Using C++ classes

C++ classes

>

>

You

The types double and int etc. are too restrictive. What
about complex numbers, strings, matrices ...?

#include

<complex> to use complex numbers. Actually, we

won't need this.

#include
#include
#include

#include

<string> to use strings.
<sstream> to use strings efficiently.
<vector> to work with vectors.

<fstream> to work with files.

Matrices? Sorry, you have to write your own!

can write your own custom types. That is the main thing C++
programmer’s actually do.

Add all these #include statements to stdafx.h. We can then use
all of these libraries easily. We'll assume using namespace std;
throughout.

Using a vector - slide 1

// create a vector
vector<double> myVector;

// add three elements to the end
myVector.push_back(12.0);
myVector.push_back(13.0);
myVector.push_back(14.0);

// read the first, second and third elements
cout << myVector[0] <<"\n";
cout << myVector[1] <<"\n";
cout << myVector[2] <<"\n";

Remember C++ programmer’s count from 0. This is one reason
why.

Using a vector - slide 2

// change the values of a vector
myVector[0] = 0.1;
myVector[1] = 0.2;
myVector[2] 0.3;

// loop through a vector

int n = myVector.size();

for (int i=0; i<n; i++) {
cout << myVector[i] <<"\n";

3

Note we start counting from zero.

Using a vector - slide 3

// Create a vector of length 10
// consisting entirely of 3.0’s
vector<double> ten3s(10, 3.0);

// Create a vector which is a copy of another
vector<double> copy(ten3s);
ASSERT(ten3s.size() == copy.size());

// replace it with myVector
copy = myVector;
ASSERT(myVector.size() == copy.size());

Passing big objects around

When you write a function that takes a vector parameter you
should write it like this:

double sum(const vector<double>& v) {
double total = 0.0;
int n = v.size();
for (int i=0; i<n; i++) {
total += v[il;
}

return total;

» It would be a good idea to learn this program off by heart.

» Notice the strange const and & symbol. We need these
because vectors are too big to keep copying all the time.

Pass by value

void printNextValue(int x) {
x =x+1;
cout << "B: Value of x is '"<<x<<"\n";

void main() {
int x = 10;
cout << "A: Value of x is '"<<x<<"\n";
printNextValue(x);
cout << "C: Value of x is "<<x<<"\n";
return 0O;

Pass by reference

void printNextValue2(int& x) {
x =x+1;
cout << "B: Value of x is '"<<x<<"\n";

void main() {
int x = 10;
cout << "A: Value of x is '"<<x<<"\n";
printNextValue2(x);
cout << "C: Value of x is "<<x<<"\n";
return 0O;

» For very small data types (double, int, bool), pass by value
is quicker.

» For everything else, pass by reference is quicker.

» But there is a danger of confusing code.

Pass by const reference

void printNextValue(const int& x) {
X =X + 1;
cout << "B: Value of x is "<<x<<"\n";

}

This code does not compile

Another use of pass by reference

C++ does not allow you to return multiple values. You can use
pass by reference to get round this.

void polarToCartesian(double r, double theta,
double& x, double& y) {

= rxcos(theta);

r*sin(theta);

< M
o

static void testPolarToCartesian() {
double r = 2.0;
double theta = PI/2;
double x=0.0,y=0.0;
polarToCartesian(r,theta,x,y);
ASSERT_APPROX_EQUAL(x,0.0,0.001);
ASSERT_APPROX_EQUAL(y,2.0,0.001);

Writing to a file

// create an ofstream
ofstream out;

// choose where to write
out.open("myfile.txt");

out << "The first line\n";
out << "The second line\n";
out << "The third line\n";

// always close when you are finished
out.close();

Works just like std: : cout except for the open and closing.

Passing a stream as a parameter

Pass a reference to an ostream.

void writeHaiku(ostream& out) {
out << "The wren\n";
out << "Earns his living\n";
out << "Noiselessly.\n";

void testWriteHaiku() {
// write a Haiku to cout
writeHaiku(cout);
// write a Haiku to a file
ofstream out;
out.open("haiku.txt");
writeHaiku(out);
out.close();

3

An ofstream is an ostreamn.

Working with strings

// Create a string
string s("Some text.");

// Write it to a stream
cout << s<< "\n";
cout << "Contains "

<< s.size() <<

" characters \n";
// Change it
s.insert(5, "more ");
cout << s <<"\n";

// Append to it with +
s += " Yet more text.";
cout << s <<"\n";

// Test equality
ASSERT(s=="Some more text. Yet more text.");

Technical points about strings

» When you write text in double quotation marks you obtain
data of type char*. This means a pointer to a memory
address containing a sequence of characters.

» We'll cover pointers in detail later in the course.

» C+4++ will automatically cast this to a string under most
circumstances.

» Using a string is better than using a char* because they're
more efficient and have lots of helpful functions.

» Use \" to write quotation marks inside quotation marks. Use
\\ to write backslashes inside quotation marks.

Working with strings efficiently
Using + to build up strings is slow. Don't do this:

string s("");

for (int i=0; i<100; i++) {
s+="blah ";

}

cout << s<<"\n";

Do this:

stringstream ss;

for (int i=0; i<100; i++) {
ss<<"blah ";

}

string sl =ss.str(Q;

cout << sl <<"\n";

A stringstream is an ostream.

Writing a chart in C4++

Solution 1: Just write the data and create the chart in Excel.

void writeCSVChartData(ostream& out,
const vector<double>% x,
const vector<double>% y) {
ASSERT(x.size()==y.size());
int n = x.size();
for (int i=0; i<n; i++) {
out << x[i] <<","<<y[i] <<"\n";
¥
¥
void writeCSVChart(const string& filename,
const vector<double>& x,
const vector<double>% y) {
ofstream out;
out.open(filename.c_str());
writeCSVChartData(out, x, y);
out.close();

Using classes in header files

To make this part of a library we need to declare it in the header.

void writeCSVChart(const std::string& filename,
const std::vector<double>& x,
const std::vector<double>& y);

Unfortunately, you should never write using namespace std; in a
header file so all these std:: prefixes are required. Boring!

Writing a chart in C4++

Solution 2: Create a web page containing a chart.

>

Create a file called myPieChart.html. Open it with a text
editor (e.g. Notepad)

Visit https://google-developers.appspot.com/chart/
interactive/docs/quick_start.

Copy the code example into your file.
Save the file.
Open the file in a web browser.

https://google-developers.appspot.com/chart/interactive/docs/quick_start
https://google-developers.appspot.com/chart/interactive/docs/quick_start

What does this file do?

v

| am not going to tell you in detail!

v

We're learning C++ from the bottom up. Let's learn web
development the easy way.

v

Guess how to change the chart to display what you want.

v

See if you were correct.

Writing a charting function steps

1
2) Create a C++ source file called charts. cpp.
3) Add placeholders for testing.

Create a header file charts.h.

)
)
)
4) Write functions to write the charting boiler plate.
5) Write a simple version of the interesting bit of code.
6)
7)
8)
9)
)

10

Test the pie chart works in a browser.

Write a final version of the interesting bit of code.
Write a test for the interesting code.

Write a function that wraps it all together.

Add that function to your header file.

Step 1 - the header file

What are the required steps when writing a header file?

Step 1 - the header file

» Right-click on "header files" to create.

» Call the file charts.h.

> All header files should start with #pragma once.

> Include standard libraries with #include "stdafx.h".
> (We'll cover tests later.)

#pragma once

#include "stdafx.h"

Step 2 - the C++ source file

What are the required steps when writing a source file?

Step 2 - the C++ source file

v

Right click on "source files" to create.

v

Call the file charts. cpp.

All source files should #include the header.

v

v

(We'll cover tests later.)

#include "charts.h"

Step 3 - add placeholders for testing

When creating new files, how do you build in testing? This will
depend upon your testing framework, of course.

Step 3 - add placholders for testing

In charts.h:

void testCharts();

In main.cpp

int main() {
testMatlib();
testGeometry();
testCharts();
testUsageExamples () ;

3

In charts.cpp:

void testCharts() {
}

Step 4 - an easy functions

» We pass an ostream& reference to the function.
» We use \" to escape quotes in quotes.

» The spacing in HTML files isn’t very important, so this function
doesn’t reproduce the spacing of Google's example pie chart
precisely.

static void writeTopBoilerPlateOfPieChart(ostream& out) {
out<<'"<html>\n'";
out<<'<head>\n";
out<<"<!--Load the AJAX API-->\n";
out<<'<script type=\"text/javascript\"";
out<<"src=\"https://www.google.com/jsapi\">";
out<<"</script>\n";
out<<"<script type=\"text/javascript\">\n";
out<<"google.load(’visualization’, ’1.0’,";
out<<" {’packages’:[’corechart’]});\n";
out<<"google.setOnLoadCallback(drawChart);\n";
out<<"function drawChart() {\n";
out<<"var data=new google.visualization.DataTable();";
out<<"\n";
out<<"data.addColumn(’string’, ’Label’);\n";
out<<"data.addColumn(’number?’, ’Value’);\n";

Step 5 - easy versions of the remaining code

» Writing a function for the bottom boiler plate code is just as
easy.

» Writing a function writeFixedPieChartData that prints out
the data for a fixed pie chart is easy too. The harder bit will
be making it work with changing data.

> Let's “cheat” for now, and write this easy function so we can
see if we can write a chart to file that works in a browser.

» This is a sensible practice. Work in small pieces. Once you've

solved one simple problem, move on to the next simple
problem.

Step 5 - The simplified solution

static void writeFixedPieChartData(ostream& out) {
out<<"data.addRows ([\n";
out<<"[’Bananas’, 100],\n";
out<<"[’Apples’, 200],\n";
out<<" [’Kumquats’, 150]\n";
out<<"]);\n";

Step 6 - Writing a test

static void testFixedPieChart() {
ofstream out;
out.open("FixedPieChart.html");
writeTopBoilerPlateOfPieChart (out);
writeFixedPieChartData(out);
writeBottomBoilerPlateOfPieChart(out);
out.close();

void testCharts() {
TEST(testFixedPieChart);

» We've written enough code to test. So, let's run it.
» If you run this test in Visual Studio it will create the file in the
same folder as main. cpp.

Step 7 - The interesting code

Given a string of labels produce output that looks like this:

data.addRows ([
[’Bananas?, 100],
[’Apples’, 200],
[’Kumquats’, 150]
DN

» We'll assume the labels don’t contain quotation marks or other
special characters.

» Note that the last line is special - there is no comma.

Step 7 - Write the interesting code

static void writeDataOfPieChart(ostream& out,
const vector<string>& labels,
const vector<double>& values) {
out<< "data.addRows([\n";
int nLabels = labels.size();
for (int i=0; i<nLabels; i++) {
string label = labels[i];
double value = values[i];
out<<"[’"<<label<<"’, "<<value<<"]";
if (i'=nLabels-1) {
out<<",";

}
out<<"\n";

}

out<<"]);\n";

Step 8 - Testing the interesting code

How can we test the interesting bit of code?

Step 8 - Test page 1

We first create a string containing the actual data.

static void testPieChartData() {
// this test automates the checking
stringstream out;
vector<string> labels(3);
vector<double> vals(3);
for (int i=0; i<3; i++) {
stringstream ss;
ss<<"A Label "<<ij;
labels[i] =ss.str();
INFO(labels[i]);
vals[i]=(double)i;

}

writeDataOfPieChart(out,
labels,
vals);

string asString = out.str();

Step 8 - Test page 2

We then compare it against a string containing the expected data.

stringstream expected;
expected<<'"data.addRows([\n";
expected<<"[’A Label 0’, 0],\n";
expected<<"[’A Label 1’, 1],\n";
expected<<"[’A Label 27, 2]\n";
expected<<"]);\n";

string expectedStr = expected.str();
ASSERT(asString==expectedStr);

» Since fstream and stringstream are both types of stream,
the interesting code was easy to test.

» It is perfectly possible to write meaningful tests for almost any
code. If you can't test it, you've designed your code incorrectly
or don’t understand the problem properly.

Step 9 - Write a function that wraps it all together

This is essentially the same code as the function
testFixedPieChart:

void pieChart(const string& file,
const vector<string>& labels,
const vector<double>& values) {
ofstream out;
out.open(file.c_str());
writeTopBoilerPlateOfPieChart (out) ;
writeDataOfPieChart(out, labels, values);
writeBottomBoilerPlateOfPieChart(out);
out.close();

Step 10 - Add the function to the header file

void pieChart(std::string& file,
std::vector<std::string>& labels,
std: :vector<double>& values);

This is copied from the code in the .cpp file except we've had to
put in lots of std:: statements since you should never write
using namespace std; in a header file.

Software Architecture

>

We created our chart by writing a web browser file rather than
writing our own graphics code.

This idea is behind the entire design of the World Wide Web!

Servers receive text data (from users filling in forms and typing
URLs).

Servers produce text data (HTML files).

Its all very easy to debug and test, because it all happens
through text files.

You could easily adapt our library to be used in a web app.

Use C++ for what C++ is good at (e.g., fast calculations), but
use other languages where appropriate (e.g., user interfaces,

prototyping).

Summary

By putting everything we've learned together, we can write
something very sophisticated.

» Use vector<double> for a vector. Pass them as
const vector<double>&.

» Use string to represent strings. Pass them as
const stringé.

» Use stringstream to build complex strings.
» Use fstream to write to files.

» A stringstream an fstream and cout are all examples of
ostream. Pass them as ostreamé.

» Sometimes you might want to drop the const when passing
vectors and strings, but not often.

» Don'’t return by reference (yet...).

	Using C++ classes

