Systemic Risk and the Mathematics of Falling Dominoes

Reimer Kühn

Disordered Systems Group
Department of Mathematics
King’s College London

KCL Spotlight- Mathematics, July 17, 2012
Outline

1. The Laws of Falling Dominoes
2. Risk and Falling Dominoes
3. Fundamental Problems of Risk Analysis
 - Main Interest and Concern: Interactions
4. Operational Risks — Interacting Processes
 - Dynamics – Mathematics of Falling Dominoes
 - A Simple Homogeneous Process Network
5. Summary
The Laws of Falling Dominoes

- A domino falls, if kicked sufficiently vigorously.
The Laws of Falling Dominoes

○ A domino falls, if kicked sufficiently vigorously.

○ A domino can be toppled by another domino.
The Laws of Falling Dominoes

- A domino falls, if kicked sufficiently vigorously.
- A domino can be toppled by another domino.
- Avalanches can occur, if dominoes are set too closely.
Risk and Falling Dominoes

Operational Risk

Domino Theory & Spread of Communism

Blackouts in Power Grids

Financial Crisis
Fundamental Problem of Risk Analysis

Estimate likelihood and potential losses due to

- negative fluctuation of portfolio-value (stock-prices, exchange rates, interest rates, economic indices) ↔ market risk
Fundamental Problem of Risk Analysis

Estimate **likelihood and potential losses** due to

- negative fluctuation of portfolio-value (stock-prices, exchange rates, interest rates, economic indices) ↔ **market risk**
- change of credit quality, including default of creditor (asset values of firms, ratings, stock-prices) ↔ **credit risk**
Fundamental Problem of Risk Analysis

Estimate **likelihood and potential losses** due to

- negative fluctuation of portfolio-value (stock-prices, exchange rates, interest rates, economic indices) \leftrightarrow **market risk**
- change of credit quality, including default of creditor (asset values of firms, ratings, stock-prices) \leftrightarrow **credit risk**
- process failures (human errors, hardware/software- failures, lack of communication, fraud, external catastrophes) \leftrightarrow **Operational risk**
Fundamental Problem of Risk Analysis

Estimate **likelihood and potential losses** due to

- negative fluctuation of portfolio-value (stock-prices, exchange rates, interest rates, economic indices) \(\leftrightarrow\) **market risk**
- change of credit quality, including default of creditor (asset values of firms, ratings, stock-prices) \(\leftrightarrow\) **credit risk**
- process failures (human errors, hardware/software- failures, lack of communication, fraud, external catastrophes) \(\leftrightarrow\) **Operational risk**
- rare fluctuations in cash-flows, requiring short term acquisition of funds to maintain liquidity \(\leftrightarrow\) **liquidity risk**
Main Interest and Concern: Interactions

- Traditional approaches treat risk elements as independent or at best statistically correlated.
Main Interest and Concern: Interactions

- Traditional approaches treat risk elements as independent or at best statistically correlated
- Misses functional & dynamic nature of relations: terminal–mainframe/input errors–results/manufacturer–supplier relations . . .

Effect of interactions between risk elements can have avalanches of risk events (process failures, defaults)

Fat tails in loss distributions

Volatility clustering in markets (intermittency)
Main Interest and Concern: Interactions

- Traditional approaches treat risk elements as independent or at best statistically correlated
- Misses functional & dynamic nature of relations: terminal–mainframe/input errors–results/manufacturer–supplier relations . . .
- Effect of interactions between risk elements
Main Interest and Concern: Interactions

- Traditional approaches treat risk elements as independent or at best statistically correlated.
- Misses functional & dynamic nature of relations: terminal–mainframe/input errors–results/manufacturer–supplier relations . . .
- Effect of interactions between risk elements
 - Can have of avalanches of risk events (process failures, defaults)
Main Interest and Concern: Interactions

- Traditional approaches treat risk elements as independent or at best statistically correlated.
- Misses functional & dynamic nature of relations: terminal–mainframe/input errors–results/manufacturer–supplier relations . . .
- Effect of interactions between risk elements
 - Can have of avalanches of risk events (process failures, defaults)
 - Fat tails in loss distributions
Main Interest and Concern: Interactions

- Traditional approaches treat risk elements as independent or at best statistically correlated
- Misses functional & dynamic nature of relations: terminal–mainframe/input errors–results/manufacturer–supplier relations . . .
- Effect of interactions between risk elements
 - Can have of avalanches of risk events (process failures, defaults)
 - Fat tails in loss distributions
 - Volatility clustering in markets (intermittency)
Operational Risks — Interacting Processes

- Conceptualise organisation as a network of processes
- Two state model: processes either up and running \((n_i = 0)\) or down \((n_i = 1)\)
- Reliability of processes and degree of functional interdependence heterogeneous across the set of processes; connectivity & concept of neighbourhood functionally defined

\[\Rightarrow \text{model defined on random graph} \]

- Losses determined (randomly) each time a process goes down
Dynamics – Mathematics of Falling Dominoes

- Processes need support to keep running (energy, human resources, material, information, input from other processes, etc.)

- \(h_{it} \) total support received by process \(i \) at time \(t \)

\[
h_{it} = h_i^* - \sum_j J_{ij} n_{jt} + x_{it}
\]

- \(h_i^* \) support in fully functional environment
- \(J_{ij} \) support to process \(i \) provided by process \(j \)
- \(x_{it} \) random (e.g. Gaussian white noise).

- Process \(i \) will fail, if the total support for it falls below a critical threshold (if \(h_{it} \leq 0 \) – domino falls, if kicked too strongly)

\[
n_{it+\Delta t} = \Theta \left(\sum_j J_{ij} n_{jt} - h_i^* - x_{it} \right)
\]
Probability that a Domino Falls

- Probability of failure/probability of domino falling

\[
\text{Prob}(n_{i(t+\Delta t)} = 1|\mathbf{n}(t)) = \int_{-\infty}^{\sum_j J_{ij} n_{jt} - h_i^*} dx \, p(x) \equiv \Phi\left(\sum_j J_{ij} n_{jt} - h_i^*\right)
\]

- unconditional and conditional probability of failure

\[
p_i = \Phi(-h_i^*)
\]
\[
p_i|j = \Phi\left(J_{ij} - h_i^*\right)
\]
A Simple Homogeneous Process Network

- Large system $1 \leq i \leq N$, $(N \gg 1)$, with all-to-all couplings, and $h_i^* = h^*$ independent of i.

$$J_{ij} = \frac{J_0}{N}, \quad \forall (i, j) \Rightarrow \sum_j J_{ij} n_{jt} = \frac{J_0}{N} \sum_j n_{jt} = J_0 m_t$$

- Dynamics

$$n_{it + \Delta t} = \Theta \left(\sum_j J_{ij} n_{jt} - h_i^* - x_{it} \right) = \Theta \left(J_0 m_t - h^* - x_{it} \right).$$

Thus by Law of Large Numbers (LLN)

$$m_{t + \Delta t} = \frac{1}{N} \sum_{i=1}^{N} \Theta \left(J_0 m_t - h^* - x_{it} \right) \simeq \Phi \left(J_0 m_t - h^* \right)$$
Analysis of the Dynamics

- Iterated function dynamics

\[m_{t+\Delta t} = \Phi(J_0 m_t - h^*) \]
Analysis of the Dynamics

- Iterated function dynamics

\[m_{t+\Delta t} = \Phi(J_0 m_t - h^*) \]

- Analyze the behaviour as a function of the parameters \(J_0 \) and \(h^* \)
Analysis of the Dynamics

- Iterated function dynamics

\[m_{t+\Delta t} = \Phi\left(J_0 m_t - h^* \right) \]

- Analyze the behaviour as a function of the parameters \(J_0 \) and \(h^* \)
- Need properties of \(\Phi(x) \)
Analysis of the Dynamics

- Iterated function dynamics

\[m_{t+\Delta t} = \Phi \left(J_0 m_t - h^* \right) \]

- Analyze the behaviour as a function of the parameters \(J_0 \) and \(h^* \)
- Need properties of \(\Phi(x) \)
 - \(\Phi(x) \to 1 \) as \(x \to \infty \), \(\Phi(-x) = 1 - \Phi(x) \)
Analysis of the Dynamics

- Iterated function dynamics

\[m_{t+\Delta t} = \Phi(J_0 m_t - h^*) \]

- Analyze the behaviour as a function of the parameters \(J_0 \) and \(h^* \)

- Need properties of \(\Phi(x) \)
 - \(\Phi(x) \to 1 \) as \(x \to \infty \), \(\Phi(-x) = 1 - \Phi(x) \)
 - \(\Phi \) has inflection point (and maximum slope) at \(x = 0 \), with \(\Phi(0) = \frac{1}{2} \).
Analysis of the Dynamics

- Iterated function dynamics

\[m_{t+\Delta t} = \Phi\left(J_0 m_t - h^* \right) \]

- Analyze the behaviour as a function of the parameters \(J_0 \) and \(h^* \)

- Need properties of \(\Phi(x) \)
 - \(\Phi(x) \to 1 \) as \(x \to \infty \), \(\Phi(-x) = 1 - \Phi(x) \)
 - \(\Phi \) has inflection point (and maximum slope) at \(x = 0 \), with \(\Phi(0) = \frac{1}{2} \).
 - Question: slope of \(\Phi(ax) \)?
Analysis of the Dynamics

- Iterated function dynamics

\[m_{t+\Delta t} = \Phi \left(J_0 m_t - h^* \right) \]

- Analyze the behaviour as a function of the parameters \(J_0 \) and \(h^* \)

- Need properties of \(\Phi(x) \)
 - \(\Phi(x) \to 1 \) as \(x \to \infty \), \(\Phi(-x) = 1 - \Phi(x) \)
 - \(\Phi \) has inflection point (and maximum slope) at \(x = 0 \), with \(\Phi(0) = \frac{1}{2} \).
 - Question: slope of \(\Phi(ax) \)?
 - Answer: chain-rule \(\frac{d}{dx} \Phi(ax) = a \Phi'(ax) \)
Analysis of the Dynamics

- Iterated function dynamics

\[m_{t+\Delta t} = \Phi \left(J_0 m_t - h^* \right) \]

- Analyze the behaviour as a function of the parameters \(J_0 \) and \(h^* \)

- Need properties of \(\Phi(x) \)
 - \(\Phi(x) \to 1 \) as \(x \to \infty \), \(\Phi(-x) = 1 - \Phi(x) \)
 - \(\Phi \) has inflection point (and maximum slope) at \(x = 0 \), with \(\Phi(0) = \frac{1}{2} \).

- Question: slope of \(\Phi(ax) \) ?

- Answer: chain-rule \(\frac{d}{dx} \Phi(ax) = a \Phi'(ax) \)

- For not too small values of \(h^* \) can vary between lower and upper curve in above diagram (i.e. between system with only low-\(m \), via system with coexisting low-\(m \) and high-\(m \) states, to system with only high-\(m \) states) by increasing \(J_0 \). For small \(h^* \) have only high-\(m \) state.
Summary

- We found that networks can be destabilized by large degrees of interdependency (large J_0) even if all processes are very reliable (with large h^*).
- For intermediate levels of dependency (intermediate J_0), functioning and dysfunctional states of the system coexist.
- (Not shown): In systems with finite N, a functioning state can spontaneously switch to the dysfunctional state (without an apparent 'big' perturbation.)
- Results qualitatively unchanged for heterogeneous networks (not all-to-all interactions, heterogeneous levels of reliability, heterogeneous mutual dependency)
- Similar methods for credit risk.