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1 Manifolds

1.1 Elementary Topology and Definitions

This section should be a review of concepts (hence it is all definitions and no theorems).

Definition: A topological space X is set whose elements are called points together with
a collection U = {Ui} of subsets of X which are called open sets and satisfy

i) U is closed under finite intersections and arbitrary unions.
ii) ∅, X ∈ U

Definition: A set is closed if its complement in X is open.

Definition: An open cover of X is a collection of open sets whose union is X.

A topology allows us to define a notion of ‘local’ meaning that something is true or
exists in some open set about a point, but not necessarily the whole space or even all
open sets about that point. Some other important concepts are:

Definition: X is connected if it is not the union of disjoint open sets.

Definition: A map f : X → Y between two topological spaces is continuous iff
f−1(V ) = {x ∈ X|f(x) ∈ V } is open for any open set V ⊂ Y .

Definition: If X ⊂ Y where Y is a topological space then X can be made into a
topological space too by considering the induced topology: open sets in X are generated
by U ∩X ⊂ X where U is an open set of Y .

Problem: Show that the induced topology indeed satisfies the definition of a topology.

Definition: A Hausdorff space is a topological space with the additional property that
’points can be seperated’: for any two distinct points x, y ∈ X there exists open sets Ux
and Uy such that x ∈ Ux, y ∈ Uy and Ux ∩ Uy = ∅. Hausdorff spaces are also known as
T2 spaces (as there are infact weaker notions of separability).

Non-Hausdorff spaces have various pathologies that we do not want to consider.
Therefore in what follows we will take all topological spaces to be Hausdorff unless
otherwise mentioned.

Definition: A function f : X → Y is one-to-one iff f(x) = f(y) implies x = y.

This guarantees the existance of a left inverse f−1L : f(X) ⊂ Y → X such that
f−1L ◦ f(x) = x for all x ∈ X, since every element in the image f(X) comes from a
unique point in X.

Definition: A function f : X → Y is onto iff f(X) = Y , i.e. for all y ∈ Y there exists
an x ∈ X such that f(x) = y.
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This guarantees the existance of a right inverse f−1R : Y → X such that f ◦f−1R (y) = y
for all y ∈ Y , since every element in Y has some x ∈ X (not necessarily unique) which
is mapped to it by f .

Definition: A bijection is a map which is both one-to-one and onto.

Definition: A homeomorhism is a bijection f : X → Y which is continuous and whose
inverse is continuous.

We often have much more structure. For example if there is a notion of distance
then the usual topology is that defined by the open balls.

Definition: A metric space is a point set X together with a map d : X ×X → IR such
that

i) d(x, y) = d(y, x)
ii) d(x, y) ≥ 0 with equality iff x = y
iii) d(x, y) ≤ d(x, z) + d(z, y)

The metric topology is then defined by the open balls

Uε(x) = {y ∈ X|d(x, y) < ε} (1.1)

where ε > 0, along finite intersections and aribtrary unions of open balls. Note that it
follows that X is open since it is a union of open balls

X =
⋃
x∈X

Uε(x) (1.2)

for any ε > 0 of your choosing. These spaces are always Hausdorff (property (ii) ensures
that any two distinct points have a finite distance between them and hence open balls
with ε taken to be half this distance will seperate them) and this also implies that ∅ is
open.

In particular we will heavily use IRn viewed as a metric topological space (with the
usual Pythagorian definition of distance).

1.2 Manifolds

Rougly speaking a manifold is a topological space for which one can locally make charts
which piece together in a consistent way.

Definition: An n-dimensional chart on M is a pair (U, φ) where U is an open subset
of M and φ : U → IRn is a homeomorphism onto its image φ(U) ⊆ IRn

Definition: A n-dimensional differentiable structure onM is a collection of n-dimensional
charts (Ui, φi), i ∈ I such that

i) M =
⋃
i∈I Ui
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ii) For any pair of charts Ui, Uj with Ui ∩ Uj 6= ∅ the map φj · φ−1i : φi(Ui ∩ Uj) →
φj(Ui ∩ Uj) is C∞, i.e. all partial derivatives exist up to any order.

iii) We always take a differentiable structure to be a maximal set of charts, i.e. the
union over all charts which satisfy (i) and (ii).

N.B.: The functions φj ◦ φ−1i are called transition functions.

Theorem: IfM is connected then n is well defined, i.e. all charts have the same value
of n.

Proof: Suppose that two charts had different values of n then it is clear that they
can’t intersect because the map φj ◦ φ−1i takes a subset of IRni to a subset of IRnj is a
diffeomorphism and hence preserves the dimension. Since this is true for all charts we
see that M must split into disjoint charts, at least one for each different value of n.
Since a chart is an open set we can therefore writeM as a union over disjoint open sets,
one for each value of n. Thus if M is connected it must have a unique value of n.

Henceforth we will only consider connected topological spaces.

Definition: A differentiable manifoldM of dimension n is a topologcal space together
with an n-dimensional differentiable structure.

N.B.: One can also study differentiable structures where the transition functions are
only Ck for some k > 0. Alternatively one could replace IRn by Cn and demaned
that the transition functions are holomorphic. These are therefore a special case of
2n-dimensional real manifolds. This leads to the beautiful and rich subject of complex
differential geometry which we will not have time to consider here.

Example: Trivially IRn is a n-dimensional manifold. A single chart that covers the
whole of IRn is (IRn, id) where id is the identity map id(x) = x

Example: Any open subset U ⊂ IRn is a n-dimensional manifold. Again the single chart
(U, id) is sufficient. In fact any open subset U of a manifold M with charts (Ui, φi) is
also a manifold since one can use the charts (U ∩ Ui, φi).

Problem: Why aren’t closed subsets of IRn, e.g. a disk with boundary or a line in IR2,
along with the identity map charts (note that in its own induced topology any subset
of IRn is an open set)?

Example: The Circle is a one-dimensional manifold.
LetM = {(x, y) ∈ IR2|x2 + y2 = 1}. We need at least two charts say U1 = {(x, y) ∈

IR2|x2 + y2 = 1, y > −1/
√

2} and U2 = {(x, y) ∈ IR2|x2 + y2 = 1, y < 1/
√

2}. We let

φ1 : U1 → IR φ1(x, y) = θ ∈ (−π
4
,
5π

4
) where (x, y) = (cos θ, sin θ)

φ2 : U2 → IR φ2(x, y) = θ′ ∈ (−5π

4
,
π

4
) where (x, y) = (cos θ′, sin θ′)

(1.3)
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Now

U1 ∩ U2 = {(x, y) ∈ IR2| − 1√
2
< y <

1√
2
}

= VL ∪ VR (1.4)

where

VL = {(x, y) ∈ IR2| − 1√
2
< y <

1√
2
, x < 0} (1.5)

and

VR = {(x, y) ∈ IR2| − 1√
2
< y <

1√
2
, x > 0} (1.6)

Now on φ1(VL) = (3π
4
, 5π

4
), φ2 ◦ φ−11 (θ) = θ − 2π whereas on φ1(VR) = (−π

4
, π
4
), φ2 ◦

φ−11 (θ) = θ. Similarly φ1◦φ−12 (θ′) = θ′+2π on φ2(VL) = (−5π
4
,−3π

4
) and φ1◦φ−12 (θ′) = θ′

on φ2(VL) = (−π
4
, π
4
). These maps are C∞ and hence we have a manifold.

Here on the circle we see that locally we can defined a single coordinate, θ which we
think of as an angle. But θ is not defined over the whole circle θ = 0 and θ = 2π are
the same.

This illustrates a key point: The maps φi provide coordinates, just like a map in
an atlas provides coordinates in the form of longitude and lattitude. However the
coordinates will not in general work over the whole of the manifold. For example the
surface of the earth can be mapped in an atlas but the notion of latitude and longitude
will break down somewhere; at the poles longitude is not defined. Maps that one sees
hanging on a wall always break down somewhere (usually at both poles) but an atlas
can smoothly cover the whole earth.

Often the Ui are called coordinate neighbourhoods or patches and the φi are coor-
dinate maps. If p ∈ M is some point contained in a given patch Ui then the ‘local
coordinates’ of p are

φi(p) = (x1(p), x2(p), x3(p), ..., xn(p)) ∈ IRn (1.7)

Clearly there is a huge amount of choice of local coordinates. Typically in any given
patch Ui we could choose from an infinite number of different functions φi. Furthermore
for a given manifold there will be infinitely many choices of open sets Ui which we use
to cover it with.

Differential geometry is the study of manifolds and uses tensoriol objects which take
into account this huge redundancy in the actual way that we may choose to describe
a given manifold. This is the so-called coordinate free approach. Often, especially in
older texts, one fixes a covering and coordinate patches and writes any tensor in terms
of it values in some given local coordinate system. This may be convenient for some
calculational purposes but it obscures the true coordinate independent meaning of the
important concepts. In addition it should always be kept in mind when using explicit
coordinates that they are almost certainly not valid everywhere. One might often need
to change coordinates, either because we prefer to use a different choice of coordinates
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valid in the same patch, or because we need to transform to a new patch which covers a
different portion of the manifold. In this course we will use the coordinate free approach
as much as possible.

Example: Let us consider IRP n = (IRn+1−{0})/ ∼ where ∼ is the equivalence relation

(x1, x2, x3, ..., xn+1) ∼ λ(x1, x2, x3, ..., xn+1) (1.8)

for any λ ∈ IR−{0}. We denote an element of the equivalence class by [x1, x2, x3, ..., xn+1].
Let us choose for the charts

U1 = {[x1, x2, x3, ..., xn+1] ∈ IRP n|x1 6= 0}
U2 = {[x1, x2, x3, ..., xn+1] ∈ IRP n|x2 6= 0}
U3 = {[x1, x2, x3, ..., xn+1] ∈ IRP n|x3 6= 0}

.

.

.

Un+1 = {[x1, x2, x3, ..., xn+1] ∈ IRP n|xn+1 6= 0}
(1.9)

with the functions

φ1([x
1, x2, x3, ..., xn+1]) =

(
x2

x1
,
x3

x1
,
x4

x1
, ...,

xn+1

x1

)
∈ IRn

φ2([x
1, x2, x3, ..., xn+1]) =

(
x1

x2
,
x3

x2
,
x4

x2
, ...,

xn+1

x2

)
∈ IRn

φ3([x
1, x2, x3, ..., xn+1]) =

(
x1

x3
,
x2

x3
,
x4

x3
, ...,

xn+1

x3

)
∈ IRn

.

.

.

φn+1([x
1, x2, x3, ..., xn+1]) =

(
x1

xn+1
,
x2

xn+1
,
x3

xn+1
, ...,

xn

xn+1

)
∈ IRn

(1.10)

Clearly ∪n+1
i=1 Ui = IRP n and each φi is a homeomorphism (without loss of generality we

can take xi = 1 in Ui). Consider the intersection of U1 and U2. Here we can take x1 = 1
and x2 = v 6= 0 so that

φ−11 (u1, u2, u3, ..., un) = [1, u1, u2, u3, ..., un] (1.11)

and hence

φ2 ◦ φ−11 (u1, u2, u3, ..., un) =
(

1

v
,
u2
v
,
u3
v
, ...,

un
v

)
∈ IRn (1.12)
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Since v 6= 0 this map is in C∞ on φ1(U1 ∩ U2). All the other intersections follow the
same way. Thus IRP n is an n-dimensional manifold.

Problem: What is IRP 1?

Theorem: If M and N are m and n-dimensional manifolds respectively then M×N
is an (m+ n)-dimensional manifold.

Proof: Let (Ui, φi), i ∈ I be an m-dimensional differential structure forM and (Va, ψa)
a ∈ A be an n-dimensional differential structure for N . We can construct a differential
structure for M×N by taking the following charts:

Wia = Ui × Va χia : Wia → IRn+m , χia(x, y) = (φi(x), ψa(y)) i ∈ I a ∈ J
(1.13)

where x ∈M and y ∈ N . Clearly ∪iaWia =M×N and χia are homeomorphims. It is
also clear that the transition functions

χjb ◦ χ−1ia = (φj ◦ φ−1i , ψb ◦ ψ−1b ) (1.14)

are C∞.

Problem: Show that the following:

U1 = {(x, y) ∈ S1|y > 0} , φ1(x, y) = x

U2 = {(x, y) ∈ S1|y < 0} , φ2(x, y) = x

U3 = {(x, y) ∈ S1|x > 0} , φ3(x, y) = y

U4 = {(x, y) ∈ S1|x < 0} , φ4(x, y) = y

(1.15)

are a set of charts which cover S1.

Problem: Show that the 2-sphere S2 = {(x, y, z) ∈ IR3|x2 + y2 + z2 = 1} is a 2-
dimensional manifold.

2 The Tangent Space

An important notion in geometry is that of a tangent vector. This is intuitively familiar
for a curve in IRn. But the elementary defintion of a tangent vector, or indeed any
vector, relies on special properties of IRn such a fixed coordinate system and its vector
space structure.

Once given a vector v = (v1, v2, v3) ∈ IR3 for example, we can consider the derivative
in the direction of v:

v1
∂

∂x1
+ v2

∂

∂x2
+ v3

∂

∂x3
(2.16)
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Here we view this expression as an operator acting on functions f : IR3 → IR. Changing
coordinates, for example by performing a rotation, we also must change the coefficients
v1, v2, v3 in an appropriate way however the action on a function remains the same. We
need to generalise the notion of a tangent vector to manifolds in a coordinate free way.
There are several equiavalent ways to do this but here we will use the identification of
a vector field with an operator acting on functions.

Our first step is to introduce differentiable functions on manifolds. We will then
proceed to understand vectors as operators on differentiable functions.

2.1 Maps from M to IR

Definition: A function f :M→ IR is C∞ iff for each chart (Ui, φi) in the differentiable
structure of M

f ◦ φ−1i : φi(Ui) ⊂ IRn → IR (2.17)

is C∞. The set of such functions on a manifold M is denoted C∞(M).

Note that if f ◦φ−1i is C∞ and (Uj, φj) is another chart with Ui∩Uj 6= ∅ then f ◦φ−1j
will be C∞ on Ui ∩ Uj. Thus we need only check that f ◦ φ−1i is C∞ over a set of charts
that covers M.

Problem: Consider the circle S1 as above. Show that f : S1 → IR with f(x, y) = x2 +y
is C∞.

Definition: An algebra V is a real vector space along with an operation ? : V ×V → V
such that

i) v ? 0 = 0 ? v = 0
ii) (λv) ? u = v ? (λu) = λ(v ? u)
iii) v ? (u + w) = v ? u + v ?w
iv) (u + w) ? v = u ? v + w ? v

for all u,v,w in V and λ ∈ IR.

Theorem: C∞(M) is an algebra with addition and multiplication defined pointwise

(f + g)(p) = f(p) + g(p)

(λf)(p) = λf(p)

(f ? g)(p) = f(p)g(p)

(2.18)

Proof: Let us show that f ? g is in C∞(M). Now

(f ? g) ◦ φ−1i = f ◦ φ−1i · g ◦ φ−1i (2.19)
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where f ◦ φ−1i and g ◦ φ−1i are C∞. Therefore their pointwise product is too. Hence
(f ? g) ◦ φ−1i is C∞ which is what we needed to show.

The other properties can be shown in a similar manor.

Definition: For a point p ∈M we let C∞(p) be the set of functions such that
i) f : U → IR where p ∈ U ⊂M and U is an open set.
ii) f ∈ C∞(U) (recall that an open subset of a manifold is a manifold)

2.2 Tangent Vectors

We can now state our main definition:

Definition: A tangent vector at a point p ∈ M is a map Xp : C∞(p) → IR which
satisfies

i) Xp(f + g) = Xp(f) +Xp(g)
ii) Xp(constant map) = 0
iii) Xp(fg) = f(p)Xp(g) +Xp(f)g(p) ‘Leibniz rule’

The set of tangent vectors at a point p ∈M is called the tangent space to M at p and
is denoted by TpM.

The union of all tangent spaces to M is called the tangent bundle

TM = ∪p∈MTpM (2.20)

This is an example of a fibre bundle and is itself a 2n-dimensional manifold.

N.B.: In general objects that satisfy these properties are called derivations.

N.B.: With this definition a tangent vector is a linear map from C∞(p) to IR. Since
C∞(p) is a vector space (it is an algebra) the tangent vectors are therefore elements of the
dual vector space to C∞(p). However C∞(p) and hence its dual are infinite dimensional.
The conditions (i),(ii) and (iii) restrict the possible linear maps that we identify as
tangent vectors and in fact we will see that they become a finite dimensional vector
space.

Example: Consider IRn as a manifold with its obvious chart U = IRn, φ : U → IRn

taken to be the identity. Then

X =
n∑
µ=1

λµ
∂

∂xµ
(2.21)

is a tangent vector. In fact we will learn that all tangent vectors have this form.
In what follows we will denote

∂f

∂xµ
= ∂µf ,

∂2f

∂xµ∂xν
= ∂µ∂νf etc.. (2.22)
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where f is defined on some open set in IRn. We can extend this to manifolds by the
following:

Definition: Let (x1, ..., xn) be local coordinates about a point p ∈ M. That is there
exists a chart (Ui, φi) with p ∈ Ui and φi(q) = (x1(q), x2(q), ..., xn(q)) for all q ∈ Ui. We
define

∂

∂xµ

∣∣∣
p

: C∞(p)→ IR (2.23)

by
∂

∂xµ

∣∣∣
p
f = ∂µ(f ◦ φ−1i )(x1(p), ..., xn(p)) = ∂µ(f ◦ φ−1i ) ◦ φi(p) (2.24)

Theorem: ∂
∂xµ

∣∣∣
p

is a tangent vector to M at p.

Proof: Let f, g ∈ C∞(p) be defined on a common open set U inM that contains p then

∂

∂xµ

∣∣∣
p
(f + g) = ∂µ((f + g) ◦ φ−1i )(x1(p), ..., xn(p))

= ∂µ(f ◦ φ−1i + g ◦ φ−1i )(x1(p), ..., xn(p))

= ∂µ(f ◦ φ−1i )(x1(p), ..., xn(p)) + ∂µ(g ◦ φ−1i )(x1(p), ..., xn(p))

=
∂

∂xµ

∣∣∣
p
(f) +

∂

∂xµ

∣∣∣
p
(g)

(2.25)

It is clear that ∂
∂xµ

∣∣∣
p
(constant map) = 0.

∂

∂xµ

∣∣∣
p
(fg) = ∂µ((fg) ◦ φ−1i )(x1(p), ..., xn(p))

= ∂µ(f ◦ φ−1i · g ◦ φ−1i )(x1(p), ..., xn(p))

= ∂µ(f ◦ φ−1i )(x1(p), ..., xn(p))(g ◦ φ−1i )(x1(p), ..., xn(p))

+(f ◦ φ−1i (x1(p), ..., xn(p))∂µ(g ◦ φ−1i )(x1(p), ..., xn(p))

=
∂

∂xµ

∣∣∣
p
(f)g(p) + f(p)

∂

∂xµ

∣∣∣
p
(g)

(2.26)

Of course we will show that all tangent vectors arise in this way.

Example: Consider IRP 1 = (IR2 − {0})/ ∼ where (x, y) ∼ λ(x, y), λ 6= 0.
We have two charts

Ut = {(x, y)|x 6= 0} , t = φt([x
1, x2]) =

x2

x1

Us = {(x, y)|y 6= 0} , s = φs([x
1, x2]) =

x1

x2

(2.27)
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thus on the intersection Us ∩Ut, s = 1/t. Let p = [1, 3] and consider the tangent vector

X : C∞(p)→ IR , X(f) =
∂

∂t

∣∣∣
p
f =

d

dt
(f ◦ φ−1t )(t = 3) (2.28)

How does X act in the other coordinate system (where they overlap)? Recall that

d

dt
(f(t)) =

ds(t)

dt

d

ds
(f(t(s))) (2.29)

Now s(t) = φs ◦ φ−1t and t(s) = φt ◦ φ−1s so we have that

X(f) =
d

dt
(f ◦ φ−1t )(t = 3)

=
ds(t)

dt

d

ds
(f ◦ φ−1t (φt ◦ φ−1s ))(s =

1

3
)

= − 1

t2
d

ds
(f ◦ φ−1s )

∣∣∣
s= 1

3

= −1

9

d

ds
(f ◦ φ−1s )

∣∣∣
s= 1

3

(2.30)

Thus the tangent vector can look rather different depending on the coordinate system
one choses. However its definition as a linear map from C∞(p) to IR is independent of
the choice of coordinates, i.e. (2.28) and (2.30) will agree on any function in C∞(p).

Lemma: Let (x1, ..., xn) be a coordinate system about p ∈M. Then for every function
f ∈ C∞(p) there exist n functions f1, ..., fn in C∞(p) with

fµ(p) =
∂

∂xµ

∣∣∣
p
f (2.31)

and, where defined,
f(q) = f(p) +

∑
µ

(xµ(q)− xµ(p))fµ(q) (2.32)

Proof: Let F = f ◦ φ−1i which is defined on V = φi(U ∩ Ui) where U is the domain of
f . Let B be an open ball in V ⊂ IRn centred on v = φi(p). Take y ∈ B

F (y1, ..., yn) = F (y1, ..., yn)− F (y1, ..., yn−1, vn)

+F (y1, ..., yn−1, vn)− F (y1, ..., vn−1, vn) + ...

...+ F (y1, v2..., vn)− F (v1, ..., vn) + F (v1, ..., vn)

= F (v1, ..., vn) +
∑
µ

(
F (y1, ..., yµ, vµ+1, ..., vn)− F (y1, ..., vµ, vµ+1, ..., vn)

)
= F (v1, ..., vn) +

∑
µ

F (y1, ..., vµ + t(yµ − vµ), vµ+1, ..., vn)|t=1
t=0

12



= F (v1, ..., vn) +
∑
µ

∫ 1

0

d

dt
F (y1, ..., vµ + t(yµ − vµ), vµ+1, ..., vn)dt

= F (v1, ..., vn) +
∑
µ

∫ 1

0
∂µF (y1, ..., yµ−1, vµ + t(yµ − vµ), vµ+1, ..., vn)(yµ − vµ)dt

(2.33)

If we let

Fµ(y1, ..., yn) =
∫ 1

0
∂µF (y1, ..., vµ + t(yµ − vµ), vµ+1, ..., vn)dt (2.34)

then we have that

F (y1, ..., yn) = F (v1, ..., vn) +
∑
µ

(yµ − vµ)Fµ(y1, ..., yn) (2.35)

Finally we recall that F = f◦φ−1i so that if we let (y1, ..., yn) = φi(q) = (x1(q), ..., xn(q))
then we have

f ◦ φ−1i ◦ φi(q) = f ◦ φ−1i ◦ φi(p) +
∑
µ

(xµ(q)− xµ(p))Fµ ◦ φi(q) (2.36)

thus
f(q) = f(p) +

∑
µ

(xµ(q)− xµ(p))fµ(q) (2.37)

where we identify fµ = Fµ ◦ φi.
It also follows that

∂

∂xµ

∣∣∣
p
f =

∂(f ◦ φ−1i )

∂xµ
◦ φi(p)

=
∂F

∂yµ
◦ φi(p)

=
∂

∂yµ

(
F (v1, ..., vn) +

∑
ν

(yν − vν)Fν(y1, ..., yn)

)
y=φi(p)

=

(
Fµ(y1, ..., yn) +

∑
ν

(yν − vν)∂µFν(y1, ..., yn)

)
y=φi(p)

= Fµ(φi(p))

= fµ(p)

(2.38)

Theorem: Tp(M) is an n-dimensional real vector space and a set of basis vectors is{
∂

∂xµ

∣∣∣
p
, µ = 1, ..., n

}
(2.39)

13



i.e. a general element of Tp(M) can be written as

Xp =
∑
µ

λµ
∂

∂xµ

∣∣∣
p

(2.40)

Proof:
First we note that if Xp and Yp are two tangent vectors at a point p ∈ M then we

can add them or multiply them by a number λ ∈ IR:

i) (Xp + Yp) : C∞ → IR , f → Xpf + Ypf
ii) (λXp) : C∞ → IR , f → λ(Xpf)

(Convince yourself of this.)

Thus TpM is a real vector space.

From the above lemma we have that

Xp(f) = Xp

(
f(p) +

∑
µ

(xµ − xµ(p))fµ

)
(2.41)

Now Xp(f(p)) = Xp(x
µ(p)) = 0 since f(p) and xµ(p) are constants. Thus we have that

Xp(f) =
∑
µ

((xµ(q)− xµ(p))Xp(fµ) +Xp(x
µ)fµ(q)) |q=p

=
∑
µ

Xp(x
µ)fµ(p)

=
∑
µ

Xp(x
µ)

∂

∂xµ

∣∣∣
p
f

(2.42)

where we used (2.38). This shows that the elements (2.39) span the tangent space. We
must now show that they are linearly independent. To this end suppose that

∑
µ

λµ
∂

∂xµ

∣∣∣
p

= 0 (2.43)

The coordinate functions are in C∞(p) so we may consider

0 =
∑
µ

λµ
∂

∂xµ

∣∣∣
p
xν =

∑
µ

λµ
∂

∂xµ
(xν) =

∑
µ

λµδνµ = λν (2.44)

Thus λµ = 0 for all µ.

14



So why are they called tangent vectors? First we consider IRn consider a curve
C : (0, 1) → IRn. We recall from elementary geometry that the tangent vector to a
point p = C(t1) is a line through p in the direction (i.e. with the slope)(

dC1

dt

∣∣∣
t=t1

, ...,
dCn

dt

∣∣∣
t=t1

)
(2.45)

where C(t) = (C1(t), ..., Cn(t)) ∈ IRn is C∞.
Now if f ∈ C∞(p) then, by our definition, Xp : C∞(p)→ IR defined by

Xp(f) =
d

dt
f(C(t))

∣∣∣
t=t1

(2.46)

is a tangent vector to IRn at p = C(t1), i.e. it acts linearly on the function f , vanishes
on constant functions and satisfies the Leibniz rule. On the other hand we also have

Xp(f) =
dCµ

dt

∣∣∣
t=t1

∂µ(f(C(t))|t=t1 (2.47)

Thus dCµ/dt are the components of Xp in the basis

∂

∂xµ

∣∣∣
p

(2.48)

So we have suceeded in generalising the definition (2.16)

2.3 Curves and their Tangents

We can now discuss curves on manifolds and their tangents.

Definition: Consider an open interval (a, b) ∈ IR a map C : (a, b)→M to a manifold
M is called a smooth curve onM if φi ◦C is C∞ whereever it is definined for any chart
(Ui, φi) of M (i.e. with Ui ∩ C((a, b)) 6= ∅).

Definition: For a point t1 ∈ (a, b) with C(t1) = p we can define the tangent vector
Tp(C) ∈ Tp(M) to the curve C at p by

Tp(C)(f) =
d

dt
f(C(t))

∣∣∣
t=t1

(2.49)

It should be clear that Tp(C) ∈ TpM.
Let p ∈ M be a point on a curve C at t = t1 which is covered by a chart (Ui, φi).

Then there is some ε > 0 such that

C((t1 − ε, t1 + ε)) ⊂ Ui (2.50)
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We can express the tangent to C at p as

Tp(C)(f) =
df(C(t))

dt

∣∣∣
t=t1

=
d

dt

(
f ◦ φ−1i ◦ φi ◦ C(t)

) ∣∣∣
t=t1

=
n∑
µ=1

d(φµ ◦ C(t))

dt

∣∣∣
t=t1

∂µ(f ◦ φ−1i )(φi(C(t1))

(2.51)

Here we have split up f ◦ C : (t1 − ε, t1 + ε) → IR as the composition of a function
φi ◦C : (t1 − ε, t1 + ε)→ IRn and a function f ◦ φ−1i : IRn → IR and used the chain rule.
Thus we have

Tp(C)(f) =
n∑
µ=1

d(φµ ◦ C(t))

dt

∣∣∣
t=t1

∂

∂xµ

∣∣∣
p
f (2.52)

so that

Tp(C) =
n∑
µ=1

d(φµ ◦ C(t))

dt

∣∣∣
t=t1

∂

∂xµ

∣∣∣
p

(2.53)

Conversely suppose that Tp is a tangent vector toM at p. We will now show that we
can construct a curve through p such that Tp is its tangent at p. Let (x1, ..., xn) = φi(q)
be local coordinates about p defined on an open set Ui. Hence we may write

Tp =
n∑
µ=1

T µ
∂

∂xµ

∣∣∣
p

(2.54)

for some numbers T µ. We define C : (−ε, ε)→M by

φµi ◦ C(t) = xµ(p) + tT µ (2.55)

where we pick ε sufficiently small so that φi(C(−ε, ε)) ∈ Ui. It follows that

d

dt
f(C(t))

∣∣∣
t=0

=
d

dt

(
(f ◦ φ−1i ) ◦ (φi ◦ C)(t)

) ∣∣∣
t=0

=
d(φµi ◦ C)

dt

∣∣∣
t=0
∂µ(f ◦ φ−1i )(φi(C(0))

= T µ
∂

∂xµ

∣∣∣
p
f (2.56)

We have therefore shown that all curves through p ∈ M define a tangent vector to
M at p and that conversely all tangent vectors toM at p can be realised as the tangent
vector to some curve C. However this correspondence is not unique. Clearly many
distinct curves may have the same tangent vector at p and conversely the construction
of the curve through p with tangent Tp was not unique. But this does lead to the
following theorem:
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Theorem: TpM is isomorphic to the set of all curves through p ∈ M modulo the
equivalence relation that C(t) ∼ C ′(t) iff

d(f ◦ C)

dt
|t=t1 =

d(f ◦ C ′)
dt

|t=t′1 (2.57)

for all f ∈ C∞(p) where C(t1) = C ′(t′1) = p.

Proof: It is easy to check that the construction above provides a bijection between these
two spaces. The more difficult part, which we won’t go into here, is to show that the
vector space structure is preseved. Indeed to do this we’d need to give a vector space
structure to the equivalance class of curves through p.

Theorem: Let (x1, ..., xn) = φµ1 and (y1, .., yn) = φµ2 be two coordinate systems at a
point p ∈M with U1 ∩ U2 6= ∅ and suppose that Xp ∈ TpM. If

Xp =
n∑
µ=1

Aµ
∂

∂xµ

∣∣∣
p

and Xp =
n∑
µ=1

Bµ ∂

∂yµ

∣∣∣
p

(2.58)

then

Bµ =
n∑
ν=1

Aν
∂

∂xν

∣∣∣
p
yµ (2.59)

where yµ(x1, ..., xn) = φ2 ◦ φ−11 is a smooth function from φ1(U1) ⊂ IRn → φ2(U2) ⊂ IRn

Proof: We have in the second coordinate system that

Xp(y
µ) =

n∑
ν=1

Bν ∂

∂yν

∣∣∣
p
yµ = Bµ (2.60)

but in the first coordinate system we see that

Xp(y
µ) =

n∑
ν=1

Aν
∂

∂xν

∣∣∣
p
yµ (2.61)

since these must agree we prove the theorem.

N.B.: This formula is often simply written as

Bµ =
n∑
ν=1

Aν
∂yµ

∂xν
(2.62)

or even

A′µ = Aν
∂x′µ

∂xν
(2.63)

with a sum over ν understood and a prime denoting quantities in the new coordinate
system.
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3 Maps Between Manifolds

3.1 Diffeomorhisms

Definition: Suppose that f : M→ N where M, (Ui, φi), i ∈ I and N , (Va, ψa), a ∈ A
are two manifolds. We say that f is C∞ iff

ψa ◦ f ◦ φ−1i : φi(f
−1(Va))→ IRn (3.64)

is C∞ for all i ∈ I and a ∈ A.

Problem: Show that f : S1 → S1 defined by f(e2πiθ) = e2πinθ is C∞ for any n.

Theorem: Suppose that M,N and P are manifolds with f :M→N and g : N → P
C∞. Then g ◦ f :M→ P is also C∞.

Proof: this follows from the chain rule.

Definition: If f : M → N is a bijection with both f and f−1 C∞ then f is called a
diffeomorphism.

Two manifolds with a diffeomorphic, i.e. for which there exists a difformorphism
between them, are equivalent geometrically.

Problem: Show that the charts of two diffeomorphic manifolds are in a one to one
correspondence.

Problem: Show that the set of diffeomorphisms from a manifold to itself forms a group
under composition.

3.2 Push Forward

Theorem: Let f :M→N be C∞. If Xp ∈ TpM then

f?X : C∞(f(p))→ IR defined by g → Xp(g ◦ f) (3.65)

is a tangent vector to N at f(p).

Proof: Let g1, g2 ∈ C∞(f(p)) and λ ∈ IR.
Then

f?Xf(p)(g1 + g2) = Xp((g1 + g2) ◦ f)

= Xp(g1 ◦ f + g2 ◦ f)

= Xp(g1 ◦ f) +Xp(g2 ◦ f)

= f?Xf(p)(g1) + f?Xf(p)(g2)

(3.66)

18



and
f?Xf(p)(λ) = Xp(λ ◦ f) = Xp(λ) = 0 (3.67)

Finally we have

f?Xf(p)(g1 · g2) = Xp((g1 · g2) ◦ f)

= Xp((g1 ◦ f) · (g2 ◦ f))

= Xp(g1 ◦ f)(g2 ◦ f) + (g1 ◦ f)Xp(g2 ◦ f)

= f?Xf(p)(g1)g2(f(p)) + g1(f(p))f?Xf(p)(g2)

(3.68)

Definition: f?Xp is called the push forward of Xp.

Theorem: Suppose that f : M → N is C∞, (x1, ..., xm) are local coordinates for a
point p ∈M and y1, ..., yn are local coordinates for the image f(p) ∈ N . If

Xp =
m∑
µ=1

Aµ
∂

∂xµ

∣∣∣
p

(3.69)

is in TpM then

f?X =
m∑
µ=1

n∑
ν=1

Aµ
∂

∂xµ

∣∣∣
p
(yν ◦ f) · ∂

∂yν

∣∣∣
f(p)

(3.70)

Proof: Let g ∈ C∞(f(p)). Then

f?X(g) = Xp(g ◦ f)

=
m∑
µ=1

Aµ
∂

∂xµ

∣∣∣
p
(g ◦ f)

=
m∑
µ=1

Aµ
∂(g ◦ f ◦ φ−1i )

∂xµ
◦ φi(p)

=
m∑
µ=1

Aµ
∂(g ◦ ψ−1a ◦ ψa ◦ f ◦ φ−1i )

∂xµ
◦ φi(p)

=
m∑
µ=1

n∑
ν=1

Aµ
∂(ψνa ◦ f ◦ φ−1i )

∂xµ
(φi(p))

∂(g ◦ ψ−1a )

∂yν
(ψa(f(p))

=
m∑
µ=1

n∑
ν=1

Aµ
∂

∂xµ

∣∣∣
p
(yν ◦ f) · ∂

∂yν

∣∣∣
f(p)

(g)

(3.71)
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4 Vector Fields

4.1 Vector Fields

Next we consider vector fields

Definition: A vector field is a map X : M→ TM such that X(p) = Xp ∈ TpM and
for all f ∈ C∞(M) the mapping

p→ X(f)(p) (4.72)

is C∞. For vector fields we will drop the explicit supscript p.
Thus a vector field assigns, in a smooth way, a vector in TpM of to each point p ∈M.

N.B.: As we defined it a vector field is valid over all ofM however it can also be defined
over an open subset U ⊂M.

Is the product of two vector fields a vector feild? To check this we consider two
vector fields X, Y and f, g ∈ C∞(M). With multiplication of vectors taken to mean
X · Y (f) = X(Y (f)) then we see that indeed

X(Y (f + g)) = X(Y (f) +X(g)) = X(Y (f)) +X(Y (g))

X(Y (constant map)) = X(0) = 0

(4.73)

where 0 is the constant map that takes all points to zero. However we find

X(Y (f · g)) = X(Yp(f)g + fY (g))

= X(Y (f))g + Y (f)X(g) +X(f)Y (g) + fX(Y (g))

(4.74)

and this is not a vector field (due to the middle two terms). But we can construct a
vector field by taking

[X, Y ](f) = X(Y (f))− Y (X(f)) (4.75)

since we see that

[X, Y ](f · g) = X(Y (f))g + Y (f)X(g) +X(f)Y (g) + fX(Y (g))

−Y (X(f))g −X(f)Y (g)− Y (f)X(g)− fY (X(g))

= [X, Y ](f)g + f [X, Y ](g) (4.76)

so that [X, Y ] is a vector field.

Definition: [X, Y ] is called the commutator of two vector fields.

Problem: What goes wrong if try to define (X · Y )(f) = X(f) · Y (f)?

20



Problem: Show that, if in a particular coordinate system,

X =
∑
µ

Xµ(x)
∂

∂xµ

∣∣∣
p
, Y =

∑
µ

Y µ(x)
∂

∂xµ

∣∣∣
p

(4.77)

then

[X, Y ] =
∑
µ

∑
ν

(Xµ∂µY
ν − Y µ∂µX

ν)
∂

∂xν

∣∣∣
p

(4.78)

Theorem: With the product of two vector fields defined as the commutator the space
of vector fields is an algebra.

Proof: We have already seen that TpM is a vector space for a particular p ∈M. This
clearly ensures that the space of vector fields is a vector space (with addition and scalar
mutliplication defined pointwise). We need to check the conditions (i) - (iv) in the
definition of an algebra. Conditions (i) and (ii) are obviously satisfied. In addition since
[X, Y ] = −[Y,X] we need only check that

[X, Y + Z](f) = X(Y + Z)(f)− (Y + Z)(X)(f)

= X(Y )(f) +X(Z(f)− Y (X)(f)− Z(X)(f)

= [X, Y ](f) + [X,Z](f)

(4.79)

Problem: Show that for three vector fields X, Y, Z on M the jacobi identity holds:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 (4.80)

Problem: Consider a manifold with a local coordinate system Ui, φi = (x1, ..., xn).
Therefore, in Ui we can simply write

∂

∂xµ

∣∣∣
p

=
∂

∂xµ
(4.81)

i) Show that
[
∂
∂xµ

, ∂
∂xν

]
= 0

ii) Evaluate
[
∂
∂x1
, ϕ(x1, x2) ∂

∂x2

]
where ϕ(x1, x2) is a C∞ function of x1, x2.

4.2 Integral and Local Flows

Given a vector field X we can construct curves that pass through p ∈M for which the
tangent vector at p is X.

Definition: Let X be a vector field on M and consider a point p ∈ M. An integral
curve of X passing through p is a curve C(t) in M such that

C(0) = p and C?

(
d

dt

)
= XC(t) (4.82)
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for all t in some open interval (−ε, ε) ⊂ IR. Here we are viewing d/dt as a vector field
on IR so that

C?

(
d

dt

)
(f) =

d

dt
f(C(t)) = Tp(C) (4.83)

is just the tangent vector to C(t) at p = C(t1).
If we introduce a local coordinate system so that, in a open set about p ∈M,

X =
∑
µ

Xµ(x)
∂

∂xµ

∣∣∣
φ−1(x)

(4.84)

then we find the integral curve is

C?

(
d

dt

)
(f) =

d

dt
f(C(t))

=
d

dt
(f ◦ φ−1i ◦ φi ◦ C(t))

=
∑
µ

dCµ

dt
(t)

∂

∂xµ

∣∣∣
C(t)

(f)

(4.85)

where, as before, we have Cµ = φµi ◦ C. On the other hand we have

X(C(t))(f) =
∑
µ

Xµ(C(t))
∂

∂xµ

∣∣∣
C(t)

(f) (4.86)

Thus we see that the condition for an integral curve is a first order differential equation
for the coordinates of the curve Cµ(t)

d

dt
Cµ(t) = Xµ(C(t)) (4.87)

with the initial condition xµ(C(0)) = xµ(p). This is a first order differential equation
and, as such it has a unique solution with the given initial condition. However it is not
at all clear whether or not the solution can be extended to all values of t. In partcular
even if there is a solution to the differential equation (4.87) for al t one must worry
about patching solutions together over the different coordinate patches. This leads to

Definition: A vector field X on M is complete if for every point p ∈ M the integral
curve of X can be extended to a curve on M for all values of t.

Theorem: If M is compact, i.e. all open covers have a finite subcover, then all vector
fields on M are complete.

Proof: We will not take the time to prove this theorem in this course.
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Let σ(t, p) be an integral curve of a vector field X that passes through p at t = 0.
This therefore satisfies

d

dt
σµ(t, p) = Xµ(σ(t, p)) (4.88)

along with the initial condition σ(0, p) = p. Thus we have found the following, at least
locally (and globally for complete vector fields):

Definition: The flow generated by a vector field X is a differentiable map

σ : IR×M→M (4.89)

such that
i) at each point p ∈M the tangent to the curve Cp(t) = σ(t, p) at p is X
ii) σ(0, p) = p
iii) σ(t+ s, p) = σ(t, σ(s, p))

We must show that the third property holds. To do this we simply note that since
(4.88) is a first order ordinary differential equation it has a unique solution for a fixed
initial condition. So consider

d

dt
σµ(t+ s, p) =

dσµ(t+ s, p)

d(t+ s)

= Xµ(σ(t+ s, p))

(4.90)

which satisfies the intial condition σ(0 + s, p) = σ(s, p). On the other hand we have

d

dt
σµ(t, σ(s, p)) = Xµ(σ(t, σ(s, p))) (4.91)

with the intial condition σ(0, σ(s, p)) = σ(s, p). Thus both σ(t + s, p) and σ(t, σ(s, p))
satisfy (4.88) with the same boundary condition and hence they must be equal.

We see that each point p ∈ M a flow defines a curve Cp(t) = σ(t, p) in M whose
tangent is X and such that Cp(0) = p.

Thinking of things the other way we have that, for each t, the flow defines a map
ψt :M→M such that ψt+s = ψt ◦ ψs Now for t = ε small we have, from (4.88),

ψµε (p) = σµ(ε, p) = xµ(p) + εXµ(p) +O(ε2) (4.92)

Thus at least for a small enough value of t ψt(p) is 1-1 and C∞. Hence it is a dif-
feomorphism onto its image (at least for an open set in M). This prompts another
defintion

Definition: A one parameter group of diffeomorphism of M is collection of diffeo-
morhisms σt :M→M with t ∈ IR such that

i) σt(σs) = σt+S
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ii) σ0 is the identity map
iii) σ−t = σ−1t
So in effect we can think of vector fields as generating infinitessimal diffeomorphism,

through their flows. In this sense vector fields can be identified with the Lie algebra of
the diffeomorphism group.

4.3 Lie Derivatives

A vector field allows us to introduce a notion of a derivative on a manifold. The problem
with the usual derivative

∂f

∂p
= lim

ε→0

f(p+ ε)− f(p)

ε
(4.93)

is that we don’t know how to add two points on a manifold, i.e. what is p+ ε? However
we saw that, at least locally, a vector field generates a unique integral flow about any
given point p. Therefore we can use the flow to take us to a nearby point and hence
form a derivative. This is the notion of a Lie deriviative

Definition: Let X be a vector field onM and f ∈ C∞(M) we define the Lie derivative
of f along X to be

LXf(p) = lim
ε→0

f(σ(ε, p))− f(p)

ε
(4.94)

where σ(ε, p) is the flow generated by X at p.

Theorem: LXf = X(f)

Proof: We have from the definition that

LXf(p) = lim
ε→0

f(σ(ε, p))− f(σ(0, p))

ε

=
d

dt
f((σ(t, p))|t=0

= σ(t, p)?

(
d

dt

)
t=0

(f)

= Xp(f)

(4.95)

where we used the defining property of the flow, namely that its tangent at p is Xp.

We can also define the Lie derivative of a vector field Y along X by

Definition:

LXY = lim
ε→0

σ(−ε)?Yσ(ε) − Y
ε

(4.96)

where again σ(ε) is the flow generated by X and we have suppressed the dependence on
the point p.
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Theorem:
LXY = [X, Y ] (4.97)

Proof: Let us introduce coordinate about p ∈M such that

X =
∑
µ

Xµ(x)
∂

∂xµ

∣∣∣
p
, Y =

∑
µ

Y µ(x)
∂

∂xµ

∣∣∣
p

(4.98)

We start with the fact that

σν(ε, p) = xν(p) + εXν(p) +O(ε2) (4.99)

and note that, for any f ,

Yσ(ε)f =
∑
µ

Y µ(σ(ε))
∂

∂xµ

∣∣∣
σ(ε)

f

=
∑
µ

(Y µ + εXλ∂λY
µ)

∂

∂xµ

∣∣∣
σ(ε)

f +O(ε2)

=
∑
µ

(Y µ + εXλ∂λY
µ)(∂µf + εXλ∂µ∂λf) +O(ε2)

=
∑
µ

(Y µ∂µ + εXλ∂λY
µ∂µ + εY µXλ∂µ∂λ)f +O(ε2)

(4.100)

Therefore

σ(−ε)?Yσ(ε)(f) = Yσ(ε)(f ◦ σ(−ε))

=
∑
µ

Y µ(f ◦ σ(ε))
∂

∂xµ

∣∣∣
p
(f ◦ σ(−ε))

=
∑
µ

(
Y µ∂µ + εXλ∂λY

µ∂µ + εY µXλ∂µ∂λ
)

(f − ε∂νfXν) +O(ε2)

=
∑
µ

Y µ∂µf + ε(∂λY
µXλ − Y λ∂λX

µ)∂µf +O(ε2)

(4.101)

From which it follows that

σ(ε)?Yσ(ε)(f)− Y (f)

ε
= (∂λY

µXλ − Y λ∂λX
µ)∂µf +O(ε)

= [X, Y ]µ∂µf +O(ε)

= [X, Y ](f) +O(ε)

(4.102)

and we are done.
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5 Tensors

5.1 Co-Tangent Vectors

Recall that the tangent space TpM at a point p ∈M is a vector space. For any vector
space there is a natural notion of a dual vector space which is defined as the space of a
linear maps from the vector space to IR.

Problem: Show that the dual space is a vector space and has the same dimension as
the original vector space (if it is finite dimensional).

Thus we can define

Definition: The co-tangent space toM at p ∈M is the dual vector space to TpM and
is denoted by T ?pM.

In other words ωp ∈ T ?pM iff ωp : TpM→ IR is a linear map. We denote the action
of ωp on a vector Xp ∈ TpM by

ωp(Xp) = 〈ωp, Xp〉 (5.103)

Since ωp is a linear map we have

〈ωp, Xp + λYp〉 = ωp(Xp + λYp) = ωp(Xp) + λωp(Yp) = 〈ωp, Xp〉+ λ〈ωp, Yp〉 (5.104)

and we may also take, in effect by definition,

〈ωp + ληp, Xp〉 = (ωp + ληp)(Xp) = ωp(Xp) + λpη(Xp) = 〈ωp, Xp〉+ λ〈ηp, Xp〉 (5.105)

Thus 〈 , 〉 is linear in each of its entries.
Now the dual of the dual of a vector space is just the orginal space itself. Why?

Well for a fixed vector Xp we can construct the map:

ωp → ωp(Xp) ∈ IR (5.106)

The properties of dual vectors ensure that this is a linear map. Thus we can view vectors
Xp as linear maps acting on co-vectors ωp via

Xp(ωp) = 〈ωp, Xp〉 (5.107)

Just as for the tangent bundle we defined the co-tangent bundle to be

T ?M =
⋃
p∈M

T ?pM (5.108)

which is a 2n-dimensional manifold.

Definition: A smooth co-vector field is a map ω :M→ T ?M such that
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i) ω(p) ∈ T ?pM
ii) ω(X) :M→ IR is in C∞(M) for all smooth vector fields X

We saw that a chart (Ui, φi) defines a natural basis of TpM for p ∈ Ui:

∂

∂xµ

∣∣∣
p

(5.109)

where φi(p) = (x1(p), ..., xn(p)). This allows us to define a natural basis for T ?pM by

〈dxµ|p,
∂

∂xν

∣∣∣
p
〉 = δµν (5.110)

i.e. dxµ|p is a linear map from TpM to IR that maps the vector

n∑
ν=1

vν
∂

∂xν

∣∣∣
p

(5.111)

to vµ.
Thus if in a local coordinate chart we have a vector

V (p) =
n∑
µ=1

V µ(p)
∂

∂xν

∣∣∣
p

(5.112)

and a co-vector

ω(p) =
n∑
ν=1

ων(p)dx
ν |p (5.113)

Then

〈ω(p), V (p)〉 = 〈
∑
ν=1

ων(p)dx
ν |p,

∑
µ=1

V µ(p)
∂

∂xµ

∣∣∣
p
〉

=
∑
µ=1

∑
ν=1

ων(p)V
µ(p)〈dxν |p,

∂

∂xµ

∣∣∣
p
〉

=
∑
µ=1

∑
ν=1

ων(p)V
µ(p)δνµ

=
∑
µ=1

ωµ(p)V µ(p)

(5.114)

Theorem: Let (x1, ..., xn) = φµ1 and (y1, .., yn) = φµ2 be two coordinate systems at a
point p ∈M with U1 ∩ U2 6= ∅ and suppose that ωp ∈ T ?pM. If

ωp =
n∑
µ=1

Aµdx
µ
∣∣∣
p

and ωp =
n∑
µ=1

Bµdy
µ
∣∣∣
p

(5.115)
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then

Aµ =
n∑
ν=1

Bν
∂

∂xµ

∣∣∣
p
yν (5.116)

where yµ(x1, ..., xn) = φ2 ◦φ−11 is a smooth function from φ1(U1) ⊂ IRn → φ2(U2) ⊂ IRn.

Proof: We have in the first coordinate system that

ωp

(
∂

∂xµ

∣∣∣
p

)
=

n∑
ν=1

Aν〈dxν
∣∣∣
p
,
∂

∂xµ

∣∣∣
p
〉 = Aµ (5.117)

but in the second coordinate system we see that

ωp

(
∂

∂xµ

∣∣∣
p

)
=

n∑
ν=1

Bν〈dyν
∣∣∣
p
,
∂

∂xµ

∣∣∣
p
〉 (5.118)

now we saw in the case of vectors that

∂

∂xµ

∣∣∣
p

=
∑
λ

(
∂

∂xµ

∣∣∣
p
yλ
)

∂

∂yλ

∣∣∣
p

(5.119)

Thus we find

ωp

(
∂

∂xµ

∣∣∣
p

)
=

n∑
ν=1

Bν〈dyν
∣∣∣
p
,
∑
λ

(
∂

∂xµ

∣∣∣
p
yλ
)

∂

∂yλ

∣∣∣
p
〉

=
n∑
ν=1

Bν

(
∂

∂xµ

∣∣∣
p
yλ
)
〈dyν

∣∣∣
p
,
∑
λ

∂

∂yλ

∣∣∣
p
〉

=
n∑
ν=1

Bν
∂

∂xµ

∣∣∣
p
yν (5.120)

since these must agree we prove the theorem.

N.B.: We can also think in terms of xµ(y) = φ1 ◦ φ−12 . We can see that

∂

∂xµ

∣∣∣
p
yν and

∂

∂yµ

∣∣∣
p
xν (5.121)

are inverses of each other (when view as matrices):

δνµ =
∂xν

∂xµ

=
∂

∂xµ

(
φν1 ◦ φ−11

)
(x)

=
∂

∂xµ

(
φν1 ◦ φ−12 ◦ φ2 ◦ φ−11

)
(x)

=
∑
λ

∂

∂yλ

(
φν1 ◦ φ−12

)
(y)

∂

∂xµ

(
φλ2 ◦ φ−11

)
(x)

=
∑
λ

(
∂

∂yλ

∣∣∣
p
xν
)(

∂

∂xµ

∣∣∣
p
yλ
)

(5.122)
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In this case the formula becomes

Bµ =
n∑
ν=1

Aν
∂

∂yµ

∣∣∣
p
xν (5.123)

N.B.: This formula is often simply written as

Bµ =
n∑
ν=1

Aν
∂xν

∂yµ
(5.124)

or even

A′µ = Aν
∂xν

∂x′µ
(5.125)

with a sum over ν understood and a prime denoting quantities in the new coordinate
system. Note the different positions of the prime and unprimed coordinates as compared
to the analogous formula for a vector!

5.2 Pull-back and Lie Derivative of a co-vector

Suppose we have smooth map f : M → N . We saw that we could push-forward a
vector Xp ∈ TpM to a vector f?Xf(p) ∈ Tf(p)N by

f?Xf(p)(g) = Xp(g ◦ f) (5.126)

We therefore can consider the dual map f ? : T ?f(p)N → T ?pM defined by

f ?pω(Xp) = 〈f ?ω,Xp〉 = 〈ω, f?Xf(p)〉 (5.127)

Note that for each co-vector ω ∈ T ?f(p)N this defines a linear map f ?ω : TpM→ IR and
hence an element of T ?pM.

Theorem: Let f :M→N , (y1, ..., yn) be local coordinates on V ⊂ N and (x1, ..., xm)
local coordinates on U ∩ f−1(V ) ⊂M. If

ω =
n∑
ν=1

ωνdy
ν
∣∣∣
f(p)

(5.128)

then

f ?ω =
m∑
µ=1

n∑
ν=1

ων
∂

∂xµ
(yν ◦ f)dxµ

∣∣∣
p

(5.129)

Proof: We have that

〈ω, f?Xf(p)〉 =
n∑
ν=1

ων(f?Xf(p))
ν

=
n∑
ν=1

m∑
µ=1

ωνX
µ ∂

∂xµ

∣∣∣
p
(yν ◦ f)

(5.130)
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where we used our earlier result for the components of the push forward of a vector. On
the other hand we have

〈f ?ω,Xp〉 =
m∑
µ=1

(f ?ω)µX
µ (5.131)

and since, by definition, 〈f ?ω,Xp〉 = 〈ω, f?Xf(p)〉 we prove the theorem.
We can also extend the definition of the Lie Derivitive to co-vector fields (and in fact

all tensor fields).

Definition: If X is a smooth vector field and ω a smooth co-vector field on M then

LXω =
d

dt

(
σ(t, p)?ω

∣∣∣
t=0

)
(5.132)

where σ(t, p) is the flow generated by X.

Theorem: If, in a local coordinate system (x1, ..., xn),

X =
∑
µ

Xµ(x)
∂

∂xµ

∣∣∣
p
, ω =

∑
µ

ωµdx
µ
∣∣∣
p

(5.133)

then
LXω =

∑
µ

∑
ν

(∂νωµX
ν + ων∂µX

ν) dxµ
∣∣∣
p

(5.134)

Problem: Prove this theorem.

5.3 Tensors

We can now definition the notition of a (r, s)-tensor. First we need to recall the definition
of the tensor product. If V and W are two vector spaces, with basis {vi|i = 1, ..., n}
and {wa|a = 1, ...,m} respectively, then the vector space sum is an n + m dimensional
vector space which is spanned by {vi,wa|i = 1, ..., n, a = 1, ..., n} i.e.

V ⊕W = Spani,a{vi,wa} (5.135)

so a general element is
n∑
i

aivi +
m∑
a

bawa (5.136)

where the sum is interpreted as a formal sum. Hence V ⊕W is an (n+m)-dimensional
vector space. On the other hand we can also contruct the tensor product which spanned
by {vi ⊗wa|i = 1, ..., n , a = 1, ...,m}, i.e.

V ⊗W = Spani,a{vi ⊗wa} (5.137)
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where vi ⊗wa is a formal product. A general element is

m∑
i

m∑
a

ciavi ⊗wa (5.138)

Therefore is V ⊗W an nm-dimensional vector space.

Definition: An (r, s)-tensor T at a point p ∈M is an element of

T (r,s)
p M = (⊗rTpM)⊗ (⊗sT ?pM) (5.139)

where ⊗r denotes the rth tensor product.
It follows that, given a local coordinate system, a local basis for (r, s)-tensors is given

by
∂

∂xµ1

∣∣∣
p
⊗ ...⊗ ∂

∂xµr

∣∣∣
p
⊗ dxν1

∣∣∣
p
⊗ ...⊗ dxνs

∣∣∣
p

(5.140)

and from the definitions earlier we have that if

T =
∑

T µ1µ2...µrν1ν2...νs
∂

∂xµ1

∣∣∣
p
⊗ ...⊗ ∂

∂xµr

∣∣∣
p
⊗ dxν1

∣∣∣
p
⊗ ...⊗ dxνs

∣∣∣
p

(5.141)

then the components can be computed as

T µ1µ2...µrν1ν2...νs = T

(
dxµ1

∣∣∣
p
, ..., dxµr

∣∣∣
p
,
∂

∂xν1

∣∣∣
p
, ...

∂

∂xνs

∣∣∣
p

)
(5.142)

Problem: Show that if, in a local coordinate system

T =
∑

Aµ1µ2...µrν1ν2...νs
∂

∂xµ1

∣∣∣
p
⊗ ...⊗ ∂

∂xµr

∣∣∣
p
⊗ dxν1

∣∣∣
p
⊗ ...⊗ dxνs

∣∣∣
p

(5.143)

is an (r, s)-tensor,

Xi =
∑

Xµ
i

∂

∂xµ

∣∣∣
p
, i = 1, ..., s (5.144)

are s vectors and
ωI =

∑
ωIνdx

ν
∣∣∣
p
, I = 1, ..., r (5.145)

are r co-vectors, then

T (ω1, ..., ωr, X1, ..., Xs) =
∑

Aµ1...µr ν1...νs
ω1
µ1
...ωrµrX

ν1
1 ...X

νs
1 (5.146)

Problem: Show that if T is an (r, s)-tensor, (U1, φ1 = (x1, ..., xn)) and (U2, φ2 =
(y1, ..., yn)) are two local coordinates charts with U1 ∩ U2 6= ∅ such that

T =
∑

Aµ1µ2...µrν1ν2...νs
∂

∂xµ1

∣∣∣
p
⊗ ...⊗ ∂

∂xµr

∣∣∣
p
⊗ dxν1

∣∣∣
p
⊗ ...⊗ dxνs

∣∣∣
p

(5.147)
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and

T =
∑

Bµ1µ2...µs
ν1ν2...νs

∂

∂yµ1

∣∣∣
p
⊗ ...⊗ ∂

∂yµr

∣∣∣
p
⊗ dyν1

∣∣∣
p
⊗ ...⊗ dyνs

∣∣∣
p

(5.148)

then

Bµ1µ2...µr
ν1ν2...νs

=
n∑

λ1=1

...
n∑

λr=1

n∑
ρ1=1

...
n∑

ρs=1

Aρ1ρ2...ρs λ1λ2...λs

×
(

∂

∂xρ1

∣∣∣
p
yµ1

)
...

(
∂

∂xρr

∣∣∣
p
yµr

)

×
(

∂

∂yν1

∣∣∣
p
xλ1

)
...

(
∂

∂yνs

∣∣∣
p
xλs

)
(5.149)

where yµ(x) is understood to be the component of the transition function φ2 ◦ φ−11 and
xµ(y) is understood to be the components of the transition function φ1 ◦ φ−12 .

Definition: An (r, s)-tensor field is a map

T :M→ (⊗rTM)⊗ (⊗sT ?M) such that T (p) ∈ (⊗rTpM)⊗ (⊗sT ?pM) (5.150)

which smooth in that, for any choice of r smooth co-vector fields ω1, ..., ωr and s smooth
vector fields V 1, ..., V s, the map T (ω1, ..., ωr, V 1, ..., V s)(p) :M→ IR is C∞.

Some tensors and tensor fields have special names:

A (0, 0)-tensor is a scalar. As a field it assigns a number to each point in M.

A (1, 0)-tensor is a vector. As a field it assigns a tangent vector to each point inM.

A (0, 1)-tensor is a 1-form. As a field it assigns a co-vector to each point in M.

Sometimes, especially in older books, (r, 0)-tensors are called covariant and (0, s)-
tensors contravariant.

An (r, 0)-tensor is called symmetric if

T
(
ωP (1), ..., ωP (r)

)
= T

(
ω1, ..., ωr

)
(5.151)

Similarly and (0, s) tensor is called symmetric if

T
(
V P (1), ..., V P (s)

)
= T

(
V 1, ..., V s

)
(5.152)

On the other hand they are called anti-symmetric if

T
(
ωP (1), ..., ωP (r)

)
= sgn(P )T

(
ω1, ..., ωr

)
(5.153)
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or
T
(
V P (1), ..., V P (s)

)
= sgn(P )T

(
V 1, ..., V s

)
(5.154)

Here P is a permutation and sgn(P ) is its sign. Recall that a permutation P is a
bijection P : {1, .., n} → {1, ..., n} and can always be written in terms of either an even
(sgn(P ) = 1) or odd (sgn(P ) = −1) number of interchanges (where two neighbouring
integers are permuted).

Similarly one can talk about the symmetry properties of the (r, 0) and (0, s) compo-
nents of a mixed (r, s)-tensor seperately.

6 Differential Forms

N.B.: Conventions about form manipulations can vary from book to book (by various
factors of p! and minus signs). So be careful when comparing two sources.

6.1 Forms

Definition: A p-form on a manifold M is a smooth anti-symmetric (0, p)-tensor field
on M. In particular if ω is a p-form then

ω
(
XP (1), ..., XP (p)

)
= sgn(P )ω (X1, ..., Xp) (6.155)

Definition: A 0-form on M is a function in C∞(M).

Theorem: If M is n-dimensional then all p-forms with p > n vanish.

Proof: First note that a p-form acting on a set of vectors with the same vector appearing
twice vanishes:

ω (X1, ..., Y,X2, ..., Y,X3, ...) = (−1)nω (Y, Y,X1, ...)

= −(−1)nω (Y, Y,X1, ...)

= 0

(6.156)

where in the first line we used a permutation to place the same vectors next to each
other and in the penultimate line we used an interchange (which of course has no effect).

It is now easy to see that if ω is a p-form with p > n then in any collection of p basis
vectors at least two must be the same. Hence ω vanishes. Since it vanishes on any set
of basis vectors it vanishes identically.

The space of p-forms on M is denoted Ωp(M, IR) and we let

Ω(M) = Ω0(M, IR)⊕ Ω1(M, IR)⊕ ...⊕ Ωn(M, IR) (6.157)
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Here we have included an explicit reference to the field IR over which the manifold is
defined.

Note that if ω and η are a p-form and q-form respectively then ω⊗η will be a (0, p+q)
tensor field but not a (p + q)-form since it will not be anti-symmetric. To correct for
this we consider the so-called wedge product ∧

Definition: If ω ∈ ωp(M) and η ∈ ωq(M) we define

(ω ∧ η)(X1, ..., Xp+q) =
∑
P

sgn(P )(ω ⊗ η)(XP (1), ..., XP (p+q)) (6.158)

If should be clear that this defines a (p + q)-form by construction. Let us work out
a few examples

Example:
dxµ

∣∣∣
p
∧ dxν

∣∣∣
p

= dxµ
∣∣∣
p
⊗ dxν

∣∣∣
p
− dxν

∣∣∣
p
⊗ dxµ

∣∣∣
p

(6.159)

Example:

dxµ
∣∣∣
p
∧
(
dxν

∣∣∣
p
∧ dxλ

∣∣∣
p

)
= dxµ

∣∣∣
p
⊗ dxν

∣∣∣
p
⊗ dxλ

∣∣∣
p
− dxµ

∣∣∣
p
⊗ dxλ

∣∣∣
p
⊗ dxν

∣∣∣
p

+dxν
∣∣∣
p
⊗ dxλ

∣∣∣
p
⊗ dxµ

∣∣∣
p
− dxν

∣∣∣
p
⊗ dxµ

∣∣∣
p
⊗ dxλ

∣∣∣
p

+dxλ
∣∣∣
p
⊗ dxµ

∣∣∣
p
⊗ dxν

∣∣∣
p
− dxλ

∣∣∣
p
⊗ dxν

∣∣∣
p
⊗ dxµ

∣∣∣
p

(6.160)

Problem: If

ω =
∑

A12dx
1 ∧ dx2 + A34dx

3 ∧ dx4

η = B123dx
1 ∧ dx2 ∧ dx3 +B125dx

1 ∧ dx2 ∧ dx5

(6.161)

then what is ω ∧ η?

Theorem: If ω ∈ Ωp(M) and η ∈ Ωq(M) then ω ∧ η = (−1)pqη ∧ ω

Problem: Prove this!

Theorem: A basis for Ωp(M) at a point p ∈M is given by

dxµ1
∣∣∣
p
∧ ... ∧ dxµp

∣∣∣
p

(6.162)
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Proof: Any ω ∈ Ωp(M) is defined by its action on a set of basis vectors

ω

(
∂

∂xµ1

∣∣∣
p
, ...,

∂

∂xµp

∣∣∣
p

)
= ωµ1...µp (6.163)

Since ω is antisymmetric we have that

ωµP (1)...µP (p)
= ω

(
∂

∂xµP (1)

∣∣∣
p
, ...,

∂

∂xµP (p)

∣∣∣
p

)

= sgn(P )ω

(
∂

∂xµ1

∣∣∣
p
, ...,

∂

∂xµp

∣∣∣
p

)
= sgn(P )ωµ1...µp (6.164)

so

1

p!

∑
ωµ1...νpdx

µ1
∣∣∣
p
∧ ... ∧ dxµp

∣∣∣
p

=
1

p!

∑∑
P

sgn(P )ωµ1...µpdx
µP (1)

∣∣∣
p
⊗ ...⊗ dxµP (p)

∣∣∣
p

=
1

p!

∑∑
P

ωµP (1)...µP (p)
dxµP (1)

∣∣∣
p
⊗ ...⊗ dxµP (p)

∣∣∣
p

=
∑

ωµ1...νpdx
µ1
∣∣∣
p
⊗ ...⊗ dxµp

∣∣∣
p

= ω (6.165)

This shows that dxµ1
∣∣∣
p
∧ ... ∧ dxµp

∣∣∣
p

spans the space of p-forms. But this formula

shows that they are linearly indepdent too (since we know that dxµ1
∣∣∣
p
⊗ ...⊗ dxµp

∣∣∣
p

are

linearly independent).

6.2 Exterior Derivative

We can define a notion of a derivative on p-forms by

Definition: If ω ∈ Ωp(M) then we define

dω(X1, ..., Xp+1) =
∑
i

(−1)i+1Xi(ω(X1, .., Xi−1, Xi+1, ..., Xp+1))

+
∑
i<j

(−1)i+jω([Xi, Xj], X1, .., Xi−1, Xi+1, ..., , Xj−1, Xj+1, ..., Xp+1)

(6.166)

Why on earth is this called a derivative?

Theorem: If in a local coordinate system we have that

ω =
1

p!

∑
ωµ1,...,µpdx

µ1
∣∣∣
p
∧ ... ∧ dxµp

∣∣∣
p

(6.167)
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then

dω =
1

p!

∑
∂νωµ1,...,µpdx

ν
∣∣∣
p
∧ dxµ1

∣∣∣
p
∧ ... ∧ dxµp

∣∣∣
p

(6.168)

Proof: We need only evaluate dω at the usual choice of basis of vectors

dω

(
∂

∂xµ1

∣∣∣
p
, ...,

∂

∂xµp+1

∣∣∣
p

)
=

∑
ν

(−1)ν+1 ∂

∂xν

∣∣∣
p

(
ω

(
∂

∂x1

∣∣∣
p
, ...,

∂

∂xν−1

∣∣∣
p

∂

∂xν+1

∣∣∣
p
, ...

∂

∂xp+1

∣∣∣
p

))
(6.169)

where we have used the fact that [
∂

∂xµ

∣∣∣
p
,
∂

∂xν

∣∣∣
p

]
= 0 (6.170)

so that the second term in the definition of dω vanishes. Thus if write

dω =
1

(p+ 1)!

∑
(dω)νµ1...µpdx

ν
∣∣∣
p
∧ dxµ1

∣∣∣
p
∧ ... ∧ dxµp

∣∣∣
p

(6.171)

we find

(dω)νµ1...µp+1 =
∑
ν

(−1)ν+1∂νωµ1...ν−1,ν+1...µp

= (p+ 1)∂[νωµ2......µp+1] (6.172)

where we have used the antisymmetry of ωµ2......µp+1 and the square brakets are defined
by

X[µ1...µp] =
1

p!

∑
P

sgn(P )XµP (1)...µP (p)
(6.173)

However we also need to show that (we implicitly used it above):

Theorem: If ω ∈ Ωp(M) then dω ∈ Ωp+1(M)

Proof: It is clear that this defines something that is anti-symmetric under an interchange
of any two vectors Xµ ↔ Xν . Why does it have this funny form? Let us expand it in
terms of some basis. The first term gives

X1(ω(X2, X3, ..., Xp))−X2(ω(X1, X3, ..., Xp)) + . . .

=
∑
µν...

Xµ
1 ∂µ(ων...X

ν
2 ...)−X

µ
2 ∂µ(ων...X

ν
1 ...) + . . .

=
∑
µν...

(Xµ
1X

ν
2 ...−X

µ
2X

ν
1 ...)∂µων...

+
∑
νλ...

ωνλ...(X
µ
1 ∂µX

ν
2 −X

µ
2 ∂µX

ν
1 )Xλ

3 ...+ . . .

(6.174)
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These derivative terms on Xν need to be cancelled in order for dω to be a form. This is
the role of the second term since∑

i<j

(−1)i+jω([Xi, Xj], X1, .., Xi−1, Xi+1, ..., , Xj−1, Xj+1, ..., Xp+1)

= −
∑
µν...

ωνλ...[X1, X2]
νXλ

3 ...+ . . .

= −
∑
µν...

ωνλ...(X
µ
1 ∂µX

ν
2 −X

µ
2 ∂µX

ν
1 )Xλ

3 ...+ . . .

(6.175)

Example: Consider IR3. A 0-form is just a function and

df =
∑

∂µfdx
µ (6.176)

is just the gradient of f . A 1-form ω =
∑
ωµdx

µ has

dω =
∑

∂νωνdx
ν ∧ dxµ

= (∂1ω2 − ∂2ω1)dx
1 ∧ dx2 + (∂2ω3 − ∂3ω2)dx

2 ∧ dx3 + (∂3ω1 − ∂1ω3)dx
3 ∧ dx1

(6.177)

whose components are just those of curl(ω). Lastly for a 2-form ω = 1
2

∑
ωµνdx

µ ∧ dxν
we have

dω =
1

2

∑
∂λωµνdx

λ ∧ dxµ ∧ dxν

=
1

2
(∂1ω23 + ∂2ω31 + ∂3ω12)dx

1 ∧ dx2 ∧ dx3 (6.178)

and these are the components of div(ω̃) where

ω̃ =
1

2
ω23dx

1 +
1

2
ω31dx

2 +
1

2
ω12dx

3 (6.179)

Next we prove the most important property of the exterior derivative:

Theorem: d2 = 0

Proof: Let us choose a coordinate system as above so that

dω =
1

p!

∑
∂νωµ1,...,µpdx

ν
∣∣∣
p
∧ dxµ1

∣∣∣
p
∧ ... ∧ dxµp

∣∣∣
p

(6.180)

Then it follows that

d2ω =
1

p!

∑
∂λ∂νωµ1,...,µpdx

λ
∣∣∣
p
∧ dxν

∣∣∣
p
∧ dxµ1

∣∣∣
p
∧ ... ∧ dxµp

∣∣∣
p

(6.181)
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but this must vanish as
∂λ∂νωµ1,...,µp = ∂ν∂λωµ1,...,µp (6.182)

Theorem: If ω ∈ Ωp(M) and η ∈ Ωq(M) then d(ω ∧ η) = (dω) ∧ η + (−1)pω ∧ dη

Problem: Prove this.

Let us return to the notion of a pull-back. This can be easily extended to any
(0, p)-tensor (not necessarily a p-form). Consider a C∞ map F :M→ N between two
manifolds and let ω be a (0, p)-tensor on N . Then we define

f ?ω(X1, ..., Xp) = ω (f?X1, ..., f?X1) (6.183)

Just as with a co-vector this defines a (0, p)-tensor on M. Clearly f ?ω will be anti-
symmetric if ω. Thus if ω ∈ Ωp(N , IR) then f ?ω ∈ Ωp(M, IR). We can also define the
pull back of a 0-form or function g : N → IR by the rule

f ?g = g ◦ f (6.184)

so that f ?g :M→ IR.

Theorem: Let f :M→N , (y1, ..., yn) be local coordinates on V ⊂ N and (x1, ..., xm)
local coordinates on U ∩ f−1(V ) ⊂M. If

ω =
n∑
ν=1

ων1,...,νp(f(p))dyν1
∣∣∣
f(p)
∧ ... ∧ dyνp

∣∣∣
f(p)

(6.185)

then

f ?ω =
m∑
µ=1

n∑
ν=1

ων1...νp(f(p))
∂

∂xµ1
(yν1 ◦ f)...

∂

∂xµp
(yνp ◦ f)dxµ1

∣∣∣
p
∧ ... ∧ dxµp

∣∣∣
p

(6.186)

Problem: Prove this too.

Theorem: The exterior derivative and the pull back commute: d(f ?ω) = f ?dω.

Proof: In a local coordinate system we saw that that

f ?ω =
1

p!

∑∑
ων1...νp(f(x))

∂f ν1

∂xµ1
...
∂f νp

∂xµp
dxµ ∧ ... ∧ dxµp (6.187)

where we have used the short hand f ν = yν ◦ f Therefore we have that

df ?ω =
1

p!

∑
∂λ

(
ων1...νp(f(x))

∂f ν1

∂xµ1
...
∂f νp

∂xµp

)
dxλ ∧ dxµ1 ... ∧ dxµp
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=
1

p!

∑ ∂fρ

∂xλ
∂ρων1...νp

∂f ν1

∂xµ1
...
∂f νp

∂xµp
dxλ ∧ dxµ1 ... ∧ dxµp

+
1

p!

∑
ων1...νp

∂2f ν1

∂xλ∂xµ1
...
∂f νp

∂xµp
dxλ ∧ dxµ1 ... ∧ dxµp + ...

=
1

p!

∑
∂ρων1...νp

∂fρ

∂xλ
∂f ν1

∂xµ1
...
∂f νp

∂xµp
dxλ ∧ dxµ1 ... ∧ dxµp

= f ?dω

(6.188)

Note that in the third line we used the fact that second partial derivatives are symmetric.

6.3 Integration on Manifolds

Let us first recall how we would integrate ω = p(x, y)dx + q(x, y)dy along a curve
C : [0, 1]→ IR2 in IR2. A natural presciption is∫

C
p(x, y)dx+ q(x, y)dy =

∫ 1

0

(
p(C(t))

dCx

dt
+ q(C(t))

dCy

dt

)
dt (6.189)

Here we are thinking of dx and dy as the infinitessimal change in x and y along the
curve C; (dx, dy) = (dCx/dtdt, dCy/dtdt). We can rewrite this as∫

C
ω =

∫ 1

0
C?ω (6.190)

Problem: Show that

C?ω =

(
p(C(t))

dx ◦ C
dt

+ q(C(t))
dy ◦ C
dt

)
dt (6.191)

This definition clearly extends to the integral of a 1-form along a curve in an arbitrary
manifold. To define the integral of a general p-form over a manifold we need to generalise
a curve to a p-dimensional surface.

Definition: Let Ip = [0, 1]p = {(x1, ..., xn) ∈ IRn|0 ≤ xµ ≤ 1} be a p-cube in IRn.
i) A p-symplex on M is a C∞ map C : J →M where J is an open set in IRn that

contains Ip.
ii) A 0-symplex is a map from {0} →M, i.e. it is just a point in M.
iii) The support |C| of a p-symplex is the set C(Ip) ⊂M

Next we can consider “sums” of such surfaces:

Definition: A p-chain onM is a finite formal linear combination of p-symplexes onM
with real coefficients, i.e. a general p-chain is

σp = r1C1 + ...+ rkCk (6.192)
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where ri ∈ IR and Ci are p-symplexs. The support of a p-chain σp = r1C1 + ... + rkCk
is |σp| = ∪|Ci|

Definition: We define the maps π
(1)
i : Ip−1 → Ip and π

(0)
i : Ip−1 → Ip by

π
(1)
i (t1, ..., tp−1) = (t1, ..., ti−1, 1, ti+1, ..., tp)

π
(0)
i (t1, ..., tp−1) = (t1, ..., ti−1, 0, ti+1, ..., tp)

(6.193)

i.e. these project a (p − 1)-cube in IRn onto a side of a p-cube in IRn. Thus we have a
vector space structure on the space of p-chains.

The boundary of a p-cube can then be constructed as the sum of all sides, weighted
with a plus sign for front sides and a minus sign for the back sides, in other words a
(p− 1)-chain.

Example: If we look at I2 then

π
(0)
1 (t) = (0, t) π

(0)
2 (t) = (t, 0)

π
(1)
1 (t) = (1, t) π

(1)
2 (t) = (t, 1)

(6.194)

As a point set the boundary is

{(1, t)|t ∈ I1} ∪ {(t, 1)|t ∈ I1} ∪ {(0, t)|t ∈ I1} ∪ {(t, 0)|t ∈ I1} (6.195)

but this doesn’t take into account the fact that some sides are oriented differently to
others. This is achieved by considering the 1-chain

π
(1)
1 − π

(0)
1 − π

(1)
2 + π

(0)
2 (6.196)

whose support is the point set consisting of the boundary.
This allows us to define the boundary of a p-symplex in M

Definition: If C is a p-symplex in M then the boundary of C is denoted by ∂C and
defined to be the (p− 1)-chain

∂C =
p∑
i=1

(−1)i+1
(
C ◦ π(1)

i − C ◦ π
(0)
i

)
(6.197)

For a p-chain σ = r1C1 + ...+ rkCk we define

∂σ =
∑

ri(∂Ci) (6.198)

The next theorem summarises the notion that boundaries have no boundaries.
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Theorem: ∂2 = 0

Proof: Clearly it suffices to show this for a p-symplex C in M.

∂C =
p∑
i=1

(−1)i+1
(
C ◦ π(1)

i − C ◦ π
(0)
i

)

∂2C =
p∑
i=1

(−1)i+1
(
∂(C ◦ π(1)

i )− ∂(C ◦ π(0)
i )

)

=
p−1∑
j=1

p∑
i=1

(−1)i+j+1
(
C ◦ π(1)

i ◦ π
(1)
j − C ◦ π

(1)
i ◦ π

(0)
j − C ◦ π

(0)
i ◦ π

(1)
j + C ◦ π(0)

i ◦ π
(0)
j

)
(6.199)

We note that, if i ≤ j

π
(α)
i ◦ π

(β)
j (t1, ..., tp) = π

(α)
i (t1, ..., β, ..., tp)

= (t1, ..., α, ..., β, ..., tp)

π
(β)
j+1 ◦ π

(α)
i (t1, ..., tp) = π

(β)
j+1(t1, ..., α, ..., tp)

= (t1, ..., α, ..., β..., tp)

(6.200)

and the α and β appear in the same place. Thus, if i ≤ j,

π
(α)
i ◦ π

(β)
j = π

(β)
j+1 ◦ π

(α)
i (6.201)

This shift of j → j+1 introduces a minus sign into the sum due to the (−1)i+j+1 factor.
Hence we see that the first term and last term in ∂2C each sum to zero and the middle
two terms will together sum to zero.

Finally we can define the integral of a p-form over a p-chain.

Definition: Let C be a p-symplex in M and ω a p-form then∫
C
ω =

∫
Ip
C?ω (6.202)

where if C?ω = 1
p!
f(t1, .., tp)dt1 ∧ ....∧ dtp the right hand side is understood to mean the

usual integral expression ∫
Ip
C?ω =

∫ 1

0
...
∫ 1

0
f(t1, .., tp)dt1...dtp (6.203)

If σ =
∑
riCk is a p-chain then ∫

σ
ω =

∑
i

ri

∫
Ci
ω (6.204)
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Example: Consider the manifold IR2 − {(0, 0)}, the 1-form

ω =
ydx

x2 + y2
− xdy

x2 + y2
(6.205)

and the curve C(t) = (cos(2πt), sin(2πt)). Then∫
C
ω =

∫ 1

0
C?ωdt

=
∫ 1

0

(
sin(2πt)

d cos(2πt)

dt
− cos(2πt)

d sin(2πt)

dt

)
dt

= −2π
∫ 1

0

(
sin2(2πt) + cos2(2πt)

)
dt

= −2π (6.206)

Problem: Consider the manifold IR2 − {(0, 0)} and the 1-form

ω =
ydx

x2 + y2
− xdy

x2 + y2
(6.207)

What is ∫
C
ω (6.208)

along the curve C(t) = (2 + cos(2πt), 2 + sin(2πt)). Next consider the 2-form

ω =
dx ∧ dy
x2 + y2

(6.209)

What is ∫
C
ω (6.210)

where C : I2 → IR2 − {(0, 0)} is given by C(t1, t2) = (t1 + 1)(cos(2πt2), sin(2πt2)).

Finally we arrive at a central theorem in differential geometry.

Theorem: (Stokes) If ω ∈ Ωp−1(M, IR) and σ is a p-chain then∫
σ
dω =

∫
∂σ
ω (6.211)

Proof: By linearity we need only show that this is true for p-symplexes C. Recalling
that ∫

C
dω =

∫
Ip
C?dω =

∫
Ip
dC?ω (6.212)

it is sufficient to show that ∫
Ip
dψ =

∫
∂Ip

ψ (6.213)
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for any (p−1)-form ψ on IRn. Since this condition is linear in ψ it is sufficient to consider

ψ = f(x)dx1 ∧ ... ∧ dxp−1 (6.214)

so that
dψ =

∑
∂λfdx

λ ∧ dx1 ∧ ... ∧ dxp−1 (6.215)

and again by linearity we can consider

dψ = (−1)p−1∂pfdx
1 ∧ ... ∧ dxp (6.216)

And now we just compute∫
Ip
dψ = (−1)p−1

∫
Ip
∂pfdx

1...dxp

= (−1)p−1
∫
dx1...dxp−1

∫ 1

0
∂pfdx

p

= (−1)p−1
∫
dx1...dxp−1

(
f(x1, ..., xp−1, 1)− f(x1, ..., xp−1, 0)

)
(6.217)

On the other hand the boundary of Ip is

∂Ip =
p∑
i=1

(−1)i+1
(
π
(1)
i − π

(0)
i

)

=
p∑
i=1

(−1)i+1
(
{(x1, ..., 1, ..., xp)|xj ∈ I1} − {(x1, ..., 0, ..., xp)|xj ∈ I1}

)
(6.218)

Now ψ = fdx1 ∧ ... ∧ dxp−1 will only have a non-vanishing contribution to the total
integral on those boundary components with xp constant and x1, ..., xp−1 varying. Hence∫
∂Ip

ψ = (−1)p+1
∫
{(x1,...,xp−1,1)|xi∈I1}

ψ − (−1)p+1
∫
{(x1,...,xp−1,0)|xi∈I1}

ψ

= (−1)p+1
∫
dx1...dxp−1f(x1, ..., xp−1, 1)− (−1)p+1

∫
dx1...dxp−1f(x1, ..., xp−1, 0)

(6.219)

and thus we prove the theorem.
This is beautiful generalisation of the following well known result for 1-forms on IR∫ b

a
df = f(b)− f(a) (6.220)
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6.4 de Rahm Cohomology and Homology

The exterior deriviative has one very important property:

d2 = 0 (6.221)

Thus of ω = dη then it follows that dω = 0. This motivates two definitions:

Definition:A p-form ω is closed if dω = 0. We denote the set of closed p-forms on M
by Zp(M, IR).

Definition:A p-form ω is exact if ω = dη for some (p− 1)-form on M. We denote the
set of exact p-forms on M by Bp(M, IR).

Theorem: Bp(M, IR) ⊂ Zp(M, IR)

Proof: This is obvious since if ω = dη ∈ Bp(M, IR) then dω = d2η = 0 so that
ω ∈ Zp(M, IR)

However the important point is that the converse is not true, not all closed forms are
exact. One way to think about this is that d can be viewed as acting from Ωp(M, IR)→
Ωp+1(M, IR) in sucession:

0→ Ω0(M, IR)→ Ω1(M, IR)→ . . .→ Ωn−1(M, IR)→ Ωn(M, IR)→ 0 (6.222)

where we take d0 = 0 to be the zero-function in Ω0(M, IR). The fact that d2 = 0 means
that

Image(d : Ωp(M, IR)→ Ωp+1(M, IR)) ⊂ Kernal(d : Ωp+1(M, IR)→ Ωp+2(M, IR))
(6.223)

Such a group of maps is called a differential complex.
Since the space of p-forms is a vector space we can define the following

Definition: The pth de Rahm cohomology group Hp(M, IR) is the quotient space

Hp(M, IR) =
Zp(M, IR)

Bp(M, IR)
(6.224)

where two p-forms are viewed to be equivalent iff their difference is an exact form. The
dimension of Hp(M, IR) is called the pth Betti number bp.

Example: Consider H0(M, IR). It is clear that a closed 0-form is just a constant
function. Although ifM is disconnected a closed 0-form can take on a different constant
value for each connected component ofM. Since there are no −1-forms we simply define
Z0(M, IR) to be empty. Thus

H0(M, IR) ≡ IRn (6.225)
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where n is the number of connected components of M.

Problem: Consider the manifold IR2 − {(0, 0)} and the 1-form

ω =
ydx

x2 + y2
− xdy

x2 + y2
(6.226)

Show that this is closed. Is it exact?

Theorem: If M and N are two manifolds and f : M→ N is a diffeomorphsim then
Hp(M, IR) ∼= Hp(N, IR).

Proof: Recall that we proved that the pull back and exterior derivative commute.
Therefore if ω is a closed p-form on N then f ?ω is a closed form on M;

df ?ω = f ?(dω) = 0 (6.227)

Furthermore if ω = dη is a exact p-form on N then

f ?ω = f ?(dη) = d(f ?η) (6.228)

is an exact p-form on M. Similarly closed forms on M are pulled back using f−1 to
closed forms on N and exact forms on M are pulled back to exact forms on N .

Thus the de Rahm cohomology groups are capable of distingishing between two
distinct manifolds. By distinct here we mean that two manifolds are equivalent if there
is a diffeomorphism between them. Note though that the converse is not true. There are
plenty of examples of inequivalent manifolds that have the same de Rham cohomology
groups Hk(M, IR). The general idea of cohomology can be applied to any operator
which is nilpotent i.e. whose action squares to zero, and is a central element of modern
algebraic and geometric topology.

So why is it called cohomology? Well we also saw that the boundary operator acting
on p-chains satisfies ∂2 = 0. By definition p-chains formed a real vector space. We can
therefore construct analogues of closed and exact p-form.

Definition: A p-cycle is a p-chain C such that ∂C = 0. We denote the space of p-cycles
by Zp(M, IR).

Definition: If a p-cycle C can be written as C = ∂D where D is a (p − 1)-chain then
it is called a p-boundary. We denote the space of p-boundaries by Bp(M, IR).

In a sense these are more fundamental notions since they don’t require a differential
structure, i.e. we can define them for any topological spaceM not necessarily a manifold.
They give rise to the so-called homology groups

Definition: The pth homology group Hp(M, IR) is the quotient space

Hp(M, IR) =
Zp(M, IR)

Bp(M, IR)
(6.229)
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where two p-cycles are equivalent iff their difference is a p-boundary.

Thus the homology groups measure which cycles are not the boundaries of chains.
This is perhaps a more geometrical object to think about than the de Rahm cohomology
groups which are related to differential properties of the manifold. However there is a
deep theorem which we won’t have time to prove:

Theorem: (de Rham) If M is compact then Hp(M, IR) and Hp(M, IR) are finite di-
mensional vector spaces and each others dual. Hence

Hp(M, IR) ∼= Hp(M, IR) (6.230)

To see that they are duals of each other one considers the map Λ : Hp(M, IR) ×
Hp(M, IR)→ IR

Λ(σ, ω) =
∫
σ
ω (6.231)

Thus for each p-cycle σ one constructs a linear map from Hp(M, IR) → IR. Similarly
for each p-form ω one constructs a linear map from Hp(M, IR)→ IR. Note in particular
that Λ is independent of the choice of representative of the (co)homology group

Λ(σ + ∂ρ, ω + dη) =
∫
σ
ω +

∫
∂ρ
ω +

∫
σ
dη +

∫
∂ρ
dη

=
∫
σ
ω +

∫
ρ
dω +

∫
∂σ
η +

∫
ρ
d2η

=
∫
σ
ω

(6.232)

The important point about exact forms is that they can be written as ω = dη with
η well defined everywhere. Stokes theorem can give us a check as to whether or not a
form can be exact or not. If ω = dη is exact then∫

σ
ω =

∫
σ
dη =

∫
∂σ
η = 0 (6.233)

for any cycle σ since ∂σ = 0.
So what can fail if we have a closed form and we want make it exact? In a local

coordinate system the condition ω = dη is just a set of first order differential equations.
A key point is that locally, that is in a sufficently small open set, any closed form is
exact. This is summed up by the following theorem, which we don’t have time to prove.

Theorem: (Poincare lemma) In a coordinate chart U of M is contractable to a point
then any closed p-form on U is exact. Here constractable to a point means that there
exists a smooth map F : U × I1 → U such that F (p, 0) = p and F (p, 1) = p0 for all
p ∈ U where p0 is some fixed point in U .
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What fails then is that the solution to the condition ω = dη can fail to exist globally.
This is why the de Rahm Cohomology groups contain topological data.

Example: Consider S1 with coordinate patches defined by

U1 = S1 − {(1, 0)} , φ1(cos θ, sin θ) = θ ∈ (0, 2π)

U2 = S1 − {(−1, 0)} , φ2(cos θ, sin θ) = θ ∈ (−π, π)

(6.234)

It should be easy to check now that this defines a differential structure for S1. We can
consider the curve

C(t) = (cos 2πt, sin 2πt) (6.235)

This defines a vector field on S1, namely the tangent to C,

T (f) =
d

dt
f ◦ C(t) (6.236)

at each point (cos 2πt, sin 2πt) ∈ S1. In either coordinate system this vector field can
be written as

T (f) =
d

dt

(
f ◦ φ−1i ◦ φi ◦ C(t)

)
=

dφi ◦ C
dt

d

dθ

(
f ◦ φ−1i

)
= 2π

d

dθ
f(θ)

(6.237)

i.e.
T θ = 2π (6.238)

This in turn defines a dual 1-form ω which is locally

ω = (2π)−1dθ (6.239)

i.e.
ωθ = (2π)−1 (6.240)

By construction ω is closed, for example dω would be a two form on a one-dimensional
manifold. But is it exact? Now the curve C is 1-cycle, i.e. it has no boundary since

∂C = C ◦ π(1) − C ◦ π(0) = C(1)− C(0) = 0 (6.241)

We can therefore evaluate ∫
C
ω =

∫ 1

0
C?ω

=
∫ 1

0

dθ ◦ C
dt

ωθ

= (2π)−1
∫ 1

0
2πdt

= 1 (6.242)
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Since this is non-zero ω cannot be exact.
Thus we see that H1(S1, IR) is non trivial. In fact H1(S1, IR) ≡ IR.
We should compare this with another connected 1-dimensional manifoldM = IR. If

ω = ωxdx is a closed form then this just means that ωx is a C∞ function. However we
can then simply define

η(x) =
∫ x

0
ωx(y)dy (6.243)

so that dη = ωxdx. Hence ω is exact and we see that

H1(IR1, IR) = 1 (6.244)

is trivial. In this very elementary example we see that that H1(M, IR) is counting the
number of noncontractable ’holes’ on the manifold. This is the same as the number of
1-cycles which are not boundaries of 2-cycles. In particular we see that H1(M, IR) can
destinguish between two inequivalent manifolds.

7 Connections, Curvature and Metrics

So far everything that we have discussed about manifolds has been intrinsic to the
manifold, defined as a topological space with a differentiable structure, and has not
required introducing any additional structures. However it is very common and intuitive
to introduce some additional structures.

7.1 Connections, Curvature and Torsion

The first additional structure that we can introduce is that of a connection. We have
been emphasising that we can’t just differentiate a generic object such as a tensor on a
manifold because we don’t know how to construct something like x + ε where x ∈ M
and ε is a small parameter.

Problem: Show that if

X =
∑
µ

Xµ ∂

∂xµ

∣∣∣
p

(7.245)

is a vector field expanded in some local coordinate chart φi(p) = (x1(p), ..., xn(p)) and
we define

dX =
∑
µ

∂νX
µdxν

∣∣∣
p
⊗ ∂

∂xµ

∣∣∣
p

(7.246)

then dX will not be a tensor. However check that if ω =
∑
ωµdx

µ|p is a co-vector
(1-form) then

dω =
∑
µ

(∂νωµ − ∂µων)dxν |p ⊗ dxµ|p (7.247)

is a tensor. Hint: consider how things look in a different coordinate chart ψ(p) =
(y1, ..., yn).
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However we can simply declare that there is a suitable derivative.

Definition: A connection (or more acurately an affine connection) on a manifoldM is
an operator D which assigns to each vector field X onM a mapping DX : TM→ TM
such that, for all Y, Z ∈ TM and f ∈ C(M)

i) DX(Y + Z) = DX(Y ) +DX(Z)
ii) DX+YZ = DXZ +DYZ
iii) DfXY = fDXY
iv) DX(fY ) = X(f)Y + fDX(Y )

DXY is called the covariant derivative of Y along X.

N.B.: The commutator (or as we saw Lie derivative) obeys all but condition (iii).

In other words DX acts as a directional derivative along the direction determined
by X. However a the existance of connection does not follow from the definition of a
manifold but requires us to add it in. In particular a typical manifold can be endowed
with infinitely many different connections.

It is conventient to introduce a new notation. If x1, ..., xµ are local coordinates in
some chart of M we let

Dµ = D ∂
∂xµ
|p (7.248)

It is easy to convince yourself that DX is entirely determined by its action on a set of
basis vectors hence we introduce

Dµ
∂

∂xν

∣∣∣
p

=
∑
λ

Γλµν
∂

∂xλ

∣∣∣
p

(7.249)

and the Γλµν are known as the connection coefficients. Thus if

X =
∑
µ

Xµ ∂

∂xµ

∣∣∣
p

and Y =
∑
µ

Y µ ∂

∂xµ

∣∣∣
p

(7.250)

then it follows from the definition of DX that

DXY = D∑Xµ ∂
∂xµ
|p

(∑
Y ν ∂

∂xν

∣∣∣
p

)

=
∑

XµDµ

(∑
Y ν ∂

∂xν

∣∣∣
p

)

=
∑

Xµ

(
∂

∂xµ

∣∣∣
p
(Y ν)

∂

∂xν

∣∣∣
p

+ Y νDµ
∂

∂xν

∣∣∣
p

)

=
∑(

Xµ∂µY
λ + ΓλµνX

µY ν
) ∂

∂xλ

∣∣∣
p

(7.251)
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Theorem: Let Γλµν be the components of a tensor in a coordinate system (x1, ..., xn)
then in another overlapping coordinate system (y1, ..., yn) we have

Γ̃λµν =
∑ ∂xρ

∂yµ
∂xτ

∂yν
∂yλ

∂xσ
Γσρτ +

∑ ∂yµ

∂xσ
∂2xσ

∂yµ∂yν
(7.252)

where once again we think of xµ(yν) as the transition function.

Proof: We have seen that the natural basis of vector field in one coordinate system as
compared to the other is

∂

∂yµ

∣∣∣
p

=
∑

M ν
µ

∂

∂xν

∣∣∣
p
, M ν

µ =
∂xν(y)

∂yµ
(7.253)

By definition we have that

D ∂
∂yµ
|p

(
∂

∂yν

∣∣∣
p

)
= Γ̃λµν

∂

∂yλ

∣∣∣
p

(7.254)

so we compute

D ∂
∂yµ
|p

(
∂

∂yν

∣∣∣
p

)
= D∑M ρ

µ
∂
∂xρ
|p

(∑
M λ

ν

∂

∂xλ

∣∣∣
p

)

=
∑

M ρ
µ Dρ

(∑
M λ

ν

∂

∂xλ

∣∣∣
p

)

=
∑(

M ρ
µ ∂ρM

λ
ν

∂

∂xλ

∣∣∣
p

+M ρ
µ M

λ
ν Γσρλ

∂

∂xσ

∣∣∣
p

)
(7.255)

Next we need to compute this expression on

dyτ
∣∣∣
p

=
∑

(M−1)τπdx
π
∣∣∣
p

(7.256)

Noting that
∂

∂xσ

∣∣∣
p

(
dyτ

∣∣∣
p

)
=
∑

(M−1)τσ (7.257)

we find

D ∂
∂yµ
|p

(
∂

∂yν

∣∣∣
p

)(
dyτ

∣∣∣
p

)
=

∑(
M ρ

µ ∂ρM
λ
ν (M−1)τλ +M ρ

µ M
λ
ν Γσρλ(M

−1)τσ
)

= Γ̃τµν (7.258)

To see that this agrees with the theorem we just note that

∑
M ρ

µ ∂ρM
λ
ν =

∑ ∂xρ

∂yµ
∂ρM

λ
ν =

∂

∂yµ
M λ

ν (7.259)
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Thus the connection coeficients cannot be thought of as the components of a tensor.
However from the connection we can construct two associated tensors.

The first is the so-called torsion tensor. This is a (1, 2)-tensor defined by

T (X, Y, ω) = (DXY −DYX − [X, Y ])(ω) (7.260)

Check that this makes sense: DXY , DYX and [X, Y ] are all vector fields and hence
they can be evaluated on a co-vector.

Theorem: In a local coordinate system the torsion tensor is

T =
∑

T λµν dx
µ
∣∣∣
p
⊗ dxν

∣∣∣
p
⊗ ∂

∂xλ

∣∣∣
p

=
∑(

Γλµν − Γλνµ
)
dxµ

∣∣∣
p
⊗ dxν

∣∣∣
p
⊗ ∂

∂xλ

∣∣∣
p

(7.261)

Proof: We can simply evaluate T on the basis elements

T

(
∂

∂xµ
,
∂

∂xν
, dxλ

)
=

(
Dµ

(
∂

∂xν

)
−Dν

(
∂

∂xµ

))
(dxλ)

=
∑
λ

(
Γρµν − Γρνµ

) ∂

∂xρ
(dxλ)

=
∑
λ

(
Γλµν − Γλνµ

)
(7.262)

Secondly we have the curvature (1, 3)-tensor

R(X, Y, Z, ω) =
(
−DX(DYZ) +DY (DXZ) +D[X,Y ]Z

)
(ω) (7.263)

again this makes sense as all the terms are vector fields acting on a co-vector ω.

Theorem: In a local coordinate system the curvature tensor is

R =
∑

R ρ
µνλ dx

µ
∣∣∣
p
⊗ dxν

∣∣∣
p
⊗ dxλ

∣∣∣
p
⊗ ∂

∂xρ

∣∣∣
p

=
∑(
−∂µΓρνλ + ∂νΓ

ρ
µλ + ΓσµλΓ

ρ
νσ + ΓσνλΓ

ρ
µσ

)
dxµ

∣∣∣
p
⊗ dxν

∣∣∣
p
⊗ dxλ

∣∣∣
p
⊗ ∂

∂xρ

∣∣∣
p

(7.264)

Problem: Show this.

The important things about these tensors is that they contain coordinate indepen-
dent information. In particular if a tensor, such as the torsion or curvature, vanishes
in one coordinate system then it vanishes in all. This cannot be said of things like the
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connection coefficients or other quantities that you might encounter while working in a
particular coordinate system.

Definition: A vector field X is said to be parallel transported along a curve C if

DTCX = 0 (7.265)

at each point on C, where TC is the tangent to C. This means that we think of X as
transported is such a way that it points in the same direction along the curve. This
is possible because we have a connection which tells us how to compare vectors in the
tangent spaces above different points.

We also can give a geometrical meaning of the torsion and curvature tensors. Con-
sider an infinitessimal displacement of the coordinate xµ by a vector X

δXx
ν = εXν (7.266)

We can then parallel transport this displacement along a direction given by Y . Parallel
transport means that

0 = Y µ(∂µX
ν +

∑
ΓνµλX

λ) (7.267)

so that
δYX

ν = −ε
∑

Y µΓνµλX
λ (7.268)

Thus
δY δXx

ν = −ε2
∑

Y µΓνµλX
λ (7.269)

On the other hand we could first consider the displacement along Y

δY x
ν = εY ν (7.270)

and then parallel transport this along X

δXY
ν = −ε2Xµ

∑
ΓνµλY

λ (7.271)

This yeilds
δXδY x

ν = −ε2
∑

XµΓνµλY
λ (7.272)

Therefore the difference between these two is measured by the torsion

[δX , δY ]xν = −ε2
∑

XµY λT νµλ (7.273)

To understand the curvature we first parallel transport a vector Z around a curve
with tangent X by an infinitessimal amount. You can use the formula above to get

Zρ → Zρ − ε
∑

XµΓρµλZ
λ (7.274)
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Let us now parallel transport this around X

Zρ → Zρ − ε
∑

XµΓρµλZ
λ − ε

∑
Y πΓρπσ(x+ εX)(Zσ − εXµΓσµλZ

λ)

= Zρ − ε
∑

XµΓρµλZ
λ − ε

∑
Y π(Γρπσ + εXτ∂τΓ

ρ
πσ)(Zσ − εXµΓσµλZ

λ)

= Zρ − ε
∑

XµΓρµλZ
λ − ε

∑
Y µΓρµσZ

σ

−ε2
∑

Y µXτ∂τΓ
ρ
µσZ

σ + ε2
∑

ΓσµλΓ
ρ
πλY

πXµZλ + ...

(7.275)

If we first transport about Y and then X we find

Zρ → Zρ − ε
∑

Y µΓρµλZ
λ − ε

∑
XµΓρµσZ

σ

−ε2
∑

XµY τ∂τΓ
ρ
µσZ

σ + ε2
∑

ΓσµλΓ
ρ
πλX

πY µZλ + ...

(7.276)

Thus, with a little work, one sees that the parallel transport along Y then X minus
parallel transport first along Y and then X is precisely the curvature

[δX , δY ]Zρ = ε2
∑

R ρ
µνλ XµY νZλ (7.277)

The connection can be extended to define a covariant dervative on any tensor field.
We start by defining it on a co-vector ω by

DXω(Y ) = X(ω(Y ))− ω(DXY ) (7.278)

for any vector field Y . In coordinates this is

Dµων = ∂µων −
∑

ωλΓ
λ
µν (7.279)

where we have taken X = ∂
∂xµ
|p and Y = ∂

∂xν
|p so that

ω(Y ) = ων and (DXY )λ = Γλµν (7.280)

This implies that
Dµ(dxν) = −

∑
Γνµλdx

λ (7.281)

The extension to an (r, s)-tensor is

DXT (ω1, ..., ωr, Y1, ..., Ys) = X(T (ω1, ..., ωr, Y1, ..., Ys))

−
∑
i

T (ω1, ..., DXω
i, ..., ωr, Y1, ..., Ys)

−
∑
i

T (ω1, ..., ωr, Y1, ..., DXYi, ..., Ys)

(7.282)

Problem: Convince yourself that in a local coordinate system

DλT
µ1...µr

ν1...νr
= ∂µT

µ1...µr
ν1...νr

+
∑

ΓµiλρT
µ1...ρ...µr

ν1...νr

−
∑

ΓρλνiT
µ1...µr

ν1...ρ...νr

(7.283)
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7.2 Riemannian Manifolds

Another object that is frequently discussed is a metric. This allows one to measure
distances and angles on the manifolds. Again this is not implicit to a manifold and
typically there are infinitely many possible metrics for a given manifold. For example
General Relativity is a theory of gravity which postulates that spacetime is a manifold.
The dynamical equations of General Relativity (Einstein’s equation) then determine the
metric.

Definition: A metric g on a manifold M is a non-degenerate inner product on TpM
for each point p ∈ M. As such this defines a symmetric (0, 2) tensor, that is a map
gp : TpM⊗ TpM → IR, since inner products are linear and symmetric in each of its
entries, i.e.

g(X, Y ) = g(Y,X) , g(X, Y + fZ) = g(X) + fg(X,Z) (7.284)

We will of course assume that g is a smooth (0, 2) tensor field on M

Definition: A Riemannian manifold is a manifold with a positive definite metric tensor
field (positive definite means that g(X,X) ≥ 0 with equality iff X = 0). If the metric
is not positive definite it is called a pseudo Riemannian manifold.

As you know from elementary linear algebra an inner product allows us to define the
lenths and angles of vectors. Thus with a metric we can define the length and angles
of tangent vectors. For example we can now now define the angle between to curves as
they intersect to be

arccos

 g(T1, T2)√
g(T1, T1)g(T2, T2)

 (7.285)

where Ti is the tagent vector to the ith curve at the point where they intersect. We can
also define the length of a curve to be∫

C

√
g(T, T )dτ (7.286)

where T is the tangent to the curve C. So we simply integrate the length of the tangent
vector at each point along the curve.

Thus we can give a metric structure to the manifold by defining

d(p, q) = infC

∫
C

√
g(T, T )dτ (7.287)

where C is a curve on M such that C(0) = p and C(1) = q.

Example: The Euclidean metric on IRn is simply

g

(
∂

∂xµ
,
∂

∂xν

)
= δµν (7.288)
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This is in Cartesian coordinates. The length of a curve is therefore just

∫
C

√√√√∑
µ

dCµ

dτ

dCµ

dτ
dτ (7.289)

so in particular for a straight line Cµ = pµ + (qµ − pµ)τ one has∫ 1

0

√∑
µ

(pµ − qµ)(pµ − qµ)dτ =
√∑

µ

(pµ − qµ)(pµ − qµ) (7.290)

which is the Pythagorian distance. But in general the metric coefficients gµν can be
arbitrary functions of the coordinates. Indeed even IRn with a different coordinate
system will have non-trival gµν .

Problem: Consider IR2 and cover it (or more precisely all but the origin) with polar
coordinates show that the Euclidean metric is

g = dr ⊗ dr + r2dθ ⊗ dθ (7.291)

Example: We can think ofM = IR2−{0, 0}. This is clearly a manifold as it is an open
subset of IR2. By putting different metrics on it though we can think of it in a variety
of ways.

With the flat metric
g = dr ⊗ dr + r2dθ ⊗ dθ (7.292)

then this is just want we naturally think of asM = IR2−{0, 0} as a subset of the plane.
But we could also consider

g′ = dr ⊗ dr + dθ ⊗ dθ (7.293)

This turns the manifold into a cylinder S1 × IR, although since r > 0 it is really only
half a cylinder.

There are also other more exotic possibilities such as

g′′ = dr ⊗ dr + cosh2 rdθ ⊗ dθ (7.294)

This looks like a funnel where radius of the circle starts at one and then and grows
exponentially with r.

However all of these are diffeomorphic to each other as manifolds. As such the de
Rahm cohomology groups will be the same. They just have a different metric put on
them.

As is well known an inner product induces an isomorphism between a vector space
and its dual. Therefore it follows that a metric tensor induces an isomorphism between
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TpM and T ?pM at each point p ∈ M. To be precise, given a vector field X, we can
construct a co-vector ωX by

ωX(Y ) = g(X, Y ) (7.295)

clearly this defines a linear map, i.e. ωX ∈ T ?pM. If in a local coordinate system we
have

X =
∑

Xµ ∂

∂xµ
and g =

∑
gµνdx

µ ⊗ dxν (7.296)

then

ωX(Y ) =
∑

(ωX)νY
ν

=
∑

gµνX
µY ν (7.297)

therefore we see that
(ωX)ν =

∑
gµνX

µ (7.298)

To see that all co-vectors arise in this way suppose that ω is a co-vector, i.e. a linear
map from TpM to IR, then it is defined by its action on a basis

ω

(
∂

∂xµ

)
= ωµ (7.299)

where
ω =

∑
ωµdx

µ and g =
∑

gµνdx
µ ⊗ dxν (7.300)

We can therefore consider the vector

Xω =
∑

Xν
ω

∂

∂xν
=
∑

gµνων
∂

∂xµ
(7.301)

Here gµν is the matrix inverse to gµν which exists since g is non-degenerate. It now
follows that

g(Xω,
∂

∂xµ
) =

∑
gµνX

ν
ω

=
∑

gµνg
νλωλ

= ωµ (7.302)

which agrees with the action of ω.
A metric tensor gives rise to an inverse metric (2, 0) tensor by

g−1(ωX , ωY ) = g(X, Y ) (7.303)

where we have used the fact that each covector can be identified with a unique vector.
Since this identification is linear we see that

g−1 : T ?M⊗ T ?M→ IR (7.304)
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is linear an symmetric in each entry and hence is a symmetric (2, 0)-tensor. We have
already used this tensor. Using the above form for ωX and ωY shows that, in a particular
coordinate system, the left hand side of (7.303) is

g−1(ωX , ωY ) =
∑

(g−1)µν(ωX)µ(ωX)ν

=
∑

(g−1)µνgµλX
λgνρY

ρ

(7.305)

whereas the right hand side of (7.303) is

g(X, Y ) =
∑

gλρX
λY ρ (7.306)

since these must agree we see that

(g−1)µν = gµν (7.307)

i.e. the inverse metric. In other words a metric tensor allows us to raise and lower the
indices on tensors.

Once a metric is supplied there is a natural choice of connection, known as the
Levi-Civita connection.

Theorem: On a (pseudo) Riemannian manifold there is a unique connection D such
that

i) DXg = 0 for any vector X
ii) The torsion of D vanishes.

Proof: Let us start by assuming that such a connection exists. From the definition of
a covariant derivative on a (0, 2)-tensor we have

0 = DXg(Y, Z) = X(g(Y, Z))− g(DXY, Z)− g(Y,DXZ) (7.308)

for three vector fields X, Y and Z This implies, along with its cyclic permutations,

X(g(Y, Z)) = g(DXY, Z) + g(Y,DXZ)

Y (g(Z,X)) = g(DYZ,X) + g(Z,DYX)

Z(g(X, Y )) = g(DZX, Y ) + g(X,DZY )

(7.309)

Next we assume that D has no torsion, so that DXY −DYX = [X, Y ]. These conditions
become

X(g(Y, Z)) = g(DYX,Z) + g(DXZ, Y ) + g([X, Y ], Z)

Y (g(Z,X)) = g(DZY,X) + g(DYX,Z) + g([Y, Z], X)

Z(g(X,Z)) = g(DXZ, Y ) + g(DZY,X) + g([Z,X], Y )

(7.310)
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Thus if we consider the second plus the third minus the first of these equations we find

Z(g(X, Y )) + Y (g(Z,X))−X(g(Y, Z)) = 2g(DZY,X)

+g([Y, Z], X) + g([Z,X], Y )− g([X, Y ], Z)

(7.311)

Rearranging gives

2g(DZY,X) = Z(g(X, Y )) + Y (g(Z,X))−X(g(Y, Z))

−g([Y, Z], X)− g([Z,X], Y ) + g([X, Y ], Z)

(7.312)

Because g is non degenerate and X is arbitrary this will uniquely determine DYZ. Thus
we need only show that this does indeed define a connection.

Properties (i) and (ii) of the definition of the connection follow trivially. To test
property (iii) we substitute Z → fZ in the above equation

2g(DfZY,X) = fZ(g(X, Y )) + Y (g(fZ,X))−X(g(Y, fZ))

−g([Y, fZ], X)− g([fZ,X], Y ) + g([X, Y ], fZ)

= 2fg(DZY, Y )) + Y (f)g(Z,X)−X(f)g(Y, Z)

−Y (f)g(Z,X) +X(f)g(Z, Y )

= 2g(fDZY,X) (7.313)

To test property (iv) we substitute Y → fY

2g(DZfY,X) = Z(g(X, fY )) + fY (g(Z,X))−X(g(fY, Z))

−g([fY, Z], X)− g([Z,X], fY ) + g([X, fY ], Z)

= 2fg(DZY,X) + Z(f)g(X, Y )−X(f)g(Y, Z)

+Z(f)g(Y,X) +X(f)g(Y, Z)

= 2g(fDZY + Z(f)Y,X) (7.314)

And we prove the theorem.

Therefore given a metric tensor we also find a natural curvature tensor, namely the
one corresponding to the Levi-Civita connection. This is called the Riemann curvature

Theorem: In a local coordinate system (x1, ..., xn) the coefficients of the Levi-Civita
connection are

Γλµν =
1

2
gλρ(∂µgρν + ∂νgρµ − ∂ρgµν) (7.315)

Problem: Show this.
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