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We describe a method for disentangling giant component and finite cluster contributions to sparse
random matrix spectra, using sparse symmetric random matrices defined on Erdés-Renyi graphs
as an example and test-bed. Our methods apply to sparse matrices defined in terms of arbitrary
graphs in the configuration model class, as long as they have finite mean degree.
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I. INTRODUCTION

While there has been considerable recent progress in
the understanding of sparse random matrix spectra
[1-8], there is at least one important open problem
which has not yet been properly addressed, viz. the
disentangling of contributions to limiting spectra com-
ing from the giant component and from finite clusters,
respectively.

Sparse random matrices can be represented in terms
of random graphs, where an edge that is present in
a graph represents a non-zero element of the corre-
sponding matrix, and the value of that matrix ele-
ment corresponds to an edge weight in the graph.
Random graphs can be further characterized by the
size-distribution of their disconnected components (or
clusters). A key property of the cluster-size distribu-
tion of a random graph ensemble then concerns the
question, whether all clusters remain finite even in
the thermodynamic limit of infinite graph-size N, or
whether on the contrary such a random graph ensem-
ble exhibits so-called giant clusters whose size is pro-
portional to the system size N, and hence diverges in
the thermodynamic limit N — oc.

Many random graph-ensembles exhibit a percolation
transition, separating a situation where all clusters
in a graph remain finite in the thermodynamic limit,
from the complementary situations where a giant clus-
ter emerges as a parameter characterizing the graph
ensemble is varied. A classical example is provided by
the Erdés Rényi ensemble [9] where edges in a graph
are randomly and independently chosen to be either
present with probability p = ¢/N or absent (with
probability 1 —p). For this ensemble there is a critical
value ¢ = 1 of the parameter ¢ (i.e. the mean degree
of the system), below which the system exhibits only
finite clusters, and above which a finite fraction of the
system belongs to a giant cluster in the thermody-
namic limit.
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Disentangling contributions to sparse random matrix
spectra coming from a giant component and from fi-
nite clusters is of particular relevance when separat-
ing pure point (localized) and absolutely continuous
components of random matrix spectra: contributions
from finite (isolated) clusters are trivially localized,
as eigenvectors can be constructed which have support
on individual finite clusters, but are zero elsewhere. In
order to understand the emergence of localized states
due to the heterogeneity of a system, we are clearly in-
terested in pure point contributions to random matrix
spectra originating from the giant component, rather
than in the ‘trivial contaminations’ of these coming
from finite clusters.

The present note is meant to address and solve this
very problem. The solution is based on combining
ideas developed for the analysis of percolation on ran-
dom graphs [10-12] with methods that allow com-
puting sparse matrix spectra for matrices defined on
graphs in the configuration model class [5, 6]. Our so-
lution is relevant also to the analysis of other forms of
collective phenomena on networked systems, such as
the analysis of infection dynamics or of network mod-
els of systemic risk in finance. We describe our method
for the spectral problem of weighted adjacency matri-
ces. The same method can be used to evaluate spec-
tra of (weighted) graph Laplacians [5], sparse Markov
Matrices [13, 14], or non-Hermitian sparse matrices
[15].

II. SPECTRAL DENSITY AND RESOLVENT

We are interested in evaluating the spectral density of
sparse matrices A of the form

Aij = cijKij (1)
in which C' = (¢;;) is a sparse connectivity or adja-
cency matrix describing a finitely coordinated random
graph, and K = (Kj;) a matrix of edge weights. We

take both C' and K to be real symmetric matrices.

The spectral density of A is obtained from the resol-



vent using the Edwards Jones approach [16] as
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The ‘Hamiltonian’ H (u) appearing in (3) is given by
the quadratic form.

H(u) = %Z (Aebij — Ayj) uguy (4)

This allows to express the spectral density as
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Note that only single-site variances are needed for the
evaluation of (5).

The role of € in these equations is to ensure that in-
tegrals converge even for A in the spectrum of A, and
the limit € — 0 should be taken at the end of the cal-
culation. However, there is a second role of e, namely
as a regularizer of the spectral density and, as demon-
strated elsewhere [5], a small non-zero value of € must
be kept in the evaluation of spectral densities in order
to expose pure point contributions to spectra.

The representation (4)-(6) can be used to evaluate
spectral densities for large single problem instances
in terms of cavity recursions [6] as detailed below. In
the thermodynamic limit these can be interpreted as
stochastic recursions, giving rise to a self-consistency
equation for pdfs of (inverse) variances of cavity
marginals. Alternatively, thermodynamic limit results
are obtained by averaging (2) over the ensemble of
random matrices considered, using replica to perform
the average.

III. CAVITY ANALYSIS

A. Analysis for Single Instances

As demonstrated in [6], one can use the cavity method
to evaluate the marginals of the complex multi-variate

Gaussian measure (6) which are needed in the evalua-
tion of (5). We briefly repeat the reasoning here, both
for completeness and in order to prepare a generaliza-
tion that keeps track of the information whether a site
belongs to the giant component or to one of the finite
clusters of the system.

For a single-site marginal we have the representation
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(7)
with i denoting the set of sites connected to ¢ (which
may or may not be empty), ug; = {u;;j € 9i} and
P (up;) denoting the joint complex cavity weight
of ug;. On a (locally) tree-like graph, one has
PO (ug;) ~ ngaz P( (uj), so that one may write
down a recursion for the smgle—site cavity marginals
Pj(l)(uj) of the form
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As demonstrated in [6], recursions of this type are self-
consistently solved by complex Gaussians of the form
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which transforms Eq. (8) into a recursion for the in-
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This recursion can be solved iteratively for large single
instances.

The spectral density given by Eq. (5) can be expressed

in terms of the solution of the recursion equations by
setting

(ui) = —, (11)
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Alternatively in the infinite system limit of a random
system one can interpret Eq. (10) as a stochastic re-
cursion for the collection {wj(»l)} of random inverse cav-
ity variances, which in turn generates a recursion for

the pdf 7(w) of the w](i).



B. Averaging Stochastic Recursions

Averaging single instance cavity equations to obtain
equations for distributions m(w) of inverse cavity vari-
ances valid for the thermodynamic limit follows stan-
dard reasoning. We have

k—1
m(w) = Z Q(k’)/ 1:[ dm(wy) <5(W - Qk71)>{Ku}

E>1
(13)
where q(k) = p(k)% is the probability to be connected
to a site of degree k in a system with degree distribu-
tion p(k), and

(14)

We use (...)(x,} to denote an average over the set
of (independent) edge weights appearing in the argu-
ment.

Similarly, the spectral density in the thermodynamic
limit is given by
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The problem with this approach is that it does not
separate contributions to the limiting spectral density
coming from the giant component and from finite clus-
ters which are also represented in the graph-ensemble.

For large single instances, one could of course always
identify the largest component of a system, restrict the
cavity analysis of spectra to that largest component
and subsequently average it over many realizations to
obtain ensemble averages (albeit only finite-size ap-
proximations thereof).

In what follows we shall revisit the cavity analysis of
sparse matrix spectra, and combine it with a corre-
sponding cavity analysis of the percolation problem on
the graph for which random matrix spectra are being
evaluated, so as to disentangle giant component and
finite cluster contributions to limiting spectral densi-
ties.

IV. CAVITY APPROACH AND ENSEMBLE
AVERAGING REVISITED

In order to disentangle contributions to the spectral
density coming from finite clusters and the giant com-
ponent of a graph, respectively, we need to supplement

the cavity analysis of Sect. III by a component that
allows one to keep track of the information whether a
site belongs to the former or the latter.

To that end we use ideas developed for the analy-
sis of the percolation problem of random graphs [10-
12]. Rather than directly analysing percolation in
terms of the fraction pg. of vertices that belong to
the giant cluster of a graph we use indicator-variables
n; € {0,1} signifying whether individual sites i belong
to the giant cluster of a graph (n; = 1) or whether, on
the contrary, they belong to one of the finite clusters
of the system (n; = 0).

For these we then have
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where n;i)

whether site j does (ng»z) = 1) or does not (ngl) =0)
belong to the giant cluster on the cavity graph, from
which site ¢ and the edges connected to it have been
removed. The cavity indicator variables then satisfy

the recursion

) =1- [ (1-n).
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is a cavity indicator variable signifying

(17)

The structure of these equations for the indicator
and the cavity indicator variables clearly mimics that
for the single-site marginals Eq. (7) and the cavity
marginals Eq. (8), respectively.

In the large system limit of a random graph one can

interpret Eq. (17) as a stochastic recursion for the

collection {nij )} of cavity indicator variables that sup-

plements the recursion Eq. (10) for the inverse cavity

variances {ng )}. Combining the two then in turn gen-
erates a recursion for the joint distribution w(w,n) of
inverse cavity variances and cavity indicator variables,
which take the form

k—1
m(w,n) = Z q(k) / 1:[ dm, <5(W - Qk—1)>{KV}

k>1,{n,}
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where we have introduced the short-hand dm, =
dn(wy,n,). From the solution of this equation one
obtains the limiting spectral density as a sum of two
contributions, one of these (pg.) coming from the gi-
ant cluster, the other (pg.) from the collection of finite
clusters,

p()‘) = pgco\) + pfc(/\) s (19)



with

pec(A fRe Z /H dm, <Qk {wll,,K })>{K,,}

X 51 1*Hk (1777/1_/) 5 (20)

1
c(A) = —
Pic(N) Re

with Qp({w,, K, }) as defined above.

Eq. (18) is efficiently solved by a population dynam-
ics algorithm [17], and the giant component and finite
cluster contributions to the spectral density are eval-
uated by sampling from the equilibrium distribution
of the population dynamics.

Both 7(w, 1) and 7(w, 0) have support in the complex
half-plane Re w > 0. As argued in [5], a pure point
contribution is signified by a singular component of
m(w,n) with support on the imaginary axis w € iR.

V. RESULTS AND DISCUSSION

In what follows, we briefly illustrate the workings of
our method by providing spectra of sparse matrices
of the type (1). Here we present results for matrices
defined on a sparse Erdos-Rényi graph of mean con-
nectivity ¢ = 2. It goes without saying that other ma-
trix and graph ensembles can be analysed in the same
way, in the sense that the method of disentangling gi-
ant and finite cluster distributions described here is
not restricted to Erdds-Rényi graphs but works for
any system in the configuration model class, as well
as for spectra of weighted graph Laplacians [5] or of
sparse random stochastic matrices [13, 14].

In Fig. 1, we present the spectrum of a matrix with
Gaussian random edge weights of standard deviation
o = 1/4/c on the edges of the Erdds-Rényi graph, sep-
arately exhibiting the contributions coming from the
giant cluster and from the collection of finite clusters.
The former occupies a fraction pg. =~ 0.796812 of the
entire system. We also compare our results with sim-
ulations, associating the giant cluster with the largest
finite cluster of each realization of the system, and
all other components with the collection of finite clus-
ters, finding excellent agreement with theoretical re-
sults. Note that the finite cluster results displayed in
the right panel of Fig. 1 are slightly noisier than those
pertaining to the giant cluster, as a smaller fraction
of updates in the population dynamics corresponds to
finite cluster contributions.
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FIG. 1. (Colour online) Spectral density of a random ma-
trix defined on an Erd&s-Rényi random graph of mean con-
nectivity ¢ = 2, with link weights normally distributed
with standard deviation o = 1/y/c. Upper panel: giant-
cluster contribution. Lower panel: finite-cluster contribu-
tion. In both panels, full red lines represent results for the
limiting spectral density obtained via population dynam-
ics, while green dashed lines are simulation results using
graphs of N = 500 vertices, averaged over 5000 random
instances. Note the different vertical scale in the right
panel.

In Fig. 2 we show results for the spectrum of the ad-
jacency matrix on the giant cluster of an Erdos-Rényi
graph, with edge weight set at 1/4/c. As shown in [18],
all eigenvalues which are eigenvalues of finite trees will
also appear as eigenvalues of the adjacency matrix of
the giant component of the system, and correspond
to localized states. The upper panel of Fig. 2 ex-
hibits a few of these, namely the ones with the largest
weights appearing in the giant component spectrum;
the weight of the remaining atoms is too small, entail-
ing that these are ‘drowned’ in the continuum at the
resolution (and regularization) chosen in the figure.
In the lower panel the continuum contribution is sub-
tracted, so that it exhibits just the contribution of lo-
calized states to the spectrum of the giant component
of the system, regularized at € = 10~2. Note that one
effect of regularization is to broaden each §-peak into
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FIG. 2. (Colour online) Spectral density of the adjacency
matrix of the giant cluster of an Erdds-Rényi random
graph of mean connectivity ¢ = 2, with link weights chosen
as 1/4/c. Upper panel: continuous density of states (thick
full red line) and total density of states including atoms
(green dashed line). Lower panel: spectrum of localized
states on the giant cluster regularized at ¢ = 1073, The
central part of the panel exhibits atoms in the bulk of the
spectrum, whereas the two bands in the vicinity of +2.5
correspond to fully localized bands of states, separated by
mobility edges from the bulk of the spectrum. The nor-
malization is chosen such that the total DOS integrates
to the fraction of sites contained in the percolating cluster
(see Eq. (22)).

a Lorentzian of width e, which is clearly visible for the
peaks with the largest weight in the spectrum. The
system also exhibits Anderson localization, entailing
that all states with |A| > A. ~ 2.50 are localized; this
corresponds to the two bands of states at [A] > A; in
the lower panel of Fig. 2. As expected we find all
states on finite clusters to be localized.

A numerical integration (using a trapeze-rule) of the
total density of states on the giant cluster gives

/ A pge(N) ~ 0.7969 (22)

which is agrees very well with the expected result
Pee 2 0.796812, ie. the fraction of vertices of the
system in the giant cluster. Doing the integration for
the (absolutely)-continuous component of the giant-
cluster spectrum gives

/ dA pE) (X) ~ 0.7153 (23)

entailing that a fraction

(o) _ 07969 — 0.7153

~ ~ (0.1020 24
8¢ 0.7969 ’ (24)

i.e. approximately 10% of all states on the giant clus-
ter are localized.

VI. CONCLUSION

To summarize, by combining approaches to percola-
tion on random graphs and to the evaluation of sparse
matrix spectra we have presented a method that al-
lows to separately evaluate contributions to sparse
matrix spectra coming from the giant cluster and from
finite clusters, respectively. Our results are confirmed
to a high precision by numerical simulations, even at
moderate system size.

By further disentangling the absolutely continuous
and pure point contribution to limiting spectra, we are
able to give a precise estimate of the fraction of states
on the giant cluster that are localized. We are not
aware of a previous such estimate, although a method
to estimate the weight of the peak at A = 0 was re-
cently devised by Bordenave et al. [19].

We expect our method to be useful for the analysis
of other phenomena described in terms of networked
systems, including e.g. the spread of diseases or com-
puter viruses, the behaviour of random walks or the
performance of search algorithms on networks.

Another interesting field of research, where our re-
sults can provide a crucial ingredient of the analysis
is the investigation of localization phenomena, where
it is important to avoid contamination of results from
finite cluster contributions.
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