
The Portfolio Class



The Portfolio Class

I We will achieve the milestone of pricing a Portfolio of

derivatives of many di�erent forms.

I This will be easy because of polymorphism.

I No new C++ language features.

I The factory design pattern.



The Priceable interface

class Priceable {

public:

    /*  Compute the price of the security in the

        Black--Scholes world */

    virtual double price(

        const BlackScholesModel& model ) const = 0;

};

Make ContinuousTimeOption extend Priceable.



The Portfolio interface

A Portfolio class must have the following key functions:

(i) a function to add a Priceable instance together with an

associated quantity;

(ii) a function to change the quantity held of a given security;

(iii) a function price to compute the value of the Portfolio.

A Portfolio should itself implement the interface Priceable



The Portfolio implementation

(i) Our Portfolio implementation will hold a vector of

shared_ptr objects that point to Priceable instances.

(ii) It will also have a vector of quantities.

(iii) Because we need to store shared_ptr objects, the method to

add securities will take a shared_ptr to a security, instead of

a reference to the security.



class Portfolio : public Priceable {
public:
    /*  Virtual destructor */
    virtual ~Portfolio() {};
    /* Returns the number of items in the portfolio*/
    virtual int size() const = 0;
    /*  Add a new security to the portfolio,
        returns the index at which it was added */
    virtual int add( double quantity,
        std::shared_ptr<Priceable> security ) = 0;
    /*  Update the quantity at a given index */
    virtual void setQuantity( int index,
                              double quantity ) = 0;
    /*  Compute the current price */
    virtual double price(
        const BlackScholesModel& model ) const = 0;
    /*  Creates a Portfolio */
    static std::shared_ptr<Portfolio> newInstance();
};



Factory method

I Portfolio is abstract.

I To obtain an instance you call the factory method

newInstance.

I The user doesn't even know the implementation class, so we

return a shared_ptr.

I All the implementation details are hidden from the user.

I Decreases coupling of code.
I Makes code compile faster.
I Makes header �les easier for the user to read.



PortfolioImpl

class PortfolioImpl : public Portfolio {
public:
    /* Returns the number of items in the portfolio*/
    int size() const;
    /*  Add a new security to the portfolio,
        returns the index at which it was added */
    int add( double quantity,
             shared_ptr<Priceable> security );
    /*  Update the quantity at a given index */
    void setQuantity( int index, double quantity );
    /*  Compute the current price */
    double price(
        const BlackScholesModel& model ) const;

    vector<double> quantities;
    vector< shared_ptr<Priceable> > securities;
};



Implement newInstance:

shared_ptr<Portfolio> Portfolio::newInstance() {

    shared_ptr<Portfolio> ret=

                  make_shared<PortfolioImpl>();

    return ret;

}

Implement add:

int PortfolioImpl::add( double quantity,

            shared_ptr<Priceable> security ) {

    quantities.push_back( quantity );

    securities.push_back( security );

    return quantities.size();

}



The most interesting method

double PortfolioImpl::price(

        const BlackScholesModel& model ) const {

    double ret = 0;

    int n = size();

    for (int i=0; i<n; i++) {

        ret += quantities[i]

               * securities[i]->price( model );

    }

    return ret;

}

The exciting point is that we can price any Priceable object and

we will automatically call the best available pricing function.



Test put�call parity

static void testPutCallParity() {
    shared_ptr<Portfolio> portfolio
        = Portfolio::newInstance();

    shared_ptr<CallOption> c
        =make_shared<CallOption>();
    c->setStrike(110);
    c->setMaturity(1.0);

    shared_ptr<PutOption> p=make_shared<PutOption>();
    p->setStrike(110);
    p->setMaturity(1.0);

    portfolio->add( 100, c );
    portfolio->add( -100, p );

    BlackScholesModel bsm;
    bsm.volatility = 0.1;
    bsm.stockPrice = 100;
    bsm.riskFreeRate = 0;

    double expected = bsm.stockPrice - c->getStrike();
    double portfolioPrice = portfolio->price( bsm );

    ASSERT_APPROX_EQUAL(100*expected,
        portfolioPrice,0.0001);
}



UML



Summary

I Use shared_ptr to build sophisticated data structures that

store objects long-term.

I Use the static factory method design pattern to maximise

information hiding and reduce dependencies between �les.

I Use object orientation to achieve pluggable code that will not

need to be changed even when new requirements come in.


	The Portfolio Class

