coordinate

u = ct+ r +
2GNM

c2
ln

(
c2

2GNM
r − 1

)

so that du = 0 along an in-falling null geodesic.
By construction we have

du = cdt+
dr

1− 2GNM/c2

r

so we can rewrite the Schwarzschild metric as

ds2 = −
(

1− 2GNM/c2

r

)du− dr

1− 2GNM/c2

r

2

+
dr2

1− 2GNM/c2

r

+ r2(dθ2 + sin2 θdϕ2)

= −
(

1− 2GNM/c2

r

)
du2 + 2dudr + r2(dθ2 + sin2 θdϕ2) (6.33)

These are called in-falling Eddington-Finkelstein coordinates. Now look: there is noth-
ing singular about r = 2GNM/c2. While it is true that guu = 0 there the metric is still
invertible due to the drdu term. However r = 0 is singular. Indeed one can show that
Rµνλ

ρRµνλ
ρ diverges at r = 0.

Problem: Compute the inverse metric and show it exists at r = 2GNM/c2.

Problem: Show that it is impossible to find a coordinate transformation that makes
Rµνλ

ρRµνλ
ρ well behaved at r = 0.

We can get an intuitive notion for what is happening by observing that the original
coordinates r, t are valid at r > 2GNM/c2 and also at r < 2GNM

2/c2. The first region
we have studied a length in the previous sections. Consider the second region. Here the
metric is better written as

ds2 = − dr2

2GNM/c2

r
− 1

+

(
2GNM/c2

r
− 1

)
c2dt2 −+r2(dθ2 + sin2 θdϕ2)
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so that here r is time and t is space. The metric is now wildly time dependent. Thus the
roles of space and time have interchanged. As we have seen they have done so smoothly.
Looking again at the Eddington-Finkelstein coordinates we see that at large r we have

ds2 = −du2 + 2dudr + r2(dθ2 + sin2 θdϕ2)

If we write r = (v + u)/2 then we have

ds2 = dudv + r2(dθ2 + sin2 θdϕ2) (6.34)

These are the normal coordinates for Minkowski space where u, v describe the lightcone
about t = r = 0. That is the light cone consists of the points u = constant or v =
constant.

Problem: Show that in flat space the with u = ct+ r, v = −ct+ r the metric is (6.34)
and that the light cone through t = r = 0 is parameterized by u = 0 or v = 0.

As we fall into r = 2GNM/c2 the light cone defined by u, v or r, t ‘tips’. Eventually
we reach r = 2GNM/c2 where the Eddington-Finkelstein metric is

ds2 = 2dudr + r2(dθ2 + sin2 θdϕ2)

Thus the light cones have tipped so much that u and r are both lightlike (u is lightlike
everywhere). Once in the region r < 2GNM/c2 we again have lightcones but they have
tipped so much that the singularity at r = 0 (which should now be thought of as a
time in the future) now lies inside the light cone of an in-falling observer. This means
that they are doomed to hit r = 0. It has become an event in their future, that exists
throughout space, and it therefore unavoidable.

The surface defined by r = 2GNM/c2 is called an event horizon and the radius
2GNM/c2 is called the Schwarzschild radius. We have seen that lightrays and observes
who fall in through r = 2GNM/c2 cannot escape back to r > 2GNM/c2 and in fact are
doomed to hit r = 0 where there is a singularity. This is known as a Black Hole.

Does this mean that there is a Black Hole at the centre of our sun? No. The point is
that the Schwarzschild metric is the solution in the absence of matter (i.e. with Tµν = 0).
A star, like our sun, has matter in the region r < Rs where Rs is the radius of the sun.
The Schwarzschild solution is then valid for r > Rs.

A different, non-singular, solution is required for r < Rs corresponding to the fact
that T00 6= 0 there. However if there is a body that is so dense that its radius is less
than it’s Schwarzchild radius then it will be a black hole as the Schwarzschild solution
is valid for values of r that include 2GNM/c2.

For example the sun has Rs = 7× 107 m and 2GNM/c2 = 3× 103m. However there
is a black hole at the centre of our (and most) galaxies.
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7 Cosmology: FRW

The idea now is to model the cosmic history of our universe. In particular we assume
that the spacetime has spacelike hyper-surfaces with the maximum symmetry. Therefore
the 3-dimensional spatial cross sections are either hyperbolic space H3, flat space R3 or
spheres S3. Let us endow this space with local coordinates xi and metric γij. Without
loss of generality we can take the four-dimensional metric to be of the form

ds2 = −c2dt2 + a2(t)γijdx
idxj (7.1)

Thus the only parameter is the scale factor a(t) which gives the physical size of the
spatial hypersurfaces.

We also consider a non-vanishing energy-momentum tensor. To be consistent with
the symmetries we assume that

Tµν =

(
ρ 0
0 pa2γij

)
(7.2)

i.e. we assume that the only non-vanishing components consist of an energy density
ρ as well as an isotropic pressure pi. Note that we do not assume that ρ and p are
constant. Thus the general assumption of the model is that, on a large cosmological
scale, the universe is isotropic and homegeneous. The former means that there is no
preferred direction whereas the latter means that there are no preferred points. These
seem like very reasonable assumptions. Certainly as far as we can tell, on the largest
scales that we can observe, the universe consists of an even but sparse distribution of
galaxies and hence can be thought of as homogeneous. As far as we can tell the universe
is also isotropic however since we can only look out from where we are it could be the
universe is not isotropic, so that it has some kind of centre, in which case we must be
relatively near the centre. However such an earth-centric view has been out of fashion
in cosmology for hundreds of years, i.e. since Copernicus.

This means that we choose the metric γij to be one of three possibilities: R3 (a 3D
plane), S3 (a 3D sphere) or H3 (3D hyperbolic space). These are the three manifolds
that are isotropic and homogenous, meaning that there are no preferred points and no
preferred directions. Since we can absorb a constant scale factor these metric take the
form

ds23 = γijdx
idxj =

dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

With k = −1, 0, 1. Clearly for k = 0 we have R3 in spherical coordinates:

ds23(k = 0) = dr2 + r2dθ2 + r2 sin2 θdϕ2

For k = 1 we write r = sinψ and find

ds23(k = 1) = dψ2 + sin2 ψdθ2 + sin2 ψ sin2 θdϕ2
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which is just the metric on S3. For k = −1 we write r = sinh ρ in which case we have

ds23(k = −1) = dρ2 + sinh2 ρdθ2 + sinh2 ρ sin2 θdϕ2

This is the metric on hyperbolic space. Unfortunately we don’t have time to go into the
details here. In all these cases one finds the the Ricci tensor rij constructed from γij
satisfies

rij = 2kγij

Experiments indicate that, in our universe, k = 0 so if you’d like you can simply take
this case and use γij = δij in Cartesian coordinates.

We need to solve the Einstein equation

Rµν −
1

2
gµνR = κ2Tµν

To begin with we must calculate the Levi-Civita connection coefficients

Γtij =
1

2

(
− 1

c2

)
(∂igtj + ∂jgti − ∂tgij) =

1

c2
aȧγij

Γitj =
1

2

1

a2
γil(∂tglj + ∂jglt − ∂lgtj) =

ȧ

a
δij

Γijk =
1

2

1

a2
γil(∂jglk + ∂kglj − ∂lgjk) = γijk

(7.3)

where γijk are the Levi-Civita connection coefficients of the spatial metric γij. From
these we can calculate the Ricci tensor

Rµν = R λ
µλν = −∂µΓλνλ + ∂λΓ

λ
µν − ΓσµλΓ

λ
νσ + ΓσµνΓ

λ
σλ (7.4)

We find the non-zero components are

Rtt = −∂t(3
ȧ

a
)− 3

ȧ2

a2

= −3
ä

a

Rij = rij +
1

c2
∂t(aȧγij)−

2

c2
ȧ2γij +

3

c2
ȧ2γij

= rij +
1

c2
aäγij +

2

c2
ȧ2γij (7.5)

(7.6)

where rij is the Ricci tensor for the spatial manifold. Since it is maximally symmetric
we have that

rij = 2kγij (7.7)
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for some k = 0,−1, 1. Continuing we see that the Ricci scalar is

R = −c−2Rtt + a−1γijRij

=
6

c2
ä

a
+ 6

k

a2
+

6

c2
ȧ2

a2
(7.8)

Putting these together we find that the Einstein equation is

Rtt +
c2

2
R = 3

ȧ2

a2
+ 3

kc2

a2

= κ2Ttt

Rij −
1

2
a2γijR = (− 2

c2
aä− 1

c2
ȧ2 − k)γij

= κ2Tij (7.9)

Thus we find the equations

3
ȧ2

a2
+ 3

kc2

a2
= κ2ρ

2
ä

a
+
ȧ2

a2
+
kc2

a2
= −κ2c2p (7.10)

The first equation is known as the Friedman equation. Note that it is first order in
time derivatives. This is a consequence of the Bianchi identity. Quite often the second
equation is rewritten, using the Friedman equation, so that

ȧ2

a2
+
kc2

a2
=

1

3
κ2ρ

ä

a
= −1

6
κ2(3pc2 + ρ) (7.11)

One famous feature of these equations is that we can only find a static universe if
p = ρ = 0 (in which case we have Minkowski space). Thus the universe is evolving.
Indeed not long after General Relativity was invented Hubble observed the expansion
of the universe (which at that time was not a prediction of General Relativity).

Often one introduces the Hubble ‘constant’ H = ȧ/a however, except for the case
of exponential expansion, H is not constant (although its time variation is over cosmic
scales).

Note that at late times, meaning large a, one can drop the k term from the equations.
In addition the matter ‘equation of state’ is often taken to be p = wρ/c2 where w is

a constant. For any known type of matter one has that w ≥ −1 and so this is generally
assumed to be the case. In this case one can solve the equations. Let us assume for
simplicity that k = 0 and try

a = a1t
γ (7.12)

for some constant γ. From the Friedman equation we see that

1

3
κ2ρ = γ2t−2 (7.13)
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and hence substitution into the remaining equation gives

γ(γ − 1)t−2 = −1

6
κ2(3w + 1)ρ

= −3w + 1

2
γ2t−2 (7.14)

This implies that
3w + 3

2
γ2 = γ (7.15)

and hence we find
a(t) = a1t

2
3w+3 (7.16)

where a1 = a(1). In the limit that w = −1 the solution becomes exponential:

a = a1e

√
κ2ρ
3
t

This spacetime is known as de Sitter space.
Notice that in the w > −1 case there is a singularity at some early time where a = 0.

This is a genuine curvature singularity. Thus the present observation of the expansion
of the universe points to in initial ‘Big Bang’ singularity. Note that the Universe isn’t
expanding into anything and indeed for k 6= 1 the ‘size’ of the spatial cross sections is
infinite.

Problem: Find a change of variables that maps the metric

ds2 = −c2dt2 + a2(t)γijdx
idxj

to so-called conformal time:

ds2 = a2(η)(−dη2 + γijdx
idxj)

What is η exactly for the case that a(t) = a1t
γ?

Another concept that arises is that of a particle horizon. Consider a massless particle
moving such that, along Σ, γijdx

idxj = dr2 for some variable r. It follows a null geodesic

0 = −c2dt2 + a2dr2 (7.17)

Thus in the time after t = t0 the particle will travel a distance

R = c
∫ t

t0

dt′

a(t′)
(7.18)

The point is that this can be bounded. For example if the Hubble parameter H = ȧ/a
is constant, i.e. a = a0e

Ht where a0 = a(0), then

R = −ca−10 H−1e−Ht|tt0 = ca−10 H−1(e−Ht0 − e−Ht) (7.19)
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Thus if we send the particle out today so that t0 = 0, even if we wait until t → ∞ we
see that R will be bounded, i.e. the particle can only make it out a finite distance due
to the expansion of the universe.

Another point to notice is that at different periods in the expansion different fields
may have dominated, with different values of w, thereby leading to different expansion
rates (but always positive). In particular initially the Universe was hot and the matter
in the form of atoms had not yet formed and hence the main contribution was largely
photons and radiation. The energy momentum tensor of the electromagnetic field is
traceless gµνTµν = 0 and hence w = 1/3. In this ‘radiation’ era the Universe expanded
as a ∝ t1/2.

Problem: Show that gµνTµν = 0 and w = 1/3 for the electromagnetic field. (HINT:
you may recall that Tµν = FµλFν

λ − 1
4
gµνF

2).

After the Universe cooled down enough matter did form and the dominant source
of the energy momentum tensor was from a pressureless gas of matter. Here w = 0 and
hence a ∼ t

2
3 . This is known as the matter dominated era.

We now think there there are two other era’s in the universe’s expansion. Both of
these correspond to w = −1 (i.e. p = −ρ) and exponential expansion. In this case we
see that

Tµν =

(
ρ 0
0 −ρa2/c2γij

)
= −ρ/c2gµν

This type of energy momentum tensor is caused by a non-vanishing, vacuum energy
ρ. Such a contribution to Einstein’s equation is called a cosmological constant. it
corresponds to adding in a term to the Einstein equation

Rµν −
1

2
gµνR + Λgµν = κ2Tµν

However this is now normal viewed as coming from a vacuum energy term V gµν in Tµν .
What are the two era’s? One is now. Observation now strongly supports the notion

that we are undergoing small but exponential expansion. The associated cosmological
constant Λ is small but, in time, the exponential growth in a has come to dominate.

The other era was in the early universe, before the radiation dominated era. This is
called inflation and the cosmological constant or vacuum energy in that case was large.
This era is still somewhat speculative but it has become the dominant idea in cosmology
and has begun to pass observational tests. However the original motivation for inflation
was to solve some problems with the standard expansion scenario. In particular there
are two key problems (there are others):

• Why is the universe in thermal equilibrium across the whole sky? We have measure
the temperature of space and it is the same everywhere up to fluctuations of the
order of 10−5. Under the power-law expansions of the matter and radiation era’s
different parts of the sky have not been in causal contact with each other. So it is
rather striking that their temperature is the same to with a factor of 10−5.
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• Why is the universe so close to k = 0. The universe that we observe today is very
flat. Although expansion clearly flatens space (the effect of k drops as a−2 ) the
power law expansions of the matter and radiation era’s are not enough to account
for this unless we assume that the initial universe was very very flat.

To solve these problems one postulates a period of vast expansion. In particular ere
one requires a to have grown by a factor of e60, i.e.

a(after) = e60a(before)

So the most natural thing to imagine is the exponential expansion associated to a cos-
mological constant.. The numbere60 is referred to as 60 e-foldings. Therefore the part
of the universe that we see all came from an extremely small, quantum-sized, portion
of the universe immediately after the big bang. Indeed the temperature fluctuations
that we see, and which led to structure formation, are just quantum fluctuations of the
initial space.

Appendix: Comparison with Gerard Watt’s Course

In recent years this course has been given by Dr Watts. Although the content of his
course and this one are essentially the same there are some conventions and notations
that differ. Thus in order to read his notes and practice his exams perhaps it is helpful to
list here some of the differences between his course and this one. With these comments
in mind you should be able to translate all of the questions in his exams into a form
that you can try to solve.

• He uses the (+,−,−,−) signature for the metric, i.e. Minkowski space has the
metric ds2 = c2dt2 − dx2 − dy2 − dz2.

• He discusses the Newtonian force law more generally (i.e. not just about a spher-
ically symmetric source):

Fi = −m∂iϕ ∇2ϕ = 4πGNρ(x)

where ρ(x) is the mass distribution. The F = −GNMm/r2 law that we used
simply corresponds to a point source at the origin: ρ = Mδ(x).

• He calls a (p, q) tensor a

[
p
q

]
tensor

• When discussing geodesics he introduces the notion of covariant derivative along
the curve:

DUλ

Dτ
≡ ẊµDµU

λ = Ẋµ(∂µU
λ + ΓλµνU

ν)
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where Uλ is an arbitrary vector and Ẋµ = dXµ/dτ is the tangent to the curve
Xµ(τ).

Alternatively we can think of this as

DUλ

Dτ
= U̇λ + ΓλµνẊ

µUν

because U̇λ = Ẋµ∂µU
λ by the chain rule.

A vector Uλ is said to be parallel transported along a curve Xµ(τ) if DUλ/Dτ = 0.
An affine geodesic is a curve whose tangent vector is parallel transported along
itself: DẊλ/Dτ = 0.

• In cosmology he writes out the cosmological constant term explicitly so that

Tµν = Λgµν +

(
ρ 0
0 pa2γij

)

whereas we absorb Λ into ρ and p and only consider the second term (note that
−c−2ρ = p = Λ in (7.2) is just a cosmological constant ).
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