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2LPTENS, Unité Mixte de Recherche (UMR 8549) du CNRS et de l’ENS, associée à
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Abstract. Rare event statistics for random walks on complex networks are investigated using

the large deviation formalism. Within this formalism, rare events are realised as typical events

in a suitably deformed path-ensemble, and their statistics can be studied in terms of spectral

properties of a deformed Markov transition matrix. We observe two different types of phase

transition in such systems: (i) rare events which are singled out for sufficiently large values

of the deformation parameter may correspond to localised modes of the deformed transition

matrix; (ii) “mode-switching transitions” may occur as the deformation parameter is varied.

Details depend on the nature of the observable for which the rare event statistics is studied, as

well as on the underlying graph ensemble. In the present paper we report results on rare events

statistics for path averages of random walks in Erdős-Rényi and scale free networks. Large

deviation rate functions and localisation properties are studied numerically. For observables

of the type considered here, we also derive an analytical approximation for the Legendre

transform of the large deviation rate function, which is valid in the large connectivity limit.

It is found to agree well with simulations.
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1. Introduction

Random walks are dynamical processes widely used to analyse, organise or perform important

tasks on networks such as searches [1, 2], routing or data transport [3, 4, 5]. Their popularity is

due to their cheap implementability, as they rely only on local information, such as the state of

the neighbourhood of a given node of the network. This ensures network scalability and allows

fast data transmission without the need for large storage facilities at nodes, such as big routing

tables in communication networks. These features make random walks an efficient tool to

explore networks characterised by a high cost of information. Examples are sensor networks

[6] where many signalling packets are needed to acquire wider networks status information.

In peer-to-peer networks the absence of a central server storing file locations requires users to

perform repeated local searches in order to find a file to download, and various random walk

strategies have been proposed as a scalable method [7, 8, 9] in this context. Less attention

has been paid to characterise rare events associated with random walks on networks. Yet

the occurrence of a rare event can have severe consequences. In hide-and-seek games, for

instance [10], rare events represent situations where the seeker finds either most (or unusually

many) of the hidden targets, or conversely none (or unusually few). In the context of cyber-

security, where one is concerned with worms and viruses performing random walks through a

network, a rare event would correspond to a situation where unusually many sensitive nodes

are successfully attacked and infected, which may have catastrophic consequences for the

integrity of an entire IT infrastructure. Characterising the statistics of rare events for random

walks in complex networks and its dependence on network topology is thus a problem of

considerable technological importance. A variant of this problem was recently analysed for

biased random walks in complex networks [11]. That paper addressed rare fluctuations in

single node occupancy for an ensemble of independent (biased) walkers in the stationary state

of the system. By contrast, our interest here is in rare event statistics of path averages, or

equivalently of time integrated variables. Rare event statistics of this type has been looked at

for instance in the context of kinetically constrained models of glassy relaxation [12]; relations

to constrained ensembles of trajectories were explored in [13] for Glauber dynamics in the 1d

Ising chain. While these studies were primarily concerned with the use of large deviation

theory as a tool to explore dynamical phase transitions in homogeneous systems, our focus

here is on the interplay between rare event statistics and the heterogeneity of the underlying

system.

In the present paper we use large deviation theory to study rare events statistics for path

averages of observables associated with sites visited along trajectories of random walks.

Within this formalism, rare events are realised as typical events in a suitably deformed

path-ensemble [14, 12]. Their statistics can be studied in terms of spectral properties of

a deformed version of the Markov transition matrix for the original random walk model,

the relevant information being extracted from the algebraically largest eigenvalue of the

deformed transition matrix. Such deformations may direct random walks to subsets of a

network with vertices of either atypically high or atypically low degree. It also amplifies the

heterogeneity of transition matrix elements for large values of the deformation parameter and
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we observe that, as a consequence, the eigenvector corresponding to the largest eigenvalue

of the deformed transition matrix may exhibit a localisation transition, indicating that rare

large fluctuations of path averages are typically realised by trajectories that remain localised

on small subsets of the network. Within localised phases, we also encounter a second type of

dynamical phase transition related to switching between modes as the deformation parameter

used to select rare events is varied. Our methods allow us to study the role that network

topology and heterogeneity play in selecting these special paths, as well as to infer properties

of paths actually selected to realise extreme events. Given the variety of different path

averages and graph ensembles one might consider, a complete exploration of the problem

within the present paper is clearly out of the question. In what follows, we report results

for Erdős-Rényi (ER) networks and for scale free (SF) networks obtained by a preferential

attachment algorithm and we shall further restrict ourselves to two types of path average to be

specified below.

2. The model

2.1. Setup of the problem

We consider a complex network with adjacency matrix A, with entries ai j = a ji = 1 if the edge

(i j) exists, and ai j = 0 otherwise. The transition matrix W of an unbiased random walk has

entries Wi j = ai j/k j where k j is the degree of node j, i.e. k j =
∑

i ai j, and Wi j is the probability

of a transition from j to i. While we restrict ourselves in the present paper to analyse rare-

events for unbiased random walks, we remark at the outset that our method is not restricted to

this case, and that more general hopping processes, including irreversible ones, can be studied

by our approach.

Writing iℓ = (i0, i1, · · · , iℓ) a path of length ℓ, quantities of interest are empirical path-

averages of the form

φ̂ℓ =
1

ℓ

ℓ
∑

t=1

ξit , (1)

where the ξi are quenched random variables associated with the vertices i = 1, . . . ,N of the

graph, which could be independent of, be correlated with, or be deterministic functions of the

degrees ki of the vertices. It is expected that the φ̂ℓ are for large ℓ sharply peaked about their

mean

φ̄ℓ =
1

ℓ

∑

iℓ

P(iℓ)

ℓ
∑

t=1

ξit =

〈

1

ℓ

ℓ
∑

t=1

ξit

〉

(2)

where P(iℓ) denotes the probability of the path iℓ.

The average (2) can be obtained from the cumulant generating function

ψℓ(s) =
1

ℓ
ln

∑

iℓ

P(iℓ) es
∑ℓ

t=1 ξit (3)

as φ̄ℓ = ψ
′
ℓ
(s)|s=0. Here, we are interested in rare events, for which the empirical averages φ̂ℓ

take values φ which differ significantly from their mean φ̄ℓ. Large deviation theory predicts
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that for ℓ ≫ 1 the probability density P(φ) for such an event scales exponentially with path-

length ℓ, i.e. P(φ) ∼ e−ℓI(φ), with a rate function I(φ) which, according to the Gärtner-Ellis

theorem [14], is obtained as a Legendre transform

I(φ) = sup
s

{sφ − ψ(s)} (4)

of the limiting cumulant generating function ψ(s) = limℓ→∞ ψℓ(s), provided that this limit

exists and that it is differentiable. We shall see that the second condition may be violated,

and that the derivative ψ′(s) may develop discontinuities at certain s-values, entailing that we

observe regions where the Legendre transform of ψ(s) is strictly linear and only represents the

convex hull of the true rate function [14].

2.2. Formulation in terms of deformed transition matrices

In order to evaluate ψℓ(s), we express path probabilities using the Markov transition matrix

W and a distribution p0 = (p0(i0)) of initial conditions as P(iℓ) = [
∏ℓ

t=1 Witit−1
] p(i0), entailing

that ψℓ(s) can be evaluated in terms of a deformed transition matrix W(s) = (esξi Wi j) as

ψℓ(s) = ℓ−1 ln
∑

iℓ,i0
[Wℓ(s)]iℓi0 p(i0). Using a spectral decomposition of the deformed transition

matrix one can write this as

ψℓ(s) = ln λ1 +
1

ℓ
ln

[

(1, v1)(w1,p0) +
∑

α(,1)

(

λα

λ1

)ℓ

(1, vα)(wα,p0)

]

. (5)

Here the λα = λα(s) are eigenvalues of W(s), the vα and wα are the corresponding right and

left eigenvectors, 1 = (1, . . . , 1), and the bracket notation (·, ·) is used to denote the standard

inner product. Eigenvalues are taken to be sorted in decreasing order λ1 ≥ |λ2| ≥ |λ3| . . . ≥ λN ,

with the first inequality being a consequence of the Perron-Frobenius theorem [15].

For long paths, the value of the cumulant generating function is dominated by the

leading eigenvalue λ1 = λ1(s) of W(s), so ψ(s) = log λ1(s). When computing λ1(s), it is

advantageous for the purpose of computational efficiency and stability to exploit the fact

that W(s) can be symmetrised by a similarity transformation involving a diagonal matrix

D = diag (max{ki, 1} × esξi) constructed in terms of the s dependent ‘deformation factors’

esξi and the vertex degrees ki,

W̃(s) = D−1/2W(s)D1/2 . (6)

The symmetrised matrix has elements

W̃i j(s) = e
s
2
ξi

ai j
√

kik j

e
s
2
ξ j (7)

and the same eigenvalues as W(s). Note that, appart from the appearance of the deformation

factors, this symmetrization (via a similarity transform) is the standard symmetrization

procedure for reversible Markov matrices, based on the equilibrium distribution. The above

equation simply expresses the fact that this symmetrization also works for s , 0, i.e. with

deformation factors present.
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Denoting by ṽ1 = ṽ1(s) the (normalised) eigenvector corresponding to the algebraically

largest eigenvalue λ1 of W̃(s), thus of W(s), we have

λ1 = (ṽ1, W̃(s) ṽ1) , (8)

This identity allows one to use standard first order perturbation theory to express the derivtive

ψ′(s) required to find the supremum in Eq. (4) algebraically as

ψ′(s) =
1

λ1

(ṽ1, W̃
′(s) ṽ1) =

1

λ1

∑

i, j

ṽi,1

ξi + ξ j

2
W̃i j(s)ṽ j,1 =

∑

i

ξiṽ
2
i,1 . (9)

In the first equality above we have exploited the fact that (ṽ′
1
(s), ṽ1(s)) = (ṽ1(s), ṽ′

1
(s)) = 0,

which is a consequence of the s-independent normalization of eigenvectors; in the second

equality the expression of W̃ ′(s) is inserted, and the last equation exploits the eigenvector

property of ṽ1, and the symmetry of the previous expression under i ↔ j interchange to

obtain the final expression.

This concludes the general framework. For the remainder of this paper, we will restrict

our attention to the case where ξi = f (ki), with f an arbitrary function of the degree.

Note that in the s = 0 case, the eigenvalue problem is trivial, as the column-stochasticity

of the transition matrix yields a left eigenvector wi ≡ 1 corresponding to the maximal

eigenvalue λ1 = 1. The associated right eigenvector is vi ∝ ki. For nonzero s, such closed

form expressions are in general not known. Performing a direct matrix diagonalisation can

be quite daunting for large system sizes N, even if one exploits methods that are optimised to

calculate only the first eigenvalue [16]. Hence we are interested in fast viable approximations.

In the next subsection we describe one such approximation expected to be valid for networks

in which vertex degrees are typically large.

2.3. Degree-based approximation.

We start by considering the left eigenvectors w instead of the right eigenvectors, for which the

eigenvalue equation can be written as

λw j =
1

k j

∑

i∈∂ j

wi es f (ki) . (10)

This system of equations can be simplified by considering a degree-based approximation

for the first eigenvector, where one assumes that the values of wi only depend on the degree

of the node i: wi = w(ki). If the smallest degree k j appearing in Eq (10) is large enough, we

can write the eigenvalue equation (10) by appeal to the law of large numbers as

λ1(s) w(k) =
∑

k′

P(k′|k) w(k′) es f (k′) (11)

where P(k′|k) is the probability for the neighbour of a node of degree k to have degree k′. For

ER graphs this approximation is expected to work well at sufficiently large mean degree. In

graphs with power law behaviour of their degree distributions at large k, one would have to

put a large lower cutoff on the degrees appearing in the system.
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In an Erdős-Rényi ensemble [17], and more generally in any configuration model

ensemble, we have P(k′|k) = P(k′) k′

〈k〉
. In this case the right-hand side of (11) does not depend

on k and the w(k) are in fact k-independent. The eigenvalue equation then simplifies to

λ1(s) =

〈

k

〈k〉
es f (k)

〉

, (12)

where the average is over the degree distribution P(k). This approximation yields excellent

results for large mean connectivities c = 〈k〉 on ER graphs, and more generally for

configuration models without low degree nodes. This is illustrated in figure 1, where we

plot a comparison with numerical simulations for ER graphs with c = 30. and for SF graphs

with c = 40. While the occurrence of low degree vertices is not strictly excluded in either

system, we find that the probability of having vertices with ki < 20 is sufficiently small in

both systems to render the degree based approximation very reasonable in both cases. In

figure 1 and throughout the remainder of the paper simulation results are obtained as averages

over 1000 samples, unless explicitly stated otherwise.
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Figure 1. (Colour online) Cumulant generating function ψ(s), comparing the large-degree

approximation (12) (blue line) with results of a numerical simulation (green line). Left panel:

result for ER networks with c = 30 and f (ki) = ki/c. Right panel: result for scale free graphs

with c = 40 and f (ki) = Θ(c − ki). In both cases the inset shows the corresponding rate

functions.

2.4. Eigenvector localisation.

Because of the heterogeneity of the underlying system, one finds that the random walk

transition matrix typically exhibits localised states, both for fast and slow relaxation modes

[18], even in the undeformed system, although the eigenvector corresponding to the largest

eigenvalue (the equilibrium distribution) will typically be delocalised. However, given the

nature of the deformed transition matrix, one expects the deformed random walk for large

|s| to be localised around vertices where s f (ki) is very large; hence we anticipate that in the

deformed system, even the eigenvector corresponding to the largest eigenvalue may become

localised for sufficiently large |s|. In order to investigate this effect quantitatively we look at
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the inverse participation ratio of the eigenvector corresponding to the largest eigenvalue λ1 of

W(s). Denoting by vi its i-th component, we have

IPR[v] =

∑

i v4
i

[

∑

i v2
i

]2
(13)

One expects IPR[v] ∼ N−1 for a delocalised vector, whereas IPR[v] = O(1) if v is localised.

The situation is somewhat subtle in scale free systems. Although the equilibrium

distribution given by the eigenvector corresponding to the eigenvalue λ1 = 1 in the

undeformed system at s = 0, i.e. vi ∝ ki, has support in the entire system, the IPR of that

eigenvector does not exhibit a 1/N scaling expected for a (fully) delocalised state. This is due

to the fact that both sums appearing in the definition (13) of the IPR will fail to converge in

the infinite system limit, if the degree distribution has a sufficiently slow power law decay, as

indeed in the SF system considered here for which P(k) ∼ k−3 for large k. In that case the

IPR will still decay to zero in the large system limit, but at a rate IPR[v] ∼ 1/[N1/3(log N)2],

i.e. much slower than 1/N, entailing that the equilibrium state “effectively” lives on a sub-

extensive fraction of the system.

3. Results on random graphs

We performed numerical simulations to evaluate λ1(s) and the IPR[v1(s)] for several types of

network, defined by their random graph topology. In the present paper we restrict ourselves

to discussing results for Erdős-Rényi (ER) and for scale free (SF) networks. We found that

other network ensembles give qualitatively similar results.

As to the function f (ki), we also looked at various examples. In what follows we

will report results for the normalised degree f (ki) = ki/c, and for the binary function

f (ki) = Θ(c − ki). Although details do of course depend on the precise nature of the function

chosen we find that — qualitatively — other deterministic types of degree-dependent function

exhibit analogous behavior. In the case of ER networks, we restrict our simulations to the

largest (giant) component of the graphs, in order to prevent spurious effects of isolated nodes

or small disconnected clusters (e.g. dimers) dominating λ1(s) and the IPR for large |s|, as

these would represent trivial instances of rare events, where a walker starts, and is thus stuck

on a small disconnected component of the graph. From here on, the network size of ER

graphs given must be understood as the size of the networks from which the giant component

is extracted. The SF networks we have been looking at so far are created by a process of

preferential attachment; they are thus simply connected by construction.

Fig. 2 reports results for ER graphs of mean degree c = 6 and f (ki) = ki/c. From the

behaviour of the IPRs. we can read off the existence of two localised regimes for sufficiently

large values of |s|, with IPRs on the localised side of both transitions increasing with system

size. Results can be understood, as for large |s| the deformed random walk is naturally

attracted to the nodes with the largest (resp. smallest) degrees for positive (resp. negative)

s. Thus for large negative s the deformed walk tends to be concentrated at the end of the

longest dangling chain, whereas for large positive s it will be concentrated at the site with
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the largest available degree. On an ER network where the large-degree tail of the degree

distribution decays very fast, such a high degree vertex is likely to be connected to vertices

whose degrees are lower, even significantly lower, than that of the highest degree vertex in

the network, which leads to IPRs approaching 1 in the large N limit. Conversely, for negative

s, the deformed random walk will be attracted to the ends of dangling chains in the network,

with the probability of escape from a chain decreasing with its length (with the length of

the longest dangling chain increasing with system size). This can explain that IPRs initially

saturate at 1/2 for large systems. Only upon further decreasing s to more negative values

will the asymmetry of the deformed transition probabilities, to and away from the end of a

dangling chain, induce that further weight of the dominant eigenvector becomes concentrated

on the end-site, leading to a further increase of the IPR.

From the values of λ1(s) we also derived the large deviation rate functions I(φ) for this

system. They are reported in the right panel of Fig. 2. While the right branch of I(φ) is for

large N well approximated by a parabola, our results show the emergence of a linear region

on the left branch, which becomes more pronounced as the system size is increased. This is

a signature of a non-differentiable point of ψ(s) at a point s∗ estimated to be at s∗ ≃ −0.307:

at this point the Gärtner-Ellis theorem cannot be used to evaluate the rate function, and the

linear branch only represents the convex envelope of the true I(φ) [14]. The latter can either

coincide with its convex envelope, or it can indeed be non-convex. However this information

cannot be accessed by the theorem. The emergence of a jump-discontinuity in ψ′(s) is due

to a level crossing of the two largest eigenvalues, where the system switches between two

modes that correspond to the largest eigenvalue on either side of s∗. In finite systems the

crossing is an “avoided crossing” due to level repulsion, but the two largest eigenvalues
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Figure 2. Left panel: IPRs as functions of the deformation parameter s for ER graphs with

c = 6, and f (ki) = ki/c, for system sizes ranging from N = 100 to N = 6400. The inset

exhibits the N−1-scaling of IPRs for 4 different values of the deformation parameter s, chosen

in pairs on either side of two localisation transitions, one at negative, and one at positive s.

Right panel: Large deviation rate function I(φ) for this system. For the largest system size,

a linear fit of the convex envelope of the left branch and a quadratic fit of the right branch of

I(φ) are shown as well. In the inset of the right panel, we show ψ(s) in the vicinity of the

non-differentiable point.
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Figure 3. IPRs (left panel) and rate function I(φ) (right panel) for ER graphs with c = 3, and

f (ki) = ki/c for system sizes ranging from N = 100 to N = 6400. As in Fig 2 we include an

inset in the left panel which shows the scaling of IPRs with system size N for 2 pairs of values

of the deformation parameter s, each pair being chosen so as to approximately bracket the

location of a localisation transition. The plot of the rate function in the right panel also shows

linear fit of the convex envelope of the left branch and a quadratic fit of the right branch of

I(φ) for the largest system size, as well as a plot of ψ(s) in the vicinity of the non-differentiable

point in an inset.

become asymptotically degenerate at s∗ in the N → ∞ limit.

In Fig 3 we report analogous results for the same problem, but now on an ER network at

the lower connectivity of c = 3, where we see the same set of phenomena: delocalised states

at low |s| becoming localised as |s| is increased, as witnessed by the behaviour of the IPRs.

Due to the larger heterogeneity of the low-c system, the region of extended states is confined

to a narrower region on the s axis than in the case of the c = 6 system. As in the c = 6

system, we also observe a jump discontinuity of ψ′(s) emerging at large system size, which

gives rise to a linear branch in the plots of the rate function. In the present case we locate the

discontinuity at s∗ ≃ −0.060.

Let us now turn to looking at rare events for random walks on scale free graphs. Here

we present results for SF networks with mean degree c = 4 which are generated using a

preferential attachment algorithm. It creates graphs with a degree distribution which behaves

as P(k) ∼ k−3 at large k. Any realisation is thus likely to contain vertices with very large

degrees. In order to avoid numerical complications arising from huge dynamical ranges of

deformed transition matrix elements Wi j(s) = es f (ki)Wi j, we restrict ourselves to looking at a

function f which remains bounded at large ki. Our choice here is f (ki) = Θ(c − ki). We are

thus looking at rare events characterised by random walkers visiting atypically many vertices

with degree below the average degree c.

In Fig 4 we report results for this system in the same manner as above for the ER graphs.

The IPRs clearly indicate localisation at large positive s, as we find IPRs increasing with

system size. Conversely, at large negative s, we find IPRs slowly decreasing with system size.

Whether asymptotic IPRs would remain O(1) in the infinite system limit or decrease very

slowly with N in a manner expected for the s = 0 case is difficult to discern from the system
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sizes currently available to us. Thus we will have at least one, possibly also two localisation

transitions in the present system, provided that we are prepared to classify the s = 0-state as

delocalised. We recall our earlier discussion of the subtleties of this case in Sec 2.4. As to

the rate function I(φ), we also find it to develop a linear branch associated with an emerging

non-analyticity of the cumulant generating function ψ(s) which we now locate at a positive s

value, viz. at s∗ ≃ 0.543. As in the ER case, this feature can be traced to a mode-switching

transition in the system.

Concerning the infinite sytem limit of the results presented above, it is indeed expected

that the largest eigenvalue λ1(s), and thereby (the convex envelope of) the rate function will in

all cases presented converge in this limit (in the sense that the distribution of λ1(s) becoming

sharp as N → ∞). As is evident from our results, there are, however, still notable finite size

corrections at the system sizes available to our simulations. Here, recent results allowing to

obtain the maximum eigenvalue of sparse symmetric matrices analytically [19] could be used

to make further progress.
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Figure 4. IPRs (left panel) and rate function I(φ) (right panel) for scale free graphs with

c = 4, and f (ki) = Θ(c − ki) for system sizes ranging from N = 100 to N = 6400. For the

largest system size, a linear fit of the convex envelope, now of the right branch and a quadratic

fit of the left branch of I(φ) are also shown. In the inset of the right panel, we show ψ(s) in the

vicinity of the non-differentiable point.

Let us finally turn to a more detailed discussion of the mode-switching transitions

characterised by the emergence of a non-analyticity of the cumulant generating function ψ(s)

in the large system limit, more specifically an emergent jump discontinuity of ψ′(s), which we

have observed both in ER networks for f (ki) = ki/c and in SF networks for f (ki) = Θ(c − ki).

These transitions are related to level crossings, which are avoided in finite systems due to level

repulsion. As the system size increases the two largest eigenvalues of the system will become

asymptotically degenerate at the point of the avoided level crossing. As a consequence, we

expect this mode-switching transition to give rise to a divergence of the correlation length

ξ(s) = [ln(λ1(s)/λ2(s)]−1 (14)

at s∗ in the infinite system limit, in close analogy with phenomenology of second order phase

transitions. In finite systems, the divergence will be rounded, but a peak is expected to evolve
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near s∗, with the peak height and the distance of the peak from s∗ scaling with system size.

We find that the divergence of the peak height is logarithmic in N in the present case. This

form of the divergence is also completely analogous to that observed for critical correlation

lengths in standard second order phase transitions, i.e. it is proportional to the linear scale

of the system: indeed, for graphs the analogy of the linear scale of the system would be the

graph-diameter, which is well known to scale logarithmically in system size N.
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Figure 5. Correlation length ξ(s) for scale free graphs with c = 4 and f (ki) = Θ(c − ki) (left

panel), and for ER graphs with c = 6 and f (ki) = ki/c (right panel). In both panels, system

sizes range from N = 100 to N = 3200 (bottom to top curves). For SF graphs one sees a

peak emerging with peak positions converging to a value s∗ compatible with that found from

the emerging non-analyticity of ψ(s) in Fig 4, and peak heights scaling like log N. For the ER

graphs we observe a second peak with peak position converging to s∗ = 1.1 ± 0.3 in addition

to the one expected from the non-analyticity of ψ(s) observed in Fig 2. Heights of both peaks

increase logarithmically in N.

In Figure 5 we report results for the s dependent correlation lengths for the two types

of systems looked at above, SF networks with f (ki) = Θ(c − ki) and ER networks with

f (ki) = ki/c. While position of the emerging peak in ξ(s) for the former case is compatible

with the location of the asymptotic jump-discontinuity observed in ψ′(s) we find a second

peak emerging in the case of the ER network with peak height also diverging logarithmically

in N. The corresponding emerging second point of divergence of ξ(s) has been difficult to

discern from the behaviour of ψ(s) for the the available system sizes: although we expect a

second emerging jump discontinuity of ψ′(s) and thus a second linear branch of the Legendre

transform of ψ(s)) to be associated with it, it appears that the size of that jump (and thus the

extent of the second linear region of I(φ)) are too small to be discernible at the system sizes

available to our simulations.

Preliminary results indicate that the emergence of two non-analyticities rather than one

is related to the function f rather than to the network topology: we have seen a single peak

(rather than two) emerging for ER graphs with f (ki) = Θ(c − ki) as the observable for which

large deviations of path-averages are investigated.
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4. Conclusions and future perspectives

In this paper we have analysed rare events statistics for path averages of observables associated

with sites visited along random walk trajectories on complex networks. Results are obtained

by looking at spectral properties of suitably deformed transition matrices. The main outcome

of our analysis is the possible emergence of two types of dynamical phase transitions in low

mean degree systems: localisation transitions which entail that large deviations from typical

values of path averages may be realised by localised modes of a deformed transition matrix,

and mode-switching transitions signifying that the modes (eigenvectors) in terms of which

large deviations are typically realised may switch as the deformation parameter s and thus

the actual scale of large deviations are varied. Results of numerical simulations consistently

support these claims. We also developed an analytical approximation valid for networks in

which degrees are typically large.

While we have restricted ourselves in the present investigation to analysing unbiased

random walks, it is clear that the method of deformed transition matrices is not restricted

to this case [14, 13] and is easily extended to more general stochastic processes, including

indeed irreversible ones. For irreversible processes the symmetrization of transition matrices

is not available, and one would have to work directly with the non-symmetric versions. In that

case algebraic expressions for the derivative of the cumulant generating function of the type

Eq. (9) are still available, but they would involve the use of left and right eigenvectors of the

original matrix, rather than eigenvectors of a symmetrized version.

Our work opens up the perspective to study a broad range of further interesting problems.

On a technical level, one would want to implement more powerful techniques, such as

derived in [19], to obtain the largest eigenvalue in the present problem class for larger system

sizes, and indeed in the thermodynamic limit N → ∞. Then there is clearly the need to

systematically study the dependence of the phenomena reported here on the degree statistics,

and on the nature of the observables for which path averages are looked at. We have gone some

way in this direction, but intend to report further results in the future. In particular one might

wish to look at observables which, rather then being deterministic functions of the degree, are

only statistically correlated with the degree, or at observables taking values on edges between

nodes [14, 13]. This could be of interest in applications such as traffic or information flows on

networks subject to capacity constraints on edges. Moreover, given the nature of the mode-

switching transition observed in the present paper, it is clearly conceivable that several such

transitions could be observed in a single system, depending of course on the nature of the

observables studied and on the topological properties of the underlying networks. Indeed for

path averages of the degrees of vertices visited, our results indicate the existence of two such

transitions, whereas for f (ki) = Θ(c−ki) we have seen only a single transition. Finally, critical

phenomena associated with the localisation transition and with mode-switching transitions

also deserve further study. We believe that this list could go on.

Let us, however, emphasise that our investigation of rare events statistics for random

walks on networks constitutes only the the beginning of a story. For practical applications

in particular, rare events statistics of observables other than the simple path averages of the
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type considered in the present paper would be needed: in the context of cyber-security and

hide-and-seek games, for insance, one would be interested in the statistics of the number of

different (tagged) sites visited by a random walker. While typical results for this number

could be obtained by a relatively straightforward modification of the approach proposed

in [20], obtaining the corresponding large deviation properties may turn out to be more

involved. Note, however, that localisation transitions could be relevant in that problem, too, if

indeed finding unusually large numbers of different tagged sites requires that a random walker

becomes localised on the subset of tagged sites.

Acknowledgement

This work was supported by the Marie Curie Training Network NETADIS (FP7, grant

290038).

References

[1] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman. Search in power-law networks. Phys.

Rev. E, 64:046135, Sep 2001.
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