
Threads

Advantages of threads

To make your program do more than one thing at a time, you use

threads. Possible reasons for using threads:

(i) CPU Performance

(ii) Network Performance

(iii) Fairness

(iv) Usability

(v) More natural programming? Very occasionally.

Disadvantages of threads

(i) Complexity: Multi-threaded code is much harder to write

and understand than single-threaded code.

(ii) Testability: Multi-threaded code is much harder to test than

single-threaded code.

(iii) CPU Performance: sometimes actually worse.

Some code to run on di�erent threads

void primalityTest(int* pointerToInt) {

 int toTest = *pointerToInt;

 for (int i=2; i<toTest; i++) {

 if ((toTest % i)==0) {

 INFO(toTest << " is not prime");

 return;

 }

 }

 INFO(toTest << " is prime");

}

Creating threads

void testPrimes() {

 int values[3] = {1299817,1299821,1299827};

 thread t1(&primalityTest, &values[0]);

 thread t2(&primalityTest, &values[1]);

 thread t3(&primalityTest, &values[2]);

 t1.join();

 t2.join();

 t3.join();

}

A problem

Consider the code:

cout << "The answer to calculation "<<i<<" is "<<j<<"\n";

When run by several threads.

The answer to calculation The answer to calculation 1

2 is 19 is 18

A race condition

What if two threads call this at once on the same account?

bool debitAccount(Account& account, double amount) {

 if (account.balance >= amount) {

 account.balance -= amount;

 return true;

 }

 return false;

}

This is an example of a race condition.

Mutual exclusion

bool debitAccount(Account& account,

 double amount) {

 account.mtx.lock();

 bool ret = false;

 if (account.balance >= amount) {

 account.balance -= amount;

 ret = true;

 }

 account.mtx.unlock(); // don't do this

 return ret;

}

Mutual exclusion with a lock guard

bool debitAccount(Account& account,

 double amount) {

 lock_guard<mutex> lock(account.mtx);

 if (account.balance >= amount) {

 account.balance -= amount;

 return true;

 }

 return false;

}

Resource acquisition is initialization (RAII)

I resource acquisition is initialization;

I resource release is deletion.

When we introduced destructors the resource we wished to manage

was memory. Here we are viewing holding a lock as another form of

resource acquisition. In both cases, there is a limited supply of the

resource that needs to be managed: a computer has �nite memory;

only one thread can hold a lock.

Global variables and race conditions

I Whenever you use non constant global variables and multiple

threads there is likely to be a race condition.

I For example, writing to the stream cout.

I INFO and DEBUG_PRINT have been changed in FMLib to deal

with this.

I randuniform uses a global mt19937 instance. Must be

changed.

Using a mutex for random numbers

/* MersenneTwister random number generator */

static mt19937 mersenneTwister;

/* Mutex to protect static var */

static mutex rngMutex;

/* Reset the random number generator.

We ignore the description string */

void rng(const string& description) {

 ASSERT(description == "default");

 lock_guard<mutex> lock(rngMutex);

 mersenneTwister.seed(mt19937::default_seed);

}

/* Generate random numbers */

Matrix randuniform(int rows, int cols) {

 lock_guard<mutex> lock(rngMutex);

 return randuniform(mersenneTwister, rows, cols);

}

Deadlock

1) Thread A locks mutex a.

2) Thread B now locks mutex b.

3) Keeping hold of mutex a, thread A tries to lock mutex b.

4) Keeping hold of mutex b, thread B tries to lock mutex a.

5) Neither thread A or thread B can proceed because they are each

waiting or the other to complete.

This situation is called deadlock.

Deadlock example

bool transferMoney(Account& from,

 Account& to,

 double quantity) {

 lock_guard<mutex> lock1(from.mtx);

 if (from.balance<quantity) {

 return false;

 }

 lock_guard<mutex> lock2(to.mtx);

 from.balance -= quantity;

 to.balance += quantity;

 return true;

}

Deadlock prevention strategies

(i) Write single threaded code instead.

(ii) Only use one lock for all accounts.

(iii) Give the locks an ordering and insist that (say) lock A is

always acquired before lock B.

(iv) Include a time-out. So, if you don't acquire a lock in a

reasonable time frame, you should release all the locks that

you hold.

(v) Incorporate some deadlock detection and resolution algorithm

in your locking classes. Databases do this.

(vi) Use a database for your data.

Guidelines for multi-threaded code

I Don't use global variables. If you must have global variables

other than constants, you will need to use locks to protect

them.

I Minimize the data shared between threads. The less that is

shared, the less locking required.

I Where possible use const data between threads as this won't

require locking.

I Divide your code into simple sequential algorithms and small

separate sections where threads communicate.

I Use standard, established design patterns and classes for

multi-threaded code.

I Don't write multi-threaded code unless there is a clear bene�t.

Even then only a tiny part of your code should involve

threading.

The command pattern

class Task {

public:

 virtual ~Task() {}

 virtual void execute() = 0;

};

The executor interface

class Executor {

public:

 /* Destructor */

 virtual ~Executor() {}

 /* Add a task to the executor */

 virtual void addTask(

 std::shared_ptr<Task> task) = 0;

 /* Wait until all tasks are complete */

 virtual void join() = 0;

 /* Factory method */

 static std::shared_ptr<Executor> newInstance();

 /* Factory method */

 static std::shared_ptr<Executor> newInstance(

 int maxThreads);

};

Advantages of the command pattern

I You can easily use a more sophisticated scheduling algorithm

(e.g., run all tasks at midnight).

I It divides the responsibility of writing clever threading code

and writing business logic.

Monte Carlo pricing

I Launch several threads and take the average result.

I Each thread has its own random number generator.

I We need to ensure these are independent.

Changes to FMLib

/* Create uniformly distributed random numbers */

Matrix randuniform(int rows, int cols);

/* Create normally distributed random numbers */

Matrix randn(int rows, int cols);

/* Create uniformly distributed random numbers */

Matrix randuniform(std::mt19937& random,

 int rows, int cols);

/* Create normally distributed random numbers */

Matrix randn(std::mt19937& random,

 int rows, int cols);

Pass round random number generator everywhere.

 MarketSimulation generatePricePaths(

 std::mt19937& rng,

 double toDate,

 int nPaths,

 int nSteps) const;

Ensure we know how many random numbers are needed:

 /* How many random numbers are needed

 to generate the given paths? */

 long long randSize(long long nPaths,

 long long nSteps) {

 return stockNames.size()*nPaths*nSteps;

 }

Writing a multi-threaded pricer

double singleThreadedPrice(

 int taskNumber,

 int nScenarios,

 int nSteps,

 const ContinuousTimeOption& option,

 const MultiStockModel& model) {

This essentially repeats the old code except we initialize a random

number generator as shown.

 MultiStockModel subModel = model.getSubmodel(

 option.getStocks());

 long long randSize = subModel.randSize(nScenarios,

 nSteps);

 mt19937 rng;

 rng.discard(randSize*taskNumber);

class PriceTask : public Task {
public:
 /* Amount of random numbers to skip */
 int taskNumber;
 int nScenarios, nSteps;
 const ContinuousTimeOption& option;
 const MultiStockModel& model;
 /* Output data */
 double result;

 PriceTask(
 int taskNumber,
 int nScenarios,
 int nSteps,
 const ContinuousTimeOption& option,
 const MultiStockModel& model)
 :
 taskNumber(taskNumber),
 nScenarios(nScenarios),
 nSteps(nSteps),
 option(option),
 model(model) {
 }

 void execute() {
 result = singleThreadedPrice(taskNumber,
 nScenarios, nSteps, option, model);
 }
};

The multi-threaded price function

double MonteCarloPricer::price(

 const ContinuousTimeOption& option,

 const MultiStockModel& model) const {

 ASSERT(nTasks >= 1);

 vector< shared_ptr<PriceTask> > tasks;

 shared_ptr<Executor> executor =

 Executor::newInstance(nTasks);

 for (int i = 0; i<nTasks; i++) {

 shared_ptr<PriceTask> task(new PriceTask(

 i, nScenarios/nTasks,

 nSteps, option, model));

 tasks.push_back(task);

 executor->addTask(task);

 }

 executor->join();

 double total = 0.0;

 for (int i = 0; i<nTasks; i++) {

 total += tasks[i]->result;

 }

 return total / nTasks;

}

The Pipeline pattern

I Always use standard patterns when writing multi-threaded

code.

I The pipeline pattern is a common one. One thread performs a

work and then sends a message to another thread along a

pipeline.

I Versions of this pattern are used heavily in messaging

architectures and in the Unix operating system.

I We will use it as a simple example of how threads can talk to

each other.

The Pipeline pattern

class Pipeline {

public:

 Pipeline();

 void write(double value);

 double read();

private:

 bool empty;

 double value;

 /* Mutex to coordinate threads */

 std::mutex mtx;

 /* Condition variable to signal between threads */

 std::condition_variable cv;

};

Writing to the pipeline

class WriteTask : public Task {

public:

 Pipeline& pipeline;

 void execute() {

 for (int i=0; i<100; i++) {

 pipeline.write(i);

 }

 }

 WriteTask(Pipeline& pipeline) :

 pipeline(pipeline) {

 }

};

Reading from the pipeline

class ReadTask : public Task {

public:

 Pipeline& pipeline;

 double total;

 void execute() {

 for (int i=0; i<100; i++) {

 total+=pipeline.read();

 }

 }

 ReadTask(Pipeline& pipeline) :

 pipeline(pipeline),

 total(0.0) {

 }

};

Putting it all together

static void testTwoThreads() {

 Pipeline pipeline;

 auto w = make_shared<WriteTask>(pipeline);

 auto r = make_shared<ReadTask>(pipeline);

 SPExecutor executor = Executor::newInstance(2);

 executor->addTask(r);

 executor->addTask(w);

 executor->join();

 ASSERT_APPROX_EQUAL(r->total, 99.0*50.0, 0.1);

}

An example of why it could be useful

void priceByMonteCarlo() {

 double total = 0.0;

 or (int i=0; i<nScenarios; i++) {

 vector<double> path = generatePricePath();

 double payoff = computePayoff(path);

 total += payoff;

 }

 return total/nScenarios;

}

We can't parallelise using command as the random-number

generator isn't being passed round. We can generatePricePaths on

one thread and compute payo�s on another however.

Communicating between threads

I How can threads communicate? E.g. how can one thread tell

another that there is some work for it to do?

I Answer is to use condition variables.

I Condition variables implement a fairly complicated protocol to

communicate between threads without any possibility of

messages being missed.

Condition variables

Using condition variables

(a) Whenever you use a condition_variable you should also

create a mutex to guard the data.

(b) Test if the condition is met in a while loop. You will want to

lock the mutex while testing your condition.

(c) Change the data that determines whether your condition passes

before calling notifyAll. Hold the lock while modifying the

data: you should keep holding it until you have called

notify_all.

(d) If you were to release the lock before calling wait it is possible

that the condition may change just before you start waiting. As

a result you must hold the lock using a unique_lock<mutex>,

and you must pass the lock as a parameter when calling wait.

(e) The condition_variable will release your lock and start

waiting as one atomic operation.

void Pipeline::write(double value) {

 unique_lock<mutex> lock(mtx);

 while (!empty) {

 cv.wait(lock);

 }

 empty = false;

 this->value = value;

 cv.notify_all();

}

double Pipeline::read() {

 unique_lock<mutex> lock(mtx);

 while (empty) {

 cv.wait(lock);

 }

 empty = true;

 cv.notify_all();

 return value;

}

Moral

I C++ threading primitives are tricky to use.

I Use a threading library that makes life easier.

I e.g., Pipeline is easy to use but hard to write.

Summary

I We have seen how to take advantage of multiple CPUs to

write a multi-threaded Monte Carlo pricer.

I We have seen how threads can interact and seen the Pipeline

design pattern.

I We have learned about race conditions, deadlocks and

mutexes.

	Threads

