
More sophisticated classes

Inlining member functions

I An inline function is copied by the compiler rather than

called.

I Inline a member function by including the de�nition in the

class declaration.

I Saves typing, but only use it when you really want to inline.

class Point {

public:

 double getX() const {

 return x;

 }

 // other members of Point

private:

 double x;

 double y;

};

The this keyword

I private variables are good for information hiding.

I Write getters and setters as shown.

I this is a pointer to the current instance of the object.

class Point {

public:

 double getX() const {

 return x;

 }

 void setX(double x) {

 this->x = x;

 }

 // other members of Point

private:

 double x;

 double y;

};

Another use of this

I price method needs a reference to an option.

I *this is a reference to an option.

double UpAndOutOption::price(

 const BlackScholesModel& model) const {

 MonteCarloPricer pricer;

 return pricer.price(*this, model);

}

Inheritance

I Inheritance allows you to implement interfaces more easily.

I Removes repetition of methods.

class ContinuousTimeOption {

public:

 /* Virtual destructor */

 virtual ~ContinuousTimeOption() {};

 /* The maturity of the option */

 virtual double getMaturity() const = 0;

 /* Calculate the payoff of the option given

 a history of prices */

 virtual double payoff(

 const std::vector<double>& stockPrices

) const = 0;

 /* Is the option path dependent */

 virtual bool isPathDependent() const = 0;

};

A base class

class ContinuousTimeOptionBase :
 public ContinuousTimeOption {
public:
 virtual ~ContinuousTimeOptionBase() {}
 double getMaturity() const {
 return maturity;
 }
 void setMaturity(double maturity) {
 this->maturity = maturity;
 }
 double getStrike() const {
 return strike;
 }
 void setStrike(double strike) {
 this->strike = strike;
 }
 //... more methods ...
private:
 double maturity;
 double strike;
};

I Base class provides basic implementations of boring methods

common to most options.

I The base class has a virtual destructor. Any class used as a

base class must have a virtual destructor.

Extending the base class

class PutOption : public ContinuousTimeOptionBase {

public:

 /* Calculate the payoff of the option given

 a history of prices */

 double payoff(

 const std::vector<double>& stockPrices

) const;

 double price(const BlackScholesModel& bsm)

 const;

 bool isPathDependent() const {

 return false;

 };

};

I The PutOption extends the ContinuousTimeOptionBase.

Same notation as used to implement an interface.

I It inherits the functions de�ned by this class.

I It inherits the variables strike and maturity.

I It inherits the interface ContinuousTimeOption.

I There is no need to write new getMaturity and getStrike

functions.

The payo� is that it is now easy to write:

I CallOption,

I DigitalCallOption,

I DigitalPutOption,

I UpAndOutOption.

Terminology

I ContinuousTimeOptionBase is termed a superclass or a

parent class of PutOption.

I PutOption is termed a subclass or a child class of

ContinuousTimeOptionBase.

I PutOption extends from ContinuousTimeOptionBase.

I PutOption inherits from ContinuousTimeOptionBase.

Overriding methods
We give our base class a method to price the option:

class ContinuousTimeOptionBase

 : public ContinuousTimeOption {

public:

 /* Price the option, by Monte Carlo or otherwise */

 double price(

 const BlackScholesModel& model) const;

 // ... other members ...

};

Implement it using Monte Carlo:

double ContinuousTimeOptionBase::price(

 const BlackScholesModel& model) const {

 MonteCarloPricer pricer;

 return pricer.price(*this, model);

}

Overriding methods continued

We don't want to use Monte Carlo for put options. Add the

keyword virtual to the declaration of price.

class ContinuousTimeOptionBase

 : public ContinuousTimeOption {

public:

 /* Price the option, by Monte Carlo or otherwise */

 virtual double price(

 const BlackScholesModel& model) const;

 // ... other members ...

};

Overriding methods continued

We can now override the method in a subclass.

class PutOption : public ContinuousTimeOptionBase {

public:

 double price(const BlackScholesModel& bsm)

 const override;

 // ... other members ...

};

I The keyword override is optional.

I The parameter and return types must be identical including

the const and & characters.

The keyword virtual

I virtual means may be overridden.

I in an interface no functions have de�nitions so all must be

overidden. Therefore they must be virtual.

I All classes have a destructor. This must be declared as

virtual in classes that are subclassed so that the correct

destructor is called.

I Any class that is designed to be subclassed must have a virtual

destructor.

Abstract Functions

I We say that a function has no implementation by writing =0.

I Such a function must be virtual.

I This is called an abstract function.

I Interfaces are classes where all functions are abstract.

I An abstract class is a class with at least one abstract function.

For example ContinuousTimeOptionBase has an abstract

payoff function.

Multiple layers

I You can build complex hierarchies of classes.

I PutOption has parent ContinuousTimeOptionBase and

grandparent ContinuousTimeOption.

I We should insert a

PathIndependentOption into our hierarchy:

class PathIndependentOption :
 public ContinuousTimeOptionBase {
public:
 /* A virtual destructor */
 virtual ~PathIndependentOption() {}
 /* Returns the payoff at maturity */
 virtual double payoff(double endStockPrice) const
 = 0;
 /* Compute the payoff from a price path */
 double payoff(
 const std::vector<double>& stockPrices) const {
 return payoff(stockPrices.back());
 }
 /* Is the option path-dependent? */
 bool isPathDependent() const {
 return false;
 };
};

PathIndepdendentOption

PathIndependentOption does the following.

I It provides an implementation of isPathDependent.

I It has an abstract function to compute the payo� given only

the �nal stock price.

I This means we can implement the payoff function that takes

an entire path of stock prices.

Extending PathIndependentOption

class CallOption : public PathIndependentOption {

public:

 double payoff(double stockAtMaturity) const;

 double price(const BlackScholesModel& bsm)

 const;

};

I We must override the abstract function payoff.

I We choose to override the function price with a more

e�cient version.

UML

A UML diagram shows our option hierarchy:

Another hierarchy

I A class Shape that represents any �nite shape in the plane. It
has the following methods:

I A method area to compute the area.
I A method contains to test if a point is in the shape.
I A method boundingRectangle that returns a Rectangle

containing the entire shape.

I The class Circle is one implementation of Shape.

I The class Rectangle is another implementation of Shape.

I The class HyperCircle (the shape x4 + y4 < 1) is another

implementation of Shape.

I The class Shape has a default implementation for area that

uses Monte Carlo.

I Circle and Rectangle override area.

Discussion

I A graphics library where you couldn't write your own Shape

classes would be pretty useless

I A pricing library where you can't write your own options would

similarly be useless

I Object-oriented programming makes our library pluggable.

Multiplie inheritance

I It is possible to extend more than one class, but the rules are

complex.

I Recommended that you only extend one normal class, but you

may extend multiple interfaces.

 class DerivativeWithStrike {

 public:

 ~DerivativeWithStrike();

 virtual double getStrike() const = 0;

 };

Inheriting from two parents

class ContinuousTimeOptionBase :

 public ContinuousTimeOption,

 public DerivativeWithStrike {

Calling superclass methods

I Sometimes you want to call a superclass's implementation of a

function

I e.g. an UpAndOutOption overrides price to check if the

stock price is over the barrier. If it is, return; otherwise, use

superclass's method.

 double price(

 const BlackScholesModel& model) const {

 if (model.stockPrice >= getBarrier())

 return 0;

 return KnockoutOption::price(model);

 }

Forward declarations

I A Shape has a function which returns a Rectangle.

I But Rectangle extends Shape.

I Solution is called a forward declaration.

class CartesianPoint;

class Rectangle;

class Shape {

public:

 /* Does the point lie in the shape */

 virtual bool contains(const CartesianPoint& point)

 const = 0;

 /* A rectangle bounding the shape */

 virtual Rectangle boundingRectangle() const = 0;

 /* By default area is computed by Monte Carlo */

 virtual double area() const;

};

Static variables and functions

class CallCountedSin : public RealFunction {

public:

 static int getNumberOfCalls();

 double evaluate(double x) {

 numCalls++;

 return sin(x);

 }

private:

 static int numCalls;

};

Need to initialize the static variable.

int CallCountedSin::numCalls = 0;

I Static variables are global variables shared by all instances.

I To work with static variables you often use static functions.

int CallCountedSin::getNumberOfCalls() {

 return numCalls;

}

We've seen a static variable in mt19337.

mersenneTwister.seed(mt19937::default_seed);

Advantages over global variables and functions:

I static variables and functions can use private data;

I they are organised by class.

Protected

I public means everyone can see the member.

I private means accessible by your class only.

I protected means accessible by subclasses.

Summary

I Write getters and setters and use private data where

possible.
I You can inline functions by writing the de�nition in the class.
I The this pointer makes writing setters easy. You can use it if

you need a reference to the current instance.
I Build hierarchies of classes in order to inherit functionality.
I Use the virtual keyword to mean that a method can be

overridden.
I Write =0 to mean that a function has no implementation and

so create an abstract class.
I Interface classes are a special case of inheritance.
I Use forward declarations to deal with circular class

declarations.
I Use static variables in classes instead of global variables. Use

static functions in classes to write functions that are

associated with a class in general, rather than any particular

instance of the class.

	More sophisticated classes

