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Summary of end of last lecture

Theorem
(Riemann–Hurwitz formula)
Suppose X and Y are compact Riemann surfaces of genus gX and
gY respectively and that f : X → Y is a branched cover. Then

(2− 2gY ) = d(2− 2gx)−
∑
x∈X

(kx − 1)

Where kx is the multiplicity of f at x .

Proof is to triangulate Y with a triangulation so that all critical
values are vertices. Then lift the triangulation to Xm and compute
Euler characteristics.

Theorem
(Degree genus formula) A smooth plane curve of degree d has
genus 1

2(d − 1)(d − 2).
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Bezout’s theorem

Definition
Two complex curves in CP2 intersect transversally at a point p if p
is a non-singular point of each curve and if the tangent space of
CP2 at that point is the direct sum of the tangent spaces of the
two curves.

Theorem
(Bezout) Two complex curves of degrees p and q that have no
common component meet in no more than pq points. If they
intersect transversally, they exactly in pq points.

If the polynomial defining a curve factorizes then each factor
defines a component of the curve. Smooth curves have only one
component because they would clearly not be smooth at ther
intersections of the components.



Proof of degree genus formula
I Given a smooth plane curve C of degree d consider the

projection from a point p to a line L with p not lieing on C .
I By the fundamental theorem of algebra, the degree of this

projection map will be d .
I We can choose coordinates so that the projection of a point

(z ,w) in affine coordinates is just z . If P(z ,w) = 0 defines
the curve then branch points correspond to points where
Pw = 0. These have ramification index 1 unless Pww = 0.

I By Bezout’s theorem we expect there to be d(d − 1) branch
points and that so long as p does not lie on a line of inflection
(i.e. a tangent to the curve through a point of inflection)
there will be exactly d(d − 1) branch points.

I By Bezout’s theorem there are a finite number of lines of
inflection (clearly points of inflection will be given by some
algebraic condition)

I So for generic p there are exactly d(d − 1) branch points of
ramification index 1.

I Apply Riemann–Hurwitz formula.



Complex structures on vector spaces

Definition
A complex structure on a vector space V is a R-linear map
J : V −→ V satisfying J2 = −1.

Example: rotation of a plane through 90 degrees — equivalently
multiplication by i

Definition
A map T : V −→ C is complex linear if T (Jv) = iTv for all v . It
is complex anti-linear if T (Jv) = −iTv .

Lemma
Any R-linear map T from V to C can be written as T = T ′ + T ′′

where T ′ is complex linear and T ′′ is complex anti-linear.

T ′ =
1

2
(T − iTJv)

T ′′ =
1

2
(T + iTJv)
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Complex structure on a Riemann surface

Definition
Let T ∗C = HomR(Tp,C) be the complex cotangent space.

Definition
Given a complex valued function f on a X we can define df ∈ T ∗C
using the same formula as before. So df : Tp −→ C.

Lemma
There is a unique complex structure J on Tp such that df is a
complex linear map with respect to J whenever f is holomorphic.

Since the definition only depends on the first order terms of f we
only need to check that an R-linear map T : C −→ C is
holomorphic if and only if T (iv) = iT (v).
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Splitting of one forms

With respect to J we can split the cotangent space into complex
linear and complex anti-linear parts. We write the splitting of
1-forms as follows:

Definition

Ω1
C = Ω1,0 ⊕ Ω0,1

I Correspondingly we can write d = ∂ ⊕ ∂ where ∂ takes values
in Ω1,0 and ∂ takes values in Ω0,1.

I It follows from our definition of J that f is holomorphic if and
only if ∂f = 0.

I Note that complex conjugation of C allows us to define an R
linear map of HomR(TX ,C) to itself. We call this complex
conjugation too.

I Ω1,0 and Ω0,1 are complex conjugates.
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Local coordinates

If z : U −→ C is a complex coordinate then writing z = x + iy , x
and y are real coordinates.

dz = dx + i dy , dz = dx − idy

Equivalently:

dx =
1

2
(dz + dz), dy =

1

2i
(dz − dz)
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df in complex coordinates

df =
∂f

∂x
dx +

∂f

∂y
dy

=
1

2

(
∂f

∂x
− i

∂f

∂y

)
dz +

1

2

(
∂f

∂x
+ i

∂f

∂y

)
dz

=:
∂f

∂z
dz +

∂f

∂z
dz

I This last line should be seen as defining ∂f
∂z and ∂f

∂z .

I The usual complex analysis definition using limits only makes
sense for holomorphic f in which case the two definitions
coincide.
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∂ and ∂ in complex coordinates

∂f =
∂f

∂z
dz , ∂f =

∂f

∂z
dz

Where by definition:

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)

f is holomorphic is equivalent to the statement df = ∂f which is
equivalent to the statement ∂f = 0.
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Holomorphic and meromorphic 1-forms

It is conventional to write d = ∂ when it acts on (1, 0) forms and
as d = ∂ when it acts on (0, 1) forms.

Definition
A (1, 0) form ω ∈ Ω1,0 is holomorphic if ∂ω = 0.

Equivalently it is one that can be written ω = f dz with f
holomorphic local coordinates.

Definition
A meromorphic 1-form is one that can be written as ω = f dz with
f a meromorphic function.
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Contour integration

When you have calculated contour integrals, you have been
integrating holomorphic one forms.

Theorem
(Cauchy’s theorem) If S is a compact surface with boundary and ω
is a holomorphic one form: ∫

∂S
ω = 0

Definition
(Residue) If p is a pole of a meromorphic 1-form ω then the
residue of ω at p is

Resp(ω) =
1

2πi

∫
C
ω

for a small loop C around p.



The Laplace operator

We define ∆ by:
∆ = 2i∂∂ : Ω0 −→ Ω2

In local coordinates we compute:

∆f =

(
2i

1

4

(
∂

∂x
+ i

∂

∂y

)(
∂

∂x
− i

∂

∂y

)
f

)
dz ∧ dz

= −
(
∂2f

∂x2
+
∂2f

∂y2
)

)
dx ∧ dy



Dolbeault Cohomology

We have a splitting of the d operator so it is natural to wonder if
the De Rham cohomology splits as well.
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Dolbeault Cohomology

We define Dolbeault cohomology to be the “cohomology” of ∂.
This means we define:

H0,0 = ker ∂ ⊆ Ω0 = Ω0

H1,0 = ker ∂ ⊆ Ω1,0

H0,1 = coker ∂ ⊆ Ω0,1

H1,1 = coker ∂ ⊆ Ω1,1 = Ω2

I On an n-manifold, the wedge product of p (1, 0)-forms and q
(0, 1)-forms defines the notion of a (p, q)-form. So Ω1,1 is just
another term for (Ω1,1) and Ω0,0 is just another term for Ω0.

I An element of the cokernel is an equivalence class. We will
refer to this equivalence class as the cohomology class.
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Dolbeault Cohomology

One obvious motivation for considering Dolbeault Cohomology is
that the dimensions of these cohomology vector spaces will give us
invariants of complex manifolds.

H 0
H 0

H 1,0 H 0,1
H 1

H 2 H 1,1

Complexified 
de Rham

Dolbeault



Equivalence of De Rham and Dolbeault Cohomology

On a Riemann surface these invariants are trivial. In particular

H1,0 is isomorphic to H
0,1

and:

H 0
H 0

H 1,0 H 0,1
H 1

H 2 H 1,1

Complexified 
de Rham

Dolbeault

≅

≅

≅

⊕



Key to proof

Theorem
(“Main Theorem”) If X is a compact and connected Riemann
surface then there is a solution f to ∆f = ρ if and only if∫
X ρ = 0. The solution is unique up to the addition of a constant.

The “only if” is follows from Stoke’s theorem. The uniqueness
follows from the maximum principle — by compactness f has a
maximum value, but holomorphic functions only have maxima at
their boundary.
The if is the deep input. Physical arguments suggest solutions to
Laplace’s equation should always exist. Laplace’s equation crops
up in gravity, electrostatics, the study of heat etc. It had better
have solutions if these theories are going make sense!
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Deducing equivalence of homologies

Let ω = ω1,0 ⊕ ω0,1 satisfy dω = 0.

We can represent the cohomology class [ω] using ω + df for any f .

ω + df = (ω1,0 + ∂f )⊕ (ω0,1 + ∂f )

The condition that the 1, 0 term of ω + df is holomorphic is
equivalent to the requirement ∂∂f = −∂ω1,0 which can easily seen
to be equivalent to the condition that the 0, 1 term lies in the
kernel of ∂.
So by the main theorem ω can be written uniquely as an element

of H1,0 plus an element of H
1,0

.

The results for H2 and H0 and the equivalence of H
1,0

and H0,1

are similarly easy.
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Corollaries

Corollary

On a compact Riemann surface of genus g dimH1,0 = g ,
dimH0,1 = g .

I’ve assumed here that dimH1 = 2g . Notice that this result gives
a deep explanation for why dimH1 is even dimensional on oriented
surfaces. (Poincaré duality gives another deep explanation).
For the purposes of this course we only really need the result for
the sphere and the torus. H1(S2) vanishes since the sphere is
simply connected. H1(T 2) = R2 is a homework exercise.
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Interpretation of H0,1

I Suppose that p is a point in a Riemann surface X and we
want to find a meromorphic function f with a simple pole at p
at no other poles.

I Define ρ to be a cut-off function equal to 1 in a
neighbourhood of p but equal 0 outside of a slightly larger
neigbourhood.

I Finding f is equivalent to finding a smooth g on X with
g + ρ1

z holomorphic.

p

ϱ
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Interpretation of H0,1

I This is equivalent to finding smooth g with:

∂g = −(∂ρ)
1

z
=: A

I Since ρ is equal to 1 in a neighbourhood of p we can regard A
as a (0, 1) form with value 0 at p.

I By definition of H0,1 a solution will exist if and only if [A]
represents a the trivial element of H0,1.

I One can say that [A] ∈ H0,1 is the obstruction to finding a
meromorphic function with a simple pole at p and no other
poles.
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Uniqueness of holomorphic structure on S2

Corollary

The Riemann sphere is the only Riemann surface of genus 0.

This is because on a surface of genus 0, H0,1 is trivial so one can
always find such a meromorphic function. But we have already
proved that S2 is the only Riemann surface that admits a
meromorphic function with a simple pole.
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Repeating the same argument, if p1, p2, . . . , pd are d-distinct
points then we define A1,A2, . . . ,Ad in the same way. We can find
a smooth function g satisfying

∂g = λ1A1 + λ2A2 + . . .+ λdAd

if and only if the right hand side represents a trivial cohomology
class in H0,1

Since H0,1 is g dimensional on a compact Riemann surface of
genus g any g + 1 cohomology classes must be linearly dependent.

Theorem
Given g + 1 points on a compact Riemann surface X of genus g
then exists a non-constant meromorphic function having at worst
simple poles at the pi and no other poles.
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Genus 1 surfaces as branched covers

Corollary

A compact Riemann surface of genus 1 has a meromorphic
function with precisely two poles, both of which are simple.

Corollary

A compact Riemann surface of genus 1 is a branched cover of the
Riemann sphere of degree 2 with four branch points.

The Riemann Hurwitz formula for a branched cover
2− 2gY = d(2− 2gX )− Rf allows you to compute that there
must be four branch points.
This is a classification theorem for surfaces of genus 1 surfaces
because two sheeted branched covers of a sphere are essentially
unique.
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Uniqueness of branched covers up to monodromy



Uniqueness of branched covers up to monodromy

I Given two branched covers fi : Xi −→ Y of degree d with the
same critical values, pick a generic point y and label the
pre-images of y x1i , x

2
i . . . , x

d
i .

I Given a path γ starting at y lift it to paths γi in Xi based at
x1i . Attempt to define φ : Xi −→ Yi by sending the end point
of γ1 to the end point of γ2. In other words try to use
“parallel transport” to define a homeomorphism.

I This map is well defined if we can choose our labelling such
that the “monodromy” around closed loops is the same. The
monodromy is defined to be the homomorphism from π1 to
Sd that sends γ to the permuation induced by parallel
transport around γ
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Two sheeted branched covers

I S2 only contains two elements so the monodromy of two
sheeted covers is very easy to analyse.

I The fundamental group of S2 with p points removed is
generated by loops around the points that have been removed.

I Thus two sheeted branched covers of S2 are uniquely
determined by the critical values.
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Genus 1 surfaces are all cubics

Theorem
All genus 1 surfaces are biholomorphic to smooth cubic curves.

I We know they can be expressed as 2 sheeted covers with 4
branch points. We can assume without loss of generality that
one of the branch points is infinity.

I The cubic curve written in inhomogeneous coordinates

y2 = (x − α)(x − β)(x − γ)

gives a smooth plane curve in CP2 so long as the α, β and γ
are distinct.

I This is obviously a 2 sheeted cover of the sphere with at least
3 branch points using the map (x , y)→ x . There must be a
branch point at infinity too by the Riemann Hurwitz formula
and the fact that a smooth cubic has genus 0. It is easy to
check this directly if you prefer.
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Existence of non-vanishing holomorphic one form

Lemma
All smooth cubic surfaces admit a non-vanishing holomorphic one
form.

I Let P(w , z) = 0 be the defining equation of the cubic in
inhomogeneous coordinates.

I We have meromorphic functions w and z defined on the
cubic. Hence we have a meromorphic forms dw and dz . By
the defining equation for the cubic:

Pwdw + Pzdz = 0

I So where Pw and Pz are non zero, we have:

dz

Pw
= −dw

Pz
=: ω

I Since the cubic is smooth, there are no points where both Pw

and Pz vanish. So this defines a single meromorphic 1-form ω
that is holomorphic and non-vanishing on C2 ⊂ CP2.
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One can choose coords s.t. ω has no zeros on a cubic
I In general suppose that P(z ,w) defines a smooth degree d

curve. Let p(Z1,Z2,Z3) be equivalent to P but in
homogeneous coordinates, so p(1, z ,w) = P(z ,w).

I By the fundamental theorem of algebra, there will be d points
where the curve intersects the line at infinity (counted with
multiplicity). Perturb our coords to ensure that there are
exactly d points.

I Suppose that x = [0, 1, 0] is an intersection point with
multiplicity m. Take inhomogeneous coords [u, 1, v ]→ (u, v).
So u = 1

z , v = w
z .

I Define q to be the homogeneous polynomial of degree d − 1
corresponding to Pw . Since there are exactly d points on the
line at infinity, q is non-zero at x and u is a local coordinate.

I dz = −u−2du. Pw (z ,w) = q(1, z ,w) = zd−1q(u, 1, v) by
homogeneity of q.

I One form is given by: − ud−3

q(u,1,v)du.



Non-vanishing 1-forms implies torus

Theorem
Any compact Riemann surface X with a non-vanishing
holomorphic 1-form ω is biholomorphic to C/Λ for some lattice Λ.

I Define f : X̃ −→ C by integrating ω along paths. This is well
defined on X̃ the universal cover.

I Show that f is a covering map.

I X is quotient of C hence equivalent to either C/Λ or a
cylinder. Since X is compact, cylinders are ruled out.
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Non-vanishing 1-forms implies torus - proof

Definition
A continuous map F : X −→ Y is a covering map if around each
point y ∈ Y there exists an open neighbourhood V such that
F−1(V ) is a disjoint union of open sets Uα and F restricted to
each Uα is a homeomorphism onto its image.

I Notice that so long as Y is connected this implies that X is
onto.

I In our case f : X̃ −→ Y is defined by integrating ω. Since ω
is non-vanishing, f ′ is non-vanishing and so f is a local
homeomorphism.

I Given x ∈ X̃ define fx mapping a neighbourhood of x to some
disc D(f (x), r) to be this local homeomorphism — so fx has a
well defined inverse on D(f (x), r).

I Compactness of X means that we can choose a single value
for r that will work for the whole manifold.
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Two points less than r apart



Non-vanishing one form implies torus — proof (cont.)

I We say that x and y are less than r apart if
y ∈ f −1x (D(f (x), r)). This relationship is symmetric.

I If f (x1) = f (x2) and x1 and x2 are less than r apart then
x1 = x2. This is because f −1x is one to one.

I If x and y are less than r
2 apart and y and z are less than r

2
apart then x and z are less than r apart. This is the triangle
law on C pulled back onto f −1x (D(f (x), r)).

I Write ∆x for the set of points less than r
2 apart from x .

I If f (x1) = f (x2) and y ∈ ∆x1 and y ∈ ∆x2 then x1 and x2
must be less than r apart. So x1 = x2.

I So f −1D(y , r2) is the disjoint union of ∆x where x ∈ f −1y .
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Summary

I Equivalence of de Rham and Dolbeault cohomology shows
that any genus 1 surface is a two sheeted cover with four
branch points.

I Monodromy of two sheeted cover of sphere shows that this is
a classification result.

I Any two sheeted cover with four branch points can be realised
by a non-singular cubic.

I Any non-singular cubic is equivalent to C/Λ because they all
have non-vanishing holomorphic one forms.



What have we learned?

I There is only one genus 0 Riemann surface.

I All genus 1 Riemann surfaces are C/Λ.

I All genus 1 Riemann surfaces are smooth cubics.

I (Homework) the moduli space of genus 1 Riemann surfaces is
C.

I Learning how to prove that Laplace’s equation has a unique
solution will be a very rewarding pursuit. (Chapter 9 of
Donaldson)



Where did we cheat?

I The classification of surfaces assumed lots of Morse theory.

I We have only discussed the fundamental group informally.

I We motivated but didn’t prove Bezout’s theorem. See Kirwan
for details — and perhaps read about “complex quantifier
elimination” to understand the handwaving motivation in
more detail.

I We didn’t prove the existence and uniqueness of solutions to
Laplace’s equation.


