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1Group Risk Control, Dresdner Bank AG, Jürgen-Ponto-Platz 1

D-60301, Frankfurt, Germany
2Department of Mathematics, King’s College London

Strand, London WC2R 2LS, UK

First Version: August, 2003

This Version:

February 23, 2004

accepted for publication in Physica A

Abstract

We generalize existing structural models for credit risk to capture the impact of counter-

party defaults on economic capital allocated to banks’ loan portfolios. Exploring the analogy

to a lattice gas model from physics, correlations between sequential defaults are modeled as

due to functionally defined, heterogeneous couplings between mutually dependent counter-

parties. We show that—already for moderate micro-economic dependencies—counterparty

risk results in a fattening of the tails in the portfolio loss distribution. In particular, for

stronger mutually supportive relationship between the firms, collective phenomena such as

bursts and avalanches of defaults can be observed in the model. In this context, traditional

credit risk models are inadequate because they underestimate the required capital buffer. Our

model setting is particularly applicable for doing stress analyses of credit risk in loan portfolios.
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1 Introduction

In recent publications on credit risk modeling the impact of sequential defaults related to direct
business relations between obligors has found much attention [1, 2, 3, 4, 5, 6, 7, 8]. Research
along this line, initiated by Davis and Lo [2], is motivated by attempts to explain the observed
clustering of defaults around economic recessions [9], which cannot readily be accounted for by
the standard approach for modeling correlations in either the reduced-form [10, 11, 12], or the
structural formulation [13, 14, 15] of credit risk modeling. In these approaches default correla-
tions are modeled by linking default intensities (reduced-form models) or asset returns (structural
models) to macro-economical factors (e.g., interest rates, credit spreads, stock indices, economic
growth). Since common factors weighted by some factor loadings influence the profitability of
firms, equal-time default correlations emerge. Although Yu [16] has shown that the choice of the
macro-economic factors can strongly influence the default correlation, research has recently also
focused on explaining empirically observed correlations in terms of direct inter-firm relationships.
Such relationships can arise from, e.g., (unsecured) borrowing and lending contracts in the inter-
bank market or in economically bounded entities, such as conglomerates, supplier-manufacturer or
parent-subsidiary structures. The results are functional inter-firm dependencies, which can initiate
collective sequential defaults resulting in bursts and avalanches of defaults analogously to a first
order phase transition in condensed matter systems [17].1

The mechanism by which a default of a firm’s counterpart might effect its own default probability
was termed counterparty risk by Jarrow and Yu [3]. This mechanism adds further complexity to
a credit risk model due to looping of default dependencies: essentially, every firm’s survival at
time t depends on all other firms’ survival at time t′ < t, which again depends on the original
firm’s survival at time t′′ < t′ < t. This kind of feedback generally prohibits straightforward exact
analytical solutions. It is also the economic reason for cascading and clustering of defaults. To
arrive at analytical, albeit approximate descriptions Jarrow and Yu eliminate looping defaults by
considering an economy with two groups of firms: primary firms whose default depends only on
marco-economic factors, and secondary firms whose default depends on marco-economic factors
and defaults of primary firms.

The concept of functional dependence is not limited to credit portfolio perspectives. Sequential
failure of processes constitute a main source for operational risk. A model exploring this notion in
order to calculate the necessary capital buffer for operational risks was proposed by the authors in
[19] and further elaborated by Leippold and Vanini [20].

The research initiated by Jarrow’s and Yu’s work followed the usual lines of either reduced-form
[3, 4, 5] or structural approaches [6, 7, 8]. Rogge and Schönbucher [4] apply a copula model in
the reduced-form framework to counterparty risk. The choice of the copula function is determined
by the distribution function of the common macro-economical factors. Their central result is that
the conditional increase of the hazard rate can be expressed by the covariance of the correspond-
ing common factors. This restricts their models to economies with symmetric counterparty risk,
which is not the generic case. Frey and Backhaus [5] address the problem of looping default by a
mean-field approximation in the reduced-form framework. This approximation, which is a common
non-perturbative tool in statistical mechanics, allows them to go beyond the primary-secondary

1Similar positive feedback mechanisms are also believed to be responsible for the possible occurrence of catas-
trophic shifts in a variety of ecosystems [18].
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firm approximation of Jarrow and Yu. To apply mean-field theory the portfolio must be split
into several homogeneous aggregates whose default statistics determines the default of an individ-
ual firm. Although this approximation might be important for portfolios with a large number of
relatively homogeneous obligors, e.g., retail loan portfolios, it appears less well suited to model
micro-economic business relationships in a corporate loan portfolio.

Counterparty risk has also been modeled in the structural formalism to credit risk. Giesecke and
Weber [6, 7] apply a voter model with symmetrical nearest-neighbor couplings on a d-dimensional
integer lattice Zd. Both, the regular geometric pattern of the functional inter-firm relations, and
their uniform strength as well as their symmetry would have to be abandoned and replaced by less
regular, heterogeneous variants in order to allow calibrating a model of this kind so as to a describe
realistic networks of economic dependencies. Another point concerns the equilibrium assumption
used in [6, 7], which is crucial for obtaining their main results, but which renders their analysis
essentially static. Egloff et al. [8] also apply a structural model, with a linear coupling of asset
returns between business counterparts. This linear feedback mechanism allows them to derive an
analytical solution even for looping defaults. The fact that their model allows for heterogeneous
and asymmetric dependencies opens ways for proper calibrations and thus creates considerable
potential for practitioners. Model improvements can still be be made: it would, for instance, be more
realistic to assume rating events (e.g., downgrade or default of a firm’s counterpart) rather than a
counterparty’s asset returns (which are not directly observable in the market) to be the decisive
quantities which influence a firm’s own asset returns. This would imply a non-linear feedback
mechanism between asset returns of related counterparts. Again, all results in [8] are obtained in
the stationary equilibrium limit, although the authors also quote an autoregression formulation of
their model. Finally, only the rating process is considered; the recovery process, which is important
for applications to a bank’s credit portfolio, is omitted.

The present paper attempts to provide and investigate some of the model improvements along these
lines. Our analysis implies a general, non-geometric, heterogeneous and generally asymmetric form
for the inter-firm dependencies. Moreover, as our prime focus here is to estimate the impact of
counterparty risk in loan portfolios on capital allocation, we do not assume equilibrium dynamics
here. This is an essential point, as risk capital, which is to be allocated as loss buffer in certain
portfolios, is usually estimated on the basis of a healthy starting portfolio. Such a healthy portfolio
constitutes a non-equilibrium initial condition. As, moreover, default probabilities p are small (so
that 1/p � 1 year), the portfolio will typically not reach an equilibrium state during the considered
risk horizon for capital allocation (usually one year), which is why equilibrium results are strictly
not applicable in this context.

As a result, analytical solutions are not easily available, though to a certain extent within reach of
techniques developed in the statistical physics of disordered systems. Within the present paper we
shall mainly resort to Monte Carlo simulations to elucidate the salient properties of our model.

Interest in capital allocation was renewed in the course of discussions in connection with the Basel
II-process [21, 22, 23]. Following the functional approach proposed in [19], our goal is to formulate a
generalization of the (structural) common CreditMetrics approach [24] that takes direct interactions
between firms into account. The parameters of our model can be expressed analytically in terms of
a priori and conditional default probabilities. The latter can be fixed by expert estimates, or from
historical loss data. We will argue in particular that our model provides a consistent framework
for stress testing of loan portfolios.
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The remainder of the paper is organized as follows. In Sect. 2 the standard approach to credit
risk is extended for collective sequential default events based on heterogeneous, and generally
non-symmetric functionally determined inter-firm dependencies. In Sec. 3 we explore the specific
properties of our model and analyze cascading defaults using Monte Carlo simulations. In this
section, we also comment on stress testing and discuss the issue of estimating the parameters for
the model. Finally, Sect. 4 summarizes our results.

2 Functional Approach to Counterparty Risk in Loan

Portfolios

We consider a simple two state model here for the N firms in the loan portfolio of the bank, in
which each firm has only been granted one single loan. Each firm can be either up and running
or defaulted. For firm i we designate these states in terms of an indicator variable ni as ni = 0
and ni = 1, respectively. In this setting only defaults trigger a credit deterioration of the loan
portfolio. Influences of credit quality deterioration on the market value of the loan portfolio are,
for simplicity, neglected, but they can easily be included in the scheme (e.g., by introducing multi-
valued as opposed to two valued indicator variables ni for the firms).

To motivate the dynamics of the functional approach, we assume that all firms need a certain
amount of “orders,” support, or cash inflow to avoid default during the time increment t → t + ∆t
within the risk horizon, t ∈ [0, T ) (think of suppliers constructing small item to the product of the
large-cap or subsidiaries receiving cheap funding from the mother firm, etc.).

We denote by Wi(t) the total support received by firm i at time t, and choose it to take the form

Wi(t) = w
(0)
i −

N
∑

j=1

wijnj(t) + ηi(t) . (1)

Economically, Wi(t) can be considered as the “wealth” function of firm i at time t. Alternatively,
it can be interpreted as the asset return of the firm [13]. A positive wealth corresponds to an

asset value which exceeds the debt of the firm. It is composed of (i) the average wealth w
(0)
i that

would be available in a fully operational network of firms, in which ni(t) = 0 for all i. (ii) This
quantity can be diminished by defaults of firms j, whose business relation with i are supportive
(wij ≥ 0), so support from defaulted firms which normally feed orders into the firm in question
would be missing; the converse—in case of competitors operating with similar products in the same
market—could also occur; their relative ‘coupling’ wij would be negative, and default of j would
increase the wealth of its competitor i, because i would be able to take over a share of j’s market.
(iii) lastly, there are fluctuations about the average which we take to be (correlated) Gaussian

white noise with—by proper renormalizing w
(0)
i and wij—zero mean and unit variance.

Firm i will default in the next time instant t + ∆t, if its wealth becomes negative, Wi(t) < 0, thus

ni(t + ∆t) = Θ



−w
(0)
i +

∑

j

wijnj(t) − ηi(t)



 , (2)

4



where Θ denotes the step-function: Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 otherwise. The decisive point
about this dynamical rule is that defaulted firms can (and generally will) change the probability
of default for other firms in the future, and it will increase their probability of default if their
economic relation is mutually supportive (wij > 0).

At this point it must be noticed that there is an important difference in the dynamics as compared
to that employed in the formally rather similar case of operational risks [19]. Namely, one usually
assumes that a defaulted firm will not recover during the risk horizon T ; in a technical sense,
therefore, ni = 1 is an absorbing state, so the dynamical rule (2) ought to be supplemented with

ni(t + ∆t) = 1 , if ni(t) = 1 . (3)

A defaulting firm will generate losses for the bank lending to it. Hence the losses Li incurred due
to firm i have to be updated according to

Li(t + ∆t) = Li(t) + ni(t + ∆t) Ei(t + ∆t) L
(i)
D (t + ∆t) , (4)

where Ei denotes the exposure at default and L
(i)
D = 1 − R(i) the loss given default, R(i) being

the recovery rate. Ei is the amount that will be lost due to outstanding transactions with the ith

firm, not adjusted for any future recovery and incomes during the bankruptcy process. L
(i)
D is this

adjustment factor such that Ei × L
(i)
D is the loss severity. Generally, Ei and L

(i)
D are taken to be

time-dependent random variables, e.g., think of credit lines where the future draws are not known
a-priori. It is understood that (4) applies at default only. It is worth pointing out here that the
(stochastic) model of incurred losses for a given default (i.e. the model of the recovery process) is
independent of the model assumed for the underlying dynamics of firm.

We will be following widespread practice (e.g. [15, 24, 25]) to model common systematic, albeit
fluctuating risk factors, which represent the industry sector, region, or country specific influence
on the economy, by taking the noise contribution ηi(t) in (2) to be correlated for different i. By
this device, one can model equal-time cross correlations between firm defaults. Specifically, we take

ηi(t) =
K
∑

k=1

βikYk(t) + ξiεi(t) , (5)

where

ξi =

(

1 −
K
∑

k=1

β2
ik

)1/2

. (6)

Thus, the Yk(t) ∼ N (0, 1) represent the common risk factors, whereas the εi(t) ∼ N (0, 1) are
firm-specific, idiosyncratic risk factors describing fluctuations in the micro-economical state of the
firms. All firms in the same risk sector k are subject to the same systematic factor, Yk(t). However,
each of them has an individual component through the idiosyncratic term, εi(t). The weights
βi = (βi1, . . . , βiK) stand for the sensitivity of the wealth of firm i to changes in kth risk sector.
For credit risk they are always positive or zero, βik ≥ 0. Without loss of generality we assume the
risk sector to be orthogonal, i.e., the Yk(t) to have zero correlation.2 Equal-time asset correlations

2This can always be assured by a simple rotation of “economic” risk sectors. The Yk(t) would then be linear
combinations of factors associated to these “economic” risk sectors.
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are then given by ρij =
∑

k βikβjk for i 6= j. It is understood that the dynamics of the common
economic factors Yk(t) is very slow on the time scale set by ∆t.

The microscopic parameters w
(0)
i and wij describing the dynamics of our model can be related to

statistical properties of default events as follows. Denoting by pi,∆t the unconditional probability
for firm i defaulting within the time increment t → t + ∆t, given that no other firm has defaulted
at time t, i.e., nj(t) = 0 for all j,

pi,∆t ≡ Prob
(

ni(t + ∆t) = 1
∣

∣

∣ {nj(t) = 0}
)

, (7)

one obtains pi,∆t by integrating over the N (0, 1) noise ηi in (2), giving

pi,∆t = Φ(−w
(0)
i ) . (8)

Here, Φ denotes the cumulative normal distribution Φ(x) = 1
2 (1 + erf(x/

√
2)). Inverting (8) one

obtains
w

(0)
i = −Φ−1(pi,∆t) . (9)

Similarly,

pij,∆t ≡ Prob
(

ni(t + ∆t) = 1
∣

∣

∣nj(t) = 1, {nk(t) = 0, k 6= j}
)

, (10)

i.e., the probability of firm i defaulting within the time increment t → t + ∆t conditioned on firm
j being defaulted at t is obtained by integrating over the N (0, 1)-noise ηi in (2) the same manner,
the only difference being in the configuration n(t) = {ni(t)} assumed at time t. Inverting and using
the result (9), one obtains

wij = Φ−1(pij,∆t) − Φ−1(pi,∆t) . (11)

Note that pij,∆t are stationary transition rates of the Markov process in terms of which the dy-
namics of our model is defined; they can be interpreted as a non-equal time cross-correlation of
obligor default within the time increment ∆t.

Finally, in order to investigate the dynamics in detail, e.g., by setting up a Monte Carlo simulation,
the conditional probability for default of firm i, during the time increment t → t+∆t, pi,∆t(n, Y ),
given a configuration n(t) = {ni(t)} of defaulted firms and a realization Y (t) = {Yk(t)} of common
factors at time t is needed. It is obtained by integrating over the distribution of idiosyncratic noises,
εi, in such a configuration. Combining (2) and (5), one obtains

pi,∆t(n, Y ) ≡ Prob
(

ni(t + ∆t) = 1
∣

∣

∣n(t), Y (t)
)

= Φ

(

Φ−1(pi,∆t) +
∑

j wij nj(t) −
∑

k βikYk(t)
√

1 −∑k β2
ik

)

. (12)

Note that up to the functional term “
∑

j wij nj(t)” this approach corresponds to the standard
approach, see e.g. [15, 24], for credit risk modeling, which in the one-factor version and in the limit
of an infinitely fine-grained portfolio is also the basis for Basel II [21, 22, 23].

Equation (12) has a very intuitive economic interpretation. Defaulted firms which were in a mutu-
ally supportive economic relation with the firm under consideration (wij > 0), or negative common
factors increase its conditional default probability, and, henceforth, result in enhanced economic

6



distress. Conversely, defaulting firms which were in a mutually competitive economic relation with
the firm under consideration (wij < 0), or positive common factors would decrease its conditional
default probability, and, henceforth, result in reduced economic distress.

Let us emphasize one further important consequence of our way of thinking about the dynamics
underlying credit risk. It is related to the observation that the economic network of dependent
firms is usually (much) larger than the set of firms in a bank’s lending portfolio. This aspect is
only partially taken into account by the introduction of the set of common risk factors {Yk} in
(5), namely only to the extent that adverse effects on the bank’s lending portfolio through defaults
of individual, identifiable firms outside the bank’s own portfolio can be neglected. This is quite
obviously not always appropriate. Within the present approach these considerations can easily be
taken into account by looking at the dynamics of larger networks of interacting firms and setting
Ei = 0 for the firms that are not in the bank’s portfolio.

3 Properties of the Model

For a general heterogeneous network of firms the dynamics (1), (2), and (12) cannot be solved
analytically. To study the salient properties of our model we shall, therefore, resort to Monte Carlo
simulations. Note that, within the present paper, we do not attempt to simulate networks with
parameters derived from a realistic economic network, but rather simulate the heterogeneity of
realistic economic networks by using a fixed random setting for the dependencies in the economic
network of interacting firms. That is, we shall be using fixed (quenched) random unconditional and
conditional default probabilities for the firms, and we shall in the present paper also not consider
the case where the economic network is larger than the network of firms in the bank’s lending
portfolio. Moreover, to emphasize the effects of interaction-induced enhancement of credit risk, we
shall in the present setup consider a network containing only mutually supportive firms.

It is clear that none of the specifications chosen constitute restrictions of principle. Some could be
read as attempts at generality; the last is merely meant to illustrate more succinctly the collective
effects that may occur in such systems.

We will show that, with economic stress percolating through the portfolio of mutually dependent
firms, cascading defaults can fatten the tail of the loss distribution, and even render it bimodal in
the limit of strong dependencies.

3.1 Setting up the Monte Carlo Simulation

To simplify matters further we restrict ourselves to having just a single common macro-economical
factor so that

ηi(t) =
√

ρY (t) +
√

1 − ρεi(t), (13)

with correlation coefficient ρ. Furthermore, we consider a homogeneous portfolio in which we chose
Ei to be the same, and equal to 1, for each firm. LD is sampled from a beta-distribution upon each
default.

Eq. (12) constitutes the basis of the Monte Carlo algorithm. The probabilistic dynamics is carried
out in parallel. We take the time increment ∆t to represent a single day. The common economic
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factor is assumed to vary more slowly than on a day-to-day basis. Within the present simulations
we choose to update it just once during a year from a zero-mean unit-variance Gaussian. One year
is also a common choice for the value of the risk horizon T in the problem of capital allocation for
covering credit risk. Indeed, for the question of estimating the annual loss distribution of a loan
portfolio, which is the question we decided to address with the simulations presented below, the
question of the dynamics of the common factor is not of prime importance, as long as it is agreed
that the time-scale of its variations is of the order of a year: the loss distribution is in any case
calculated for portfolios starting in a healthy state at the beginning of the risk horizon, i.e., in a
non-equilibrium initial condition without defaults. Other ways of setting up a simulation are of
course conceivable, when other questions are being addressed.

For fixed Y , Eq. (12) is sampled for a risk horizon of T = 365 days, starting with ni(0) = 0
for all i. In case of a default under the given scenario—a default occurs in the simulation, if a
[0,1]-distributed random variable is smaller than the conditional default probability, Eq. (12)—a
random variable for LD is drawn from a beta-distribution for constant E. Repeating this for many
years with Y annually chosen according to its distribution, a histogram of the annually realized
portfolio losses is eventually obtained. The economic capital (EC) is read off from the q-quantile
of this histogram,

Lq(T ) = inf
{

L(T ) : Prob(L(T ) ≤ Lq(T )) ≥ q
}

(14)

in excess of the expected loss, 〈L(T )〉, (〈·〉 denoting the average over the loss distribution function)

EC(T ) = Lq(T ) − 〈L(T )〉. (15)

Economic capital is the industry standard for the amount of equity capital required to buffer un-
expected losses (risk) at a certain confidence level q. Commonly, the confidence level is determined
from the external (S&P or Moody’s) target rating of the bank such that q = 1−p1Y (target rating).

To set up our random realization of a network of interacting firms, we choose fixed unconditional
default probabilities pi,∆t for each firm, taken to be homogeneously distributed in some interval
[0, pmax]. The transition probabilities pij,∆t are also fixed, and randomly chosen as

pij,∆t = pi,∆t(1 + εij) , (16)

with εij taken to be homogeneously distributed in the interval [0, εmax]. This fixes the ratio
(pij,∆t/pi,∆t)

max = 1 + εmax. For a specific economic network, the parameters pi,∆t and εij would
have to be determined from from expert assessment, on the basis of historical data, or otherwise
(we shall return to this issue in greater detail below). The random specifications made here have
no particular claim on realism in economic detail; they are just meant to be reasonable, and able
to elucidate the main principles at work in an economic network of mutually supportive firms.

3.2 Results

The values of pmax and εmax, and of the correlation coefficient ρ are the control parameters of our
system. Within the present study, simulations were carried out for a network of N = 100 inter-
acting firms, and pmax = 5/(365×N), that is an unconditional default probability homogeneously
distributed in the range between 0 and 5% was chosen for the data presented in Figs. 1 and 2.
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Figure 1: Probability density function of the losses for a fully connected network of N = 100 firms,
pmax = 5/(365 × N), ρ = 15%, and T = 365 × ∆t. From left to right the curves correspond to
the cases of non-interacting firms (crosses), the case (pij,∆t/pi,∆t)

max ≡ 1 + εmax = 1.04 (diagonal
crosses), and (pij,∆t/pi,∆t)

max ≡ 1 + εmax = 1.16 (asterisks), a case where the entire network of
loans may collapse.

The correlation coefficient between the fluctuating forces originating from the common factor Y
was taken to be ρ = 15%, and the parameters of the beta-distribution used for sampling the LD’s
are a = b = 3/2, giving a semicircular law for the corresponding probability density function with
mean loss rate LD = 50% and LD-volatility σLD

= 25%.

If the unconditional default probabilities pi,∆t and the transition probabilities pij,∆t are small
enough to allow for a stable economy, one finds that the loss distribution is always unimodal
with frequent small losses and a few extreme losses, which together with the randomness of the
loss severity are responsible for tails in the loss distribution. With increasing (pij,∆t/pi,∆t)

max,
counterparty risk in the portfolio and with it the likelihood of larger losses increases. If the ratio
(pij,∆t/pi,∆t)

max increases beyond a critical value, collective losses, or crashes, in the form of bursts
or avalanches of default events, spreading through the whole economy, will occur—the economic
network of interacting firms will become collectively unstable. The avalanches of default events
are completely analogous to bubble nucleation associated with first order phase transitions, and
will cause the loss distribution to become bimodal with a marked peak at very high losses. Fig. 1
documents this scenario by comparing the loss distribution one would expect for non-interacting
firms with two cases where the ratio (pij,∆t/pi,∆t)

max is increased to 1.04 and 1.16, respectively.

Note that even in the case of weak inter-firm dependencies, i.e., only 4% enhancement of the
default probability, the loss distribution already extends to significantly larger values: the 99.5%
quantile increases by approximately 40% (from L99.5 ' 17.0 to L99.5 ' 24.0), while the increase
of the expected loss is by approximately 15%, and thus much less pronounced. The reason for the
rather drastic effect of inter-firm dependencies in the present setup is the high connectivity of the

9



network, where all N = 100 firms are chosen to interact with each other.

Indeed for the present fully connected network the larger of the two ratios, (pij,∆t/pi,∆t)
max = 1.16,

is large enough for collective instabilities of the network of interacting firms to occur, causing the
loss distribution to become bimodal with a marked peak at very high losses, as shown in Fig. 1, and
leading to an increase of of the 99.5% quantile of the loss distribution relative to the non-interacting
case by approximately 300%!

Fig. 2 shows the behavior of the economic capital as function of the control parameter
(pij,∆t/pi,∆t)

max = 1 + εmax, normalized with respect to the case of non-interacting firms. Note
the relative sharp rise at intermediate values of 1 + εmax for the fully connected case. This sharp
rise is a trace of an underlying first order phase transition. In our simulations, that transition is
‘smeared.’ The reason here is not so much that we are dealing with a relatively small network,
but also, because we are simulating the system over a finite time-window of the length of the risk
horizon T , starting with a healthy portfolio. Hence, we consider a finite time window of a non-
equilibrium dynamics. In our simulation we are therefore always only seeing the first stages of a
bubble nucleation associated with an underlying phase transition.

In the limit of large networks and large time-horizon T such that equilibrium conditions apply, the
economic capital would, indeed, develop a true jump discontinuity, as 1+ εmax is increased beyond
a given critical parameter. We have not attempted to precisely locating the transition point via a
finite size scaling analysis.

Clearly, the rise is less dramatic for lower, and more realistic connectivities of the network as shown
in Fig. 2. However, for the lower connectivity, too, there would be a critical value of the control
parameter (pij,∆t/pi,∆t)

max = 1 + εmax at which a sharp rise of the economic capital as a function
of this parameter would be observable and develop into a true jump discontinuity in the limit of
large system sizes and long risk horizons.

The second panel in Fig. 2 compares the result obtained for the case of 20% connectivity with
the result for a collection of non-interacting firms with unconditional default probabilities pi,∆t

uniformly sampled from the interval [0, pmax × (1 + 0.2εmax)]. It demonstrates that the effect of
counterparty risk on economic capital cannot be covered by solely renormalizing unconditional
default probabilities, which is a common pragmatic approach in the banking industry.

Our results do not contradict arguments made in [3, 8] according to which effects of counterparty
risk will disappear in large well-diversified portfolios. Quite to the contrary, our model is fully
compatible with that reasoning, the key point being that large bond portfolios such as the Moody’s
or S&P bond universe do not only contain bonds of mutually supportive firms (with wij > 0)
but also bonds of mutually competitive firms (with wij < 0). Hence, counterparty risk in such
portfolios is (partially) diversified away exactly because mutually supportive and competitive inter-
firm dependencies are present. This has an important implication for the credit process: banks can
naturally hedge counterparty risk by granting loans to competing firms.

3.3 Stress Testing

Stress testing is an important part of modern risk management. Whereas common Value-at-Risk
measures refer to a worst case loss under normal market conditions, stress tests constitute the
complementary part in the analysis of the risk profile by considering specific crisis scenarios.
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Figure 2: Economic capital EC = L99.5 − 〈L(T )〉 as a function of the control parameter,
(pij,∆t/pi,∆t)

max = 1 + εmax relative to its value EC0 for non-interacting firms for N = 100
firms, pmax = 5/(365× N), ρ = 15%, and T = 365 × ∆t. In the first panel, the upper curve gives
the behavior for a fully connected network, the lower curve for a network of the same size, but
each firm interacting only with a randomly chosen subset of 20% of the other firms in the net. The
second panel compares the result obtained for the case of 20% connectivity with the result for a
collection of non-interacting firms with unconditional default probabilities pi,∆t uniformly sampled
from the interval [0, pmax × (1 + 0.2εmax)].
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There is no generally agreed approach for stress testing of loan portfolios. In the standard approach
without the “

∑

j wij nj(t)”-term in (12) it has been suggested to do stress testing by setting all
factor loadings βik close to unity. Although this device increases the economic capital, such an
approach can be criticized. It addresses only systematic stress events, like recessions in industry
or country sectors. Specific stress events like the default of a large borrower are not considered.
In our approach a much more controlled and bank-specific stress test of a loan portfolio is pos-
sible by setting specific firms into the default state—simply by turning specific nj(t) ≡ 1 in the
“
∑

j wij nj(t)”-term—and analyzing the impact on the loss distribution.

One of the most critical lessons for Risk Control from our analysis is the possible metastability
of networks of interdependent firms: the bank would not necessarily realize the potential of big
losses due to bursts and avalanches of obligor defaults, as there are no detectable precursors to such
events for large portfolios. A basically unchanged loan portfolio could collapse and cause significant
losses, either due to external strain or rare fluctuations of internal dynamics. The likelihood of such
a collapse of the loan portfolio would, however, be revealed by our analysis.

3.4 Calibration of Model Parameters

The present model requires the specification of unconditional default probabilities pi,∆t, factor
loading βik, and of conditional default probabilities pij,∆t. The procedure to calibrate unconditional
default probabilities and factor loadings from empirical default data of diversified portfolios, e.g.,
the S&P or Moody’s bond universe, is known to practitioners [25], and succinctly described, e.g.,
by Egloff et al. [8].

In the present section we discuss ways to estimate unconditional, pi,∆t, and conditional default
probabilities pij,∆t for ordinary loan portfolios of banks, bearing in mind that these ‘bare’ quanti-
ties may be difficult to measure directly in these portfolios. They must be extracted from default
statistics that is already renormalized through interactions, as it originates in a world of inter-
dependent firms. It is clear that such estimates can only be obtained by refining current rating
procedures.

In a conventional rating process obligors are assigned to a rating grade, e.g., A-, BBB+, or BBB,
depending on their score Z in a rating system. The score is given as some (non-) linear function
f of individual rating factors X1, . . . , Xn, Z = f(a1X1 + a2X2 + . . . anXn), with factor loadings
a1, . . . , an. In a rating calibration the function f and the factor loadings aα are optimized over
the ensemble in such a way that the statistics of predicted defaults matches that in a historical
test sample as closely as possible. The bucketing in rating grades is done such that the associated
average default probability matches the portfolio number of defaults and the entire buckets cover
the default distribution of the portfolio. Default probabilities are estimated ex post from the number
of actual defaults per rating grade.

In a reasonable rating system the rating factors typically include balance sheet key figures (eq-
uity/debt capital ratio, legal structure, profit, sales, cost-income ratio, etc.), management factors
(good/bad management, strategic planning, controlling processes, disclosure, etc.), market segment
figures (economic cycle, segment economic indicators, etc.) and market position figures (comparison
to competitors, offered products, customer/supplier structure, etc.). Hence, due to the last group
of rating factors, such a rating system does take economic inter-firm dependencies into account. As
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a result, corporate dependencies do in the rating process conventionally result in assigning obligors
to a lower, less qualified rating grade. As a consequence, the calibration of rating grades will lump
both, a-priori, and conditional default probabilities into a single assigned default probability. In a
certain sense, therefore, such a conventional rating procedure performs an implicit type of renor-
malization of the unconditional default probability in such a way that detailed information about
economic dependencies, which as argued above would be very useful for specific stress testing, is
virtually lost.

From a fundamental point of view, it seems very difficult to disentangle unconditional and condi-
tional default probabilities from available historical data. In practice, estimating these parameters
with a degree of (im)precision similar to that embodied in the implicit renormalization scheme
followed by the conventional combination of rating scheme and calibration of rating grades would,
however, not seem entirely unrealistic. For practitioners the focus must clearly be on using simplest
models with smallest number of extra parameter that will capture counterparty risk in a credi-
ble way. Even if statistical estimates are hard to come by, plausible ranges of parameters can be
derived on intuitive grounds. Analyses using plausible values give bounds on capital charges and
are certainly better than ignoring counterparty risk altogether. According to this, a representation
such as that following Eq. (16) above, which estimates a suitable range for the conditional default
probabilities based on an expert assessment for εmax, could constitute a reasonable first pragmatic
solution to the calibration problem.

Any way of going beyond such a first approximate solution of the calibration problem would have to
take conventional rating procedures as a starting point, but would require refining them in suitable
ways. Here, we just hint at one possible way of attacking this problem by formulating a bootstrap

algorithm. It is based on the observation that a calibrated rating procedure can be thought of as
providing a function P that maps scores Z on interaction-renormalized default probabilities (within
a time increment ∆t); before binning into discrete rating grades, this function will be smooth and
monotone. Given the score Zi of firm i, one may compute a related ‘bare score’ Z0

i for the same
firm by ignoring the contributions of rating factors describing economic inter-firm dependencies (by
resetting the corresponding factor loadings to zero). To the extent that the remaining rating factors
are independent of those characterizing economic inter-firm dependencies, the default probability
computed for the bare score Z0

i may then be taken to provide an estimate of the unconditional
default probability pi,∆t ' P(Z0

i ) needed within the present approach.

The values of the εij introduced in (16) could be fixed by asking experts to estimate the relative

values of the transition probabilities, i.e., ratios of the form

R
(i)
jk =

pij,∆t

pik,∆t
=

1 + εij

1 + εik
. (17)

While considering a single such ratio is insufficient to fix the values of the two ε’s involved, the

estimate of three such ratios (with a common i) involving a closed loop (j, k, `)—R
(i)
jk , R

(i)
k` and

R
(i)
`j —are sufficient to fix the three ε’s involved. Further iterative improvement and consistency

checks, and thus systematic bootstrapping is possible by considering longer loops. Together with
the pi,∆t, this allows to compute the conditional default probabilities pij,∆t, hence, the couplings
used in our model. If need be, additional refinement of model parameters could be obtained using
so called Reverse Monte Carlo methods (reviewed, e.g., in [26]).
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The suggested refinement of the rating process is clearly very work-intensive and requires high
standards on the credit process of a bank. It is also clear that a proper implementation of such a
calibration procedure constitutes a major research project in its own right.

Although it may be difficult to determine model parameters with high accuracy within such a
procedure, the approach may nevertheless be viable for two reasons. One is that the renormalization
effect on the default probabilities for weak dependencies is expected to be small anyway, and in
any case not much larger than the error margins of default probabilities determined within a
conventional rating procedure. Hence, no substantial additional source of errors is likely to be
introduced in being a bit more explicit about the renormalization effect. More importantly, the
other reason is that macroscopic properties of interacting systems of the type considered here are
quite often fairly insensitive to variations at the microscopic level. Only statistical properties of

the model parameters—not individual parameters themselves—must be captured with reasonable
accuracy in order to allow reliable predictions about its global statistical properties such as, indeed,
the properties of loss distributions.

4 Conclusion

To summarize, we have introduced and analyzed a framework that allows to estimate the effects of
functional inter-firm dependencies within a collection of firms in a bank’s lending portfolio on credit
risk. We have demonstrated that the model parameters can be expressed in terms of a-priori and
conditional default probabilities. We have indicated ways in which these ‘bare’ default probabilities
that would have to be used in the model could be estimated by taking a closer look at the rating
process.

The analysis in this paper has shown that the standard models for credit risk, which are based
on equal-time correlations to common macro-economical environment, could significantly underes-
timate the losses of credit portfolios. Corporate dependency results in counterparty risk and can
significantly amplify portfolio losses. Our main point was that functional correlations between mu-
tually supportive firms give rise to non-trivial temporal correlations, which could eventually lead
to the collective occurrence of losses in form of bursts, avalanches or crashes.

Conversely, by following the same kind of reasoning one easily convinces oneself that the mecha-
nisms responsible for a possible amplification of portfolio losses in a network of mutually supportive
and thus mutually dependent firms can be counter-balanced by setting up a loan portfolio in such a
way that it includes a balance of mutually supportive and mutually competitive firms. This would
create functionally induced “anti-correlation effects,” which work to reduce the economic capital
of a lending portfolio. This aspect gains particular importance in secondary loan trading markets
and for loan portfolio management. Note that very much the same set of ideas are well known in
the context of portfolio optimization with regard to market risk.

In any case there are important implications for the management of credit risk in loan portfolios:
our analysis calls for much higher qualitative and quantitative standards in the rating process. It
demonstrates that stress analyes are required to assess possible metastabilities of the loan portfolio.
Indeed, an important property of our model is its appropriateness for stress analysis and the
possibility to describe metastable networks of corporate dependent firms. Credit risk migration
from external strain or internal defaults can be modeled in a conceptually well-defined framework,

14



and crashes, bursts or avalanches of defaults are—in contrast to the traditional models—part of
the default dynamics.

Another point worth returning to is connected with credit risk migration from outside the bank’s
own loan portfolio. An event, which could trigger major losses for the bank in question through
collective effects, would be the default of a major player which—while not contributing to the bank’s
own loan portfolio—may nevertheless be economically well connected to the network of firms that
constitute the bank’s portfolio. As mentioned earlier, our analysis of credit risk migration may well
be set up in ways that take the possibility of such ‘Trojan Horse’ effects properly into account. The
case of the retail portfolio of a small local bank providing mortgages to housekeepers predominantly
working for the same large employer in the area can provide an example for such considerations.
In such a case, the renormalization of default probabilities due to interactions in setting up the
model may safely be ignored, whereas the significant enhancement of default probabilities due to
a possible default of the large local employer creates the major source of risk for the bank.

In conclusion, if counterparty risk in banks’ loan portfolios is ignored, the calculated economic
capital may well understate the appropriate risk buffer. Proper stress and risk migration analysis,
akin to those outlined in this paper, could turn out an important tool for assessing the resilience
of a bank’s loan portfolio against dangers of catastrophic collective losses.
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