
The Standard Template Library

The Standard Template Library

I A library of data structures.

I Built using templates.

I We will use it extend FMLib to multiple stocks.

But �rst we need to learn some techniques for dealing with overly

long class names like

vector< shared_ptr<Priceable> > securities

typedef

typedef std::shared_ptr<Priceable> SPPriceable;

In general

typedef <<Complex Type>> <<Abbreviation>>;

The result

 vector<SPPriceable> securities;

Member types

class Priceable {

public:

 typedef shared_ptr<Priceable> sp;

 typedef vector< sp > spVec;

 // ... more code ...

};

class Portfolio {

private:

 Priceable::spVec securities;

 // ... more code ...

};

typename

You can also write

 typename Priceable::spVec securities;

I Sometimes you have to do this when working with templates

to get rid of compiler problems.

I If in doubt, use typename when working with templates

The purpose of member types

template <typename V>

typename V::value_type sumVector(const V& vector) {

 typename V::value_type total = 0;

 for (int i = 0; i < (int)vector.size(); i++) {

 total += vector[i];

 }

 return total;

}

Note that we are using value_type. This is a member type of

vector. All containers have this member type.

The auto keyword

If the type can be deduced automatically, you can use auto.

 double d = 4.0;

 auto s = sqrt(d);

The type of the return values of a function can be deduced

automatically.

Auto is great. Use it heavily!

auto with const and &

 vector<double> vec(10,0.0);

 auto& dRef = vec[5];

 dRef = -1.0;

 ASSERT(vec[5] == -1.0);

 auto d = vec[6];

 d = -1.0;

 ASSERT(vec[6] == 0.0);

 const auto& dRef2 = vec[7];

 ASSERT(dRef2 == 0.0);

Using iterators

 vector<double> v({ 1.0, 2.0, 3.0 });

 double sum = 0.0;

 vector<double>::iterator i = v.begin();

 while (i != v.end()) {

 sum += *i;

 i++;

 }

 ASSERT(sum == 6.0);

Iterators

I Containers have begin and end methods that return iterators.

I Iterators have ++, * and == functions so they can by used just

like pointers.

I A vector is a container. We will also see: set, list, map and

unordered_map.

Using iterators to write

void setZero(vector<double>& v) {

 vector<double>::iterator i = v.begin();

 while (i != v.end()) {

 *i=0;

 i++;

 }

}

Using const iterators

double sumVector(const vector<double>& v) {

 double sum = 0.0;

 vector<double>::const_iterator i = v.begin();

 while (i != v.end()) {

 sum += *i;

 i++;

 }

 return sum;

}

auto makes iterators more bearable

double sumWithAuto(const vector<double>& v) {

 double sum = 0.0;

 auto i = v.begin();

 while (i != v.end()) {

 sum += *i;

 i++;

 }

 return sum;

}

for loops and containers

I Matrix is a container.

I It has begin and end methods that return pointers. Pointers

are iterators.

 Matrix matrix("1,3;2,4");

 double total = 0.0;

 for (auto d : matrix) {

 total += d;

 }

 ASSERT_APPROX_EQUAL(total, 10.0, 0.001);

This special syntax can be used for all containers.

Making Matrix more of a container

To make Matrix a fully �edged container, we've added the following

member typedefs.

 typedef double value_type;

 typedef double* iterator;

 typedef const double* const_iterator;

You should follow as many of the container conventions as make

sense when you write a container.

A generic sum function

This function will now work with vectors and matrices.

template <typename C>

typename C::value_type sumContainer(const C& c) {

 typename C::value_type total = 0;

 for (auto v : c) {

 total +=v;

 }

 return total;

}

The container set

I Stores items in order without duplicates

I Items must override < to de�ne what �in order� and �duplicate�

actually mean.

 set<int> ints;

 ints.insert(1);

 ints.insert(3);

 ints.insert(2);

 ints.insert(3); // duplicate ignored

 ASSERT(ints.size() == 3);

 for (auto i : ints) {

 std::cout << "Item " << i <<"\n";

 }

Performance

I For a set it takes O(log(n)) to insert elements.

I There is also unordered_set which is based on a hash map

which is usually quicker. Roughly O(1) to insert elements.

I (n is the size of the set.)

Vector

I A vector takes O(1) to �nd the entry at index i .

I It takes O(n) to insert at the beginning.

I It allocates more memory than needed initially, so that adding

at the end takes O(1) normally. Takes O(n) if you exceed the

available capacity.

list

list

class Link {

 Data d;

 Link* next;

 Link* previous;

};

Inserting in a list

List performance

I O(1) to insert at the beginnging.

I O(1) to insert at the end.

I O(n) to �nd a the entry at index i .

I O(1) to insert at a known link.

Using a list as a priority queue

 // use a list to store items in priority order

 list<string> list;

 list.push_back("Drinking");

 list.push_back("Dancing");

 list.push_front("Exam");

 list.push_front("Revision");

 std::cout << "Todo list\n";

 for (auto item : list) {

 std::cout << "Item " << item << "\n";

 }

Result

Todo list

Item Revision

Item Exam

Item Drinking

Item Dancing

Finding and inserting

 auto i = list.begin();

 while (i != list.end()) {

 if (*i == "Exam") {

 list.insert(i, "Dentist");

 break;

 }

 i++;

 }

 std::cout << "Todo list\n";

 for (auto item : list) {

 std::cout << "Item " << item << "\n";

 }

Using algorithm

I The find function is the best way to �nd an entry.

 auto iter = find(list.begin(), list.end(), "Exam");

 list.insert(iter, "Dentist");

I Note that you can use �nd to search any region of your

container by providing iterators to the start and end.

I The algorithm library is full of useful functions like this that

all work in similar ways.

The container initializer_list

 std::initializer_list<double>

 list = { 1, 2, 3, 4 };

 for (auto d : list) {

 std::cout << "Value "<<d<<"\n";

 }

Very useful for writing tests and constructors.

Most containers have a constructor that takes an

initializer_list.

 std::vector<double> v({ 1, 2, 3, 4 });

Dictionary like containers

I map stores mappings from a key to some value.

I A dictionary stores mappings from a word to its meaning.

I A book's index stores mappings from words to page numbers.

I A phone book stores mappings from names to phone numbers.

The container map

 map<string, string> fruitToCol;

 fruitToCol["apples"] = "green";

 fruitToCol["bananas"] = "yellow";

 fruitToCol["plums"] = "purple";

 fruitToCol["oranges"] = "orange";

 for (const pair<string, string>& p : fruitToCol) {

 cout << "The color of ";

 cout << p.first;

 cout << " is ";

 cout << p.second;

 cout << "\n";

 }

Looking up items

With maps, looking up an item is fast.

 auto i = fruitToCol.find("plums");

 cout << "Plums are " << (i->second)<<"\n";

Dealing with missing items:

 string fruit = "jackfruit";

 auto iter = fruitToCol.find(fruit);

 if (iter == fruitToCol.end()) {

 cout << "The color of " << fruit;

 cout << " is unknown\n";

 } else {

 cout << fruit << " are " << (i->second) << "\n";

 }

map and unordered_map

I map stores data ordered by key. So the keys must have a <

function.

I unordered_map stores data using a hash algorithm (see later).

I Both classes are used in almost identical ways

I unordered_map is normally faster.

Under the covers of map

Performance of map

I Lookup takes O(log n)

I Insert takes O(log n)

Under the covers of a hash map

Performance of map

I Lookup takes roughly O(1).

I Insert takes roughly O(1) unless we need to rehash.

I You need to choose a good hash code.

Storing data objects in containers

I Data is stored by value in containers. This means it is copied

whenever you add items.

I Very often you should store objects in containers using

shared_ptr references. This is exactly what we did with the

Portfolio class earlier.

A multi stock model

I zt is a vector of n log stock prices.

I εt is a vector of R risk factors.

I A is matrix showing how the risk factors e�ect stock price.

I ηt is an n vector determining the trend of the risk factors.

z t+δt = z t + ηδt + (δt)
1

2Aεt (1)

Linear algebra

I The covariance matrix is (δt)AAT .

I Write Ω = AAT for the covariance matrix over a year.

I Typically we measure Ω from market and then �nd A
satisfying the above.

I A is called a pseudo-square root of Ω.

I One algorithm to �nd an n × n pseudo-square root is called

Cholesky decomposition. Works assuming Ω is symmetric and

positiv-de�nite. In this case n = R and we have as many risk

factors as stocks.

I To speed up processing ,you may use principle-component

analysis to �nd an approximate pseudo-square root with less

risk factors.

Q-measure model

I If we ignore all the other stocks and just compute what

happens to the i-th stock, it follows the Black�Scholes model.

I The mean of the growth in the log of the i-th stock price is

given by:

η
(i)

I This must be equal to :

r − 1

2
Ω(i ,i)

in a Q measure model.

Changing FMLib for multiple stocks

The link with data structures

I MultiStockModel stores a map from the name of a stock to

its index in our mathematical model.

 int getIndex(const std::string& stockCode)

 const {

 auto pos = stockToIndex.find(stockCode);

 ASSERT(pos != stockToIndex.end());

 int idx = pos->second;

 return idx;

 }

The MarketSimulation class

I The market simulation class stores a map from a stock name

to the simulations for that stock

 SPCMatrix getStockPaths(const std::string& stock)

 const {

 auto pos = stockPaths.find(stock);

 ASSERT(pos != stockPaths.end());

 return pos->second;

 }

Note that SPCMatrix is a typedef for a shared pointer to a const

matrix.

These give a few examples of how containers are used in this more

sophisticated model.

Summary

I typedef keyword allows us to abbreviate complex type names.

I The auto keyword allows you to avoid typing the full name of

a class.

I Classes can contain member types.

I A container is any class that stores data and returns iterators

when you call begin and end.

I There is a special syntax for looping through containers using

for.

I C++ contains numerous container classes that make it easy to

store data. They have di�erent performance characteristics.

I The library <algorithm> contains a number of functions that

are very useful for working with containers, such as find.

I You should not store large objects in containers. Store them

by reference using shared_ptr instead.

	The Standard Template Library

