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Abstract
We compute the spectral density for ensembles of sparse symmetric random
matrices using replica. Our formulation of the replica-symmetric ansatz shares
the symmetries of that suggested in a seminal paper by Rodgers and Bray
(symmetry with respect to permutation of replica and rotation symmetry in the
space of replica), but uses a different representation in terms of superpositions
of Gaussians. It gives rise to a pair of integral equations which can be solved by
a stochastic population-dynamics algorithm. Remarkably our representation
allows us to identify pure-point contributions to the spectral density related
to the existence of normalizable eigenstates. Our approach is not restricted
to matrices defined on graphs with Poissonian degree distribution. Matrices
defined on regular random graphs or on scale-free graphs, are easily handled.
We also look at matrices with row constraints such as discrete graph Laplacians.
Our approach naturally allows us to unfold the total density of states into
contributions coming from vertices of different local coordinations and an
example of such an unfolding is presented. Our results are well corroborated
by numerical diagonalization studies of large finite random matrices.

PACS numbers: 02.50.−r, 05.10.−a

1. Introduction

Since its inception by Wigner in the context of describing spectra of excited nuclei [1], random
matrix theory (RMT) has found applications in numerous areas of science, including questions
concerning the stability of complex systems [2], electron localization [3], quantum chaos [4],
quantum chromo dynamics [5], finance [6, 7], the physics of glasses both at elevated [8, 9]
and low [10, 11] temperatures, number theory [12] and many more. For an extensive review
describing many of the applications in physics see, e.g. [13].

In the present paper, we revisit the problem of determining the spectral density for
ensembles of sparse random matrices pioneered two decades ago in seminal papers by Bray
and Rodgers [14, 15]. The problem has in recent years received much renewed interest
in connection with the study of complex networks, motivated, for instance, by the fact
that geometric and topological properties of networks are reflected in spectral properties of
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adjacency matrices defining the networks in question [16, 17]. Also, phenomena such as non-
exponential relaxation in glassy systems and gels [15, 18]—intimately related to Lifshitz tails
[19] and Griffiths’ singularities in disordered systems [20]—as well as Anderson localization
of electronic [21] or vibrational [22] states have been studied in sparsely connected random
systems, as finite-dimensional versions of these problems have proven to be extremely difficult
to analyse.

A wealth of analytical and numerical results has been accumulated on these systems in
recent years. In particular, the Rodgers–Bray integral equation [14], whose solution allows us
to express the spectral density, was also obtained using a supersymmetry approach [23], and
it was recently derived rigorously by Khorunzhy et al [24], thereby establishing the symmetry
assumptions required in the solutions of [14, 23] as justified.

Progress has, however, been partly hampered by the fact that full solutions of the
Rodgers–Bray integral equation [14] have so far eluded us, and asymptotic analyses and
other approximations had to come in for help. For example expansions for large average
connectivities c [14] have revealed that Wigner’s semicircle law [25] is recovered in the
limit c → ∞, and exponential tails in the spectral density extending beyond the edge of the
Wigner semicircle were shown to exist at finite c by means of a (nonperturbative) saddle-point
analysis. Away from the large c limit, other approximation schemes such as the single defect
approximation (SDA) and the effective medium approximation (EMA) [17, 26, 27] (see [28]
for a very recent application), as well as numerical diagonalization (e.g. [29]). have frequently
been used to analyse spectral properties of large random matrices.

In what follows we describe some significant progress in the understanding of this problem,
based upon advances in the statistical mechanical analysis of sparsely connected spin-glass
like systems seen in the last couple of years [30, 31]—in the present context in particular the
proposal of a stochastic population-dynamics algorithm [31] to solve the nonlinear integral
equations appearing in the solution of these problems, and the recent generalization of these
methods to systems with continuous degrees of freedom, such as models of sparsely connected
vector spins [32], or finitely coordinated models for low-temperature phases of amorphous
systems [33].

It is well known that the average spectral density ρN(λ) (the average density of eigenvalues
λ) of an ensemble M of N × N matrices M can be computed from the ensemble average of
the imaginary part of their resolvent via

ρN(λ) = 1

πN
Im Tr[λε11 − M]−1. (1)

Here 11 is the N × N unit matrix, and λε = λ − iε, the limit ε → 0+ being understood.
Following Edwards and Jones [34], one can express this result in terms of the Gaussian
integral

ZN =
∫ N∏

i=1

dui√
2π/i

exp

⎧⎨
⎩− i

2

∑
i,j

ui(λεδij − Mij )uj

⎫⎬
⎭ (2)

as

ρN(λ) = − 2

πN
Im

∂

∂λ
ln ZN = 1

N
Re

N∑
i=1

〈
u2

i

〉
, (3)

using the replica method to evaluate the average of the logarithm in (3) over the ensemble M
of matrices M under consideration. The ‘averages’

〈
u2

i

〉
in (3) are evaluated with respect to the
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‘Gaussian measure’ defined by (2).1 This has been the path taken in [14]; we shall initially
follow their reasoning.

Disregarding the complex nature of the ‘Hamiltonian’ in the evaluation of (2), the
mathematical problem posed in (2), (3) is analogous to the evaluation of an ‘internal energy’ of
a disordered system with quenched disorder. Within the general class of finitely coordinated
amorphous model systems considered in [33], that represented by (2), (3) constitutes a
particular subclass, namely that of harmonically coupled systems, for which the analysis was
found to be much simpler than for systems involving anharmonic couplings. Indeed, while
the solution of the latter required the self-consistent determination of probability distributions
over infinite-dimensional function-spaces, it was realized in [33] that solutions of harmonically
coupled systems could be formulated in terms of superpositions of Gaussians, and that the self-
consistency problem reduced to the (much simpler) problem of a self-consistent determination
of the probability distribution of their variances.

It can be fairly argued that this last insight is, in fact, easier to obtain within a Bethe-Peierls
or cavity-type approach [31], in which (2) is recursively evaluated for given instances on graphs
which are locally tree-like, ignoring correlations among subtrees—an approximation that
becomes exact, e.g., for random graphs that remain finitely coordinated in the thermodynamic
limit. This approach is taken in a separate publication [35], in which (finite) single-instances
and promising algorithmic aspects of the problem are being highlighted.

Although [33] describes all technical details needed for a replica analysis of the present
problem, we shall nevertheless reproduce the key steps here, both to keep the paper self-
contained, and to point out along the way where the point of departure between our approach
and that of [14] occurs.

The remainder of the paper is organized as follows. In section 2, we describe the replica
analysis of the problem posed by (2), (3), specializing to matrices defined on Poissonian
(Erdös–Renyi) random graphs. It has been known for some time [14, 34] that the replica-
symmetric high-temperature solution—i.e., a solution preserving both, permutation-symmetry
among replica, and rotational symmetry in the space of replica—is exact for problems of
the type considered here. Accordingly, a representation that respects these symmetries is
formulated in section 2.1. It is at this point where our formulation departs from that of
[14]. In section 3 we present results for a variety of examples, and compare with numerical
diagonalization results for large finite matrices to assess their quality. In sufficiently sparse
graphs, one expects localized states, i.e. eigenvalues in the point spectrum with normalizable
eigenvectors to exist. It is one of the remarkable and surprising results of the present study
that our formulation allows us to identify the contribution of the point spectrum to the overall
spectral density. The signatures of localization within our approach are discussed throughout
section 3, with inverse participation ratios (IPRs) as a tool supporting our conjecture briefly
looked at in section 3.2. A more detailed and quantitative investigation of localization—
primarily for (discrete) Schrödinger operators on sparse random graphs—will be reserved to
a separate publication [36]. Matrices with bimodal instead of Gaussian random couplings
are studied in section 3.3. As the formal structure of the self-consistency problem remains
unaltered when the Poissonian random graphs are replaced by graphs with other degree
distributions [33], we can exploit this fact to present results for regular and scale-free random
graphs in section 3.4. Modifications needed to treat matrices with row constraints, such
as discrete graph Laplacians are outlined in section 3.5. Our approach naturally allows
us to unfold the total density of states into contributions coming from vertices of different

1 Note that we are using probabilistic notions in a loose, metaphorical sense, as the Gaussian measures used in these
calculations are complex.
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local coordinations, and we finally present an example of such an unfolding in section 3.6.
Section 4 contains a brief summary and an outlook on promising directions for future
research.

2. Replica analysis

2.1. General formulation

Here we briefly outline the evaluation of (2), (3) for sparse symmetric matrices M of the form

Mij = cijKij , (4)

in which C = {cij } is a symmetric adjacency matrix of an undirected random graph (with
cii = 0), and the non-zero elements of M are specified by the Kij , also taken to be symmetric
in the indices. Within the present outline we restrict ourselves for the sake of simplicity to
adjacency matrices of Erdös–Renyi random graphs, with

P({cij }) =
∏
i<j

p(cij )δcij ,cji
and p(cij ) =

(
1 − c

N

)
δcij ,0 +

c

N
δcij ,1,

exhibiting a Poissonian degree distribution with average coordination c. We note at the outset
that formal results carry over without modification to other cases [33]. There is no need at
this point to specify the distribution of the Kij , but we shall typically look at Gaussian and
bimodal distributions.

The average (3) is evaluated using replica ln ZN = limn→0
1
n

ln Zn
N , starting with integer

numbers of replica as usual. After performing the average over the distribution of the
connectivities cij one obtains

Zn
N =

∫ ∏
ia

duia√
2π/i

exp

⎧⎨
⎩− i

2
λε

∑
i,a

u2
ia +

c

2N

∑
ij

(〈
exp

(
iK

∑
a

uiauja

)〉
K

− 1

)⎫⎬
⎭ ,

(5)

in which a = 1, . . . , n labels the replica, and 〈· · ·〉K refers to an average over the distribution
of the Kij . The double sum appearing in the exponential of (5) can be expressed in terms of
integrals over the replicated density

ρ(u) = 1

N

∑
i

∏
a

δ(ua − uia), with u ≡ (u1, u2, . . . , un), (6)

as

c

2N

∑
ij

(〈
exp

(
iK

∑
a

uiauja

)〉
K

− 1

)

= N
c

2

∫
du ρ(u) dv ρ(v)

(〈
exp

(
iK

∑
a

uava

)〉
K

− 1

)
.

A decoupling of sites is achieved by enforcing the definition of ρ via functional δ distributions,

1 =
∫

Dρ Dρ̂ exp

{
−i

∫
du ρ̂(u)

(
Nρ(u) −

∑
i

∏
a

δ(ua − uia)

)}
. (7)
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This gives (using shorthands of the form dρ(u) ≡ duρ(u) where useful)

Zn
N =

∫
Dρ

∫
Dρ̂ exp

{
N

[
c

2

∫
dρ(u) dρ(v)

(〈
exp

(
iK

∑
a

uava

)〉
K

− 1

)

−
∫

du iρ̂(u)ρ(u) + ln
∫ ∏

a

dua√
2π/i

exp

(
iρ̂(u) − i

2
λε

∑
a

u2
a

)]}
, (8)

allowing us to evaluate N−1 ln Zn
N by a saddle-point method. The stationarity conditions w.r.t.

variations of ρ and ρ̂ read as

iρ̂(u) = c

∫
dρ(v)

(〈
exp

(
iK

∑
a

uava

)〉
K

− 1

)
, (9)

ρ(u) = exp
(
iρ̂(u) − i

2λε

∑
a u2

a

)
∫

du exp
(
iρ̂(u) − i

2λε

∑
a u2

a

) . (10)

The way in which sites are decoupled constitutes the first point of departure between our
treatment and that of [14] and subsequent analyses inspired by it (e.g. [37, 38]). In these
papers the averaged exponential expressions in the exponent of (5),

f (ui · vj ) = f

(∑
a

uiavja

)
=
〈

exp

(
iK

∑
a

uiavja

)〉
K

− 1, (11)

is expanded, and an infinite family of multi-replica generalizations of Edwards Anderson order
parameters (and corresponding Hubbard–Stratonovich transformations) are used to decouple
the sites, much as in the treatment of the dilute spin-glass problem by Viana and Bray [39].
The authors then use the expansion and the infinite set of self-consistency equations for the
multi-replica generalizations of Edwards Anderson order parameters to construct an equivalent
functional self-consistency problem described by a nonlinear integral equation for a function
g defined via a suitable ‘average’ of f ; see [14] for details. Our treatment in this respect is
closer in spirit to the alternative approach of Kanter and Sompolinsky [40] who treat local
field distributions (which in the general context of disordered amorphous systems discussed
in [33] become distributions of local potentials) as the primary object of their theory.

However, the difference between our treatment and that of [14] is at this point still
superficial. Indeed, we can combine (9) and (10) to give

iρ̂(u) =
∫

dv f (u · v) exp
(
iρ̂(v) − i

2λεv
2
)

∫
dv exp

(
iρ̂(v) − i

2λεv2
) , (12)

which is the Rodgers–Bray integral equation for general distributions of non-zero bond
strengths (before exploiting replica symmetry and taking the n → 0-limit), if we identify
our ‘conjugate density’ ρ̂ with the function g introduced by Rodgers and Bray [14] via

iρ̂(u) = cg(u). (13)

2.2. Replica symmetry

To deal with the n → 0 limit in these equations, assumptions concerning the invariance
properties of the solutions ρ(u) and ρ̂(u) of (9) and (10)—alternatively of the solution
iρ̂(u) = cg(u) of (12)—under transformations among the replica are required. It has been
established for some time [14, 34] that the replica-symmetric high-temperature solution—i.e.,
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a solution preserving both, permutation-symmetry among replica, and rotational symmetry
in the space of replica—is exact for problems of the type considered here. The work of
Khorunzhy et al [24] implies that this assumption is rigorously justified.

It is here where the paths taken in the present paper and in [14] really bifurcate. In
[14], the assumption g(u) = g(u), with u = |u| is used to perform the angular integrals
in n-dimensional polar coordinates in (12), resulting in an integral equation for g(u) in the
n → 0-limit. This integral equation has, however, so far resisted exhaustive analysis or full
numerical solution.

In the present paper we follow [33], using a replica-symmetric ansatz in which ρ and
ρ̂ are represented as uncountably infinite superpositions of normalized (though complex!)
Gaussians of the form

ρ(u) =
∫

dω π(ω)
∏
a

exp
[−ω

2 u2
a

]
Z(ω)

, (14)

iρ̂(u) = ĉ

∫
dω̂ π̂(ω̂)

∏
a

exp
[− ω̂

2 u2
a

]
Z(ω̂)

, (15)

utilizing the observation made in [33] that such superpositions of Gaussians would provide
exact solutions for harmonically coupled amorphous systems. An analogous observation has,
in fact, been made earlier in the context of solving models of randomly and permanently
cross-linked polymers [41].

The integrals in (14) and (15) extend over the complex half-planes Re ω � 0 and Re ω̂ � 0,
respectively. The weight functions π and π̂ have to be determined self-consistently. We take
them to be normalized,

∫
dω π(ω) = 1, and similarly for π̂ , requiring that the constant ĉ

in (15) be properly chosen. We note that our ansatz exhibits permutation symmetry among
replica as well as rotational symmetry in the space of replica.

Below we show that this ansatz does indeed provide a self-consistent solution of the
fixed-point equations characterizing the dominant contribution to (8). Provided that there
are no other, coexisting solutions to the problem (which would seem implausible in view
of the Gaussian nature of the original problem), this would solve our problem. As a further
justification one might note that (6) would be expressible in terms of a superposition of (single-
site) marginals. For every instance of a replicated version of the Gaussian integral (2), these
would indeed be superpositions of Gaussians. Lastly, we note expansions (14) and (15) are
expansion in terms of over-complete families of functions on L2(R). To see this consider
(14). Replica symmetry and rotational invariance of the integral representation in the space
of replica entails that we can write ρ(u) = ρ(x) with x ≡ 1

2u2; this allows us to reformulate
(14) as

ρ(x) =
∫

dω πn(ω) exp(−ωx) (16)

with πn(ω) ≡ π(ω)/Z(ω)n, showing that the integral representations contain Fourier
transforms as a special subclass (in which the integral is restricted to the region Re(ω) = 0).
An analogous argument holds for iρ̂(u). A proper solution to the problem, as opposed to an
approximation will then be obtainable, if the family of functions is sufficiently rich to represent
the solution of the Rodgers–Bray integral equations. Our results below strongly indicate that
this is indeed the case, though a rigorous proof is missing, and would of course be desirable.

Expressing (8) in terms of π and π̂ , we get

Zn
N =

∫
Dπ Dπ̂ exp{N [G1[π ] + G2[π̂ , π ] + G3[π̂ ]]}. (17)
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As n → 0, the functionals G1,G2 and G3 evaluate to

G1[π ] � n
c

2

∫
dπ(ω) dπ(ω′)

〈
ln

Z2(ω, ω′,K)

Z(ω)Z(ω′)

〉
K

, (18)

G2[π̂ , π ] � −ĉ − nĉ

∫
dπ̂ (ω̂) dπ(ω) ln

Z(ω̂ + ω)

Z(ω̂)Z(ω)
, (19)

G3[π̂ ] � ĉ + n

∞∑
k=0

pĉ(k)

∫
{dπ̂}k ln

Zλε
({ω̂}k)∏k

�=1 Z(ω̂�)
, (20)

in which we have introduced the shorthands dπ(ω) ≡ dω π(ω) and similarly for π̂ , as well as
{dπ̂}k ≡ ∏k

�=1 dπ̂(ω̂�), and {ω̂}k = ∑k
�=1 ω̂�, a Poissonian connectivity distribution

pĉ(k) = ĉk

k!
exp[−ĉ] (21)

with average connectivity 〈k〉 = ĉ, and the ‘partition functions’

Z(ω) =
∫

du exp

[
−ω

2
u2

]
=
√

2π/ω, (22)

Zλε
({ω̂}k) =

∫
du√
2π/i

exp

[
−1

2
(iλε + {ω̂}k)u2

]
=
(

i

iλε + {ω̂}k

)1/2

, (23)

Z2(ω, ω′,K) =
∫

du dv exp

[
−1

2
(ωu2 + ω′v2 − 2iKuv)

]
= 2π√

ωω′ + K2
. (24)

Note that the O(1) contributions of G2 and G3 in the exponent of (8) cancel in their sum.
The stationarity condition of the functional integral (8) w.r.t. variations of ρ and ρ̂ is

reformulated in terms of stationarity conditions w.r.t. variations π and π̂ ,

ĉ

∫
dπ̂ (ω̂) ln

Z(ω̂ + ω)

Z(ω̂)Z(ω)
= c

∫
dπ(ω′)

〈
ln

Z2(ω, ω′,K)

Z(ω)Z(ω′)

〉
K

+ µ, (25)

ĉ

∫
dπ(ω) ln

Z(ω̂ + ω)

Z(ω̂)Z(ω)
=
∑
k�1

kpĉ(k)

∫
{dπ̂}k−1 ln

Zλε
(ω̂ + {ω̂}k−1)

Z(ω̂)
∏k−1

�=1 Z(ω̂�)
+ µ̂, (26)

with µ and µ̂ being Lagrange multipliers to take the normalization of π and π̂ into account.
The conditions that (25) must hold for all ω and similarly that (26) must hold for all ω̂

can be translated [31] into

π̂(ω̂) = c

ĉ

∫
dπ(ω′)〈δ(ω̂ − 	̂(ω′,K))〉K, (27)

π(ω) =
∑
k�1

k

ĉ
pĉ(k)

∫
{dπ̂}k−1δ (ω − 	({ω̂}k−1)) , (28)

in which 	̂(ω′,K) and 	({ω̂}k−1) are defined via

Z(ω + 	̂(ω′,K)) = Z2(ω, ω′,K)

Z(ω′)
⇔ 	̂(ω′,K) = K2

ω′ , (29)
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and

	({ω̂}k−1) = iλε +
k−1∑
�=1

ω̂�, (30)

respectively. Given that π is normalized, it follows from (27) that the same is true for π̂ ,
provided ĉ = c, so the fixed point equations take their final form as

π̂(ω̂) =
∫

dπ(ω′)〈δ(ω̂ − 	̂(ω′,K))〉K, (31)

π(ω) =
∑
k�1

k

c
pc(k)

∫
{dπ̂}k−1δ (ω − 	({ω̂}k−1)) . (32)

These equations can be seen as special cases of the general framework derived in [33],
when restricted to harmonically coupled random systems. In [33] it is shown that they
hold—unmodified—for non-Poissonian degree distributions as well, as long as the average
connectivity in these systems remains finite.

Note that π and π̂—self-consistently—have support in Re ω � 0 and Re ω̂ � 0 as
required. The equations take a form that suggests solving them via a stochastic population-
based algorithm, as described in the appendix.

To obtain the thermodynamic limit of the spectral density we have to evaluate the λ

derivative (3). We note that this requires to consider only the explicit λ dependence in (17), as
the rhs is evaluated where the exponent is stationary w.r.t. variations of π and π̂ . Thus only
the λ derivative of G3 in (20) is involved, giving

ρ(λ) = 1

π
Im

∞∑
k=0

pc(k)

∫
{dπ̂}k i

iλε + {ω̂}k

= 1

π

∞∑
k=0

pc(k)

∫
{dπ̂}k Re({ω̂}k + ε)

(Re({ω̂}k + ε))2 + (λ + Im{ω̂}k)2
. (33)

This expression has a natural interpretation as a sum of contributions of local densities of state
of sites with connectivities k, weighted according to their probability of occurrence. Referring
to (3), we may further identify the

σ 2
k = 1

π
Im

i

iλε + {ω̂}k (34)

as realizations of the variance of (Gaussian) marginals on sites of coordination k.
In order to allow a proper interpretation and a succinct discussion of the results obtained

by evaluating (33) via sampling from a population, and with an eye towards disentangling
singular (pure point) and continuous contributions to the spectral density, we find it useful to
introduce the density

P(a, b) =
∑

k

pc(k)

∫
{dπ̂}kδ (a − Re{ω̂}k) δ (b − Im{ω̂}k) , (35)

with a � 0 by construction. The density of states can then be expressed as an integral over P,

ρ(λ) =
∫

da db

π
P (a, b)

a + ε

(a + ε)2 + (b + λ)2
. (36)

Noting the singular nature of the above integrand in the limit ε → 0 for a = 0, we propose to
isolate possible singular contributions to the spectral density by writing

P(a, b) = P0(b)δ(a) + P̃ (a, b). (37)
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This gives

ρ(λ) =
∫

db P0(b)Lε(b + λ) +
∫

a>0

da db

π
P̃ (a, b)

a + ε

(a + ε)2 + (b + λ)2
, (38)

in which Lε denotes a Lorentzian of width ε. Our results below strongly suggest that, when
the limit ε → 0 is taken—thereby Lε(x) → δ(x)—a non-zero value of

P0(−λ) = lim
ε→0

∫
db P0(b)Lε(b + λ) (39)

gives the contribution of the point spectrum to the overall spectral density, which is associated
with normalizable (hence localized) states.

This concludes the general framework.

3. Results

In what follows, we report results for a variety of different ensembles of sparse random
matrices, in order to explore the capabilities and limitations of our approach. In order
to properly appreciate the results presented below, it is worth pointing out that within our
stochastic population-dynamics based approach to solving the fixed point equations (31) and
(32), the integrals (33), or (36), (38) are evaluated by sampling from a population. Denoting
by N the number of samples (ai, bi) taken, we have, e.g.,

ρ(λ) � 1

N

⎡
⎢⎣ N∑

i=1
ai=0

Lε(bi + λ) +
1

π

N∑
i=1
ai>0

ai + ε

(ai + ε)2 + (bi + λ)2

⎤
⎥⎦ (40)

as an approximation of (38). The ε → 0-limit is clearly singular in the first contribution to
(40). If bi + λ 
= 0 for all bi in the sample, one obtains zero in the ε → 0-limit, whereas one
obtains a diverging contribution, if bi + λ = 0 for at least one bi in the sample. The second
alternative will quite generally be an event of probability zero, so a small regularizing ε > 0
must be kept in order to ‘see’ this contributions (if it exists).

We shall refer to the two contributions to (38) or (40), as ρs(λ) and ρc(λ), with

ρs(λ) � 1

N

N∑
i=1
ai=0

Lε(bi + λ), ρc(λ) � 1

πN

N∑
i=1
ai>0

ai + ε

(ai + ε)2 + (bi + λ)2
. (41)

The population-dynamics algorithm itself is run with a small regularizing ε > 0 (as
required in (2) to guarantee existence of the integral). While running the algorithm, we use
ε = 10−300, which is close to the smallest representable real number in double-precision
arithmetic on the machines used for the numerics in order to minimize distorting effects due
to this regularization.

We note, however, that when evaluating (41), the number of samples effectively
contributing to ρs(λ)—those with bi in the interval (−λ − ε,−λ + ε)—is expected to scale
as NP0(−λ)ε, and the fluctuations of this number, scaling as O(

√
NP0(−λ)ε), will be much

larger than the mean in the limit ε → 0. We shall see this effect when naively evaluating the
ε → 0 limit for P0(−λ) 
= 0 below. A reliable estimate of a regularized (smoothed) P0(−λ)

requires to choose ε and N large enough to ensure NP0(−λ)ε � 1.

9



J. Phys. A: Math. Theor. 41 (2008) 295002 R Kühn
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Figure 1. Spectral density for matrices defined on Poissonian random graphs with c = 4 (the left
panel) and c = 2 (the right panel), having Gaussian random couplings with 〈K2

ij 〉 = 1/c. Full
line: results obtained from the present theory; dashed line: results obtained from a sample of
2000 × 2000 matrices. In both cases ε = 10−300 was used in the evaluation of (40).

3.1. Poisson random graphs—Gaussian couplings

Our first results pertain to sparse matrices defined on Poisson random graphs, with Gaussian
couplings. The left panel of figure 1 shows spectral densities for the case of mean connectivity
c = 4, having Gaussian random couplings with

〈
K2

ij

〉 = 1/c. For this system we find an
integrable power-law divergence of the form

ρ(λ) � 0.05|λ|−0.61, λ → 0, (42)

and a δ peak at λ = 0, the latter originating from isolated sites in the ensemble. Results of
numerical diagonalizations (using a sample of 500 N ×N matrices with N = 2000 are shown
for comparison, and the agreement is excellent.

The behaviour changes rather drastically if the average connectivity is reduced to c = 2—
a value closer to the percolation threshold cc = 1. In this case the spectral density shows
strong fluctuations when naively evaluated with the same small regularizer. These fluctuations
are not unexpected in view of our discussion at the beginning of this section; they originate
from ρs in (41), and are related to the point spectrum associated with localized eigenstates
coming from a collection of isolated finite clusters of all sizes in the ensemble. These exist
for c = 4 as well, but their contribution is too small to be easily notable when combined with
ρc in (40). In addition, there is a central δ peak as in the c = 4-case, which appears to be
separated from the main bands by a gap; see the second panel in figure 2. The agreement
with results of numerical diagonalization is fairly poor as it stands; in particular, exponential
tails of localized states extending beyond the apparent edge of the central band are missed
in this way. However, when (40) is evaluated with a regularizing ε = 10−3 comparable to
the resolution of the λ-scan, the agreement is once more excellent as shown in figure 2. It
is worth noting in this context that numerical simulations, in which binning of eigenvalues is
used to determine the spectral density also imply a form of regularization, and they do not
distinguish continuous and singular contributions to the DOS if the distribution of the singular
contribution ρs(λ) does not vary strongly on the scale of the binning resolution.

When displayed on a logarithmic scale, the results clearly reveal two interesting features:
(i) a localization transition at λc � 2.295, characterized by a vanishing continuous contribution
ρc to (40) for |λ| > λc, and (ii) exponential (Lifshitz) tails [19] in the spectral density, related
to localized states represented by the singular contribution ρs to (40)), and exhibited only

10
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Figure 2. Upper left panel: spectral density for matrices defined on Poissonian random graphs
with c = 2 as in the previous figure, but now evaluated with a regularizing ε = 10−3 in (40) (full
line). At the resolution given, the result is indistinguishable from the numerical simulation results
(dashed line). Upper right panel: zoom into the central region comparing results obtained with
the small regularizer, exhibiting a gap around the central peak (full line), with a larger regularizer
ε = 10−3 (short dashed line) and with results of numerical diagonalization (long dashed line). The
same comparison is made in the lower panel for a larger portion of the spectrum on a logarithmic
scale. The regularized ε = 10−3 results are on this scale indistinguishable from those of the
numerical simulations. Note the localization transition and the Lifshitz tails as discussed in the
main text.

through regularization. We shall substantiate this analysis in the following subsection by
looking at the behaviour inverse participation ratios. The same phenomena are seen for c = 4,
where λc � 2.581.

3.2. Inverse participation ratios and localization

In order to substantiate our identification of singular and continuous contributions to the
spectral densities we look at inverse participation ratios (IPRs) of eigenstates as obtained from
numerical diagonalizations. Given eigenvectors v of a (random) matrix, their IPRs are defined
as

IPR(v) =
∑N

i=1 v4
i(∑N

i=1 v2
i

)2 . (43)

As eigenvectors can always be chosen to be normalized, we see that IPRs remain of order 1
for localized states which have a few O(1) eigenvector components—the extreme case being
IPR(v) = 1 for vi = δi,i0 —whereas they are O(N−1) for fully extended states for which
vi = O(N−1/2) for all i.
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Figure 3. Scatter plots showing eigenvalue against IPRs for Poissonian random graphs with c = 2
(first row) and c = 4 (second row). The graphs in the left column correspond to N = 100, those
in the right column to N = 1000.

Here we only produce a qualitative comparison for the two cases studied in the previous
subsection, comparing IPRs computed for systems of size N = 100 and N = 1000, and
using scatter plots of IPRs versus eigenvalues to exhibit the salient features. For similar results
obtained earlier we refer to [21, 42]. As is clearly visible in figure 3, there remains a substantial
fraction of states at all λ in the c = 2 case, which do not exhibit the N−1 scaling of IPRs
expected for delocalized states; the tails, and a small central band in particular appear to be
dominated by localized states. By contrast in the c = 4 case there is a notable depletion of
states with O(1) IPRs, except for λ = 0 and in the tails of the spectrum. These findings are
entirely consistent with our identifications made in the previous subsection.

Another test we have performed (not shown) is looking at the spectral density of regular
random graphs with c = 2 and Gaussian couplings. Such graphs consist of an ensemble of
closed linear chains of diverging length in the thermodynamic limit. Evaluating the spectral
density for this system with the small regularizer, we only ‘see’ a δ peak at λ = 0, but once
more also a band of localized states for a range of non-zero λ when evaluated with a larger
ε—in perfect agreement with numerical diagonalization and with early results of Mott and
Twose [43], according to which all states will be localized in disordered linear chains.

We note that the role of regularization in identifying localized states has been pointed out
before using heuristics related to the evaluation of local densities of state [22].

We shall return to this issue in greater quantitative detail in a separate paper devoted to
Anderson localization in discrete random Schrödinger operators defined on sparse random
graphs [36].
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Figure 4. Comparison of spectral density for Kij = ±1/
√

c, on a Poissonian random graph
with c = 1 as computed via the present algorithm (main panel) with results from numerical
diagonalization of N × N matrices of the same type with N = 2000 (lower left) and a direct
comparison in the region around λ = 1.

3.3. Poisson random graphs—bimodal couplings

We can also look at coupling distributions different from Gaussian for the non-zero couplings,
e.g. fixed Kij = 1/

√
c or bimodal Kij = ±1/

√
c. As noted before [14], both give rise to

the same spectral densities on large sparse (tree-like) graphs due to the absence of frustrated
loops. It can also be seen as a consequence of the appearance of K2 in (29).

We choose a Poissonian random graph at the percolation threshold c = 1 as an example
that allows us to highlight both the strengths and the limitations of the present approach. It is
known that all states will be localized for this system. This, too, is confirmed by evaluating
the spectral density with the small regularizer.

In figure 4 we compare results of a λ-scan with resolution δλ = 10−3, using a regularizer
ε = 10−4 for the scan. The smaller panels exhibit numerical diagonalization results, as well
as a comparison between the two using a zoom into the region around λ = 1.

On the side of the strengths, we note that the spectral density obtained from our algorithm is
able to display more details than can be exposed by simulation results obtainable at reasonable

13



J. Phys. A: Math. Theor. 41 (2008) 295002 R Kühn

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-3 -2 -1  0  1  2  3

ρ(
λ)

λ

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

ρ(
λ)

λ

Figure 5. Spectral densities for a random graph with fixed connectivity c = 4 (left), and on a
random graph with fixed non-random connectivity c = 100 (right).

effort. On the downside, one might note that the results for this system attain the status of
semi-quantitative results, as they do depend on the chosen regularization, though in fairness
it should be said that the same applies to the results obtained via numerical diagonalization
where results vary with the binning resolution. In the present case this is due to the fact
that the spectrum for most parts consists of a dense collection of δ peaks [44]. A notable
deficiency is the broadening of δ peaks into Lorentzians of finite width, which creates artefacts
around isolated δ peaks, exemplified here by the peak at λ = 0. Since the origin of this
deficiency is understood, more precise details can, if desired, be recovered by choosing a
smaller regularizing ε.

3.4. Regular and scale-free random graphs

In the present section we consider matrices defined on regular and scale-free random
graphs.

3.4.1. Regular random graphs. Our theory applies unmodified to matrices defined on graphs
with degree distributions other than Poissonian, as long as the mean connectivity remains
finite. We use this fact to obtain spectra of matrices with Gaussian random couplings defined
on regular random graphs with fixed connectivity c, choosing

〈
K2

ij

〉 = 1/c for the couplings.
Results for c = 4 and c = 100 are shown in figure 5. The c = 4 results are in perfect
agreement with simulations; results are analogous to previous cases, including the presence
of a localization transition at λc � 2.14.

The second example is chosen as a test to see whether the present algorithm exhibits the
correct limiting behaviour in the large c limit where Wigner’s semi-circular law [25] should
be recovered [14]. This limit can also be extracted from the fixed point equations. It is
somewhat easier to verify for the equations pertaining to single instances [35] than for the
ensemble.

As yet another test (not shown), we note that results we obtain for regular random
graphs with constant weights Kij ≡ 1 are in perfect agreement with exact results of McKay
[45].2

2 I am indebted to John Keating for pointing out this reference to me.
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Figure 6. Spectral density for Kij = ±1/
√

c on a random graph with power-law degree distribution
of average connectivity c � 2.623. Left panel: results obtained with small regularizer (full line),
and numerical diagonalization results from a sample of 500 matrices of dimension N = 2000
(dashed line). Right panel: the same results displayed on a logarithmic scale, this time with results
regularized at ε = 10−3 (short dashed line) included.

3.4.2. Scale-free graphs. We have also looked at a scale-free graph with connectivity
distribution given by p(k) = P0k

−γ with γ = 4 and a lower cut-off at k = 2. Results shown
in figure 6 reveal a continuous central band, and localized states for |λ| > λc � 2.85 much as
in the other cases. For the present system, the tails in the spectral density follow a power law
of the form ρ(λ) ∼ λ1−2γ [17, 46].

Comparison with exact diagonalization results is facilitated by a fast algorithm that allows
us to generate sparse graphs with arbitrary degree distribution [47].

3.5. Graph Laplacians

Let us finally look at matrices with row constraints, such as related to discrete graph Laplacians.
The discrete graph Laplacian of a graph with connectivity matrix C = {cij } has matrix

elements

�ij = cij − δij

∑
k

cik. (44)

A quadratic form involving the Laplacian can be written in the form

1

2

∑
ij

�ijuiuj = −1

4

∑
ij

cij (ui − uj )
2. (45)

As before we shall be interested in more general matrices with zero row-sum constraint of the
form

Mij = cijKij − δij

∑
k

cikKik. (46)

To evaluate the spectral density within the present framework one would thus have to
compute

Zn
N =

∫ ∏
ia

duia√
2π/i

exp

⎧⎨
⎩− i

2
λε

∑
i,a

u2
ia +

c

2N

∑
ij

(〈
exp

(
iK

2

∑
a

(uia − uja)
2

)〉
K

− 1

)⎫⎬
⎭
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Figure 7. Spectral density for the Laplacian on a Poissonian random graph with c = 2 as computed
via the present algorithm. Upper left panel: ε = 10−3 results; upper right panel: results from
numerical diagonalization of N × N matrices of the same type with N = 2000. Lower panel:
continuous part of the spectrum obtained using ε = 10−300 as a regularizer.

instead of (5). The required modification has, of course, been noted earlier [15, 48]. The
resulting problem constitutes precisely (the harmonic variant of) the translationally invariant
systems, for which the framework in [33] was developed in the first place. The general theory
can be copied word by word, and the fixed point equations (31), (32) remain formally unaltered
except for the change in Z2(ω, ω′,K) in (24), owing to the modified interaction term, which
gives rise to a modified expression for 	̂(ω′,K) in (29). We obtain

	̂(ω′,K) = Kω′

K − iω′ (47)

instead of (29). Figure 7 shows the spectrum of a Laplacian for a Posisson random graph with
c = 2, comparing our solution (upper left panel) computed with ε = 10−3 with numerical
diagonalization results in the upper right panel. We use Kij ≡ 1/c for the non-zero matrix
elements in this case. Results obtained with a small regularizer ε = 10−300 exhibiting only
the continuous part of the spectrum are shown in the lower panel.

As in the other cases, we observe localization transitions, here at λc � −3.98, and another
one at λc � −0.015. Preliminary results are compatible with the suggestion that Lifshitz-type
behaviour, established in [19] for the spectral density close to λ = 0 below the percolation
threshold at c < 1, might persist for c > 1.

We note that an iterative solution of the Bray–Rodgers integral equation for this case
[15], which appears to be effective in the small c limit, has been proposed and investigated
in [18].
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line), shown together with its unfolding according to contributions of different coordinations, as
discussed in the main text.

3.6. Unfolding spectral densities

As a last item in this study we look at the possibility of unfolding the spectral density according
to contributions of local densities of state, coming from vertices of different coordinations,
as suggested by equation (33). This method has been used in [33] to look at distributions of
Debye-Waller factors in amorphous systems, unfolded according to local coordinations. In the
present context it may provide an interesting diagnostic tool to help understanding localization
phenomena.

Figure 8 exhibits the spectrum of the graph Laplacian shown in the previous figure along
with its unfolding into contributions of local densities of state with different coordinations.

The clearly identifiable humps in the figure correspond from left to right to k = 9, k = 8,

k = 7, k = 6, k = 5, k = 4 and k = 3, which easily allows us to identify the corresponding
contributions to the spectral density, the contribution of k = 2 gives rise to several notable
humps in the spectral density, and together with the k = 1 contribution is mainly responsible
for the dip at λ = −1. The k = 0 contribution is mainly responsible for the δ-peak at λ = 0
(which is broadened into a Lorentzian of width ε = 10−3 due to the regularization, as discussed
earlier.

The present example clearly shows that—somewhat paradoxically—the well-connected
sites are those providing the dominant contributions to localized states in the lower band-edge
Lifshitz tails with λ < −3.98. Conversely, the sites with small k appear to contribute mostly
to the spectral density at small |λ| and in particular to the localized states in this region at
λ > −0.015. A similar observation has in fact been made before in [26].

4. Conclusions

In the present paper we have used a reformulation of the replica approach to the computation
of spectral densities for sparse matrices, which allows us to obtain spectral densities in the
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thermodynamic limit to any desired detail—limited only by computational resources. Our
method is versatile in that it allows us to study systems with arbitrary degree distributions, as
long as they give rise to connectivity distributions with finite mean. A cavity approach that
emphasizes results on finite instances will appear elsewhere [35]. Although our version of the
replica symmetric ansatz can, and has been made plausible in several ways, a rigorous proof
of its correctness is still missing.

Several tests are available, though e.g., all our results are in excellent agreement with
direct numerical diagonalization studies. We have checked that our ansatz reproduces the
Wigner semi-circle law for the spectral density in the limit of large average coordination c as
it should [14]. We also noted agreement between our results and available exact results for
connectivity matrices of regular random graphs [45]. Large and small λ asymptotics remain
to be investigated.

It is one of the surprising results of the present study that our method allows us to expose
the separate contributions of localized and extended states to the spectral density, and thereby
to study localization transitions. We have confirmed this identification qualitatively using
IPRs, but also by looking at cases where states are known to be localized, such as Poisson
random graphs at or below the percolation threshold, or random chains (here represented as
regular random graphs with c = 2 and Gaussian couplings). We shall explore the issue of
localization in greater quantitative detail in a separate publication. Indeed, with results for
graph Laplacians in hand, the step towards a study of discrete random Schrödinger operators
and Anderson localization in such systems is just around the corner [36]. There are indications
that the localization transitions seen in the present approach are proper continuous phase
transitions, accompanied e.g. by effects of critical slowing down in the population dynamics
algorithm used to solve the self-consistency equations. Within our formulation, we have not
been able to identify the symmetry that would be broken at these transitions. This issue clearly
deserves further investigation, as does the issue of determining critical exponents governing
the transitions.

As a drawback of our method we note that results in regions dominated by localized states
do depend on the regularization chosen. The way in which they do is, however, understood
(via the broadening of δ-peaks into Lorentzians of finite width) and can be taken into account
if desired.

We believe our results to constitute an improvement over previous asymptotic results
as well as over results obtained by closed form approximations. They may open the way to
further interesting lines of research. Let us here mention just a few such examples: within RMT
proper, one might wish to further investigate the degree of universality of level correlations in
these systems [49]; one could refine the random matrix analysis of financial cross-correlations
[7] by taking non-trivial degree distributions of economic interactions into account, or one
might wish to look at finite connectivity variants of random reactance networks [50], taking
e.g. regular connectivity 4 to compare with results of numerical simulations of such systems
on two-dimensional square lattices.

A generalization to asymmetric matrices using both the cavity method and a replica
approach for the ensemble along the lines of [51] is currently under investigation in our
group [52]. Other problems we have started to look at are spectra of modular systems and
small-world networks [53].

While we were revising the present paper, a preprint of G Bianconi appeared [54], in
which some of our results were independently derived along similar lines.
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Appendix. Population dynamics

The stochastic algorithm used to solve (31), (32) takes the following form. Populations
{ωi; 1 � i � Np} and {ω̂i; 1 � i � Np} are randomly initialized with Re ωi > 0 and
Re ω̂i > 0.

Then the following steps are iterated:

(1) Generate a random k ∼ k
c
pc(k).

(2) Randomly select k − 1 elements from {ω̂i; 1 � i � Np}; compute

	 = iλε +
k−1∑
j=1

ω̂ij , (A.1)

and replace ωi by 	 for a randomly selected i ∈ {1, . . . , Np}.
(3) Select j ∈ {1, . . . , Np} at random, generate a random K according to distribution of bond

strengths; compute

	̂ = K2

ωj

(
or 	̂ = Kωj

K − iωj

for zero row sums

)
, (A.2)

and replace ω̂i by 	̂ for a randomly selected i ∈ {1, . . . , Np}.
(4) Return to (1).

This algorithm is iterated until populations with stable distributions of {ω̂i; 1 � i � Np}
and {ωi; 1 � i � Np} are attained.

A variant of this algorithm when implemented on instances of real graphs generates the
belief propagation or cavity equations for this problem, as studied in [35]. It can be derived
directly in terms iterative evaluations of (2) on locally tree-like graphs.
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