
Biol Cybern (2007) 97:99–112
DOI 10.1007/s00422-007-0162-4

PROSPECTS

Learning with incomplete information and the mathematical
structure behind it

Reimer Kühn · Ion-Olimpiu Stamatescu

Received: 4 January 2007 / Accepted: 2 May 2007 / Published online: 30 May 2007
© Springer-Verlag 2007

Abstract We investigate the problem of learning with
incomplete information as exemplified by learning with
delayed reinforcement. We study a two phase learning sce-
nario in which a phase of Hebbian associative learning based
on momentary internal representations is supplemented by
an ‘unlearning’ phase depending on a graded reinforcement
signal. The reinforcement signal quantifies the success-rate
globally for a number of learning steps in phase one, and
‘unlearning’ is indiscriminate with respect to associations
learnt in that phase. Learning according to this model is
studied via simulations and analytically within a student–
teacher scenario for both single layer networks and, for a
committee machine. Success and speed of learning depend
on the ratio λ of the learning rates used for the associative
Hebbian learning phase and for the unlearning-correction in
response to the reinforcement signal, respectively. Asymp-
totically perfect generalization is possible only, if this ratio
exceeds a critical value λc, in which case the generalization
error exhibits a power law decay with the number of exam-
ples seen by the student, with an exponent that depends in a
non-universal manner on the parameter λ. We find these fea-
tures to be robust against a wide spectrum of modifications
of microscopic modelling details. Two illustrative applica-
tions—one of a robot learning to navigate a field containing
obstacles, and the problem of identifying a specific compo-
nent in a collection of stimuli—are also provided.
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1 Introduction

Learning and the ability to learn are important factors in
development and evolutionary processes (Menzel 2003).
Depending on the level, the complexity of learning can
strongly vary. While associative learning can explain sim-
ple learning behaviour (Menzel 2003; Byrne 1999) much
more sophisticated strategies seem to be involved in complex
learning tasks. This is particularly evident in machine learn-
ing theory (Mitchell 1997; Sutton and Barto 2000; Vapnik
1998), but it equally shows up in trying to model natural
learning behaviour (Byrne 1999).

A general setting for modelling learning processes in
which statistical aspects are relevant and which is of par-
ticular interest for natural, learning by experience situations
is provided by the neural network (NN) paradigm. NN learn-
ing models can incorporate elementary learning mechanisms
based on neuro-physiological analogies and lead to quantita-
tive results concerning the dynamics of the learning process
(Hertz et al. 1991). However, for realistic problems, simple
mechanisms often do not work and the sophistication of the
algorithms rapidly increases.

Any realistic form of learning is in some sense learning
from experience, since a learner interacts with an ‘environ-
ment’, appraises this interaction and consequently changes its
‘internal structure’ according to some criteria. In models of
biological behaviour, as well as in the design of information
processing systems, the appraisal procedure—food, pleasure,
success, assessment of result—is formalized as some kind
of reinforcement. Normal ‘experience’ can, however, rarely
be encoded into one-to-one relations between actions and
results, and a learner faces the additional task to interpret the
environmental feedback before rewriting it as an update of its
internal (cognitive) structure. An urgent problem, for exam-
ple, with which an ‘agent’, either natural or artificial, may
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be confronted is to learn solely from the final success/failure
of a series of consecutive actions, without direct information
about the particular fitness of each of them, such as learn-
ing to coordinate its muscles in moving, learning a labyrinth
or playing chess. Another case may be that of a feedback
which only differentiates between the presence or absence
of a certain kind of pattern in a mixture, such as reacting
to unpalatable components in food, or realizing that some
actions out of many were useful, without knowing which.

How non-trivial such problems are, can be seen from the
sophisticated algorithms developed for so called ‘delayed
reinforcement’ in the framework of machine learning theo-
ries (Sutton and Barto 2000; Wyatt 2003). In this perspec-
tive realistic, complex learning situations seem to require
the availability of strategies and involved procedures before
reinforcement can provide effective feedback mechanisms.
In an evolutionary perspective of the development of learn-
ing capabilities, however, the question then arises as to how
such strategies and procedures could have developed in the
first place. If reinforcement were to be a general or even fun-
damental element involved in effecting behavioural change,
one would expect reinforcement learning to act in particu-
lar at an intermediate level which is simple enough not to
depend on involved strategies, yet powerful enough to allow
complex behaviour to evolve.

A problem of non-specific reinforcement can be defined
as follows: the reward is global, regards the cumulative result
of a series of actions and the reinforcement acts non-specifi-
cally concerning these actions (Mlodinov and Stamatescu
1985). We ask whether there may exist elementary mecha-
nisms that allow learning under such conditions of non-spe-
cific feedback, which may have developed also under natural
conditions and which may hint at basic features of learning.
For this we must not only demonstrate the existence of such
mechanisms, but also uncover their structural features.

In previous papers (Kühn and Stamatescu 1999; Biehl
et al. 2000; Stamatescu 2003) we introduced and studied
a learning algorithm for neural networks (NN) which deals
with this problem. The NN setting allows a systematic study
by both numerical and analytic methods. It provides a frame-
work to study learning with non-specific reinforcement which
is transparent, and pertains to the basic machinery on which
learning is believed to take place. NN can achieve complex
information processing capabilities using mechanisms sim-
ple enough to have plausibly developed under natural condi-
tions. They can model various levels of learning processes—
biological, behavioural or cognitive (Hertz et al. 1991).

The purpose of the present contribution is to put the issue
of learning with incomplete information into a broader per-
spective, paying due respect to basic underlying issues and
principles, as well as generalizing previous results to a wider
range of settings, including multi-layer networks and real-
world applications (Kühn and Stamatescu 1999; Biehl et al.

2000; Stamatescu 2003; Bergmann et al., in preparation). Our
hope is that we may thereby help understanding some basic
features of learning.

Our paper is organized as follows. In Sect. 2 we describe
an elementary scenario of learning with incomplete infor-
mation, using a teacher-student setup for perceptron learn-
ing. Elements of the analysis are included here. In Sect. 3
we describe our results for the standard perceptron setting
as well as for some variants concerning statistics of input
data, the nature of the unspecific feedback signal, and more,
while Sect. 4 is reserved for results on a simple two-layer
network, the committee-machine. In Sect. 5, we present two
‘real world’ applications, viz. that of a robot learning to avoid
obstacles, and that of learning to identify whether a certain
key stimulus is contained in a collection of other stimuli.
Section 6 provides a summary and concluding remarks. Two
appendices are included to cover the more technical aspects
of the analytic investigations in greater detail.

2 The learning scenario

We start our analysis by casting the problem into a classifi-
cation task for a perceptron. In its simplest version (to which
we shall stick for most of the present paper), this is a network
consisting of an array of N input neurons projecting synapses
onto a single output neuron. The active and inactive states of
the neurons are encoded as +1 and −1 respectively. The ‘cog-
nitive structure’ of the network is encoded in the values Ji ,
i = 1, . . . , N , of the synaptic strengths, also called weights.
The inputs to the network (the ‘patterns’ which must be clas-
sified) are strings of N binary values ξi ∈ {±1} loaded on
the input layer. These values are weighted by the correspond-
ing synaptic strengths and transmitted to the output neuron,
where they are added to define a ‘potential’

x = 1√
N

N∑

i=1

Jiξi , (1)

which, according to its sign, triggers the output neuron to
s = ±1, thereby attributing the pattern ξ = (ξi ) to the class
s:

s = sgn

(
1√
N

N∑

i=1

Jiξi

)
= sgn (x). (2)

The standard learning problem is stated by asking a ‘student’
perceptron to implement a given classification rule. The rule
is provided by a ‘teacher’ perceptron with the same archi-
tecture, whose synapses Bi are given and fixed, and who
classifies the pattern ξ according to

t = sgn

(
1√
N

N∑

i=1

Biξi

)
= sgn (y). (3)
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The student has access to the teacher’s output t which pro-
vides the rule-based classification of the inputs, but not to
the teacher’s rule represented by its weight vector B = (Bi ).
The student learns from a stream of inputs classified by the
teacher, ξµ → tµ, µ = 1, 2, . . ., adapting its own weights
in response to these data such as to reduce the disagree-
ment between its own classification ξµ → sµ and that of
the teacher.

A classical, and neuro-biologically motivated learning rule
is the so-called Hebb rule, where synapses change in response
to coincidence of pre- and post-synaptic activity. In the pres-
ent setting the appropriate formulation of Hebb’s rule for the
student performing the classification ξµ → sµ takes the form

Jµ
i → Jµ

i + �Jµ
i , �Jµ

i ∝ sµξ
µ
i . (4)

where Jµ
i is the momentary value of the i-th synapse when

pattern µ arrives to be classified. Within an online learning
scenario, the synapse is then updated according to Jµ+1

i =
Jµ

i + �Jµ
i .

In order to turn this simple form of associative adaptation
into learning, it must be supplemented with some feedback
concerning the ‘quality’ of the associations. In learning rules
traditionally used in this scenario the proportionality ‘con-
stant’ in Hebb’s rule depends on the teacher answers. For
instance, the supervised Hebb algorithm uses the proportion-
ality ‘constant’ atµsµ, giving

�Jµ
i = atµξ

µ
i , (5)

where a is a parameter setting the learning rate. In the case of
the Perceptron learning algorithm the proportionality ‘con-
stant’ is given by a

2 |sµ − tµ|tµsµ, resulting in

�Jµ
i = a

2
|sµ − tµ|tµξ

µ
i (6)

instead. Note in particular that implementations of either rule
must assume immediate and direct control over the student’s
synapses by clamping the desired output onto the student
neuron (e.g. by providing an ‘evaluating’ stimulus through
some other channel – see, e.g. (Menzel 2003)).

That is, in standard ‘supervised online learning’ the stu-
dent is told after each instance what the right answer would
have been (specific feedback). In our approach, however,
according to our paradigm the student can only receive a
non-specific reinforcement about some global degree of cor-
rectness of its answers over several instances. More pre-
cisely the student is presented with series (‘bags’) of patterns
and only obtains information concerning its cumulative per-
formance for the bag as a whole. The non-trivial learning
problem is to implement this global information into a local
updating rule for the synapses.

2.1 The algorithm

The learning algorithm we propose can be described as con-
sisting of two phases. In the following each bag q is taken to
contain the same number L of patterns.

In the first phase the student processes the patterns (ξ
(q,l)
i )

in a bag q one by one and modifies its synapses by simple
Hebbian association, using its own classifications

s(q,l) = sgn

(
1√
N

N∑

i=1

J (q,l)
i ξ

(q,l)
i

)
(7)

on the basis of its momentary synapse values J (q,l)
i :

I : J (q,l+1)
i = J (q,l)

i + a1√
N

s(q,l)ξ
(q,l)
i , l =1, . . . , L . (8)

In the second phase the student receives information about
its global performance on a whole bag of patterns and cor-
rects its synapses by ‘reconsidering’ the steps of the first
phase, and by partially undoing them in an indiscriminate,
i.e. uniform way, to an extent that depends only on the global
error, independently on which steps were in fact correct and
which not. This phase can be seen as Hebbian ‘unlearning’:

II : J (q+1,1)
i = J (q,L+1)

i − eq
a2√

N

L∑

l=1

ωl s
(q,l)ξ

(q,l)
i . (9)

Here the online bag error eq is a measure of the disagreement
between student and teacher, and defines the specific prob-
lem. We have looked at two different choices for eq , which are
introduced in Eqs. (22) and (23) in Sect. 3 below. In (9), the
ωl can be 1 or 0 with probabilities ρ and 1 − ρ, respectively,
which accounts for the possibility that the replay during the
second phase may be imperfect: the student may not recall
all associations established during the first phase.

The procedure, so to say, is specific but blind association
in the first phase, qualified but non-specific reinforcement in
the second phase. The algorithm has therefore been called
Association-Reinforcement (AR) - Hebb algorithm.

It is interesting to note that a kind of replay as that involved
in the Phase II of our algorithm can apparently be observed
in rats on track running tasks (Foster and Wilson 2006) and
is seen as memory consolidation. Since experiences usually
imply valuations, it is suggestive that in such replay not only
neutral memories are consolidated, but memories including
some measure of success (finding or not finding food at the
end of the track, for instance—a global reward). This would
mean observing here a mechanism akin to the re-weighting
replay of the Phase II of our learning model. Hebbian unlearn-
ing mechanisms via replay of data either previously exposed
to or triggered through random stimuli has been discussed
also in other contexts (Crick and Mitchison 1983; Hopfield
et al. 1983; van Hemmen 1997; van Hemmen et al. 1990).
Concerning Phase I, this represents just the strengthening of
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the student’s own association rules by using them, which is
itself the meaning of the original Hebb rule (4). This sug-
gests that the ‘AR-Hebb’ algorithm may be provide good
modelling of natural behaviour, and that it may in fact have
a neuro-physiological basis.

2.2 Analysis

At fixed B, the relevant quantities which describe the pro-
gress of learning for a perceptron are the normalized scalar
products (Vallet 1989; Kinzel and Rujan 1990; Opper et al.
1990; Biehl and Riegler 1994)

Rq = 1

N
J (q,1) · B = 1

N

N∑

i=1

J (q,1)
i Bi , (10)

Qq = 1

N
J (q,1) · J (q,1) = 1

N

N∑

i=1

(
J (q,1)

i

)2
, (11)

here evaluated at the beginning of session q. They are com-
monly referred to as overlaps. The overlaps are ‘order param-
eters’ in the sense that the macroscopic dynamics of learning
can be fully described in terms of Rq and Qq alone. We take
N−1 B · B = 1. Note that Qq controls the relative learning
rate (the larger Qq , the smaller the relative synaptic change
induced by a single learning step). We denote by

t (q,l) = sgn

(
1√
N

N∑

i=1

Biξ
(q,l)
i

)
. (12)

the classification of pattern ξ (q,l) provided by the teacher
perceptron.

The progress of learning is analyzed by looking at the
combined effect of phase I and phase II learning (8) and (9)
on Qq and Rq for a whole bag. In the following, we shall
exploit the fact that only the ratio λ = a1/a2 of learning-
rates in phases I and II is relevant for the analysis, which
follows after a simple rescaling of the student synapses with
a2, J (q,l)

i /a2 → J (q,l)
i . Using the association and reinforce-

ment rules (8) and (9), and introducing

x (q,l) = 1√
N

N∑

i=1

J (q,l)
i ξ

(q,l)
i , y(q,l) = 1√

N

N∑

i=1

Biξ
(q,l)
i

to express the updates for (10) and (11) one obtains

Rq+1 = Rq + gq

N

L∑

l=1

sgn
(

x (q,l)
)

y(q,l) (13)

Qq+1 = Qq + 2
gq

N

L∑

l=1

sgn
(

x (q,l)
)

x (q,l) + L
g2

q

N
, (14)

where we have introduced the shorthand gq ≡ λ − eq . We
have also made use of the orthogonality of unbiased binary

random patterns in the large N limit, (i.e. the fact that
N−1 ∑

i ξ
(q,k)
i ξ

(q,l)
i = δk,l by the law of large numbers).

The remainder of the analysis follows standard online
learning reasoning (Vallet 1989; Kinzel and Rujan 1990;
Biehl and Riegler 1994); it consists (i) in noting that for
all finite bag sizes L the single-bag increments of the order
parameters in (13) and (14) are infinitesimal in the thermo-
dynamic limit N → ∞,

�R = Rq+1 − Rq = O(N−1),
(15)

�Q = Qq+1 − Qq = O(N−1),

(ii) in introducing ‘continuous time’ α = q L/N with like-
wise infinitesimal single-bag increments �α = L/N , and
writing order parameters as functions of continuous time,
Rq → R(α), and Qq → Q(α), (iii) in realizing that the
central limit theorem entails that the fields x (q,l) and y(q,l)

are zero-mean Gaussian with correlations that depend only
on R(α) and Q(α),
〈
x (q,l)

〉
= 0,

〈(
x (q,l)

)2
〉

= Q(α) ,

(16)〈
y(q,l)

〉
= 0,

〈(
y(q,l)

)2
〉

= 1,
〈
x (q,l)y(q,l)

〉
= R(α),

(the independence of the ξ
(q,l)
i is used and O(N−1) correc-

tions are neglected to obtain these results), and finally (iv) in
combining a large number M of updates (13) and (14),

R(α + M�α) − R(α)

M�α

= 1

M L

M−1∑

m=0

gq+m

L∑

l=1

sgn
(

x (q+m,l)
)

y(q+m,l) (17)

Q(α + M�α) − Q(α)

M�α

= 1

M L

M−1∑

m=0

[
2gq+m

L∑

l=1

sgn
(

xq+m,l
)

xq+m,l + Lg2
q+m

]

(18)

to obtain an autonomous pair of ODEs in the limit M → ∞,
N → ∞, M/N → 0, hence M�α → 0, which can be for-
mulated in terms of averages over these updates by the law
of large numbers,

dR

dα
=

〈
gq

L

L∑

l=1

sgn
(

x (q,l)
)

y(q,l)

〉
, (19)

dQ

dα
= 2

〈
gq

L

L∑

l=1

sgn
(

x (q,l)
)

x (q,l)

〉
+

〈
g2

q

〉
. (20)

These equations describe the learning dynamics in the ther-
modynamic limit. The angled brackets denote averages over
the bivariate Gaussians x (q,l) and y(q,l), which are uncorre-
lated for different l and have correlations given by (16), thus
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can be evaluated in terms of R(α) and Q(α) alone (Kühn
and Stamatescu 1999). The integrals in terms of which the
right hand sides of (19) and (20) can be evaluated will depend
on the nature of the online bag error eq used to quantify the
reinforcement signal, which enters these equations through
gq = λ − eq . We describe them briefly in Appendix A.

The quantity of interest is the ‘generalization error’ εG

which measures the probability of disagreement between the
teacher and the student on a random set of patterns. It can be
expressed in terms of the angle between the weight vectors of
student and teacher, respectively, one obtains (Vallet 1989;
Kinzel and Rujan 1990; Biehl and Riegler 1994; Opper et al.
1990).

εG(α) = 1

π
arccos(J (q,1); B) = 1

π
arccos

(
R(α)√
Q(α)

)
.

(21)

Note that εG refers to the classification error for any ran-
domly chosen pattern, while eq of phase II refers to an empir-
ical error measured over a single bag of L patterns.

3 Results for single layer networks

We study the system by simulations, which implement the
network operation (7) and the learning rules (8) and (9) at the
microscopic level, and analytically via the ODE’s (19) and
(20), which describe network performance at a macroscopic
level. They can be solved numerically at all α and some-
times also analytically for large α (Kühn and Stamatescu
1999; Biehl et al. 2000; Bergmann et al., in preparation).
They reveal the fixed point structure that directs the flow as
discussed in what follows.

The present section reviews results obtained for single
layer networks. The main quantity of interest is the gener-
alization error εG , and its evolution during learning. It can
either be computed via (21) from the solution of (19) and
(20), or measured in numerical simulations. In the simula-
tions reported in the present and the following section, εG is
measured by comparing the student and teacher answers on
a random set of 104 patterns.

We have in fact looked at two variants of learning with
incomplete information which are characterized by different
versions of the online bag error eq measuring the perfor-
mance of the student on the patterns of bag q. The ‘average
error’ (AE) problem (Kühn and Stamatescu 1999) is defined
by using the global return (error):

eAE
q = 1

2L

L∑

l=1

∣∣∣s(q,l) − t (q,l)
∣∣∣ . (22)

as the bag-error measure in (9), eq = eAE
q . It measures the

fraction of inputs in the current bag, on which student and
teacher disagree.

The second version, to be referred to as ‘hidden instance’
(HI) problem uses a global return of the form

eH I
q = 1

4L2

[
L∑

l=1

(
s(q,l) − t (q,l)

)]2

(23)

for eq in (9) instead, which amounts to measuring the discrep-
ancy between student and teacher concerning the balance
between positively and negatively classified input data in the
current bag. Note that eH I

q ≤ eAE
q by a Schwarz inequality,

and that the HI problem involves more indeterminacy than
the AE problem. Instead of squares one can use absolute
values and vice versa.

In the case to be presented first, the non-specific rein-
forcement uses the average (or global) error of the student’s
guesses for the whole bag. We call this the ‘average error’
(AE) problem—see Eq. (22). At no moment does the stu-
dent know whether his particular classifications are correct
or incorrect; he is only informed about the fraction of correct
answers over the whole bag.

The exciting result of this study is that stable perfect learn-
ing can be achieved in spite of the non-specific reinforcement.
The most interesting feature is the dependence of learning on
λ which measures the strength of the local ‘associative’ com-
pared to the global ‘corrective’ step.

It is found that the asymptotic decay of εG as a func-
tion of the number q of pattern-bags used for learning is
described by a power-law, εG ∼ q−p with an exponent p that
depends on λ. But even more compelling is the appearance of
a threshold λc below which no learning is possible, whereas
for λ > λc perfect learning is always achieved. The expo-
nent p is a decreasing function of λ, so that learning becomes
more efficient as λ ↘ λc. The value of λc itself depends on
L and on the initial value Q0 of the student’s self-overlap,
that is, on the initial effective learning rate (1/

√
Q0). There

is no such non-zero threshold for L = 1, where 0 ≤ λ ≤ 1
2

just interpolates between the standard Hebb and Perceptron
algorithms in (5) and (6).

Figure 1 shows typical results of numerical simulations.
Below λc (which for the given initial conditions is located
between 0.120 and 0.125) εG initially decreases with increas-
ing number q of processed bags, then suddenly returns to a
value very close to 0.5 and stays there ever after. Just above
λc, learning is rapid but may be disrupted by finite size fluctu-
ations, which entail that the threshold λc is somewhat fuzzy
at finite N . Further above λc finite-size fluctuations cease to
be effective in disrupting learning, but convergence to per-
fect generalization is also slower. The plot gives εG vs the
normalized number of processed patterns α = q L/N . The
straight lines indicate the asymptotic behaviour expected for
the corresponding λ from the analytic theory presented in
Appendix A.
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 100  1000  10000  100000  1e+06

ε G

α

Fig. 1 Numerical simulation of the AE problem: the learner is pre-
sented with bags of patterns, feedback is given only via the average (or
total) error made over the whole bag. We plot εG versus the normalized
number of patterns α = q L/N . Each of the bags contains L = 10
patterns; the size of the input layer is N = 100. Initial conditions are
random with R(0) = 0 hence εG(0) = 0.5, and Q(0) = 104. The
replay phase is either complete (ρ = 1, full circles, empty circles and
crosses) or partial (ρ = 0.5, asterisks). For λ = 0.120 (full circles) no
generalization is observed, whereas for λ = 0.125 (empty circles and
asterisks) and λ = 0.250 (crosses) perfect generalization is achievable.
The lines represent the asymptotic behaviour expected from the analytic

study εG(α) ∝ α− 1
2Lλ

This peculiar dependence on the learning parameter λ—
the increase of the learning efficiency with decreasing λ (i.e.,
with increasing strength of the corrective step) up to the
point where the learning behaviour suddenly breaks down (no
learning below λc) is particularly remarkable. While there is
no simple intuitive explanation for either, the analytic the-
ory explained in the previous section is able to uncover the
mechanism underlying both features.

Indeed, the results observed in the simulations can be fully
rationalized by the findings of the analytic investigation to
which we now turn, thereby also proceeding to the second
step—that of answering structural questions.

The mathematical structure uncovered in this way shows
that the phase-flow (19) and (20), which describes the evo-
lution of learning in the large system limit, is governed by a
pair of fixed points, one fully stable, and the other partially
stable with an attractive and a repulsive direction (see also
(Kühn and Stamatescu 1999) for further details).

In Fig. 2 we present analytical results for the learning pro-
cess, obtained by solving the flow equations (19) and (20)
with the error definition (22).

The left panel is to be compared with the simulation results
shown in Fig. 1. In the right panel, which shows the phase-
flow of the learning dynamics in the εG,

√
Q −plane, we can

clearly discern the existence of a separatrix connecting the
starting point and a partially stable fixed point. Its repulsive
manifold directs the flow either towards large Q and perfect
generalization, or towards small Q and an all-attractive fixed

point of poor generalization. The alternative is decided by λ

which determines on which side of the separatrix the initial
condition finds itself. By changing λ we actually move the
fixed points around, and continuously deform the repulsive
and the attractive manifolds, thereby sweeping the separa-
trix across the initial condition, which at λc exactly lies on
the separatrix. The threshold is crisp, of course, as there are
no longer any finite size fluctuations. The small difference
between analytically and numerically determined values of
the threshold λc is also a finite size effect.

The fact that global properties of the phase-flow are gov-
erned by the interplay of two fixed points, in particular by
the stable and unstable manifolds of the partially stable fixed
point, is of particular relevance. The stable manifold provides
the separatrix which is responsible for the fact that the system
can show either good or poor generalization, while the unsta-
ble manifold is what is actually directing the asymptotics of
the flow in either case.

It can fairly be expected that small deformations of the
right hand sides of the flow equations (19) and (20) by contin-
uous functions of R and Q—these would correspond to mod-
ifying microscopic details of the learning dynamics—will not
change the global properties of the phase flow: the two fixed
points would continue to exist and maintain their stability
properties, and so will the stable and unstable manifold of
the partially stable fixed point, provided the deformations
remain sufficiently small. One must of course expect that
small perturbations will move the fixed points to (slightly)
different locations in the phase plane, and that they will con-
tinuously deform the stable and the unstable manifolds. How-
ever, since the effects of such perturbations are both small
and continuous, we can expect the two main features of the
learning dynamics—threshold behaviour for the mere exis-
tence of good generalization, and non-universal behaviour,
i.e., parameter dependence of the asymptotic rate of conver-
gence to good generalization, to be structurally stable under
a range of modifications of the original setup, and perhaps
even be fairly general properties of our paradigm of learning
with incomplete information.

A number of further studies were performed in order to
substantiate this suggestion.

Incomplete replay: First, we investigated what happens if
the ‘replay’ in Phase II is not perfect — accounting for the
possibility that the student may not ‘remember’ all instances
encountered during Phase I. We modelled this by randomly
including each instance of Phase I only with probability ρ ≤
1 in the unlearning step of Phase II. It turned out that all
features observed for complete replay are preserved; for the
asymptotic domain of good generalization the modification
amounts to a re-scaling of the learning parameter λ → λ/ρ

(Kühn and Stamatescu 1999) – see Fig. 1.
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Fig. 2 Analytic study of the AE problem, L = 10. Shown are εG ver-
sus α (left), and the flow of the learning dynamics in the εG ,

√
Q −plane

(right) for fixed initial condition R(0) = 0, Q(0) = 104, and λ = 0.100
(doubly dotted line), 0.138 (dotted), 0.139 (solid) and 0.250 (dashed
line). The threshold appears at λc 
 0.1385, for which the initial con-

dition (marked with an 0) is exactly on the attractive manifold of a
partially stable fixed point. The attractive fixed point (A) and the par-
tially stable fixed point (X) are clearly identifiable. The straight lines
on the left plot represent exact asymptotic power laws with p = 1

2Lλ

Fluctuating bag-size: Also randomly varying bag sizes L
used in learning leads to results qualitatively unchanged when
compared to the fixed L case. This is easily understood by
noting that the law of large numbers applied to the M →
∞-limit of (17) and (18) amounts to an additional sam-
pling over the bag-size distribution p(L); hence Eqs (19)
and (20) remain formally unaltered, except for noting that
angled brackets should be interpreted to imply an additional
average over p(L).

The hidden instance problem: An extension of the prob-
lem setting concerns the nature of the online bag error eq . We
investigated a case where the student is only told the number
of patterns of, say, class +1 in a bag, which it can compare
with the number perceived to belong to that class by itself
– see Eq. (23). We called this the ‘hidden instance problem’
(HI). The information received by the student thus has an
increased degree of non-specificity (since, e.g., eq = 0 does
not yet imply that the student has found the correct classi-
fications!). Nevertheless the learning behaviour shows the
same qualitative features as for the AE-problem: a thresh-
old λc and a λ-dependent asymptotic power-law decay of
εG above the threshold. This can be seen both in simula-
tions, and in the corresponding analytic theory (see Fig. 3),
which requires analyzing the flow equations (19) and (20)
with the HI bag error definition (23), i.e., Eqs. (32) and (33)
of Appendix A. Finite size effects are larger in the HI prob-
lem, which is mainly due to the larger degree of non-speci-
ficity in the feedback (its noisiness): e.g. for the parameters
used in Fig. 3, numerical simulations show convergence to
good generalization already for runs with λ 
 0.014. The
system reaches the large-Q, low-εG region only with the
help of strong finite size fluctuations, as the analytic study
gives λc 
 0.0189 in the thermodynamic limit. However,
having reached the region of good generalization, it then
exhibits asymptotics fully in accordance with theoretical

predictions. No systematic attempt has been made to confirm
the analytic result for λc through simulations by measuring
the fraction of runs leading to perfect (or bad) generaliza-
tion, which is expected to develop a jump-discontinuity at
λc in the N → ∞ limit. Further details on this case will be
published elsewhere (Bergmann et al., in preparation).

Structured inputs: A further extension looked into using
structured input data in the classification task to be learnt,
as a highly schematic way to model learning in a structured
environment (Biehl et al. 2000). Instead of ‘isotropic’ pat-
terns with ξ

µ
i = ±1 independent and identically distributed,

and with zero average 〈ξµ
i 〉 = 0 as used in the present investi-

gation, it is assumed that the ξ
µ
i are unit variance Gaussians,

centred at ±mCi , where C = (Ci ) is a fixed random vector
with C2 = N and overlap N−1C · B = η with the coupling
vector of the teacher perceptron, where m and η are param-
eters of the problem. Note that C and B are identical for
η = 1, and the teacher perceptron is in this case particularly
suitable for classifying such patterns, as the centres of the two
Gaussians have maximal distance from the decision surface
defined by B. For other values of η the additional structure
in the patterns complicates the dynamics (and its analysis)
considerably. The analysis requires three order parameters
for a full macroscopic description instead of two—namely
apart from Rq and Qq also the overlap Dq = N−1 J (q,1) · C
between the student coupling vector and the vector C char-
acterizing the pattern-anisotropy. Also, some supplementary
but simple tuning of the learning rate λ was necessary, as
indeed for the corresponding standard supervised algorithms
dealing with the same problem. Yet again we observed that
perfect generalization requires λ to exceed a threshold λc,
and find a λ dependent asymptotics. Details can be found in
(Biehl et al. 2000).
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Fig. 3 Comparison of analytic and numerical results for the HI prob-
lem for L = 10, using (23) as online bag error eq for feedback. Plotted
is εG versus

√
Q. Initial conditions are random with R(0) = 0, hence

εG(0) = 0.5, and Q(0) = 104 as before. The analytic study (left) shows
a threshold λc 
 0.0189, distinguishing between lack of generalization
(λ = 0.015, 0.0185) and good learning (λ = 0.019, 0.02, 0.03). In
the numerical simulation, the size of the input layer is N = 200. No

generalization is observed for λ = 0.01 (pluses) and λ = 0.012 (full
circles), whereas for λ = 0.014 (empty circles), 0.02 (crosses) and
0.03 (asterisks) perfect generalization is achievable. Straight lines in
the simulation plot represent the large-α behaviour as expected from

the asymptotic theory (36) and (37): εG(α) ∝ α
− 1

2L2λ , respectively

εG(α) ∝ Q− 1
4L2λ

4 The committee machine

In the cases discussed above we investigated single-layer net-
works, for which the solvable classification tasks are limited
to the class of so-called linearly separable problems. This
implies that problems in a different complexity class, and
presumably some of the more realistic ones, can at first sight
not be solved by such networks, irrespectively of the learning
algorithm used to train them.

It is now well known that the limits of linear separa-
bility can be transcended by the use of preprocessing and
kernel methods (Vapnik 1995; Cristiani and Shawe-Taylor
2000; Schölkopf and Smola 2002; Shawe-Taylor and Cris-
tiani 2004), so as to provide the capability for universal clas-
sification while adhering to the perceptron as the trainable
neural element.

Nevertheless, in order to lend further credibility to the
hypothesis that our model could provide a basic learning
mechanism at work also beyond the single neuron level,
and thereby plausibly contribute to the evolution of com-
plex information processing capabilities in neural architec-
tures, we investigate its performance on a simple two-layer
network (Bergmann et al., in preparation), the so called ‘com-
mittee machine’. This is a two-layer network with the neurons
of the second (hidden) layer—the committee—transmitting
their state via fixed synapses to the output neuron. Only the
synapses from the input neurons to committee members can
be modified in the learning process.

There is an important second motivation, beyond that of
demonstrating the viability of the non-specific reinforcement
principle for training simple multi-layer networks, capable
of performing classifications outside the linearly separable
class: It is related to the fact that the single output of a multi-
layer network is itself non-specific in the sense of not reveal-

ing which of possibly several states of the hidden layer was
responsible for it. Specifically, in the case of a committee-
machine producing a simple majority vote of the committee
members, no information is revealed as to which subset of
the committee was backing the majority vote. This is non-
specificity with respect to contributions of hidden nodes (for
simplicity referred to as ‘non-specificity with respect to
space’), whereas the AR - Hebb algorithm introduces an
element of non-specificity with respect to time. By using
the AR - Hebb algorithm to train a committee machine, we
combine non-specificities in space and time, and the natural
question arises whether this further reduction of the informa-
tion used for feedback still permits that a rule—represented
by a teacher committee of the same architecture—can be
picked up on the basis of classified inputs alone.

We are able to report here recent first results about this
system. The version we have looked at is a ‘graded’ version
producing as its output the sum of the outputs of all committee
members, without performing a final sign-operation on that
sum. See Appendix B for details. The simulations do indeed
show convergence to perfect generalization, and a thresh-
old in the learning parameter λ, as for the perceptron. See
Fig. 4. However, this turns out to be combined with an even
more complex picture of the evolution of the order param-
eters—mutual overlaps between the coupling vectors of all
hidden units of the student and teacher committee are needed
for a full description of the dynamics. A more complicated
phase flow and fixed point structure is thus to be expected.
E.g. a partially stable ‘symmetric’ fixed point exists repre-
senting the student committee in a state where its hidden
nodes have not yet specialized to which of the hidden nodes
of the teacher committee they are eventually going to repre-
sent (Saad and Solla 1995). In addition there appears to be a
pair of fixed points specifically associated with the unspecific
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Fig. 4 Numerical simulation for a committee machine with K = 3
hidden units and N = 100 input units, AE problem with L = 5: gener-
alization error εG vs α. Here λ = 0.260 (full circles), 0.280 (circles) and
0.320 (crosses). The straight lines represent power-law fits to the asymp-
totic behaviour with exponents p = 0.16 (solid line) and p = 0.085
(dashed line), respectively

delayed reinforcement, which we believe to be responsible
for the threshold behaviour and the non-universal nature of
the asymptotic approach to good generalization as in the sim-
pler situation of the perceptron. The asymptotic approach to
good generalization is generally somewhat slower than in
the perceptron. We do not yet have a simple explanation for
this fact. The fact that a committee machine has more adapt-
able parameters than a perceptron may be expected to lead
to slower convergence but can by itself not fully explain the
data. The more complicated phase flow is probably respon-
sible for the fact that effects of finite size fluctuations in the
simulations are stronger.

The general structure of the flow-equations for two-layer
networks (with arbitrary hidden-layer-to-output function F)
is derived in Appendix B. The analytic evaluation is consid-
erably more difficult, and ongoing; but a number of special
results strengthen the findings from the numerical simula-
tions. Further details about the investigation of this system
will be reported elsewhere (Bergmann et al., in preparation).

5 Real world problems

We close with two illustrations to demonstrate that the learn-
ing algorithm proposed above and studied in the formal NN
context can be applied to solve ‘real world’ problems.

5.1 Robot learning to avoid obstacles

The following simulation is intended to illustrate the above
model for a ‘realistic’ problem: an agent moving on a board
with obstacles must learn that it is good to reach the upper

line and how to find its way there. The board is partitioned
into a regular grid of squares and the agent takes one step
at a time (up, down, left or right). It receives a positive or
negative reward at the end of the journey, depending on the
number of steps it took to reach the upper line (it starts at the
middle of the bottom line). The ‘cognitive structure’ of
the agent is realised as a network with 20 input neurons
(storing the information free/occupied concerning the neigh-
bouring cells for the last five steps) and a ‘committee’ of 4
neurons, each responsible for one of the 4 directions of move.
The winner is chosen with probability pk =eβhk/

∑4
k′=1 eβhk′ ,

where hk = ∑
j Jk jξ j denotes the activation potential of

the neuron representing direction k (the sum is over all 20
input neurons), and β is a parameter introducing a variable
degree of randomness in deciding the direction. The larger
β, the larger the probability pk corresponding to the direc-
tion with the largest activation potential hk ; conversely, in
the low β limit, the directions k are chosen with equal prob-
ability. The synapses (weights) from the input layer to the
committee are modifiable. Learning proceeds along the lines
described above: an immediate Hebbian adaptation of the
weights after each step using (4), and a readjustment at the
end of a path using the global information on the total number
of steps, involving the usual learning parameters. Trying to
run against an obstacle in direction k implies an immediate
Hebb-penalty �Jk j = −λξ j via (4), which will reduce the
activation potential for this direction given the same path-
history over the last five time-steps as encoded in the {ξ j }.
This problem is of the AE (average error) type above, with
a journey representing a bag of decisions. It involves how-
ever a strong mutual dependence of the local decisions (since
different moves may lead to different later situations).

Figure 5 illustrates simulation results for a robot moving
on various rectangular (10×11) grids. The first plot in the left
set of plots shows the grid, the boundary walls, the starting
position on the bottom line and the goal—the upper line. The
first three rows in the left set of plots also show realizations
of paths taken by the robot in three different environments,
‘Empty board’ (first row), ‘Right hand trap’ (second row),
and ‘Open trap’ (third row), respectively. Within each row
the panels represent from left to right: first run, early perfor-
mance, and two different realizations of late performance.
The different environments were presented to the robot in
three consecutive trials, i.e., the weights are not reinitialized
before a new trial. In the simulations a maximal allowed num-
ber of steps of 100 is imposed (after which the run is stopped
and maximal penalty assigned).

The fourth row represents two trials on pairs of configu-
rations related by a mirror symmetry, ‘Traps with clue’ (left
pair) and ‘Traps without clue’ (right pair). Here 120 runs are
performed between switches within a pair, and the weights
are not reinitialized after switches. The cutoff for the maxi-
mal number of steps is imposed at 60 for this experiment.
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Fig. 5 Typical behaviour of a simulated robot moving on various 10 × 11 boards. See main text for explanations

The right set of plots shows the length of the path taken
to the upper line of the board, plotted run by run for the tri-
als shown in the left set of plots. First row: ‘Empty board’
for two settings of the randomness parameter β (small and
large). The length of the best path is ten steps in this case.
Second row: ‘Right hand trap’ (left) and ‘Open trap’ (right),
corresponding to second and third row respectively in the left
set of plots. The length of the best path is 14 and 13 steps,
respectively. The lower dotted line on the plots indicates the
number of steps lost running against obstacles (this has to be
added to the length of the path to give the total number of
steps).

The third row on the right shows the total number of
steps on switching experiments for the symmetric pair of
‘Traps with clue’ (left) and the pair of ‘Traps without clue’
(right). The best paths have different lengths for the symme-
try-related traps, viz. 13 and 11 steps for the left and right
member of a trap-pair, respectively. As can be seen, the per-
formance is much better if the situation provides a clue (left
pair of traps), which means that the agent is able to ‘identify’
and use it.

Interesting features of the learning behaviour are:

• Good paths are found very fast, without needing any
built-in strategies.

• Hierarchical learning is possible—new behavioural rules
(the direction of move in a certain situation) are added
without discharging old ones (if not contradictory).

• The randomness employed in choosing the direction of
moves and which is controlled by β helps optimising the
behaviour, or coping with changes in the situation.

• Stable behaviour is compatible with fluctuations.

• The agent ‘identifies’ goals, ‘realises’ the impenetra-
bility of obstacles, and ‘recognises’ clues, such as the
small obstacles in the switching experiment (four-th row
in the left part of Fig. 5) which do not themselves obstruct
the path, but are correlated with, and thus ‘announce’
the direction in which the larger obstacle encountered
later on is open. These ‘top-down’ behavioural compo-
nents are implemented ‘bottom-up’ using only the simple
AR-Hebb rule.

There is a trade-off between the speed of learning and the
stability of the behaviour on the one hand side, and flexibil-
ity in adapting to new situations on the other hand side, in
which preferences can be set by varying β and the learning
parameters. It turns out that there is a wide range of param-
eter settings that combine fast learning and stable behaviour
with a reasonable degree of flexibility, so that no fine tun-
ing is necessary. The model is described in more detail in
(Stamatescu 2003).

5.2 Identifying a key stimulus

Consider the problem of identifying a certain kind of pattern
which can appear (in some variants) as part of a sequence of
different patterns—such as a certain kind of gene in a chro-
mosome, say. We can only know that such a pattern is or is
not there—e.g. from the expected expression of the gene in
the phenotype. But there may be more gene variants with the
same expression, together with those which do not match
the phenotype and we must find out the class character of
the interesting ones. A similar problem may be that of find-
ing the scent signature of unpalatable components in food:
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Fig. 6 Looking for strings of
black signature: length of the
strings N = 20, length of the
string sequences L = 5. εG
versus α for Q(0) = 50, 000
(empty circles), 5,000 (‘x’-s)
and 50 (asterisks), and λ near
the corresponding thresholds
(0.250, 0.420 and 0.560,
respectively). The black circles
represent the decay of the
generalization error for the
tuning λ ∝ ēq (λ(0) = 0.560,
Q(0) = 50)  0.001
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The animal tries food in various combinations and can only
judge about a combination as a whole. At the end of the day,
say, after having eaten many herbs it will feel good or bad,
without knowing why, but since the menu will slightly differ
from day to day it may learn after some time to recognize the
noxious kinds of herbs. Since both good and bad herbs may
appear in various shapes or have different scents each time
this amounts to a classification problem of the HI-type.

The variants of the pattern we are trying to identify thus
define a class, say, +1. For definiteness we take sequences
(bags) of 5 patterns, each pattern being itself a string of N =
20 bits of information. We assume that a ‘positive’ string may
be contained at most once in each sequence (in a bag), and
we allow about 104 variants of it (while there are about 106

patterns of class -1). The student is presented with sequences
which contain a ‘positive’ string with 50% probability. It only
knows (from the observation of the phenotype, from the effect
of the food consumption) whether or not a class +1 string is
contained in the bag. It therefore makes proposals on the basis
of its current knowledge—the synapse strengths—and then
updates the latter globally taking into account whether the
prediction matches the observation for the bag. We therefore
have a particular hidden instance problem with structured
data (HI-SD).

In Fig. 6 we present simulation results for this system for
various initial step sizes 1/

√
Q(0) and parameter λ chosen to

be near the corresponding thresholds. We also demonstrate
that it is possible to improve the algorithm by a simple tuning
of λ with the running average ēq = 1

q

∑q
q ′=0 eq ′ . The ben-

eficial effect of this tuning can in a certain sense be seen as
reinforcing our claim that it is a combination of both mecha-
nisms—the autonomous Hebbian association, and the synap-
tic response to evaluative feedback—which allows learning
under the conditions of non-specific feedback to be success-
ful. Tuning with ēq is an effective way to ensure that the bal-
ance between both mechanisms is maintained throughout the
learning history, in particular in later stages with good gen-
eralization. Early and fast learning are thus easy to achieve:
the error drops below 1% already for α < 104.

6 Concluding remarks

To summarize, a simple learning algorithm based on local
Hebb-type synaptic modifications can solve various non-
specific reinforcement problems. Our motivation was not to
design highly efficient algorithms for special AI or robotics
problems, but to understand how simple mechanisms without
appeal to involved strategies might be at work in non-triv-
ial, unspecific reinforcement problems. The algorithm seems
applicable to a broad range of different situations, which hints
at a high level of generality. It is interesting that such a simple
algorithm can cope with complex learning problems, and this
feature makes it a candidate for a basic mechanism in learn-
ing. As a model for biological developments it indicates that
feedback non-specificity can be dealt with at the elementary
neuronal level by mechanisms which are simple enough to
have plausibly developed during the early stages of evolu-
tion. A very peculiar aspect is the essential role of both, local
Hebb potentiation and global correction via replay.

Note that the correction in phase II of the algorithm
respects an important information-theoretic symmetry: the
synaptic correction in response to an indiscriminate feedback
is indiscriminate in the same sense. Any deviation from this
symmetry would entail that the learning mechanism creates a
hypothesis about its environment for which the environmen-
tal feedback does not provide any evidence. This is in fact in
fairly close analogy with Bernoulli’s principle of insufficient
reason according to which the best assumption in an infor-
mation-theoretic sense about a random variable of which we
have no knowledge whatsoever apart from the range of val-
ues it can take, is to assume that its distribution is uniform
over the range of possible values.

Some features of the learning behaviour described by this
model may also show up in more complex non-specific feed-
back situations. In a behavioural setting, for instance, we
find commitment to one’s own experiences and global, criti-
cal consideration of the results as necessary prerequisites for
dealing with non-specific feedback, with λ playing the role
of a ‘tolerance’ parameter. In the interaction between these
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two factors the randomness of experiences is shaped into a
knowledge landscape. A most interesting feature thereby is
the increase of the learning efficiency with decreasing toler-
ance, on the one hand, together with the complete disruption
of the learning behaviour if the tolerance is reduced below a
certain threshold, on the other hand.

Behavioural suggestions aside, in our view the first merit
of our model is to provide an elementary mechanism for
learning from non-trivial experiences which may be relevant
in an evolutionary perspective.
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Appendix

A Integrals and asymptotic behaviour

Below we collect the integrals appearing in the evaluation of
(19) and (20) for the AE and the HI versions of the online
bag error. Independence of patterns together with Eq. (16)
imply that the joint probability density of the fields {x (q,l)}
and {y(q,l)} is

P({x (q,l), y(q,l)})

=
L∏

l=1

1

2π
√

Q − R2
exp

[
− (

(
x (q,l)

)2+Q
(
y(q,l)

)2−2Rx (q,l)y(q,l))

2(Q − R2)

]

(24)

with R = R(α) and Q = Q(α), and marginals

P(x (q,l)) = 1√
2π Q

exp

(
−

(
x (q,l)

)2

2Q

)
,

(25)

P(y(q,l)) = 1√
2π

exp

(
−

(
y(q,l)

)2

2

)
.

Writing the the AE bag error (22) as

eq = eAE
q = 1

2L

L∑

l=1

(
1 − sgn

(
x (q,l))sgn

(
y(q,l)))

= 1

2
− 1

2L

L∑

l=1

s(q,l)t (q,l) (26)

one can express (19) and (20) as

dR

dα
= λ − 1

2

L

L∑

l=1

〈
s(q,l)y(q,l)

〉

+ 1

2L2

L∑

l,l ′=1

〈
s(q,l ′)t (q,l ′)s(q,l)y(q,l)

〉
(27)

dQ

dα
= 2λ − 1

L

L∑

l=1

〈∣∣x (q,l)
∣∣
〉
+ 1

L2

L∑

l,l ′=1

〈
s(q,l ′)t (q,l ′)∣∣x (q,l)

∣∣
〉

+
(
λ − 1

2

)2 + λ − 1
2

L

L∑

l=1

〈
s(q,l)t (q,l)

〉

+ 1

4L2

L∑

l,l ′=1

〈
s(q,l)t (q,l)s(q,l ′)t (q,l ′)

〉
. (28)

In (27) and (28), averages involving only a single pattern
(q, l) are independent of l, whereas averages involving two
patterns (q, l) and (q, l ′) will have different values for l = l ′
and l �= l ′; in the second case, independence of the fields
for different l can be used to factor averages. The remaining
averages needed to evaluate (27) and (28) can be expressed
in terms of the following integrals,

〈
s(q,l)y(q,l)

〉
=

∫
dxdy P(x, y) sgn (x)y =

√
2

π

R√
Q

,

〈
t (q,l)x (q,l)

〉
=

∫
dxdy P(x, y) sgn (y)x =

√
2

π
R,

〈
s(q,l)t (q,l)

〉
=

∫
dxdy P(x, y) sgn (x)sgn (y)

= 1 − 2

π
arccos

(
R√
Q

)
≡ P,

〈∣∣x (q,l)
∣∣
〉
=

∫
dx P(x) |x | =

√
2

π

√
Q,

〈∣∣y(q,l)
∣∣
〉
=

∫
dy P(y) |y| =

√
2

π
,

resulting in

dR

dα
=

(
λ− 1

2

) √
2

π

R√
Q

+ 1

2L

√
2

π
+ L − 1

2L

√
2

π

R√
Q

P

(29)

dQ

dα
= (2λ − 1)

√
2

π

√
Q + 1

L

√
2

π
R + L − 1

L

√
2

π

√
Q P

+
(
λ − 1

2

)2+
(
λ − 1

2

)
P+ 1

4L
+ L − 1

4L
P2 . (30)

If the HI bag error (23)

eq = eH I
q = 1

4L2

L∑

l,l ′=1

(
s(q,l)s(q,l ′) + t (q,l)t (q,l ′)

−2s(q,l)t (q,l ′)) (31)
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is used instead, the algebra is a bit more involved but the
results can still be expressed in terms of the integrals listed
above:

dR

dα
=

(
λ − 1

2L

)√
2

π

R√
Q

+ 1

2L2

√
2

π

+ L − 1

2L2

√
2

π

R√
Q

P (32)

dQ

dα
=

(
2λ − 1

L

)√
2

π

√
Q + 1

L2

√
2

π
R

+ L − 1

L2

√
2

π

√
Q P + λ2 − λ

L
(1 − P)

+ 1

4L3

(
(3L − 1)+(6L − 4)P + 3(L − 1)P2

)
.

(33)

With εG = 1
π

arccos
(

R√
Q

)
= 1

2 (1 − P) the evolution equa-

tions lead for large α to the asymptotic behaviour:

ε2
G 
 1

2π( 1
λL − 1)

α−1 + cα− 1
λL for λ �= 1

L
, (34)

Q 
 2

π
λ2α2 (35)

for the AE problem, and

ε2
G 
 1

2π( 1
λL2 − 1)

α−1 + cα− 1
λL2 for λ �= 1

L2 , (36)

Q 
 2

π
λ2α2 (37)

for the HI problem (for λ = 1/L , respectively, λ = 1/L2

there are logarithmic corrections).

B Theory for two-layer networks

In this appendix we briefly describe the theory for two-layer
networks. We assume a two layer structure with N input-
nodes and K hidden nodes for both, student, and teacher.

The hidden node outputs of student and teacher are

sµ
k = sgn (xµ

k ), tµk = sgn (yµ
k ), k = 1, . . . , K , (38)

with fields

xµ
k = 1√

N

∑

i

Jkiξ
µ
i , yµ

k = 1√
N

∑

i

Bkiξ
µ
i , k =1, . . . , K .

(39)

and Jki and Bki denoting synaptic weights of the hidden stu-
dent and teacher nodes, respectively. The overall outputs of
student and teacher are given by a fixed function F of the
hidden node values,

sµ = F({sµ
k }), tµ = F({tµk }). (40)

The function F is taken to be the same for student and teacher,
although a situation with different functions may also be con-
templated. Prominent examples are the committee machine

F({sµ
k }) = Fc({sµ

k }) = sgn

(
1√
K

K∑

k=1

sµ
k

)
, (41)

or its graded version, treated in Sect. 4 of the present paper,
with

F({sµ
k }) = Fg({sµ

k }) = 1√
K

K∑

k=1

sµ
k , (42)

or the so-called parity machine for which

F({sµ
k }) = Fp({sµ

k }) =
K∏

k=1

sµ
k . (43)

The generalization of the AR-Hebb rule for this set-up
would be to use Hebbian adaptation on the basis of the
momentary values of the students weights in phase I,

I : J (q,l+1)
ki = J (q,l)

ki + λ√
N

s(q,l)
k ξ

(q,l)
i , l = 1, . . . , L ,

(44)

and unlearning based on a global empirical bag-output error
in phase II,

II : J (q+1,1)
ki = J (q,L+1)

ki − eq√
N

L∑

l=1

s(q,l)
k ξ

(q,l)
i , (45)

with an online bag-error of the form

eq = 1

2L

L∑

l=1

(
F({s(q,l)

k }) − F({t (q,l)
k })

)2
(46)

The macroscopic analysis of the learning dynamics is
analogous to that of the single layer systems. The main obser-
vation required is that the fields x (q,l)

k and y(q,l)
k are jointly

Gaussian with zero-mean, uncorrelated for different l, and
non-zero correlations given by
〈
y(q,l)

k y(q,l)
k′

〉
= Pkk′ ,

〈
x (q,l)

k x (q,l)
k′

〉
= Qkk′(α),

〈
k(q,l)

k y(q,l)
k′

〉
= Rkk′(α) (47)

with continuous time α = q L/N as before. Here

Pkk′ = 1

N

∑

i

Bki Bk′i , Qkk′(α) = 1

N

∑

i

J (q,l)
ki J (q,l)

k′i ,

Rkk′(α) = 1

N

∑

i

J (q,l)
ki Bk′i . (48)

Note that the Pkk′ are given in terms of the fixed teacher
weights alone, while the Qkk′ and the Rkk′ evolve dynami-
cally.
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Following the reasoning described for single layer sys-
tems, we then get the following set of coupled flow equations
for the order-parameters of the system

dRkk′

dα
=

〈
gq

L

L∑

l=1

sgn
(

x (q,l)
k

)
y(q,l)

k′

〉
, (49)

dQkk′

dα
=

〈
gq

L

L∑

l=1

[
sgn

(
x (q,l)

k

)
x (q,l)

k′ (50)

+ sgn
(

x (q,l)
k′

)
x (q,l)

k

]〉

+
〈

g2
q

L

L∑

l=1

sgn
(

x (q,l)
k

)
sgn

(
x (q,l)

k′
)〉

. (51)

with gq = λ − eq as before. The expectations on the r.h.s of
these equations are evaluated using the joint Gaussian den-
sities of the {x (q,l)

k } and the {y(q,l)
k } which can be evaluated

in terms of the fixed Pkk′ , the Rkk′(α) and the Qkk′(α) alone,
although, depending on F , the details can be quite involved.
However, it is clear that (49) and (51) form an autonomous
closed set of flow equations which can be solved numerically
to study learning dynamics in the large system limit. A fea-
sible way out in situations where the integrals can no longer
be expressed in closed form is to evaluate them by stochas-
tic sampling over Gaussian fields {x (q,l)

k } and {y(q,l)
k }, with

correlations given by (47), which are easily generated using
a Cholesky-decomposition of the correlation matrix (Press
et al. 2002). This amounts in a certain sense to simulations
of the infinite system, and is close in spirit to (though simpler
than) the Eissfeller-Opper algorithm for spin-glass dynamics
(Eissfeller and Opper 1992). Further details are reported in
(Bergmann et al., in preparation).
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