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Abstract

We review the problem of how to compute the spectral density of sparse sym-
metric random matrices, i.e. weighted adjacency matrices of undirected graphs.
Starting from the Edwards-Jones formula, we illustrate the milestones of this
line of research, including the pioneering work of Bray and Rodgers using repli-
cas. We focus first on the cavity method, showing that it quickly provides the
correct recursion equations both for single instances and at the ensemble level.
We also describe an alternative replica solution that proves to be equivalent to
the cavity method. Both the cavity and the replica derivations allow us to ob-
tain the spectral density via the solution of an integral equation for an auxiliary
probability density function. We show that this equation can be solved using a
stochastic population dynamics algorithm, and we provide its implementation. In
this formalism, the spectral density is naturally written in terms of a superposi-
tion of local contributions from nodes of given degree, whose role is thoroughly
elucidated. This paper does not contain original material, but rather gives a ped-
agogical overview of the topic. It is indeed addressed to students and researchers
who consider entering the field. Both the theoretical tools and the numerical al-
gorithms are discussed in detail, highlighting conceptual subtleties and practical
aspects.
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1 Introduction

The calculation of the average spectral density of eigenvalues of random matrices belonging to
a certain ensemble has traditionally been one the fundamental problems in Random Matrix
Theory (RMT), ever since the application of RMT to the statistics of energy levels of heavy
nuclei [1]. The spectral problem has retained its centrality in RMT with diverse applications
in physics [2], computer science [3], finance [4–6] and statistics [7, 8]. The most celebrated
results about the density of states such as the Wigner semicircle law [9] for Wigner matrices
(including Gaussian ensembles) and the Marčenko-Pastur law [10] for covariance matrices refer
to “dense” matrix ensembles, i.e. those for which most of the matrix entries are non-zero.
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On the other hand, the spectral problem is very relevant also for “sparse” matrix mod-
els, i.e. when most of the entries are zero. Indeed, the spectral properties of (weighted)
adjacency matrices of sparse graphs encode the structural and topological features of many
complex systems [11,12]. For random walks and dynamical processes on graphs, the eigenvalue
spectrum is directly connected to the relaxation time spectrum [13, 14]. Moreover, sparsely
connected matrix models provide a test ground for physical systems described by Hamiltoni-
ans with finite-range interactions. In particular, tight-binding Hamiltonian operators with a
kinetic term and an on-site random potential translate into matrix models that involve dis-
crete graph Laplacians with additional random contributions to diagonals [15]. The spectra of
such matrices have been used for the characterisation of many physical systems in condensed
matter such as the studying of gelation transition in polymers [16]. Moreover, the behaviour
of supercooled liquids can be described in terms of the spectrum a random sparse matrix
representing the Hessian of those systems, within the framework of instantaneous normal
modes [17].

Spectra of sparse random matrices and trees have also been employed as the simplest
model to study Anderson localisation [18], i.e. the phenomenon by which a metal becomes an
insulator due to disorder, such as impurities. The metallic phase corresponds to a spatially
extended electronic wave functions, allowing transport. On the other hand, a high level
of disorder leads to localised wave functions, which prevent conduction. A model for this
phase separation is represented by the localisation transition characterising the spectra of
sparse random matrices, where eigenvalues related to delocalised eigenvectors are separated
at the mobility edge from those related to localised eigenvectors (see Section 5). Localisation
phenomena have been analysed on Bethe lattices 1 (see [15, 19] and the seminal paper of
Abou-Chacra and collaborators [20], in which the cavity method that will be discussed below
was also used) and on sparse random graphs [21–25].

In this paper, we describe the various strategies to compute the average spectral density
(also known as density of states) for ensembles of sparse symmetric random matrices, i.e.
weighted adjacency matrices of undirected graphs. Given a N × N random matrix J with
eigenvalues {λi}i=1,...,N , the average spectral density is defined as

ρ(λ) =

〈
1

N

N∑
i=1

δ (λ− λi)

〉
J

, (1)

where the limit N →∞ is understood and 〈...〉J denotes the average over the matrix ensemble
to which J belongs. The latter is also referred to as “disorder” average. For a given (large)
N , ρ(λ) can be numerically obtained by first diagonalising a large number M of N × N
matrices drawn from the ensemble, collecting all their N ·M eigenvalues and organising them
into a normalised histogram. Our analysis is rooted in the statistical mechanics of disordered
systems, with the main technical tools being the cavity (Section 3) and replica methods
(Section 4 and 5).

1.1 A historical perspective on the spectral problem for sparse matrices

Our analysis will follow the historical developments that led to the solution of the problem.
We start from the celebrated Edward-Jones formula [26], which is a key result linking the
spectral problem to statistical mechanics. Indeed, the formula recasts the determination of

1Bethe lattices are infinite regular trees.
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the average spectral density (1) in terms of the average free energy 〈logZ(λ)〉J of a disordered
system with partition function Z(λ). Edward and Jones were the first to use the replica
method, extensively employed in spin-glass physics [27], to perform averages of this type in
the context of random matrices.

Historically, the application of the Edwards-Jones recipe to sparse symmetric random
matrices (in particular Erdős-Rényi adjacency matrices of graphs with finite mean degree c
and the non-zero entries drawn from a Bernoulli distribution) was pioneered by Bray and
Rodgers in [28] (and in a similar context in [29] and later on in [30]). However, in their
formulation the evaluation of the average spectral density ρ(λ) relies on the solution of a very
complicated integral equation. The same integral equation has been derived independently
with a supersymmetric approach in [31] and later obtained in a rigorous manner in [32], thus
confirming the exactness of the symmetry assumptions in [28]. A full analytical solution
of this equation is still unavailable. A numerical solution for large average connectivity c
was found in [17], whereas a solution in the form of an expansion for small c was proposed
in [16]. The difficulties in dealing with this equation stimulated the search for a variety of
approximation schemes, such as large average connectivity expansions [28], the single defect
approximation (SDA) [33] and the effective medium approximation (EMA) [34,35]. Alongside
approximation schemes, results from numerical diagonalisation such as in [36] have been
employed to investigate the spectral properties of sparse random matrices.

A different approach to the spectral problem of sparse symmetric random matrices was
proposed in [37]. There, the order parameters of the replica calculation are represented as
uncountably infinite superpositions of Gaussians with random variances, as suggested by
earlier solutions of models for finitely coordinated harmonically coupled systems [38]. A
replica-symmetric Gaussian ansatz for the order parameter had appeared earlier in the random
matrix context in [39], but was evaluated only within the SDA approximation. In [37], the
intractable Bray-Rodgers integral equation is replaced by non-linear fixed-point equations for
probability density functions, which are solved by a stochastic population dynamics algorithm.
We will review both approaches in Sections 4 and 5 below.

Almost in parallel to [37], the cavity method [40] started to be employed for the determina-
tion of the spectral density of sparse symmetric random matrices by Rogers and collaborators
in [41]. The cavity method, also known as belief propagation, represents a much simpler al-
ternative to replicas and was originally introduced for the study of spectra of dense Lévy
matrices in [42] and for diluted systems in [17]. The exactness of the cavity method for lo-
cally tree-like graphs with finite mean degree c was proved in [43]. In [41], building on the
Edwards-Jones setup, the authors used the cavity method to compute the spectrum of large
single instances of sparse symmetric random matrices. The ensemble average spectral density
(1) is then obtained building on the single-instance results, circumventing the calculation of
the average “free energy” 〈logZ(λ)〉J altogether. The cavity treatment produces non-linear
fixed-point integral equations that are completely equivalent to those obtained in [37] within
the replica framework.

It has been shown in [44] that both the cavity and the replica method yield the same results
concerning the spectral density of graphs. Both approaches in [37] and [41] recover known
results such as the Kesten-McKay law for the spectra of random regular graphs [45, 46], the
Marčenko-Pastur law and Wigner’s semicircle law respectively for sparse covariance matrices
and for Erdős-Rényi adjacency matrices in the large mean degree limit. Moreover, both
methods allow one to characterise the spectral density of sparse Markov matrices [47,48] and
graphs with modular [49] and small-world [50] structure and with topological constraints [51].
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In a similar manner, both methods have also been employed to study the statistics of the top
and second largest eigenpair of sparse symmetric random matrices [52–54]. The two methods
have also been extended to the case of sparse non-Hermitian matrices [55–58]. A particular
attention has been devoted to the spectral properties of the Hashimoto non-backtracking
operator on random graphs [59, 60]. Both cavity and replica methods have been recently
used to characterise the dense (c → ∞) limit of the spectral density of adjacency matrices
of undirected graphs within the configuration model, which reveals that the behaviour of the
limiting spectral density is not universal but actually depends on degree fluctuations. Indeed
the expected Wigner semicircle is recovered when the degree distribution tightly concentrates
around the mean degree c for c → ∞, whereas non trivial deviations from the semicircle are
found when degree fluctuations are stronger [61].

Moreover, thanks to the extension of the replica method to the analysis of sparse loopy
random graphs, the influence of loops on the spectra of sparse matrices has been lately inves-
tigated in [62, 63]. There is also a recent cavity analysis of the problem of loopy graphs by
Newman and collaborators in [64].

1.2 Paper organisation

In this paper, we will retrace the main milestones in the determination of the spectral density of
sparse symmetric random matrices. We start with the analysis of the Edwards-Jones formula
in Section 2, providing its proof in Section 2.1 and discussing how to deal with the average
〈logZ(λ)〉J in Section 2.2. For clarity and simplicity, we will first illustrate the cavity approach
in Section 3. We outline the cavity setup in Section 3.1, then we deal with the spectrum of large
instances of sparse symmetric random matrices in Section 3.2. In Section 3.3 we show how the
single-instance approach can be extended to the N →∞ limit to recover the ensemble average
spectral density. Besides, in 3.4 we evaluate the large c limit of the average spectral density
obtained within the cavity formalism, showing that it converges to the Wigner semicircle. We
will then follow the historical development of the subject by documenting the Bray-Rodgers
replica approach in Section 4. We will derive the Bray-Rodgers integral equation in Section
4.3, while in Section 4.4 we will obtain its large c asymptotic expansion, showing that its
leading order gives rise to the Wigner semicircle, as expected. In Section 5 we will deal with
the alternative replica solution proposed in [37], showing in Section 5.1 that the solution
obtained with this approach coincides with that found by the cavity treatment in Section 3.3.
In Section 6, we outline the stochastic population dynamics algorithm employed to solve the
non-linear fixed-point integral equations that are found within both the cavity and replica
frameworks respectively in Section 3.3 and Section 5.1.

2 Edwards-Jones formula

Edwards and Jones in [26] provide a formula to express the average spectral density of N ×N
random matrices (1) as

ρ(λ) = − 2

πN
lim
ε→0+

Im
∂

∂λ
〈logZ(λ)〉J , (2)

with

Z(λ) =

∫
RN

dv exp

[
− i

2
vT (λε1− J)v

]
, (3)
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where again the 〈...〉J denotes the average over the matrix ensemble to which J belongs. In
(2), which is valid for any N , Im indicates the imaginary part and log is the branch of the
complex logarithm for which log ez = z. In (3), the symbol 1 represents the N ×N identity
matrix, the symbol v describes a vector in RN and the integral extends over RN . Moreover,
λε = λ− iε, where ε is a positive parameter ensuring that the integral (3) is convergent, since

the absolute value of the integrand has the leading behaviour e−
ε
2

∑N
i=1 v

2
i . The integral (3)

can be interpreted as the canonical partition function of the Gibbs-Boltzmann distribution of
N harmonically coupled particles with an imaginary (inverse) temperature, viz.

PJ(v) =
1

Z(λ)
exp [−iH(v)] , (4)

with a complex “Hamiltonian”

H(v) =
1

2
vT (λε1− J)v . (5)

In this framework, the computation of (1) requires to evaluate 〈logZ(λ)〉J , which is the canon-
ical free energy of the associated N particles system, averaged over the random couplings.

2.1 Proof of the Edwards-Jones formula

The starting point is the definition (1). Looking for a representation of the Dirac delta, one
considers the Sokhotski-Plemelj identity (see A for a proof), viz.

1

x± iε
−−−−→
ε→0+

Pr

(
1

x

)
∓ iπδ(x) , (6)

where x ∈ R and Pr denotes the Cauchy principal value. The imaginary part of the identity,
namely

δ(x) =
1

π
lim
ε→0+

Im
1

x− iε
, (7)

provides the desired representation. Therefore, inserting (6) into (1) results in

ρ(λ) =
1

πN
lim
ε→0+

Im

〈
N∑
i=1

1

λ− λi − iε

〉
J

= − 1

πN
lim
ε→0+

Im

〈
N∑
i=1

1

λi + iε− λ

〉
J

, (8)

where the minus sign has been made explicit.
One would now express the ratio in the angle brackets as the derivative of the principal

branch of the complex logarithm, denoted by Log. Unlike other properties, its derivative
behaves exactly like that of the real logarithm, therefore

N∑
i=1

1

λi + iε− λ
= − ∂

∂λ

N∑
i=1

Log (λi + iε− λ) , (9)

entailing for the average spectral density the formula

ρ(λ) =
1

πN
lim
ε→0+

Im
∂

∂λ

〈
N∑
i=1

Log (λi + iε− λ)

〉
J

. (10)

6
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The sum of logarithms in (10) can be related to the partition function Z(λ) in (3) by exploiting
the following identity [65,66],

Z(λ) =

∫
RN

dv exp

[
− i

2
vT (λε1− J)v

]
= (2π)N/2 exp

[
−1

2

N∑
i=1

Log (λi + iε− λ) +
iπN

4

]
.

(11)
Caution is needed when taking the logarithm on both sides of (11), as in general Log(ez) 6= z
(see B). Indeed, using the property (172) and taking the principal logarithm on both sides of
(11), one would obtain

N∑
i=1

Log (λi + iε− λ) = −2LogZ(λ) +NLog(2π) +
iπN

2
+ 4πi

⌊
1

2
− g(λ)

2π

⌋
, (12)

where

g(λ) = −1

2

N∑
i=1

Arg(λi + iε− λ) +
πN

4
(13)

is the imaginary part of the exponent in (11) and the symbol b...c denotes the floor operation,
i.e. bxc is the integer such that x− 1 < bxc ≤ x for x ∈ R.

Note that this branch choice would make the r.h.s. not everywhere differentiable for λ ∈ R.
Therefore, it is convenient to pick the branch of the complex logarithm such that log ez = z
instead, i.e. for which the extra (non-differentiable) phase term in (12) is killed. This choice
yields

N∑
i=1

Log (λi + iε− λ) = −2logZ(λ) +N log(2π) +
iπN

2
, (14)

where the constant terms on the r.h.s. depend on N , but not on λ. Taking the derivative,
one eventually finds

∂

∂λ

N∑
i=1

Log (λi + iε− λ) = −2
∂

∂λ
logZ(λ) , (15)

therefore the Edwards-Jones formula (2) is recovered.

2.2 Tackling the average in the Edwards-Jones formula

In order to obtain the spectral density, the average 〈logZ(λ)〉J must be computed. It explicitly
reads

〈logZ(λ)〉J =

∫ ∏
i<j

dJijP ({Jij})log

∫
RN

dv exp

[
− i

2
vT (λε1− J)v

]
, (16)

where P ({Jij}) is the joint distribution of the matrix entries. The presence of the logarithm
in (16) prevents a factorisation of averages over edges (i, j) even for a factorised pdf of the Jij .
The only available strategy seems to perform the inner N -fold integral over v first, compute
the logarithm, and then average over the random matrix disorder. However, this sequence of
operations would simply run the Edwards-Jones formula (2) backwards, leading to the useless
identity ρ(λ) = ρ(λ). The only chance to make some progress therefore relies on performing
the disorder average first. However, the two integrations in (16) cannot be directly exchanged
due to the presence of the logarithm in between.

7
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Disorder averages such as (16) are called quenched averages. The technique to handle
such averages is the replica trick. It is a well established method employed in the statistical
mechanics of disordered systems that allows one to bypass the logarithm in (16) in favour of
the computation of integers moments of Z(λ) (see Section 4)1.

The replica method for the calculation of the spectral density of dense random matrices was
employed by Edwards and Jones in [26]. The same replica calculation for sparse ensembles
was pioneered by Bray and Rodgers in [28]. However, we prefer to start with the cavity
approach because it is technically much less involved and allows one to circumvent the direct
computation of 〈logZ(λ)〉J . We will then follow the historical path traced in [28] in Section
4.

3 Cavity method for the spectral density

The cavity method as implemented in [41] makes it possible to derive the spectral density for a
single instance of large sparse symmetric matrices. According to the physical interpretation of
the Edwards-Jones formula, the calculation of the spectral density can be recast as a problem
of interacting particles on a sparse graph. The basic idea behind the cavity method [40] is that
observables related to a certain node of a network in which cycles are scarce (thereby called
tree-like) can be determined from the same network where the node in question is removed.
Due to the sparse structure, the removal of a node makes its neighbouring sites (as well as
the signals coming from them) uncorrelated.

3.1 Definition of the sparse matrix ensemble

We consider a large N × N sparse symmetric random matrix J . It represents the weighted
adjacency matrix of an undirected graph G, i.e. each entry can be expressed as Jij = cijKij ,
where the cij = cji ∈ {0, 1} represent the pure adjacency matrix and the Kij encode the bond
weights. When two nodes i and j are connected by a link, then cij = 1, otherwise cij = 0.
We consider simple graphs, in which self-loops are not present, entailing that cii = 0 for any
node i. In an undirected graph, the degree ki of the node i is defined as the number of nodes
in its neighbourhood ∂i = {j : cij = 1}, viz.

ki =
∑
j∈∂i

cij = |∂i| . (17)

We define c = 1
N

∑N
i=1 ki as the mean degree. We consider locally tree-like sparse matrices,

in which the probability of finding a cycle vanishes as lnN/N when N → ∞. Alternatively,
this property is implied by the requirement that the mean degree c does not increase with
the matrix size N , hence c/N → 0 as N →∞. In this very sparse regime, the cavity method
predictions are approximate for sparse graphs of finite size N , whereas they are exact for
finite trees. However, the cavity results become asymptotically exact on finitely connected
networks in the limit N → ∞ (i.e. in the thermodynamic limit). This has been rigorously
proved in [43].

1There exists also an alternative though only approximate strategy, known as annealed average, which does
not rely on the replica method. It consists in “moving” the logarithm outside the disorder average. Although
formally incorrect, the annealed protocol provides the correct spectral density of “dense” random matrices,
such as Gaussian ones (see Section 15.4 in [66] for a thorough discussion).

8



SciPost Physics Lecture Notes Submission

Following the statistical mechanics analogy, in the sparse case the N particles described
by the variables vi interact on the graph G where an edge is defined for any pair (i, j) of
interacting particles. While the replica formalism analyses the partition function (3) in the
limit N →∞, the cavity method focusses on the associated Gibbs-Boltzmann distribution (4)
with imaginary inverse temperature i and complex Hamiltonian (5), as shown in the section
below.

3.2 Cavity derivation for single instances

The spectral density of J is obtained from the Edwards-Jones formula (2) for finite N as

ρJ(λ) = − 2

πN
lim
ε→0+

Im
∂

∂λ
logZ(λ) , (18)

where Z(λ) is defined in (3). The subscript indicates that ρJ(λ) refers to a single, specific
instance J . For the same reason, no averaging is needed. Performing explicitly the λ-derivative
in (18) with Z(λ) defined in (3), one obtains

∂

∂λ
logZ(λ) = − i

2

N∑
i=1

∫ N∏
j=1

dvj PJ(v)v2
i , (19)

where

PJ(v) =
1

Z(λ)
exp

[
− i

2
vT (λε1− J)v

]
(20)

is the Gibbs-Boltzmann distribution defined in (4). For any given i, the average w.r.t. the
joint pdf (20) in (19) reduces to the average w.r.t. the single-site marginal Pi(vi), viz.∫ N∏

j=1

dvj PJ(v)v2
i =

∫
dviPi(vi)v

2
i = 〈v2

i 〉 , (21)

where the 〈v2
i 〉 represent the single-site variances of each of the N marginal pdfs Pi(vi). Using

(19) and (21), the spectral density in (18) can thus be written as

ρ(λ) = − 2

πN
lim
ε→0+

Im

(
− i

2

N∑
i=1

〈v2
i 〉

)
=

1

πN
lim
ε→0+

N∑
i=1

Re〈v2
i 〉 . (22)

Therefore, it is sufficient to determine the N single-site variances to calculate the spectral
density using (22).

In order to find the 〈v2
i 〉 , one looks at each marginal pdf Pi(vi). Due to the sparse nature

of J , the variable vi is coupled (through Jij) only to those vj associated to nodes that are
neighbours of i. Hence, the single-site marginal of the node i can be expressed as

Pi(vi) =

∫ N∏
j(6=i)

dvj PJ(v) =
1

Zi
e−

i
2
λεv2i

∫
dv∂ie

i
∑
j∈∂i JijvivjP (i)(v∂i) . (23)

In (23), the integration is over the “particles” interacting with particle i, i.e. those sitting
on the neighbouring sites ∂i. The distribution P (i)(v∂i) collects the contributions coming

9
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Figure 1: Graphs sketches. Graph 1: a tree-like graph where the indices refer to the notation used in Section 3.1 to
derive cavity single-instance equations. Graph 2: example of the decorrelation occurring to the nodes j1, j2 and j3,
neighbours of the node i, after the removal of i.

from the interaction of each of the vj (j ∈ ∂i) with particles sitting on nodes that are not
neighbours of i themselves (see Graph 1 on the l.h.s. of Fig. 1). The contributions to the
integral defining Pi(vi) coming from nodes further away generate a constant term that is
absorbed in the normalisation constant Zi.

The distribution P (i)(v∂i) is called the cavity distribution, since it refers to a graph in
which the node i has been removed. In a tree-like structure, the neighbouring sites of each
node i are correlated mainly through the node i. Hence, when the node i is removed, its
neighbours become uncorrelated (see Graph 2 on the r.h.s. of Fig. 1). Therefore, the joint

cavity pdf P (i)(v∂i) factorises into the product of independent cavity marginals P
(i)
j (vj), i.e.

P (i)(v∂i) =
∏
j∈∂i

P
(i)
j (vj) . (24)

We remark that the condition (24) is exact only as N → ∞, while being only approximate
for finite N . From Eq. (24), it follows that the single-site marginal (23) can be expressed as

Pi(vi) =
1

Zi
e−

i
2
λεv2i

∏
j∈∂i

∫
dvje

iJijvivjP
(i)
j (vj) . (25)

Eq. (25) shows that the marginal Pi(vi) is defined in terms of the cavity marginals P
(i)
j (vj).

A self-consistent definition of each of the cavity marginal distributions P
(i)
j (vj) can be obtained

by iterating the same reasoning as above. Indeed, one can now choose one of the nodes j ∈ ∂i
and define the marginal pdf associated to that node in the same way as in eq. (25). However,
the network one is considering at this stage is that where the node i has already been removed,

therefore eventually obtaining the cavity marginal P
(i)
j (vj), namely

P
(i)
j (vj) =

1

Z
(i)
j

e−
i
2
λεv2j

∏
`∈∂j\i

∫
dv`e

iJj`vjv`P
(j)
` (v`) , (26)

10
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where the symbol ∂j\i denotes the set of neighbours of node j excluding i (see again Graph

1 on the l.h.s. of Fig. 1 ). In turn, the cavity marginals P
(j)
` (v`) are defined on the graph

where also the node j ∈ ∂i has been removed.
Eq. (26) defines a set of recursion equations for any pair of interacting nodes (i, j). The

set of recursion equations (26) is solved exactly by a zero-mean Gaussian ansatz for the cavity

marginals P
(i)
j (vj). Indeed, assuming that

P
(i)
j (vj) =

√
ω

(i)
j

2π
exp

(
−
ω

(i)
j

2
v2
j

)
, (27)

and performing the Gaussian integrals on the r.h.s. of (26), one gets

P
(i)
j (vj) =

1

Z
(i)
j

exp

−1

2

iλε +
∑
`∈∂j\i

J2
j`

ω
(j)
`

 v2
j

 . (28)

The comparison between the exponents of (27) and (28) entails

ω
(i)
j = iλε +

∑
`∈∂j\i

J2
j`

ω
(j)
`

. (29)

Therefore, the set of equations (26) translates into a set of self-consistency equations for the

cavity inverse variances ω
(i)
j .

Similarly, the Gaussian ansatz (27) can be inserted in the single-site marginal expression
(25), yielding a Gaussian structure for Pi(vi), viz.

Pi(vi) =
1

Zi
exp

(
−1

2
ωiv

2
i

)
, (30)

with single-site inverse variances given by

ωi = iλε +
∑
j∈∂i

J2
ij

ω
(i)
j

. (31)

Once the cavity inverse variances are determined as the solution of (29), the single-site inverse
variances 〈v2

i 〉 = 1
ωi

are found from (31), and the spectral density is readily obtained from
(22) as

ρJ(λ) =
1

πN
lim
ε→0+

N∑
i=1

Re

[
1

ωi

]
=

1

πN
lim
ε→0+

N∑
i=1

Re[ωi]

(Re [ωi ])2+( Im[ωi])
2 . (32)

The formula (32) is exact in the limit N → ∞: however for a finite but sufficiently
large N , it provides an approximation for the average spectral density of the ensemble. As a
concluding remark, it can be noticed that the set of self-consistency equations for the cavity
inverse variances (29) only depends on the square of matrix entries, thus entailing that the
spectrum of the matrix J is equal to that of the matrix−J and therefore is perfectly symmetric
around λ = 0. This property indeed holds exactly for trees, since every tree is a bipartite

11
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graph (see [67] or G for a simple proof of this property). This check further corroborates that
cavity equations are exact on trees, but only approximate on tree-like structures as long as
cycles are negligible.

The set of cavity recursions (29) can be solved by a forward iteration algorithm. A working
example of a code that allows one to determine the average spectral density on a single instance
is available upon request.

3.3 Thermodynamic limit within the cavity framework

In this section we depart from [41] and show that the ensemble average of the spectral density
(1) can be recovered from the single-instance spectral density (32) as obtained through the
cavity method. Indeed, by invoking the law of large number in (32), in the large N limit one
gets

ρJ(λ) =
1

πN
lim
ε→0+

N∑
i=1

Re

[
1

ωi

]
−−−−→
N→∞

ρ(λ) =
1

π
lim
ε→0+

∫
dω̃π̃(ω̃)Re

[
1

ω̃

]
, (33)

where π̃(ω̃) is the pdf of the inverse variances ωi taking values around ω̃. In the r.h.s. of Eq.
(33) the subscript J has been dropped, as the quantity ρ(λ) characterises the ensemble of
J , rather than a single matrix. Eq. (33) implicitly assumes that the spectral density enjoys
the self-averaging property, meaning that a large single instance of the ensemble faithfully
represents the average behaviour over many instances.

The task now is to find the pdf of the inverse variances π̃(ω̃). Recalling the single-instance

relation (31) between the single-site inverse variances ωi and the cavity inverse variances ω
(i)
j ,

the pdf π̃(ω̃) will be determined in terms of the probability density π(ω) of ω
(i)
j .

In order to find the pdf π(ω), one observes that the set of self-consistency equations for
the cavity inverse variances (29) refers to the links of the underlying graph. In an infinitely
large network, links can be distinguished from one another by the degree of the node they are
pointing to. Therefore, considering a link (i, j) pointing to a node j of degree k, the value

ω of the cavity inverse variance ω
(i)
j living on this link is determined by the set {ω`}k−1 of

the k − 1 values of the cavity inverse variances ω
(j)
` living on each of the edges connecting

j with its neighbours ` ∈ ∂j\i. In an infinite system, these values can be regarded as k − 1

independent realisations of the random variables of type ω
(j)
` , each drawn from the same pdf

π(ω). The entries of J appearing in (29) are replaced by a set {K`}k−1 of k − 1 independent
realisations of the random variables Kj`, each distributed according to the bond weights pdf
pK(K). The distribution π(ω) is then obtained by averaging the contributions coming from
every link w.r.t. the probability k

c p(k) of having a link pointing to a node of degree k2. This
reasoning leads to the self-consistency equation

π(ω) =

∞∑
k=1

p(k)
k

c

∫
{dπ}k−1

〈
δ

(
ω −

(
iλε +

k−1∑
`=1

K2
`

ω`

))〉
{K}k−1

, (34)

2It can be observed that in general the probability that a node of degree k is connected to a node of degree k′

is conditional, namely P (k′|k). However, configuration model ensembles (including the Erdős-Rényi ensemble)
are cases of random uncorrelated networks, hence P (k′|k) is independent of k. Therefore, P (k′|k) reduces to
the probability that an edge points to a node of degree k′, which can be defined as the ratio between the
number of edges pointing to nodes of degree k′ , k′p(k′), and the number of edges pointing to nodes of any
degree, i.e. the sum

∑
k′ k
′p(k′) = c.

12
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where {dπ}k−1 =
∏k−1
`=1 dω`π(ω`) and the angle brackets 〈·〉{K}k−1

denote the average over

k − 1 independent realisations of the random variable K. Eq. (34) is generally solved via a
population dynamics algorithm (see Section 6).

The same reasoning can be applied to find the pdf π̃(ω̃) of inverse variances. Recalling
(31), it can be noticed that the ωi are variables related to nodes, rather than links. Since in
the infinite size limit the nodes can be distinguished from one another by their degree, the
pdf π̃(ω̃) can be written in terms of (34) as

π̃(ω̃) =

∞∑
k=0

p(k)

∫
{dπ}k

〈
δ

(
ω̃ −

(
iλε +

k∑
`=1

K2
`

ω`

))〉
{K}k

, (35)

where p(k) is the degree distribution.
Inserting (35) into (33) gives (at the ensemble level)

ρ(λ) =
1

π
lim
ε→0

∞∑
k=0

p(k)Re

∫
{dπ}k

〈
1

iλε +
∑k

`=1
K2
`

ω`

〉
{K}k

=
1

π
lim
ε→0+

∞∑
k=0

p(k)

∫
{dπ}k

〈
Re
[∑k

`=1
K2
`

ω`

]
+ ε(

Re
[∑k

`=1
K2
`

ω`

]
+ ε
)2

+
(
λ+ Im

[∑k
`=1

K2
`

ω`

])2

〉
{K}k

.

(36)

Eq. (36) is the ensemble generalisation of the single-instance formula (32) and provides the
ensemble average of the spectral density (1). The average spectral density as expressed in
(36) can be interpreted as a weighted sum of local densities, each pertaining to sites of degree
k. As shown by (36), the solution of the spectral problem is completely determined by the
distribution π satisfying the self-consistency equation (34). Once π has been obtained, the
average spectral density (36) is evaluated by sampling from a large population representing
the distribution π(ω). Section 6 illustrates the algorithm that produces the solution of self-
consistency equations of this type as well as the details of the sampling procedure.

3.4 The c→∞ limit in the cavity formalism

One can easily show that taking the c → ∞ limit in Eq. (34), (35) and then eventually
(33), the Wigner semicircle law is recovered. This has been first shown in [41]. According
to [61], we consider graphs in the configuration model having a degree distribution such that
σ2
k
〈k〉2 = 〈k2〉−〈k〉2

〈k〉2 → 0 as 〈k〉 = c→∞. Here, the symbol σk denotes the standard deviation of

the degree distribution p(k). For example, σk =
√
c for Erdős-Rényi graphs.

A meaningful large-c limit is obtained for Eq. (34) or equivalently (35) by rescaling each
instance of the bond random weights as Kij = Kij/

√
c. Therefore, considering (34) one

obtains

π(ω) =
∞∑
k=1

p(k)
k

c

∫
{dπ}k−1

〈
δ

(
ω −

(
iλε +

1

c

k−1∑
`=1

K2
`

ω`

))〉
{K}k−1

, (37)

For large c, the sum over the degrees in Eq. (37) receives contributions only from k = c±O(σk).
As c→∞, the degree distribution p(k) becomes highly concentrated around k = c, thus the

13
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argument of the δ-function on the r.h.s of Eq. (37) can be evaluated using the Law of Large
Numbers (LLN). Indeed, one finds that the r.h.s. of the condition

ω = iλε +
1

c

c−1∑
`=1

K2
`

ω`
(38)

does not fluctuate, hence ω itself is fixed and determined by the algebraic equation

ω̄ε = iλε +
〈K2〉
ω̄ε
⇔ ω̄ε =

iλε ±
√

4〈K2〉 − λ2
ε

2
. (39)

For large c, the quantity 〈K2〉 = 1
c

∑c−1
`=1 K2

` '
1
c

∑c
`=1K2

` represents the second moment of
the pdf of the rescaled bond weights.

The very same reasoning can be applied to the argument of the δ function in (35), entailing
that in the limit c→∞ the ω̃ are non-fluctuating as well, and take the same constant values
given by the solutions of Eq. (39), viz.

π̃(ω̃) = δ(ω̃ − ω̄ε) as c→∞ . (40)

Therefore, inserting Eq. (39) and (40) in Eq. (33), one finds that in the limit c→∞

ρ(λ) =
1

π
lim
ε→0+

Re

[
1

ω̄ε

]
=

1

π
lim
ε→0+

Re

[
2

iλε ±
√

4〈K2〉 − λ2
ε

]
=

1

2π〈K2〉
lim
ε→0+

Re
[
iλε ∓

√
4〈K2〉 − λ2

ε

]
, (41)

which in the ε→ 0+ limit eventually reduces to

ρ(λ) =

{
1

2π〈K2〉
√

4〈K2〉 − λ2 −2
√
〈K2〉 < λ < 2

√
〈K2〉

0 elsewhere
, (42)

where the plus sign has been chosen to get a physical solution. The latter expression corre-
sponds to the Wigner’s semicircle.

3.5 The spectral density and the resolvent

Before dealing with the replica derivation of the average spectral density, it is worth remark-
ing that the average spectral density can be obtained in an alternative way considering the
resolvent. Given a N ×N matrix J , its resolvent is defined as

G(z) = (z1− J)−1 , (43)

where z ∈ C and the matrix 1 is the N × N identity matrix. Setting z = λε = λ − iε, the
average spectral density is obtained from the imaginary part of the trace of the resolvent
matrix, i.e.

ρ(λ) = lim
ε→0+

1

πN
Im Tr

〈
(λε1− J)−1

〉
J
, (44)
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where the thermodynamic limit N →∞ is understood.
Eq. (44) can be explained by observing that the resolvent provides a regularised version

of the Dirac delta appearing in Eq. (1). Indeed, the matrix G shares the same eigenvector
basis with J , {uα} with α = 1, . . . , N . Then, using the spectral theorem, the resolvent (43)
can be written as

G(λ− iε) =

N∑
α=1

1

λ− iε− λα
uαu

T
α , (45)

entailing that

ρ(λ) = lim
ε→0+

1

πN

〈
Im

N∑
i=1

G(λ− iε)ii

〉
J

= lim
ε→0+

1

πN

〈
Im

N∑
i=1

N∑
α=1

1

λ− iε− λα
u2
iα

〉
J

= lim
ε→0+

1

πN

〈
N∑
α=1

Im
1

λ− iε− λα

〉
J

=
1

N

〈
N∑
α=1

δ(λ− λα)

〉
J

, (46)

where the normalisation property of the eigenvectors 1 =
∑N

i=1 u
2
iα for any α = 1, ..., N and the

Sokhotski-Plemelj identity (7) have been used. Given the connection with the eigenvectors,
the resolvent allows for the study of localisation properties (see for instance [15,23] and Section
7 for a further application).

The cavity method can be directly applied to the resolvent, as originally suggested in [42].

A set of self-consistency equations for the cavity diagonal entries of the resolvent G(z)
(i)
jj (i.e.

the diagonal entries of the resolvent matrix from which the i-th row and the i-th column have
been removed) can be obtained thanks to a Schur decomposition procedure or alternatively

by representing the G(z)ii and in turn the G(z)
(i)
jj as Gaussian integrals and then applying

the cavity method in the same fashion as Section 3.2 (see e.g. [23] for the details).
A correspondence between the cavity formalism as developed in Section 3.2 and the cavity

method applied to the resolvent can be easily established. Indeed, comparing respectively
Eq. (27) and (21) with Eq. (16) and (13) in [23], it follows that for any λ ∈ R and for any
i, j = 1, ..., N

G(λ− iε)
(i)
jj =

i

ω
(i)
j

, (47)

G(λ− iε)ii =
i

ωi
, (48)

where the ω
(i)
j and the ωi are defined respectively in Eq. (29) and (31).

4 Replica method: the Bray-Rodgers equation

In this section, we illustrate the replica calculation for the average spectral density, as orig-
inally proposed by Bray and Rodgers. Following [28], the goal is to evaluate the average
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spectral density (1) of an ensemble of N ×N real symmetric sparse matrices. Leveraging on
the notation of section 3, given a matrix J , each matrix entry can be written as Jij = cijKij ,
where the cij = {0, 1} represent the pure adjacency matrix of the underlying graph and the
Kij encode the bond weights. In particular, the matrix model considered in [28] is the Erdős-
Rényi (ER) model: the probability of having a non-zero entry is given by p = c/N , where c
represents the mean degree of the nodes of the underlying graph. For more details on the ER
model, see C. The joint distribution of the matrix entries is given by

P ({Jij}) =
∏
i<j

pC(cij)δcij ,cji
∏
i<j

pK(Kij)δKij ,Kji , (49)

where pC(cij) represents the ER connectivity distribution, viz.

pC(cij) =
c

N
δcij ,1 +

(
1− c

N

)
δcij ,0 , (50)

while pK(Kij) represents the bond weight pdf, which will be kept unspecified until the very
end of the calculation.

4.1 Replica derivation

The Edwards-Jones formula (2) is used. As anticipated in Section 2, in order to deal with the
quenched average (16) the replica identity will be employed, viz.

〈logZ(λ)〉J = lim
n→0

1

n
log〈Z(λ)n〉J , (51)

where n is initially taken as an integer 3. The replica identity is easily obtained considering
that in the limit n→ 0

log〈Z(λ)n〉J = log
(
1 + n〈logZ(λ)〉J +O(n2)

)
' n〈logZ(λ)〉J . (52)

The average replicated version of the partition function (3) reads

〈Z(λ)n〉J =

∫ n∏
a=1

N∏
i=1

dvia exp

(
− i

2
λε

N∑
i=1

n∑
a=1

v2
ia

)〈
exp

 i

2

N∑
i,j=1

n∑
a=1

viaJijvja

〉
J

. (53)

The ensemble average 〈...〉J splits into the connectivity average w.r.t. the cij and the disorder
average w.r.t. the Kij . The connectivity average can be performed explicitly exploiting the
large N scaling, yielding〈

exp

 i

2

N∑
i,j=1

n∑
a=1

viaJijvja

〉
J

= exp

 c

2N

N∑
i,j=1

(〈
eiK

∑
a viavja

〉
K
− 1
) , (54)

where 〈...〉K denotes averaging over pK(K). The details of the calculation leading to (54) can
be found in D.

3It is implicitly expected that the average replicated partition function 〈Z(λ)n〉J could be analytically
continued in the vicinity of n = 0 in a safe manner, although in principle this is not guaranteed.
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In order to decouple sites, the following functional order parameter is introduced,

ϕ(~v) =
1

N

N∑
i=1

n∏
a=1

δ (va − via) , (55)

via the path integral identity

1 = N

∫
DϕDϕ̂ exp

[
−i

∫
d~vϕ̂(~v)

(
Nϕ(~v)−

N∑
i=1

n∏
a=1

δ(va − via)

)]
, (56)

where ~v ∈ Rn represents a n-dimensional vector in the replica space. Eq. (56) is the functional
analogue of

1 =

∫
dxδ(x− x̄) =

∫
dx

∫
dk

2π
e−ik(x−x̄) . (57)

In terms of the order parameter (55), the average replicated partition function becomes

〈Z(λ)n〉J = N

∫
DϕDϕ̂ exp

(
−iN

∫
d~vϕ̂(~v)ϕ(~v)

)
× exp

[
Nc

2

∫
d~vd~v′ϕ(~v)ϕ(~v′)

(〈
eiK

∑
a vav

′
a

〉
K
− 1
)]

×
∫ n∏

a=1

N∏
i=1

dvia exp

[
− i

2
λε

N∑
i=1

n∑
a=1

v2
ia + i

N∑
i=1

∫
d~vϕ̂(~v)

n∏
a=1

δ(va − via)

]
. (58)

The multiple integral I in the last line of (58) factorises into N identical copies of the same
n-dimensional integral over Rn. Indeed, one finds

I =

∫ n∏
a=1

N∏
i=1

dvia exp

(
− i

2
λε

n∑
a=1

N∑
i=1

v2
ia + i

N∑
i=1

ϕ̂(~vi)

)

=

[∫ n∏
a=1

dva exp

(
− i

2
λε

n∑
a=1

v2
a + iϕ̂(~v)

)]N

= exp

[
NLog

∫
d~v exp

(
− i

2
λε

n∑
a=1

v2
a + iϕ̂(~v)

)]
, (59)

where Log denotes again the principal branch of the complex logarithm.
The replicated partition function (58) can then be written in the form

〈Z(λ)n〉J ∝
∫
DϕDϕ̂ exp (NSn[ϕ, ϕ̂, λ]) , (60)

where
Sn[ϕ, ϕ̂, λ] = S1[ϕ, ϕ̂] + S2[ϕ] + S3[ϕ̂, λ] , (61)

with

S1[ϕ, ϕ̂] =− i

∫
d~vϕ̂(~v)ϕ(~v) , (62)
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S2[ϕ] =
c

2

∫
d~vd~v′ϕ(~v)ϕ(~v′)

(〈
eiK

∑
a vav

′
a

〉
K
− 1
)
, (63)

S3[ϕ̂, λ] =Log

∫
d~v exp

(
− i

2
λε

n∑
a=1

v2
a + iϕ̂(~v)

)
. (64)

Eq. (60) is amenable to a saddle-point evaluation for large N , yielding

〈Z(λ)n〉J ≈ exp (NSn[ϕ?, ϕ̂?, λ]) , (65)

where the star denotes the saddle-point value of the order parameter and its conjugate. The
stationarity conditions of the action (61) w.r.t. the functional order parameter ϕ and its
conjugate ϕ̂ give

δSn
δϕ

∣∣∣∣
ϕ?,ϕ̂?

= 0⇒ iϕ̂?(~v) = c

∫
d~v′ϕ?(~v′)

[〈
exp

(
iK
∑
a

vav
′
a

)〉
K

− 1

]
, (66)

δSn
δϕ̂

∣∣∣∣
ϕ?,ϕ̂?

= 0⇒ ϕ?(~v) =
exp

[
− i

2λε
∑

a v
2
a + iϕ̂?(~v)

]∫
d~v′ exp

[
− i

2λε
∑

a v
′2
a + iϕ̂?(~v′)

] . (67)

The two stationarity conditions (66) and (67) can be combined. Indeed, by calling iϕ̂?(~v) =
cg(~v) and inserting (67) in (66), one obtains

g(~v) =

∫
d~v′f(~v · ~v′) exp

[
− i

2λε
∑

a v
′2
a + cg(~v′)

]
∫

d~v′ exp
[
− i

2λε
∑

a v
′2
a + cg(~v′)

] , (68)

where f(x) = 〈eiKx〉K − 1. A numerical solution for coupled saddle-point equations that are
analogous to Eq. (66) and (67) has been recently proposed in [68].

4.2 Average spectral density: replica symmetry assumption

The function g(~v) defined by (68) fully determines the average spectral density. Indeed,
recalling (2) and using (65), one gets

ρ(λ) = − 2

πN
lim
ε→0+

Im
∂

∂λ
〈logZ(λ)〉J

= − 2

πN
lim
ε→0+

Im
∂

∂λ
lim
n→0

1

n
log〈Zn(λ)〉J

≈ − 2

πN
lim
ε→0+

Im
∂

∂λ
lim
n→0

1

n
log [exp (NSn[ϕ?, ϕ̂?, λ])]

= − 2

π
lim
ε→0+

Im lim
n→0

1

n

∂

∂λ
Sn[ϕ?, ϕ̂?, λ] . (69)

The λ-derivative acts only on the terms of the action Sn explicitly depending on λ, due to
the stationarity of Sn w.r.t. ϕ? and ϕ̂?. Indeed, one obtains

∂

∂λ
Sn[ϕ?, ϕ̂?, λ] =

∂ϕ

∂λ

δSn
δϕ

∣∣∣∣
ϕ=ϕ?,ϕ̂=ϕ̂?

+
∂ϕ̂

∂λ

δSn
δϕ̂

∣∣∣∣
ϕ=ϕ?,ϕ̂=ϕ̂?

+
∂Sn
∂λ

∣∣∣∣
ϕ=ϕ?,ϕ̂=ϕ̂?

=
∂S3[ϕ̂?, λ]

∂λ
,

(70)
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with S3[ϕ̂?, λ] defined in (64) entailing the ratio

∂

∂λ
Sn[ϕ?, ϕ̂?, λ] =

− i
2

∫
d~v
(∑

a v
2
a

)
exp

[
− iλε

2

∑
a v

2
a + cg(~v)

]∫
d~v exp

[
− iλε

2

∑
a v

2
a + cg(~v)

] , (71)

where g(~v) solves (68).
In order to perform the n → 0 limit in (69), an assumption on the symmetries of the

function g(~v), or equivalently of both ϕ?(~v) and ϕ̂?(~v), under permutations of replica indices
needs to be made. It is known that a replica-symmetric “high-temperature” solution, preserv-
ing both permutational and rotational symmetry in the replica space, is exact in the random
matrix context 4. Hence, following [28], one can assume

g(~v) = g(v) , (72)

where v = |~v| =
√∑

a v
2
a. Therefore, taking into account the ratio (71), the replica symmetric

ansatz (72) and that Im(ix) = Re(x) for any x ∈ C, the average spectral density reads

ρ(λ) =
1

π
lim
ε→0+

Re lim
n→0

1

n

∫
d~vv2 exp

[
− iλε

2 v
2 + cg(v)

]∫
d~v exp

[
− iλε

2 v
2 + cg(v)

] . (73)

To further simplify the ratio of integrals in (73), n-dimensional spherical coordinates are in-
troduced. The symbol v represents the radial coordinate and ~φ = {φ1, φ2, ..., φn−1} are n− 1
angular coordinates, with φn−1 ∈ [0, 2π] and φi ∈ [0, π] for i = 1, ..., n−2. The Jacobian of the
coordinate transformation is J(v, φ1, ..., φn−2) = vn−1(sin(φ1))n−2(sin(φ2))n−3 · · · sin(φn−2).
In these coordinates, the factor arising from the integration over the angular degrees of free-
dom,

I(~φ) =

∫
[0,π]n−2

dφ1dφ2 · · · dφn−2

∫ 2π

0
dφn−1(sin(φ1))n−2(sin(φ2))n−3 · · · sin(φn−2) , (74)

appears both in the numerator and denominator of (73). Hence it cancels, yielding eventually

ρ(λ) =
1

π
lim
ε→0+

Re lim
n→0

1

n

∫∞
0 dvvn+1 exp

[
− iλε

2 v
2 + cg(v)

]∫∞
0 dvvn−1 exp

[
− iλε

2 v
2 + cg(v)

] . (75)

The integral in the denominator can be further simplified integrating by parts, i.e.∫ ∞
0

dvvn−1 exp

[
− iλε

2
v2 + cg(v)

]
=

1

n

∫ ∞
0

dvvn exp

[
− iλε

2
v2 + cg(v)

] (
iλεv − cg′(v)

)
,

(76)
since the boundary contribution vanishes. Therefore, taking the n → 0 limit, the average
spectral density reads

ρ(λ) =
1

π
lim
ε→0+

Re

∫∞
0 dvv exp

[
− iλε

2 v
2 + cg(v)

]∫∞
0 dv exp

[
− iλε

2 v
2 + cg(v)

]
(iλεv − cg′(v))

. (77)

The expression (77) shows that the function g(v) is the only ingredient needed to compute
the average spectral density. The search for a (replica-symmetric) solution of (68) will be
addressed in Section 4.3.

4Rotational invariance in replica space is a stronger condition than the symmetry upon permutation of
replicas. An example of an ansatz satisfying permutational symmetry, but not rotational invariance would be
g(~v) = g(

∑n
a=1 va).
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4.3 Replica symmetry assumption for the Bray-Rodgers integral equation

At this stage, in order to get a replica-symmetric version of (68), the replica-symmetric ansatz
(72) is applied and spherical coordinates are again introduced. Assuming that φ1 = φ ∈ [0, π]
is the angle between the vectors ~v and ~v′ and |~v′| = r one finds

g(v) =

∫∞
0 drrn−1 exp

[
− i

2λεr
2 + cg(r)

] ∫ π
0 dφ(sinφ)n−2f(vr cosφ)∫∞

0 drrn−1 exp
[
− i

2λεr
2 + cg(r)

] ∫ π
0 dφ(sinφ)n−2

, (78)

since all the remaining angular integrations cancel between numerator and denominator. We
recall that f(z) = 〈eiKz〉K − 1. In order to proceed, a specific bond weight distribution must
be introduced. The choice made by Rodgers and Bray in [28],

pK(K) =
1

2
δK,1 +

1

2
δK,−1 , (79)

entails that f(z) = cos z − 1. This gives

g(v) =

∫∞
0 drrn−1 exp

[
− i

2λεr
2 + cg(r)

] ∫ π
0 dφ(sinφ)n−2[cos(vr cosφ)− 1]∫∞

0 drrn−1 exp
[
− i

2λεr
2 + cg(r)

] ∫ π
0 dφ(sinφ)n−2

. (80)

The angular integral in the numerator in (80) yields (see formula 21 of Section 3.715 in [69])

Iang
num =

∫ π

0
dφ(sinφ)n−2[cos(vr cosφ)− 1]

=

√
πΓ
(
n−1

2

)
2

[(
2

vr

)n
2 (
nJn

2
(vr)− vrJn

2
+1(vr)

)
− 2

Γ
(
n
2

)] , (81)

where Jα(x) indicates the Bessel function of the first kind, defined by the series

Jα(x) =
∞∑
m=0

(−1)m

m!Γ(m+ α+ 1)

(x
2

)2m+α
. (82)

The angular integral in the denominator of (80) is independent of the radial one and gives

Iang
den =

∫ π

0
dφ(sinφ)n−2 =

√
πΓ
(
n−1

2

)
Γ
(
n
2

) , (83)

thus canceling the divergent factor for n < 1 appearing in (81). The radial integral in the de-
nominator in (80) can be simplified integrating by parts. By callingG(r) = exp

[
− i

2λεr
2 + cg(r)

]
,

one obtains

Irad
den =

∫ ∞
0

drrn−1G(r) = − 1

n

∫ ∞
0

drrnG′(r) , (84)

as the boundary contribution vanishes. Collecting the results, one finds

g(v) = −
nΓ
(
n
2

)
2

∫∞
0 drrn−1G(r)

[(
2
vr

)n
2

(
nJn

2
(vr)− vrJn

2
+1(vr)

)
− 2

Γ(n2 )

]
∫∞

0 drrnG′(r)
. (85)

Lastly, the n→ 0 limit in (85) is taken. Recalling the definition of G(r) and noticing that
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1.

Γ(n) ≈ 1

n
as n→ 0⇒ lim

n→0
−nΓ

(n
2

)
= −2 , (86)

2.

lim
n→0

∫ ∞
0

dr rnG′(r) =

∫ ∞
0

dr G′(r) = G(∞)−G(0) = −ecg(0) , (87)

3.

lim
n→0

rn−1G(r)

[(
2

vr

)n
2 (
nJn

2
(vr)− vrJn

2
+1(vr)

)
− 2

Γ
(
n
2

)] = −vJ1(vr)G(r) , (88)

one obtains

g(v) =
v
∫∞

0 drJ1(vr) exp
[
− i

2λεr
2 + cg(r)

]
−ecg(0)

. (89)

Given the structure of Eq. (89), it follows that g(0) = 0, therefore eventually

g(v) = −v
∫ ∞

0
drJ1(vr) exp

[
− i

2
λεr

2 + cg(r)

]
, (90)

which is equivalent to Eq. (18) in [28]. This equation, also known as the Bray-Rodgers integral
equation, fully defines the quantity g(v). Despite numerous attempts, an exact analytical
solution for (90) is currently not available. The numerical evaluation of Eq. (90) in the case
of c = 20 has been carried out in [17], to obtain the average spectral density of Laplacians
of ER graphs with bimodal weights. In this high connectivity regime, the quality of the
numerical solution was comparable with the SDA approximation (see [33]). On the other
hand, the authors in [16] describe a procedure for the solution of a similar integral equation
employing a series expansion which is valid only for c < 1/2. Nonetheless, for values of c
that are in between these two extremal cases, Eq. (90) has proved to be hard to tackle even
numerically, due to the exponential non-linearity and the oscillatory Bessel term.

Taking into account Eq. (90), the average spectral density (77) can be further simplified
as follows. Indeed, recalling that G(v) = exp

[
−iλε2 v

2 + cg(v)
]
, the denominator in Eq. (77)

can be expressed as

Iρ,den = −
∫ ∞

0
dv G′(v) = G(0)−G(∞) = ecg(0) = 1 , (91)

therefore entailing that the average spectral density reduces to

ρ(λ) =
1

π
lim
ε→0+

Re

∫ ∞
0

dv v exp

[
− iλε

2
v2 + cg(v)

]
. (92)

4.4 The average spectral density in the c→∞ limit

It can be shown that Eq. (90) can be solved perturbatively in powers of 1/c in the limit c→∞.
In this framework, the average spectral density (92) is in turn expressed as a perturbative
expansion, whose leading term is the Wigner semicircular law. We will provide a derivation
inspired by [28,30].
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First, the following changes of variables are introduced,

v2 = −2is

λε
, (93)

r2 = −2iu

λε
, (94)

λ2
ε = cx2

δ , (95)

where xδ = x− iδ, with δ > 0. Moreover, it is assumed that g(v) = 1
cγ(s).

Eq. (95) implies rescaling the spectral density such that a meaningful c→∞ limit can be
taken. This rescaling is equivalent to normalising the matrix entries by

√
c. After the change

of variables, the spectral density will be expressed in terms of xδ = x − iδ, which does not
scale with c. In this setting, the limit ε → 0+ is replaced by the limit δ → 0+. Taking into
account (95), for the l.h.s. of Eq. (92) before taking the ε→ 0+ limit one finds

ρ(λε) = ρ(xδ)
dxδ
dλε

= ρ(xδ)
1√
c
, (96)

entailing that

ρ(λ) = lim
ε→0+

ρ(λε) = lim
δ→0+

ρ(xδ)
1√
c

= ρ(x)
1√
c
. (97)

One then rewrites Eq. (90) in terms of the new variables. The differential in (90) trans-
forms as

dr = − i

λε

√
− λε

2iu
du = − i√

cxδ

√
−
√
cxδ

2iu
du , (98)

while the integration boundaries are unchanged. Indeed, from (94), one finds

u =

√
cr2δ

2
+ i

√
cr2x

2
=

√
cr2

2

√
x2 + δ2ei arctan(xδ ) =

{
0 r = 0

∞ r →∞
. (99)

In terms of the new variables, after some algebra Eq. (90) converts to

γ(s) =
s

x2
δ

∫ ∞
0

du exp [−u+ γ(u)]
∞∑
m=0

1

m!(m+ 1)!

(
su

cx2
δ

)m
, (100)

corresponding to Eq. (23) in [28].
With these choices, it is natural to expand γ(s) as a power series in s/c. High powers of

s are related to high powers of 1/c. Therefore, one expects to find a solution of the form

γ(s) = c
∞∑
r=1

br

(s
c

)r
, (101)

where in turn the coefficients br are defined via the expansion

br =
∞∑
`=0

b
(`)
r

c`
. (102)

Eq. (101) and (102) allow one to obtain all possible combinations of powers of sr

cr+`
. The

target is to determine the coefficients b
(`)
r , by solving Eq. (100) order by order. This would

permit a complete representation of γ(s) as a power series. The following steps will be followed
for the solution.
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• Express γ via the expansions (101) and (102) in both the l.h.s. and the exponent of the
r.h.s. of (100).

• Integrate w.r.t. u term by term in the r.h.s. of (100).

• Equate the coefficients of the powers sr

cr+`
.

The expansion of γ(s) will be stopped at O
(

1
c

)
. Hence, the l.h.s. of (100) reads

γ(s) = b1s+ b2
s2

c
+O

(
s2

c2

)
= b

(0)
1 s+ b

(1)
1

s

c
+ b

(0)
2

s2

c
+O

(
s2

c2

)
. (103)

Looking at the r.h.s., one notices that only the terms m = 0 and m = 1 of the sum in (100)
are needed to match the powers sr

cr+`
in (103). Indeed, one finds

γ(s) =
s

x2
δ

∫ ∞
0

du exp [−u+ γ(u)] +
s2

2cx4
δ

∫ ∞
0

du u exp [−u+ γ(u)] +O
(
s2

c2

)
. (104)

The first and second integral on the r.h.s. of (104) can be denoted respectively as IA
and IB. Considering first the integral IA, it has a pre-factor of order O(s), therefore it may
yield contributions of any order in powers of 1/c depending on the order at which we stop the
expansion of γ(u) in the exponent. Expanding γ(u) as in (103) is sufficient to obtain all the
O(1) and O

(
1
c

)
contributions. Indeed, we have

IA =

∫ ∞
0

du exp [−u+ γ(u)]

'
∫ ∞

0
du exp

[
b
(0)
2

c
u2 +

(
b
(0)
1 − 1 +

b
(1)
1

c

)
u

]

=

√
π

2

√
− b

(0)
2
c

ey
2
erfc(y) , (105)

where

y = −
b
(0)
1 − 1 +

b
(1)
1
c

2

√
− b

(0)
2
c

, (106)

and Re

(
b
(0)
2
c

)
< 0. The function denoted by erfc(z) is the complementary error function,

defined for real z as

erfc(z) =
2√
π

∫ ∞
z

dt e−t
2
. (107)

In order to express (105) as a power series, an asymptotic expansion of erfc(z) is employed.
For large real z it is given by

erfc(z) ' e−z
2

z
√
π

[
1 +

∞∑
n=1

(−1)n
(2n)!

n!(2z)2n

]
. (108)
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The series is divergent for any finite z. However, few terms of it are sufficient to approximate
erfc(z) well for any finite z. Using (108) in (105), one obtains

IA ≈ −
1

b
(0)
1 − 1 +

b
(1)
1
c

1 +

∞∑
n=1

(2n)!

(
b
(0)
2
c

)n
n!

(
b
(0)
1 − 1 +

b
(1)
1
c

)2n


= − 1

b
(0)
1 − 1 +

b
(1)
1
c

−
∞∑
n=1

(2n)!

n!

(
b
(0)
2

c

)n
1(

b
(0)
1 − 1 +

b
(1)
1
c

)2n+1 . (109)

Eq. (109) can be further simplified recalling that (1 + βx)α ≈ 1 + αβx for x � 1, entailing
that the first term of (109) becomes

− 1

b
(0)
1 − 1 +

b
(1)
1
c

≈ 1

1− b(0)
1

+
b
(1)
1(

1− b(0)
1

)2

1

c
. (110)

Since the expansion is stopped at O
(

1
c

)
, only the n = 1 term in the sum in (109) needs

to be considered, as the contributions for n ≥ 2 are at least O
(

1
c2

)
. Moreover, since the

n = 1 term exhibits the O
(

1
c

)
scaling explicitly, only the O(1) contribution arising from the

round brackets in the denominator of the general term of the sum in (109) must be taken into
account. Indeed, using (110) the n = 1 term in (109) becomes

2
b
(0)
2

c

− 1

b
(0)
1 − 1 +

b
(1)
1
c

3

≈ 2
b
(0)
2

c

 1

1− b(0)
1

+
b
(1)
1(

1− b(0)
1

)2

1

c


3

= 2
b
(0)
2(

1− b(0)
1

)3

1

c
+O

(
1

c2

)
. (111)

Collecting all the leading contributions to the integral IA one obtains

IA =

∫ ∞
0

du exp [−u+ γ(u)] =
1

1− b(0)
1

+
1

c

 b
(1)
1(

1− b(0)
1

)2 +
2b

(0)
2(

1− b(0)
1

)3

+O
(

1

c2

)
. (112)

Considering now the second integral on the r.h.s. of (104), denoted by IB, its pre-factor
has already the O

(
1
c

)
scaling. Therefore, only the O(1) term arising from the 1

c expansion
of IB is needed. To this purpose, it is sufficient to consider the expansion of γ(u) no further
than O

(
u
c

)
. Indeed, one finds

IB =

∫ ∞
0

du u exp [−u+ γ(u)]

≈
∫ ∞

0
du u exp

[
−

(
1− b(0)

1 −
b
(1)
1

c

)
u

]
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≈ 1(
1− b(0)

1

)2 +O
(

1

c

)
, (113)

with Re

(
1− b(0)

1 −
b
(1)
1
c

)
> 0.

In conclusion, using the expansions of IA and IB, respectively given by Eq. (112) and
(113), Eq. (104) representing the r.h.s. of (100) becomes

γ(s) =
1

x2
δ

(
1− b(0)

1

)s+
1

x2
δ

 b
(1)
1(

1− b(0)
1

)2 + 2
b
(0)
2(

1− b(0)
1

)3

 s
c

+
1

2x4
δ

1(
1− b(0)

1

)2

s2

c
+O

(
s2

c2

)
.

(114)
Equating term by term the expansion in Eq. (103) and (114), one gets a closed set of

equations to determine the three coefficients b
(0)
1 , b

(1)
1 and b

(0)
2 , viz.

O(s) : b
(0)
1 =

1

x2
δ

(
1− b(0)

1

) , (115)

O
(s
c

)
: b

(1)
1 =

1

x2
δ

 b
(1)
1(

1− b(0)
1

)2 +
2b

(0)
2(

1− b(0)
1

)3

 , (116)

O
(
s2

c

)
: b

(0)
2 =

1

2x4
δ

(
1− b(0)

1

)2 , (117)

corresponding to Eq. (25), (26) and (27) in [28]. The latter system of equations can be easily
solved, yielding

b
(0)
1 =

1

2

[
1±A

1
2

]
, (118)

b
(1)
1 =∓ xδ

2

16

[
1±A

1
2

]4

A
1
2

, (119)

b
(0)
2 =

1

2

(
b
(0)
1

)2
, (120)

where A = 1− 4
x2δ

.

Finally, the average spectral density (92) can be evaluated perturbatively. Indeed, taking
into account Eq. (97) and applying the change of variables (93), (95) and g(v) = 1

cγ(s) to the
r.h.s. of Eq. (92), one finds

ρ(x)
1√
c

=
1

π
lim
δ→0+

Re

[(
− i√

cxδ

)∫ ∞
0

ds exp [−s+ γ(s)]

]
⇒

ρ(x) =
1

π
lim
δ→0+

Im

[
1

x− iδ

∫ ∞
0

ds exp [−s+ γ(s)]

]
, (121)

where the dependence on c is only through the power series (101) expressing γ(s).
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The goal is to obtain the O(1) leading term dominating in Eq. (121) for large c, along
with its O(1/c) correction. It is worth noticing that the integral appearing on the r.h.s. of
Eq. (121) has been already evaluated up to O(1

c ). Indeed, it corresponds to the integral IA
of Eq. (112).

Therefore, using (112) in (121) one gets

ρ(x) = ρ0(x) +
1

c
ρ1(x) +O

(
1

c2

)
, (122)

where

ρ0(x) =
1

π
lim
δ→0+

Im

[
1

x− iδ

1

1− b(0)
1

]
, (123)

ρ1(x) =
1

π
lim
δ→0+

Im

 1

x− iδ

 b
(1)
1(

1− b(0)
1

)2 +
2b

(0)
2(

1− b(0)
1

)3


 , (124)

and the coefficients b
(0)
1 , b

(1)
1 and b

(0)
2 have been defined respectively in (118), (119) and (120).

The O(1) leading term ρ0(x) in Eq. (123) is simply obtained by observing that

Im

[
1

x− iδ

1

1− b(0)
1

]
=

1

2
Im
[
x− iδ ±

√
(x− iδ)2 − 4

]
. (125)

Using (125), considering the imaginary part and taking the δ → 0+ limit, the O(1) leading
term in Eq. (122) becomes

ρ0(x) =

{
1

2π

√
4− x2 −2 < x < 2

0 elsewhere
, (126)

where we have used that

Im [
√
y] =

{√
−y y < 0

0 y > 0
, (127)

and the plus sign in front of the square root has been chosen in order to get a physical (non-
negative) solution. This sign choice amounts to selecting the top alternative for the signs
appearing in the expansion coefficients (118), (119) and (120). Eq. (126) corresponds to the
Wigner’s semicircle as expected.

Similarly, using the definitions (118), (119) and (120), taking the δ → 0+ limit and
employing the property (127), after some algebra the O

(
1
c

)
correction (124) is obtained as

ρ1(x) =

{
x4−4x2+2
2π
√

4−x2 −2 < x < 2

0 elsewhere
, (128)

where the sign is determined by the same sign convention for the coefficients of the expansion
adopted for the evaluation of ρ0(x). The correction (128) is non-zero only in the interval
−2 < x < 2 and diverges at the edges. Moreover, one can notice that the total average
spectral density (122) is correctly normalised at any order, given that the correction (128) is
an even function over its domain −2 < x < 2.
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Figure 2: The O(1/c) correction ρ1(x) found in Eq. (128) to the average spectral density of ER matrices with bimodal
weights distribution in the large c limit (red line), compared to the histogram of 9.99× 106 eigenvalues of matrices from
the ER ensemble with c = 50 and bond weight distribution pK(K) = 1

2
δK,1/

√
c + 1

2
δK,−1/

√
c (blue dotted line). The

O(1) contribution ρ0(x) in Eq. (126) has been removed from the histogram.

In Fig. 2, we compare the analytical expression for ρ1(x) against the data from direct
diagonalisation of sparse ER matrices, with bond weights distribution pK(K) = 1

2δK,1/
√
c +

1
2δK,−1/

√
c, in the case of c = 50. We obtained the eigenvalues of 10000 matrices of size

N = 1000 and discarded the isolated contribution due to the top eigenvalue of such matrices,
which lies outside the spectrum. We then organised the remaining 9.99 × 106 eigenvalues
in a normalised histogram and removed from the data the semicircular contribution ρ0(x)
evaluated at the mid-point of each histogram bin. We found a very good agreement between
the analytical curve representing ρ1(x) (red line) and the numerical diagonalisation data (blue
dotted line).

As a final remark, we observe that another possible way to extract the large c limit of the
average spectral density in the replica formalism would be considering K = K/

√
c in Eq. (66),

with the distribution of the rescaled weights being pK(K) = 1
2δK,1 + 1

2δK,−1, and expanding
the exponential in a Taylor series. This choice would result in the conjugate order parameter
being expressed as an expansion in powers of 1

c , given that the odd powers of 1√
c

are cancelled

by the fact that the odd moments of pK(K) are zero. Assuming that the order parameter (67)
at the saddle point is expressed at the saddle-point as a multivariate factorised zero-mean
Gaussian, i.e.

ϕ?(~v) =

n∏
a=1

e
v2a
2σ2

√
2πσ2

, (129)

the leading order of its conjugate results in a quadratic polynomial in the va, namely

iϕ̂?(~v) = −〈K
2〉K
2

σ2
n∑
a=1

v2
a , (130)

where σ2 is determined by the condition 1
σ2 = iλε + 〈K2〉Kσ2. Using (130) in Eq. (69), one

easily obtains the Wigner semicircle. The expansion could also be continued to obtain the
corrections in powers of O(1/c).
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5 Alternative Replica solution: uncountably infinite superpo-
sition of Gaussians

Kühn in [37] suggested a different approach for the average spectral density problem, which
completely bypasses (90). At the outset, the treatment in [37] is the same as in [28], but de-
parts from the Bray-Rodgers original derivation at the level of the stationarity conditions (66)
and (67). The order parameter ϕ(~v) and its conjugate iϕ̂(~v) are represented as uncountably
infinite superpositions of complex Gaussians, i.e.

ϕ(~v) =

∫
dωπ(ω)

n∏
a=1

e−
ω
2
v2a

Z(ω)
, (131)

iϕ̂(~v) = ĉ

∫
dω̂π̂(ω̂)

n∏
a=1

e−
ω̂
2
v2a

Z(ω̂)
, (132)

where Z(x) =
√

2π
x and π(ω) and π̂(ω̂) are normalised pdfs of the inverse variances ω and ω̂5

with Re(ω),Re(ω̂) ≥ 0. The constant ĉ is chosen to enforce the normalisation of π̂(ω̂).
Eq. (131) and (132) are expansions of ϕ and ϕ̂ in an over-complete function system. The

structure of this ansatz derives from the study of models for amorphous systems. In that
context, it was noticed that harmonically coupled systems — such as the model defined by
our “Hamiltonian” (5) — admit a solution in terms of superpositions of Gaussians [38, 70].
This ansatz exhibits permutation symmetry among replicas as well as rotational symmetry
in replica space, therefore sharing the same symmetries assumed in [28] (see Eq. (72)).
The advantage of the ansätze (131) and (132) is that they allow us to extract the leading
contribution to the saddle-point of (60) in the limits N →∞ and n→ 0.

The path integral over the ϕ and ϕ̂ is thus replaced by a path integral over π and π̂.
Therefore, Eq. (60) becomes

〈Z(λ)n〉J ∝
∫
DπDπ̂ exp (NSn[π, π̂, λ]) , (133)

where
Sn[π, π̂, λ] = S1[π, π̂] + S2[π] + S3[π̂, λ] , (134)

and

S1[π, π̂] = −ĉ− nĉ
∫

dπ(ω)dπ̂(ω̂)log
Z(ω + ω̂)

Z(ω)Z(ω̂)
, (135)

S2[π] = n
c

2

∫
dπ(ω)dπ(ω′)

〈
log

Z2(ω, ω′,K)

Z(ω)Z(ω′)

〉
K

, (136)

S3[π̂, λ] = ĉ+ n

∞∑
k=0

pĉ(k)

∫
{dπ̂}klog

Z(iλε + {ω̂}k)∏k
`=1 Z(ω̂`)

. (137)

In the latter expressions, the shorthands dπ = dωπ(ω), {dπ̂}k =
∏k
`=1 dω̂`π̂(ω̂`) and {ω̂}k =∑k

`=1 ω̂` have been used. Moreover, Z2(ω, ω′,K) = Z(ω)Z(ω′ + K2

ω ). The function pĉ(k) is

the Poisson degree distribution pĉ(k) = e−ĉĉk

k! , which naturally crops up in the calculation

5We employ the same labels used in the cavity treatment, as the two objects will eventually coincide.
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when representing eiϕ̂?(~v) appearing in (67) as a power series. The derivation of (135), (136)
and (137) is detailed in E. We notice that the O(1) contributions in (135) and (137) cancel
each other out, making the action (134) of O(n).

The stationarity conditions (66) and (67) are replaced by the stationarity conditions w.r.t.
π and π̂. They are

δSn
δπ

= 0⇒

ĉ

c

∫
dπ̂ log

Z(ω + ω̂)

Z(ω)Z(ω̂)
=

∫
dπ′

〈
log

Z2(ω, ω′,K)

Z(ω)Z(ω′)

〉
K

+
γ

c
, (138)

and

δSn
δπ̂

= 0⇒∫
dπ log

Z(ω + ω̂)

Z(ω)Z(ω̂)
=
∞∑
k=1

pĉ(k)
k

ĉ

∫
{dπ̂}k−1 log

Z(iλε + {ω̂}k−1 + ω̂)

Z(ω̂)
∏k−1
`=1 Z(ω̂`)

+
γ̂

ĉ
, (139)

where γ and γ̂ are two Lagrange multipliers to enforce the normalisation condition of π and
π̂. The equality (138) is realised by making sure that γ satisfies the equality

− ĉ
c

∫
dπ̂(ω̂) logZ(ω̂) =

γ

c
, (140)

while the remaining part (which is a function of ω) should satisfy

ĉ

c

∫
dπ̂(ω̂) log

Z(ω + ω̂)

Z(ω)
=

∫
dπ(ω′)

〈
log

Z
(
ω + K2

ω′

)
Z(ω)

〉
K

, (141)

where Z2(ω, ω′,K) = Z(ω′)Z(ω+ K2

ω′ ) has been used. Since eq. (141) must hold for any value
of ω in order for (138) to be satisfied, one notices that the following definition

π̂(ω̂) =
ĉ

c

∫
dπ(ω)

〈
δ

(
ω̂ − K2

ω

)〉
K

, (142)

once inserted in the l.h.s. of (142), indeed produces the r.h.s. Likewise, also in (139) a
constant part can be isolated,

−
∫

dπ(ω) logZ(ω) = −
∞∑
k=1

pĉ(k)
k

ĉ

∫
{dπ̂}k−1 log

k−1∏
`=1

Z(ω̂`) +
γ̂

ĉ
, (143)

and a part that is a function of ω̂, viz.∫
dπ(ω) log

Z(ω + ω̂)

Z(ω̂)
=

∞∑
k=1

pĉ(k)
k

ĉ

∫
{dπ̂}k−1 log

Z(iλε + {ω̂}k−1 + ω̂)

Z(ω̂)
. (144)

As before, since (144) must hold for any ω̂, it follows that

π(ω) =
∞∑
k=1

pĉ(k)
k

ĉ

∫
{dπ̂}k−1δ (ω − (iλε + {ω̂}k−1)) . (145)

In order for both π̂ and π to be normalised to 1, the condition ĉ = c must be imposed.
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5.1 Average spectral density unfolded

The solutions of the two coupled functional equations

π̂(ω̂) =

∫
dπ(ω)

〈
δ

(
ω̂ − K2

ω

)〉
K

, (146)

π(ω) =
∞∑
k=1

pc(k)
k

c

∫
{dπ̂}k−1δ

(
ω −

(
iλε +

k−1∑
`=1

ω̂`

))
, (147)

represent the saddle-point evaluation of (133). The symbol pc(k) represents the Poisson
degree distribution, which is expected for ER sparse graphs. However, it has been shown
in [38, 50, 53] that the above equations hold unmodified also for any non-Poissonian degree
distributions p(k) within the configuration model framework, as long as the mean degree
〈k〉 = c is a finite constant, i.e. does not scale with N . Unlike (90), the equations (146)
and (147) can be very efficiently solved numerically by a population dynamics algorithm (see
Section 6). Some remarks are in order.

• Inserting (146) into (147) yields a unique self-consistency equation for π that is exactly
identical to (34), obtained using the cavity method in the thermodynamic limit. This
fact demonstrates once more the equivalence between the replica and cavity methods.

• Alternatively, one could insert (147) into (146), obtaining a single self-consistency equa-
tion for π̂ that reads

π̂(ω̂) =
∞∑
k=1

pc(k)
k

c

∫
{dπ̂}k−1

〈
δ

(
ω̂ − K2

iλε +
∑k−1

`=1 ω̂`

)〉
{K}

. (148)

The solution of the latter equation via a population dynamics algorithm will be described
below in Section 6. While the two approaches are equivalent, here we choose to work
with the {ω̂} since the final equation for the spectral density is more naturally expressed
in terms of those, as shown in the following.

The pdf π̂(ω̂) defined in (148) fully determines the average spectral density. Indeed,
recalling (2) one gets

ρ(λ) = − 2

πN
lim
ε→0+

Im
∂

∂λ
〈logZ(λ)〉J

' − 2

π
lim
ε→0+

Im lim
n→0

1

n

∂

∂λ
S3[π̂, λ]

=
1

π
lim
ε→0+

∞∑
k=0

pc(k)Re

∫
{dπ̂}k

1

iλε + {ω̂}k

=
1

π
lim
ε→0+

∞∑
k=0

pc(k)

∫
{dπ̂}k

Re [{ω̂}k] + ε

(Re [{ω̂}k] + ε)2 + (λ+ Im [{ω̂}k])
2 , (149)

where the latter expression corresponds to Eq. (33) in [37]. We notice that (149) is completely
equivalent to (36) if π̂(ω̂) is expressed in terms of π(ω) according to (146). All the observations
made about (36) hold here as well. The average spectral density as expressed in (149) is
evaluated by sampling from a large population distributed according to π̂(ω̂): this procedure
will also be illustrated in Section 6.
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5.2 The presence of localised states and the role of ε

The average spectral density (149) can be rewritten in order to isolate singular pure-point
contributions from the continuous spectrum. Indeed, defining

P (a, b) =

∞∑
k=0

pc(k)

∫
{dπ̂}kδ (a− Re[{ω̂}k]) δ (b− Im[{ω̂}k]) , (150)

one finds the identity

ρ(λ) =
1

π
lim
ε→0+

∫
dadbP (a, b)

a+ ε

(a+ ε)2 + (λ+ b)2
. (151)

The integrand in (151) becomes singular as ε → 0 for a = 0. These singular contributions
can be isolated representing P (a, b) as

P (a, b) = P0(b)δ(a) + P̃ (a, b) , (152)

yielding for the spectral density

ρ(λ) =
1

π
lim
ε→0+

∫
dbP0(b)Lε(λ+ b) +

1

π
lim
ε→0+

∫
a>0

dadbP̃ (a, b)
a+ ε

(a+ ε)2 + (λ+ b)2
. (153)

Here, Lε(λ+ b) is a Cauchy distribution with scale (half-width at half-maximum) parameter
ε, viz.

Lε(λ+ b) =
1

π

ε

ε2 + (λ+ b)2
−−−−→
ε→0+

δ(λ+ b) , (154)

that reduces to a delta-peak in b = −λ for any value of λ as ε → 0+. The spectral density
ρ(λ) can then be easily evaluated by sampling (see Section 6) from the population of the a
and b (i.e. the ω̂). Relying on the law of large numbers and callingM the number of samples
{(ai, bi)}, the two integrals in (153) can indeed be rewritten as

ρ(λ) ' ρS(λ) + ρC(λ)

' 1

M

M∑
i=0∧ai=0

Lε(λ+ bi) +
1

πM

M∑
i=0∧ai>0

ai + ε

(ai + ε)2 + (λ+ bi)2
, (155)

where ρS(λ) and ρC(λ) indicate respectively the singular and the continuous part of the
average spectral density. Eq. (155) is equivalent to (162) and corresponds to Eq. (40) in [37].

Figure 3 shows the spectral density obtained for ER matrices with mean degree c = 2
and Gaussian weights with zero mean and variance 1/c. The tails of the distribution and the
central peak in λ = 0 are dominated by localised states, i.e. the eigenvectors corresponding to
those values of λ have most of their components equal to zero. Given that there is a one-to-one
matching between the eigenvectors of graphs and their nodes, a localised state can be also
described as an eigenvector that is concentrated on few sites of the graph. Quantitatively, the
presence and location of localised states in the spectrum is confirmed by the numerical analysis
of the Inverse Participation Ratio (IPR) of the eigenvectors in [37]. Given an eigenvector v
of a N ×N matrix, its IPR is defined as

IPR(v) =

∑N
i=1 v

4
i(∑N

i=1 v
2
i

)2 . (156)
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The above definition is independent of the eigenvector’s normalisation. The IPR of localised
states is O(1), as opposed to the O(N−1) scaling for delocalised states. Indeed, the numerical
study in [36, 37] shows that the O(1) scaling for IPR is found in correspondence of the tails
and around the peak in λ = 0. Moreover, the IPR analysis makes it possible to relate localised
states with the singular contributions to the overall spectrum ρ(λ). Indeed, the regions of
the spectrum where the IPR is O(1) are also those where the singular contribution ρS(λ)
dominates over ρC(λ).

Moreover, when comparing numerical direct diagonalisation and population dynamics re-
sults two fundamental aspects must be taken into account:

• On the one hand, the eigenvalues obtained by direct diagonalisation must be suitably
binned in order to produce the numerical spectral density profile. The binning procedure
smoothens the localised peaks and makes them harder to detect.

• On the other hand, the parameter ε plays an essential role in highlighting the singular
contributions to the spectrum. In the evaluation of (155) only the samples such that
bi ∈ [−λ−O(ε),−λ+O(ε)] for any given value of λ contribute to ρS(λ). Therefore, in
order to have enough data for a reliable evaluation of the singular contribution ρS(λ),
one must refrain from using a very small ε > 0 (such as ε = O(10−300)), but rather use
a relatively large value ε > 0 (such as ε = O(10−3)), to ensure thatMερS(λ)� 1. Here
M indicates the number of samples used to evaluate the sums in (155).

The effects of the choice of the regulariser ε are evident in the case c = 2 (see Fig. 3), since
for such low c localised states prevail in the spectrum. Indeed, this is due to the structure
of the graph itself, which is made of a giant cluster component and a collection of isolated
finite connected clusters of nodes of any size (see C). An excellent agreement between direct
diagonalisation and population dynamics results is achieved for ε = 10−3 (top left panel).
Indeed, in the ε = 10−3 case, the Cauchy peaks related to the singular contributions to the
spectral density are broadened into “wider” Cauchy pdfs. On the other hand, when using a
smaller regulariser such as ε = 10−300 (top right panel), the spectral density exhibits large
fluctuations mainly due to errors that occur when sampling isolated states, as the condition
MερS(λ) � 1 cannot be satisfied. The peaks are superimposed on the continuous curve
representing ρC(λ).

However, the curve ρC(λ) is unable to capture the tails of the spectral density: this
effect is highlighted on a logarithmic scale (bottom panel). This is the typical signature of
a localisation transition: the tails of the spectral density are dominated by localised states,
hence they cannot be represented by the continuous part of the spectrum. At the same time,
using too small values for ε makes it impossible to observe the localised state contributions in
the tails. If a larger regulariser (hence better local statistics) were employed (top left panel),
then the tails could be revealed. For an extensive discussion of these phenomena, see [37].

These effects are less evident in the c = 4 case, shown in Fig. 4, since localised states are
much less relevant as the mean degree c increases. Indeed it has been shown in [71, 72] that
the weight of the delta-peaks related to localised states is an exponentially decreasing function
of c, hence the peaks tend to disappear and merge into the continuous part of the spectrum
as c grows. Moreover, the proportion of isolated nodes and isolated tree-like clusters of nodes
in the graph is strongly reduced (see again C). Therefore, in the c = 4 case the choice of the
regulariser is of lesser importance, and population dynamics simulations run with different
values of ε yield very similar results in the continuous part of the spectrum. This is shown
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Figure 3: Spectral density of ER matrices with mean degree c = 2 and Gaussian bond weights with zero mean and
variance 1/c. In all panels, direct diagonalisation results (red circles) are obtained from a sample of 10000 matrices of
size N = 1000. Top left: population dynamics result obtained with a regulariser ε = 10−3 (solid blue line) vs. the
direct diagonalisation results. Top right: population dynamics result obtained with a regulariser ε = 10−300 (solid blue
line) vs. the direct diagonalisation results. Bottom: comparison between population dynamics result obtained with a
regulariser ε = 10−3 (solid blue line), population dynamics result obtained with a regulariser ε = 10−300 (solid green
line) and direct diagonalisation on a logarithmic scale. An extremely small value of ε is not able to capture the tails of
the spectral density related to localised states, where the singular contributions prevail.
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Figure 4: Spectral density of ER matrices with mean degree c = 4 and Gaussian bond weights with zero mean and
variance 1/c. Left: population dynamics results obtained with a regulariser ε = 10−3 (solid blue line) and ε = 10−300

(solid green line) vs. direct diagonalisation results (red circles) obtained from a sample of 10000 matrices of size N = 1000.
The plot is on a logarithmic scale. Right: comparison between population dynamics result with ε = 10−3 (solid blue
line), direct diagonalisation results obtained from a sample of 10000 matrices of size N = 1000 (red circles) and direct
diagonalisation results obtained from a sample of 2500 matrices of size N = 4000 (green stars).

in the left panel of Fig. 4, where population dynamics results obtained with ε = 10−3 (solid
blue line) and ε = 10−300 (solid green line) are compared with the numerical diagonalisation
of 10000 matrices of size N = 1000 (red circles). The peak at λ = 0 due to isolated nodes
can be noticed. The log scale plot reveals that the solid green curve obtained for ε = 10−300

still departs from the blue one obtained for ε = 10−3 at the mobility edge, i.e. the value of λ
at which ρC(λ) vanishes, hence separating the delocalised from the localised phase. However,
the mobility edge for c = 4 is located at a larger λ than in the c = 2 case, in agreement with
previous observations [24,37]. The case of the spectral density of ER matrices with Gaussian
couplings with c = 4 is also used to show that finite size effects are barely present in the
spectral problem, away from the localisation transition. This is confirmed by results in the
right panel of Fig. 4 where we compare the numerical diagonalisation of matrices of different
size (in particular N = 1000 and N = 4000) with the same population dynamics simulation
run with a large regulariser ε = 10−3, in order to generate sufficient statistics in the tails.

Corroborating the observations of [71, 72], the left panel of Fig. 5 shows the average
spectral density for adjacency matrices of ER graphs with Gaussian bond weights with zero
mean and variance 1/c, for growing c. The plots are obtained using the population dynamics
algorithm with ε = 10−300, in order to highlight the continuous part of the spectrum ρC(λ).
As c grows from 2 to 4, the number of peaks superimposed on the continuous curve is strongly
reduced and the location of the mobility edge moves to larger values of λ, entailing that the
relevance of localised states is reduced. As c is further increased, the edge of the continuous
spectrum approaches λ = ±2, which are the edges of the Wigner semicircle that would be
obtained as c→∞ with that choice for bond weights statistics.

Finally, as an illustration of the fact that the formalism presented here can be used to
obtain the spectral density for other finite mean degree ensembles in the configuration model
class, we show in right panel of Fig. 5 the spectral density of the ensemble of adjacency
matrices of random regular graphs (RRG), having degree distribution p(k) = δk,c. We consider
the c = 4 case. For RRGs adjacency matrices, there are no localised states for any c >
2. Conversely, there are mainly localised states for c = 2 (see again [37] for a detailed

34



SciPost Physics Lecture Notes Submission

Figure 5: Left: spectral density of adjacency matrices of ER graphs with Gaussian bond weights with zero mean and
variance 1/c, for growing values of c, obtained with population dynamics algorithm using a regulariser ε = 10−300 to
highlight the continuous part of the spectrum. Right: spectral density of adjacency matrices of random regular graphs
with coordination c = 4. The population dynamics result (solid blue line) is compared to the analytical expression of
the spectral density, found in [45,46], known as Kesten-McKay pdf (red circles).

discussion). The population dynamics algorithm perfectly reproduces the Kesten-McKay
distribution [45,46], given by the analytical formula

ρ(λ) =
c
√

4(c− 1)− λ2

2π(c2 − λ2)
for |λ| ≤ 2

√
(c− 1) . (157)

We remark that (157) can be derived analytically within the formalism of Section 5.1 employ-
ing a “peaked” ansatz for the distribution of inverse variances as π̂(ω̂) = δ(ω̂ − ω̄). This is
shown in F.

6 Population dynamics algorithm

In this section, we sketch the stochastic population dynamics algorithm that allows us to solve
the self-consistency equation (148) and the sampling procedure to evaluate (149). This kind
of algorithm is widely used in the study of spin glasses [73, 74]. This procedure is general
and allows to solve every equation having the same structure as (148) (including for instance
(34)).

In order to solve (148), one represents the pdf π̂(ω̂) in terms of a population of NP complex
values {(ω̂i)}1≤i≤NP , which are assumed to be sampled from that pdf. Given that the true
pdf is initially unknown, a starting population is randomly initialised with Re[ω̂i] > 0. Then,
a stochastic algorithm for which the solution of Eq. (148) is the unique stationary solution is
constructed.

To start, we fix ε = 10−300. Indeed, when solving (148), we may choose ε to be as small
as possible in order not to bias the values of the ω̂ 6. Moreover, we define a set I of equally
spaced real positive numbers, starting at zero. The parameter λ will take values in I. The
distance between two consecutive values in I, denoted by ∆λ, represents the λ-scan. For the
plots shown in this paper, we have employed ∆λ = O(10−3). However, the mesh precision
can be tuned depending on the desired resolution of the spectrum. Since the average spectral

6This morally corresponds to considering the ε→ 0+ limit in eq. (148).
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density as expressed by Eq. (151) (or equivalently Eq. (155)) is an even function of λ, it can
be evaluated in the interval I and then simply mirrored w.r.t. 0 to obtain the full spectral
density shape. As a last remark, it is convenient to normalise the bond weights drawn from
pK(K) by

√
c, where c is the mean degree.

Given these initial remarks, the stochastic algorithm consists in iterating the following
steps until a statistically stationary population is obtained, for any given λ ∈ I.

1. Generate a random k according to the distribution k
c p(k), where p(k) is the degree

distribution of interest and c = 〈k〉.

2. Generate K from the bond weights pdf pK(K).

3. Select k − 1 elements ω̂` from the population at random, then compute

ω̂(new) =
K2

iλε +
∑k−1

`=1 ω̂`
, (158)

which is the equality enforced by the delta function in (148) . Replace a randomly
selected population member ω̂j (where j = 1, ..., NP ) with ω̂(new).

4. Return to (i).

A sweep is completed when every member of the population ω̂j with j = 1, ..., NP has been
updated once according to the previous steps. We denote the i-th sweep for a given λ as Si(λ).
A sufficient number Neq of sweeps is needed to equilibrate the population. Stationarity can
be assessed by looking at the sample estimate of the first moments of the ω̂ variables.

The population dynamics algorithm can also be employed for the sampling procedure
that allows one to numerically evaluate (149) (and in a similar fashion (36)). Once (for a
given value of λ) the population {(ω̂i)}1≤i≤NP has been brought to convergence after Neq

equilibration sweeps, a number Nmeas of so-called measurement sweeps M(λ) is performed.
Here, Nmeas is the number of the measurement sweeps.

Each measurement sweep Mj(λ) (j = 1, ..., Nmeas) can be divided into two parts. In the
first part, the population in equilibrium is updated via a sweep Sj(λ), as described before.
The second part is the actual measurement part mj(λ), involving the following steps. Two
(real) empty arrays {ai}{1≤i≤Nsam} and {bi}{1≤i≤Nsam} of size Nsam are initialised. Here, Nsam

is the number of samples per measurement sweep. Each of the ai and the bi will eventually
play the role of the real and the imaginary parts of sums of the ω̂`, respectively. Then, for
i = 1, ..., Nsam:

1. Generate a random k according to the degree distribution pc(k) (or in general p(k))

2. Select k elements ω̂` from the population {ωi}1≤i≤NP at random and compute

xi =
k∑
`=1

ω̂` . (159)

3. Compute

ai = Re[xi] , (160)

bi = Im[xi] . (161)
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When all Nmeas measurement sweeps Mj(λ) have been completed (typically, Nmeas ≈ 104),
the resulting Nmeas arrays of the type {ai}{1≤i≤Nsam} (respectively {bi}{1≤i≤Nsam}) are merged
together, yielding a unique large array {Aj}{1≤j≤M} (respectively {Bj}{1≤j≤M}) of sizeM =
Nsam ×Nmeas, which is the total number of samples (typically, we choose Nsam such that M
is O(107) for the chosen value of Nmeas). Therefore we can eventually compute

ρ(λ) =
1

πM

M∑
j=1

Aj + ε

(Aj + ε)2 + (Bj + λ)2
, (162)

which represents the contribution to the average spectral density for a given value of λ. It
should be noticed that the sample size M that one employs to compute the sum (162) is
completely unrelated to the population size NP . The evaluation of the sample average (162)
requires a careful choice of ε, since the value of ε in (162) will determine the width of the
Cauchy distributions approximating the delta-peaks in the spectrum (see the discussion in
Section 5.2). In general, the value of ε employed in (162) can be larger (up to ε = O(10−3))
than the value ε = 10−300 chosen for the equilibration sweeps in (158), in order to have
sufficient statistics to faithfully represent the singular part of the spectrum. Eq. (162),
corresponding to eq. (40) in [37], is a discretised version of (151). This step concludes the
sampling algorithm for a given value of λ. The full sampling algorithm can be summarised
as follows.

Algorithm 1 Population dynamics sampling algorithm

1: for λ ∈ I do
2: for e = 1, ..., Neq do
3: Se(λ) . Equilibration sweeps.
4: end for
5: for j = 1, ..., Nmeas do
6: Sj(λ)
7: mj(λ) . Sj(λ) and mj(λ) jointly form the measurement sweep Mj(λ).
8: end for
9: Compute (162) for given λ

10: end for .

An example of population dynamics algorithm for the spectra of ER matrices is available
upon request.

7 Conclusions

In summary, we have provided a pedagogical and comprehensive overview of the computation
of the average spectral density of sparse symmetric random matrices. We started with the
celebrated Edwards-Jones formula (2) and outlined its proof. The formula allows to recast
the determination of the density of states of a N × N matrix into the calculation of the
average free energy of a system of N interacting particles at equilibrium, described by a
Gibbs-Boltzmann distribution at imaginary inverse temperature. Therefore, techniques from
the statistical physics of disordered systems, such as the replica method, can be employed to
correctly deal with the calculation of the average free energy (see Eq. (16)) that features in
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the Edwards-Jones formula. The replica method was indeed the strategy used in the seminal
work of Bray and Rodgers, which represents the first attempt to obtain the spectral density
for matrices with ER connectivity. We have reproduced their calculations in detail, showing
how to derive the integral equation (90) whose solution still represents a challenging open
problem. We also described how to obtain the Wigner semicircle as the leading order of the
large mean degree expansion of Eq. (90), as well as the first 1/c correction.

Considering sparse tree-like graphs within the Edwards-Jones framework, we have de-
scribed how to apply the cavity method to the spectral problem for single instances. The
cavity method circumvents the averaging of the free energy by making the associated Gibbs-
Boltzmann distribution the target of its analysis. We have demonstrated that in this context
the only ingredients needed to compute the spectral density are the inverse variances of each
of the N marginal pdfs of the Gibbs-Boltzmann distribution (see Eq. (22)). These inverse
variances are easily obtained in terms of a set of self-consistency equations (29) for the cavity
inverse variances. Moreover, we have explained how in the thermodynamic limit the cav-
ity single-instance recursions give rise to a self-consistency integral equation (34) for the pdf
of the inverse cavity variances, in terms of which the average spectral density (36) is fully
determined at the ensemble level.

We have also illustrated an alternative replica derivation, where the high-temperature
replica symmetry ansatz employed by Bray and Rodgers is realised by assuming that the
order parameter and its conjugate are expressed through an infinite superposition of zero-
mean complex Gaussians, with random inverse variances (see Eq. (131) and (132)). We
showed that the two coupled integral equations (146) and (147) that define the pdfs of the
aforementioned inverse variances reduce to a unique self-consistency equation (148), which is
completely equivalent to Eq. (34) found within the cavity treatment in the thermodynamic
limit. In the replica framework, too, the average spectral density (149) depends only on this
single pdf defined in (148). Therefore, once again the equivalence between the cavity and
replica approaches is confirmed. Indeed, both methods permit to express the average spectral
density as a weighted sum of local contributions coming from nodes of different degree k.
On the practical side, the average spectral density is obtained by sampling from a large
population of complex numbers distributed according to the pdf of the inverse variances (148)
(or equivalently (34)). We remark that both approaches are not restricted to ER graphs, but
can handle any degree distribution with finite mean degree.

The essential tool for solving self-consistency equations of the kind of Eq. (148) and
performing the sampling procedure to evaluate the spectral density (149) is a stochastic
population dynamics algorithm. We give a detailed description of the algorithm along with
pratical tips to implement it. Results obtained with the population dynamics algorithm are in
excellent agreement with the numerical diagonalisation of large weighted adjacency matrices
of tree-like graphs, provided that the correct choice of the value of the regulariser ε used in
the algorithm is made. Indeed, we thoroughly describe the important role of ε in unveiling
the contribution of the localised states to the spectral density, also in connection with the
mean degree and structure of the graph. We are also able to show that the spectral density
does not significantly suffer from finite size effects, away from any localisation transition.

In line with the pedagogical gist of this work, we include a number of appendices where we
provide background information on graphs, discussion of technical aspects, and quick proofs
of the identities that have been used in the main text.

We believe that there are still open pathways for further research in this field. One might
be the investigation of the properties of the eigenvectors of sparse random matrices through
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the analysis of the statistics of the local resolvent using the cavity method. As mentioned in
Section 3.5, there is a connection between the resolvent of a matrix J (43), its eigenvectors,
and the marginal inverse variances ωi defined in Eq. (31). Indeed, given a N ×N matrix J
with eigenpairs {(λα,uα)}α=1,...,N , whose resolvent is G(z) = (z1− J)−1, from Eq. (46), the
following identity holds

ε ImG(λ− iε)ii = επ

N∑
α=1

δε(λ− λα)u2
iα , (163)

for λ ∈ R and for any i = 1, . . . , N . The function δε(x − x0) = 1
π

ε
(x−x0)2+ε2

approximates

the Dirac delta as ε → 0. When λ = λα, then ε ImG(λ − iε)ii ' u2
iα + O(ε2). On the other

hand, considering Eq. (46) for just a single instance (i.e. omitting the ensemble average) and
comparing it with Eq. (32), one eventually observes that

Re

[
1

ωi

]
= π

N∑
α=1

δε(λ− λα)u2
iα , (164)

where the ωi are defined in Eq. (31). Eq. (164) suggests that the distribution of the squares
of the eigenvectors can be obtained in terms of that of the ωi. Some preliminary tests found
evidence that Eq. (164) may cease to be valid for graphs above the percolation threshold.
This could signal that in this specific case the tree-like assumption upon which the cavity
method is based actually breaks down, due to cycles which are present with probability O(1)
in graphs with a giant component. Moreover, another possible cause may be quasi-degeneracy
phenomena for eigenvalues in the continuous part of the spectrum of those graphs. Thus, we
foresee that Eq. (164) may be aimed specifically at the analysis of localised eigenvectors of
trees and sparse matrices below the percolation threshold. These questions deserve to be
investigated in more detail in future works.

Another topic of great importance would be the understanding of finite-size effects in
the immediate vicinity of localisation transitions, which are expected to affect results as in
other continuous phase transitions. The study of these phenomena for spectra of sparse
random matrices also provides a framework for the investigation of Anderson localisation,
which has recently regained new interest in view of its connection to systems exhibiting
many-body localisation (see [75] for a recent review). Despite a variety of works concerning
the localisation transition in spectra of sparse symmetric random matrices [15, 23, 24] and
studies on the localisation of their top eigenvector [76, 77], a systematic approach for the
analysis of the finite size effects at the transition is still needed. Steps in this direction
have been done in [78,79], where the authors focus on finite size effects concerning Anderson
localisation on RRGs.

In connection with the localisation transition, another unexplored field that deserves fur-
ther investigation is the behaviour of the population dynamics algorithm at the transition.
Indeed, as pointed out in [37] it exhibits critical slowing down and long autocorrelation time,
which in turn affect the quality of the averages. Moreover, as highlighted in [80] for glassy sys-
tems on networks, the population dynamics results at the transition are also affected by finite
population size effects. Therefore a systematic analysis of how the algorithm is influenced by
the crossover between the delocalised and the localised phase would be extremely insightful
not only for the spectral problem per se but in general whenever this kind of algorithm is
employed.
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A Sokhotski-Plemelj formula

The Sokhotski-Plemelj identity is

lim
ε→0+

1

x± iε
= Pr

(
1

x

)
∓ iπδ(x) . (165)

It is employed for the solution of some improper integrals. A quick proof for a real test
function g(x) follows. We have

lim
ε→0+

∫ ∞
−∞

dx
g(x)

x± iε
= lim

ε→0+

∫ ∞
−∞

dx x
g(x)

x2 + ε2
∓ iπ lim

ε→0+

∫ ∞
−∞

dx g(x)
1

π

ε

x2 + ε2
, (166)

where the real and imaginary part of the integrand have been separated. The first integral
on the r.h.s. of (166) can be written as a Cauchy principal value, viz.

lim
ε→0+

∫ ∞
−∞

dx x
g(x)

x2 + ε2
= lim

ε→0+

∫ ∞
−∞

dx
g(x)

x

x2

x2 + ε2
(167)

= lim
ε→0+

(∫ −ε
−∞

dx
g(x)

x
+

∫ ∞
ε

dx
g(x)

x

)
=

[
Pr

(
1

x

)]
(g) . (168)

The second integral on the r.h.s of (166) reduces to

lim
ε→0+

∫ ∞
−∞

dx g(x)
1

π

ε

x2 + ε2
=

∫ ∞
−∞

dx g(x)δ(x) = g(0) , (169)

where limε→0+
1
π

ε
x2+ε2

= δ(x) has been employed.

B The principal branch of the complex logarithm

The logarithm in the complex plane is in general a multi-valued function. Whenever a well
defined, single-valued function is needed, the principal branch of the complex logarithm can
be considered. It is denoted by “Log” and defined such that for any z ∈ C with r = |z|,

Log(z) = ln(r) + iArg(z) with Arg(z) ∈ ]−π, π] . (170)

The function Arg(z) denotes the principal value of the argument of the complex number z.
In particular, given z = reiθ ∈ C, the argument of z is given by arg(z) = θ and is in general
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a multi-valued function. The single-valued principal argument Arg(z) is related to arg(z) via
the following relation,

Arg(z) = arg(z) + 2π

⌊
1

2
− arg(z)

2π

⌋
, (171)

where the symbol b...c denotes the floor operation, i.e. bxc is the integer number such that
x− 1 < bxc ≤ x for x ∈ R.

In general Log ez 6= z for z ∈ C. Indeed, for any z = x + iy ∈ C the following property
holds:

Log(ez) = Log|ez|+ iArg(ez) = Log(ex) + iArg(eiy)

= x+ i

{
arg(eiy) + 2π

⌊
1

2
− arg(eiy)

2π

⌋}
= x+ iy + 2πi

⌊
1

2
− y

2π

⌋
= z + 2πi

⌊
1

2
− Im[z]

2π

⌋
, (172)

where Log(x) = ln(x) for x ∈ R and the definition (171) has been used for the principal value
of the argument Arg(z).

C Erdős-Rényi graphs

The Erdős-Rényi (ER) graph is the prototypical example of a random graph, introduced
by Erdős and Rényi in [81, 82]. It is the simplest and most studied uncorrelated undirected
random network. It can be denoted by G(N, p), where N is the number of nodes and p ∈ [0, 1]
is the probability that any two nodes (there are N(N − 1)/2 possible pairs, hence possible
links) are connected. In other words, p is the probability that a link exists independently from
the others. In formulae, the probability that a link exists between nodes i and j is

pC(cij) = pδcij ,1 + (1− p) δcij ,0 . (173)

All properties of the ER model depend on the two parameters N and p. Its degree
distribution is binomial, viz.

Pr[a random node has degree k] = p(k) =

(
N − 1

k

)
pk(1− p)N−1−k . (174)

Indeed, a node has degree k if it is connected to k nodes (the probability of this event being
pk) and at the same it is not connected to all the remaining N − 1− k nodes (the probability
of this event being (1 − p)N−1−k). The binomial coefficient accounts for the fact that the
specific subset of k nodes we choose out of the remaining N − 1 does not matter. The mean
degree is then c = p(N − 1). In the limit N → ∞ where N − 1 ' N and keeping c = Np
constant, the binomial distribution in (174) converges to the Poisson distribution,

pc(k) =
cke−c

k!
. (175)
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The condition for this limit to hold is exactly verified in the sparse ER ensemble that we
consider in our analysis. Indeed, we explicitly ask that the mean degree c be a finite constant,
hence ensuring that p = c

N → 0 as N → ∞. The Poisson distribution in (175) is decaying
exponentially for large degree k.

The structure of an ER graph and in particular the existence of a giant component depend
on the value of p [82]. The giant component of a graph is the largest connected component
(i.e. cluster of nodes) in the graph, containing a finite fraction of the total N nodes. In
a connected component, every two nodes are connected by a path, whereas there are no
connections between two nodes belonging to two different components. We have the following
properties [83,84]:

• For p < 1
N (i.e. c < 1), the probability of having a giant component is zero. Indeed,

almost surely there are no connected components with size larger than O(ln(N)). The
graph can be described as a disjoint union of trees and unicycle components, i.e. trees
with an extra link forming a cycle.

• For p > 1
N (i.e. c > 1), the probability of having a giant component is 1. Almost surely,

the graph will have a unique giant component whose size is O(N) and contains cycles
of any length, while the remaining smaller components (typically trees and unicycles)
have at most size O(ln(N)).

• p = 1
N = pc represents the percolation threshold as it separates the two regimes: indeed

at p = pc (i.e. c = 1) most of the isolated components for c < 1 merge together,
giving rise to a giant component of size O(N2/3). As the (constant) mean degree c > 1
increases, the smaller components join the giant component, which then becomes O(N)
in size. The smaller the size of the isolated components, the longer they will survive the
merging process.

• For p ≤ ln(N)
N , the graph contains isolated nodes almost surely, hence it is disconnected.

As soon as p > ln(N)
N , the graph becomes connected, as the isolated nodes attach to the

giant component entailing that every pair of nodes in the graph is connected by a path.
The value p = ln(N)

N is then a threshold for the connectivity of the graph.

The structural properties of the graph are reflected in the spectrum. Indeed, the variety of
peaks in the spectrum related to singular contributions are due to isolated nodes and isolated
finite clusters of nodes that are still present for finite constant c > 1, alongside with the giant
component.

The ER graph can also be seen as a model of link percolation [85]. Indeed, ER graphs can
be generated also starting from a fully connected graph and removing links at random with
constant probability 1− p.

An algorithm for the generation of the adjacency matrix of any generic random graphs
within the configuration model is described in Section 8.1 and detailed in Appendix J.5
(Algorithm 27) of [86]. A simple code for the generation of single instances of adjacency
matrices of ER graphs is available upon request.
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D How to perform the average (54)

The goal is to perform the average〈
exp

 i

2

N∑
i,j=1

n∑
a=1

viaJijvja

〉
J

(176)

w.r.t. the joint distribution of the matrix entries

P ({Jij}) =
∏
i<j

pC(cij)δcij ,cji
∏
i<j

pK(Kij)δKij ,Kji , (177)

where
pC(cij) =

c

N
δcij ,1 +

(
1− c

N

)
δcij ,0 (178)

represents the ER connectivity distribution, and pK(Kij) is the bond weight pdf. The average
is computed for large N as follows,〈

exp

 i

2

N∑
i,j=1

n∑
a=1

viaJijvja

〉
J

=

〈∏
i<j

exp

(
i
n∑
a=1

viacijKijvja

)〉
{c},{K}

=
∏
i<j

〈
exp

(
i

n∑
a=1

viacijKijvja

)〉
c,K

'
∏
i<j

[
1 +

c

N

(
〈eiK

∑
a viavja〉K − 1

)]

' exp

 c

2N

N∑
i,j=1

(〈
eiK

∑
a viavja

〉
K
− 1
) , (179)

where the subscripts {c} and {K} respectively denote averaging w.r.t. the joint pdfs of the
{cij} and the bond weights {Kij}, whereas the non-bracketed subscripts c and K refers to the
average over a single random variable drawn from pC(c) and pK(K), respectively. Moreover,
in the second line we have used independence of the random variables and in the last line we
have re-exponentiated the product and the factor 1/2 prevents from over-counting symmetric
terms in the double sum.

E The action Sn in terms of π and π̂

The following action is derived in Section 5,

Sn[π, π̂, λ] = S1[π, π̂] + S2[π] + S3[π̂, λ] . (180)

The contributions (135), (136) and (137) are obtained from (62), (63) and (64) respectively,
using the saddle-point expressions (131) and (132) for the order parameter ϕ?(~v) and its
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conjugate iϕ̂?(~v). Defining the shorthands dπ(ω) = dωπ(ω), {dπ̂}k =
∏k
`=1 dω̂`π̂(ω̂`), {ω̂}k =∑k

`=1 ω̂` and Z(x) =
∫

dv e−
x
2
v2 =

√
2π
x , one finds

S1[π, π̂] = −ĉ
∫

dπ(ω)dπ̂(ω̂)

∫
d~v

n∏
a=1

e−(ω+ω̂2 )v2a

Z(ω)Z(ω̂)

= −ĉ
∫

dπ(ω)dπ̂(ω̂)

(
Z(ω + ω̂)

Z(ω)Z(ω̂)

)n
' −ĉ− nĉ

∫
dπ(ω)dπ̂(ω̂) log

(
Z(ω + ω̂)

Z(ω)Z(ω̂)

)
, (181)

where we have used a small n expansion in the last line. Concerning S2, one has

S2[π] =
c

2

∫
d~vd~v′

∫
dπ(ω)dπ(ω′)

n∏
a=1

e−
ω
2
v2a

Z(ω)

e−
ω′
2
v′a

2

Z(ω′)

(
〈eiK

∑
a vav

′
a〉K − 1

)
=
c

2

∫
dπ(ω)dπ(ω′)

[〈(
Z2(ω, ω′,K)

Z(ω)Z(ω′)

)n〉
K

− 1

]
' nc

2

∫
dπ(ω)dπ(ω′)

〈
log

Z2(ω, ω′,K)

Z(ω)Z(ω′)

〉
K

, (182)

where we have used Z2(ω, ω′,K) =
∫

dvdv′e−
ω
2
v2−ω

′
2
v′2+iKvv′ and again a small n expansion.

Concerning S3, one gets

S3[π̂, λ] = Log

∫
d~v e−iλ

2

∑
a v

2
a+iϕ̂(~v)

= Log

∫
d~v e−iλ

2

∑
a v

2
a

∞∑
k=0

(iϕ̂(~v))k

k!

= Log

∞∑
k=0

ĉk

k!

∫
d~v e−iλ

2

∑
a v

2
a

∫
{dπ̂}k

k∏
`=1

n∏
a=1

e−
ω̂`
2
v2a

Z(ω̂`)

= Log

∞∑
k=0

ĉk

k!

∫
{dπ̂}k

[
Z (iλε + {ω̂}k)∏k

`=1 Z(ω̂`)

]n

' Log

∞∑
k=0

ĉk

k!

∫
{dπ̂}k

(
1 + n log

Z (iλε + {ω̂}k)∏k
`=1 Z(ω̂`)

)

= Log eĉ

[
1 + n

∞∑
k=0

ĉk

k!
e−ĉ

∫
{dπ̂}k log

Z (iλε + {ω̂}k)∏k
`=1 Z(ω̂`)

]

' ĉ+ n

∞∑
k=0

pĉ(k)

∫
{dπ̂}k log

Z (iλε + {ω̂}k)∏k
`=1 Z(ω̂`)

, (183)

where pĉ(k) = ĉk

k! e
−ĉ is a Poisson distribution with parameter ĉ. We remark that in the second

line we have expressed exp (iϕ̂(~v)) through its power series and a small n expansion has been
used across the entire calculation.
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F The Kesten-McKay distribution from a peaked π̂

We analytically derive the spectral density of the ensemble of adjacency matrices of random
regular graphs (RRGs), using the formalism of Section 5. We employ eq. (148) and (149),
specialised to the RRG case where p(k) = δk,c and pK(K) = δ(K − 1). Therefore, we obtain
for the self-consistency equation for π̂

π̂(ω̂) =

∫
{dπ̂}c−1δ

(
ω̂ − 1

iλε +
∑c−1

`=1 ω̂`

)
, (184)

whereas for the spectral density we get

ρ(λ) =
1

π
lim
ε→0+

Re

∫
{dπ̂}c

[
1

iλε +
∑c

`=1 ω̂`

]
. (185)

Eq. (184) can be solved by a degenerate pdf of the form

π̂(ω̂) = δ(ω̂ − ω̄ε) , (186)

provided that ω̄ε solves

ω̄ε =
1

iλε + (c− 1)ω̄ε
⇔ ω̄ε =

−iλε ±
√

(iλε)2 + 4(c− 1)

2(c− 1)
. (187)

Therefore, the spectral density reads

ρ(λ) =
1

π
lim
ε→0+

Re

[
1

iλε + cω̄ε

]
=

1

2π
lim
ε→0+

Re

[
(c− 2)(iλε)∓ c

√
4(c− 1)− λ2

ε

λ2
ε − c2

]
. (188)

Taking the real part and thereafter the ε→ 0+ limit in (188), one obtains

ρ(λ) =
c
√

4(c− 1)− λ2

2π(c2 − λ2)
for |λ| ≤ 2

√
(c− 1) , (189)

where the minus sign has been chosen in order to have a physical solution. The latter expres-
sion is the Kesten-McKay pdf in Eq. (157).

G Trees have a symmetric spectrum

A tree is a connected acyclic undirected graph. Acyclic means that it contains no cycles. In a
tree, any two nodes are connected via a unique path [87]. In particular, trees are examples of
bipartite graphs, in which nodes can be divided into two disjoint subgraphs S1 and S2, such
that every node in subgraph S1 only has neighbours in the complementary subgraph S2 and
vice versa.

Here, we show that the N × N adjacency matrix A (whether it is weighted or not) of a
tree with N nodes has a spectrum that is symmetric around λ = 0. In other words, for any
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eigenvalue λ of A, then −λ is also an eigenvalue of A. This result is encoded in the fact that
in the set of recursion equations for the cavity inverse variances (29) and single-site inverse
variances (31), the matrix entries appear only through their square.

Let x be the eigenvector of A corresponding to the eigenvalue λ. Given x and λ, we will
be able to construct a vector y that is an eigenvector of A corresponding to the eigenvalue
−λ. Indeed, considering the eigenvalue equation for the component xi,

λxi =
∑
j∈∂i

Aijxj , (190)

the node i contributing to the l.h.s. of (190) and the nodes {j : j ∈ ∂i} contributing to the
r.h.s. of (190) always belong to different subgraphs. Therefore, the signs of all the components
xj with j ∈ ∂i all belonging to one of the two subgraphs (S1 or S2) can be changed, giving
rise to

−λxi =
∑
j∈∂i

(Aij)(−xj)⇔ −λyi =
∑
j∈∂i

(Aij)(yj) . (191)

This reasoning can be iterated for any i = 1, . . . , N . Therefore, given the eigenvector x
corresponding to λ, one can construct a vector y such that

yi =

{
xi i ∈ S1

−xi i ∈ S2

. (192)

Of course, the choice of inverting the sign of the components of x on the set S2 is arbitrary.
The same result is achieved by changing the sign of the components living on nodes in S1

while leaving the components defined on nodes in S2 unchanged. The vector y is thus an
eigenvector of the matrix A corresponding to −λ.
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[50] Reimer Kühn and Jort Van Mourik. Spectra of modular and small-world matrices. Jour-
nal of Physics A: Mathematical and Theoretical, 44(16):165205, 2011, doi:10.1088/1751-
8113/44/16/165205.
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