Introduction to Riemann Surfaces - Lecture 4

John Armstrong

KCL

26 November 2012

Overview of Course

1. Definition and examples of Riemann Surfaces

Overview of Course

1. Definition and examples of Riemann Surfaces
2. Understand statement: S^{2} is unique genus 0 Riemann surface.
3. Understand statement: All genus 1 surfaces are given as \mathbb{C} / Λ. The moduli space is biholomorphic to \mathbb{C}.

Overview of Course

1. Definition and examples of Riemann Surfaces
2. Understand statement: S^{2} is unique genus 0 Riemann surface.
3. Understand statement: All genus 1 surfaces are given as \mathbb{C} / Λ. The moduli space is biholomorphic to \mathbb{C}.
4. S^{2} is unique surface with a meromorphic function with exactly 1 pole of degree 1 .

Overview of Course

1. Definition and examples of Riemann Surfaces
2. Understand statement: S^{2} is unique genus 0 Riemann surface.
3. Understand statement: All genus 1 surfaces are given as \mathbb{C} / Λ. The moduli space is biholomorphic to \mathbb{C}.
4. S^{2} is unique surface with a meromorphic function with exactly 1 pole of degree 1 .
5. TODO: The \mathbb{C} / Λ are the only compact surfaces with a non-vanishing holomorphic 1 form.
6. TODO: Definition and examples of De Rham cohomology.
7. TODO: Definition of Dolbeault cohomology.
8. TODO: Understand statement: The existence and uniqueness of meromorphic functions and forms is encoded by Dolbeault cohomology.
9. TODO: Equivalence of De Rham and Dolbeault cohomology on surfaces.

Overview of Course

1. Definition and examples of Riemann Surfaces
2. Understand statement: S^{2} is unique genus 0 Riemann surface.
3. Understand statement: All genus 1 surfaces are given as \mathbb{C} / Λ. The moduli space is biholomorphic to \mathbb{C}.
4. S^{2} is unique surface with a meromorphic function with exactly 1 pole of degree 1 .
5. TODO: The \mathbb{C} / Λ are the only compact surfaces with a non-vanishing holomorphic 1 form.
6. TODO: Definition and examples of De Rham cohomology.
7. TODO: Definition of Dolbeault cohomology.
8. TODO: Understand statement: The existence and uniqueness of meromorphic functions and forms is encoded by Dolbeault cohomology.
9. TODO: Equivalence of De Rham and Dolbeault cohomology on surfaces.
10. TODO: 2 and 3 follow from 4 and 5 given 7 and 8.

Except...

Except...

1. We may only get as far as the S^{2} results - i.e. may not prove 4.

Except...

1. We may only get as far as the S^{2} results - i.e. may not prove 4.
2. We won't prove equivalence of Dolbeault and De Rham cohomology.

Except...

1. We may only get as far as the S^{2} results - i.e. may not prove 4.
2. We won't prove equivalence of Dolbeault and De Rham cohomology.
3. We will show that it is equivalent to the existence and uniqueness of solutions to a certain partial differential equation.

Except...

1. We may only get as far as the S^{2} results - i.e. may not prove 4.
2. We won't prove equivalence of Dolbeault and De Rham cohomology.
3. We will show that it is equivalent to the existence and uniqueness of solutions to a certain partial differential equation.
4. In Part II of Donaldson's book he develops enough functional analysis to "solve" this partial differential equation.

Easier reading

1. Our description of the fundamental group has been ultra brief. Any algebraic topology book can fill in the gaps. I learned this from M Armstrong, Basic Topology.
2. Our description of differential forms and calculus on surfaces will proceed at a break-neck pace. Spivak's "Comprehensive introduction to differential geometry" is much much slower.
3. Kirwan's "Complex Algebraic Curves" covers similar ground to this course at a slower pace.

Integration on one manifolds

Suppose $x: U \longrightarrow \mathbb{R}$ and $y: U \longrightarrow \mathbb{R}$ and X are two coordinates on a 1 manifold. Let $\psi=x \circ y^{-1}$ be the transition function. If f is a real valued on \mathbb{R} then:

$$
\begin{aligned}
\int_{x(U)} f(x) \mathrm{d} x & =\int_{y(U)} f(\psi(y)) \frac{\mathrm{d} x}{\mathrm{~d} y} \mathrm{~d} y \\
& =\int_{y(U)} f(x(y)) \frac{\mathrm{d} x}{\mathrm{~d} y} \mathrm{~d} y
\end{aligned}
$$

Densities on one manifolds

Definition

A density at a point p on a 1-manifold is an equivalence class of a pair (f, x) where f is a number and x is a chart $x \longrightarrow \mathbb{R}$ centered at p. The equivalence relation is given by:

$$
(f, x) \sim(g, y) \quad \Leftrightarrow \quad g=f \frac{\mathrm{~d} x}{\mathrm{~d} y}
$$

Densities on one manifolds

Definition

A density at a point p on a 1-manifold is an equivalence class of a pair (f, x) where f is a number and x is a chart $x \longrightarrow \mathbb{R}$ centered at p. The equivalence relation is given by:

$$
(f, x) \sim(g, y) \quad \Leftrightarrow \quad g=f \frac{\mathrm{~d} x}{\mathrm{~d} y}
$$

A density is a smoothly varying set of densities at each point of the 1-manifold.

Densities on one manifolds

Definition

A density at a point p on a 1-manifold is an equivalence class of a pair (f, x) where f is a number and x is a chart $x \longrightarrow \mathbb{R}$ centered at p. The equivalence relation is given by:

$$
(f, x) \sim(g, y) \quad \Leftrightarrow \quad g=f \frac{\mathrm{~d} x}{\mathrm{~d} y}
$$

A density is a smoothly varying set of densities at each point of the 1-manifold.
The integral of a density $\rho \sim(f, x)$ over U is given by

$$
\int_{U} \rho=\int_{x(U)} f \mathrm{~d} x
$$

Densities on one manifolds

Definition

A density at a point p on a 1-manifold is an equivalence class of a pair (f, x) where f is a number and x is a chart $x \longrightarrow \mathbb{R}$ centered at p. The equivalence relation is given by:

$$
(f, x) \sim(g, y) \quad \Leftrightarrow \quad g=f \frac{\mathrm{~d} x}{\mathrm{~d} y}
$$

A density is a smoothly varying set of densities at each point of the 1-manifold.
The integral of a density $\rho \sim(f, x)$ over U is given by

$$
\int_{U} \rho=\int_{x(U)} f \mathrm{~d} x
$$

We denote the equivalence class $[f, x]$ by $f \mathrm{~d} x$.

Densities on n-manifolds

If $\psi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is a diffeomorphism we have:

$$
\begin{aligned}
\int_{U} f\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} & =\int_{U} f(x(y)) \partial(\mathbf{x}, \mathbf{y}) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{n} \\
& =\int_{p s i(U)} f\left(\psi^{-1}(y)\right) \partial(\psi, \mathbf{x})^{-1} \mathrm{~d} y_{1} \ldots \mathrm{~d} y_{n}
\end{aligned}
$$

Where $\partial(\mathbf{x}, \mathbf{y})$ is shorthand for the determinant of the Jacobian matrix.

Definition

A density on an n-manifold is an equivalence class (f, ϕ) where:

$$
(f, \phi) \sim\left((f \circ \psi) \partial(\psi, \mathbf{x})^{-1}, \phi \circ \psi\right)
$$

Densities on n-manifolds

If $\psi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is a diffeomorphism we have:

$$
\begin{aligned}
\int_{U} f\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} & =\int_{U} f(x(y)) \partial(\mathbf{x}, \mathbf{y}) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{n} \\
& =\int_{p s i(U)} f\left(\psi^{-1}(y)\right) \partial(\psi, \mathbf{x})^{-1} \mathrm{~d} y_{1} \ldots \mathrm{~d} y_{n}
\end{aligned}
$$

Where $\partial(\mathbf{x}, \mathbf{y})$ is shorthand for the determinant of the Jacobian matrix.

Definition

A density on an n-manifold is an equivalence class (f, ϕ) where:

$$
(f, \phi) \sim\left((f \circ \psi) \partial(\psi, \mathbf{x})^{-1}, \phi \circ \psi\right)
$$

We can now define the integral of a density over a manifold. Use a "partition of unity" to define the integral over the entire atlas.

Tangent vectors on 1-manifolds

Definition

A tangent vector at a point p on a 1-manifold is an equivalence class of a number v and a chart x with:

$$
(v, x) \sim\left(v \frac{\mathrm{~d} y}{\mathrm{~d} x}, y\right)
$$

Whereas for a density we had:

$$
(f, x) \sim\left(v \frac{\mathrm{~d} x}{\mathrm{~d} y}, y\right)
$$

Transformation of densities and vectors on a 1-manifold

If we change coordinates using $y=2 x$ then, in local coordinates, vectors double in length but densities halve.
On a 1-manifold, densities are dual to vectors. Given a density (p, x) and a vector (v, x) the quantity $p v$ is independent of x. So a density defines an invariant map from the tangent space of p to \mathbb{R}. A density is an element of the dual vector space of the tangent space.

Tangent vectors on n-manifolds

Definition

A tangent vector p on an n-manifold is an equivalence class of an element $\mathbf{v}=\left(v^{i}\right) \in \mathbb{R}^{n}$ and a chart $\mathbf{x}=\left(x^{1}, \ldots, x^{n}\right)$ centered at p with:

$$
\left(v^{i}, \mathbf{x}\right) \sim\left(\sum_{j} \frac{\partial y^{i}}{\partial x^{j}} v^{j}, \mathbf{y}\right)
$$

Tangent vectors on n-manifolds

Definition

A tangent vector p on an n-manifold is an equivalence class of an element $\mathbf{v}=\left(v^{i}\right) \in \mathbb{R}^{n}$ and a chart $\mathbf{x}=\left(x^{1}, \ldots, x^{n}\right)$ centered at p with:

$$
\left(v^{i}, \mathbf{x}\right) \sim\left(\sum_{j} \frac{\partial y^{i}}{\partial x^{j}} w^{j}, \mathbf{y}\right)
$$

The upper indices are simply labels not powers. So x^{2} is a completely different coordinate from x^{1}. It isn't its square. Surprisingly this convention doesn't end up causing too much confusion!

Tangent vectors on n-manifolds

Definition

A tangent vector p on an n-manifold is an equivalence class of an element $\mathbf{v}=\left(v^{i}\right) \in \mathbb{R}^{n}$ and a chart $\mathbf{x}=\left(x^{1}, \ldots, x^{n}\right)$ centered at p with:

$$
\left(v^{i}, \mathbf{x}\right) \sim\left(\sum_{j} \frac{\partial y^{i}}{\partial x^{j}} v^{j}, \mathbf{y}\right)
$$

The upper indices are simply labels not powers. So x^{2} is a completely different coordinate from x^{1}. It isn't its square. Surprisingly this convention doesn't end up causing too much confusion!
A vector field is a smoothly varying choice of vector at each point.

Tangent vectors on n-manifolds

Definition

A tangent vector p on an n-manifold is an equivalence class of an element $\mathbf{v}=\left(v^{i}\right) \in \mathbb{R}^{n}$ and a chart $\mathbf{x}=\left(x^{1}, \ldots, x^{n}\right)$ centered at p with:

$$
\left(v^{i}, \mathbf{x}\right) \sim\left(\sum_{j} \frac{\partial y^{i}}{\partial x^{j}} v^{j}, \mathbf{y}\right)
$$

The upper indices are simply labels not powers. So x^{2} is a completely different coordinate from x^{1}. It isn't its square. Surprisingly this convention doesn't end up causing too much confusion!
A vector field is a smoothly varying choice of vector at each point. The tangent space $T_{p} M$ at a point p on a manifold M is the set of all tangent vectors at p. It has an obvious vector space structure.

Cotangent vectors on n-manifolds

Definition

A cotangent vector p on an n-manifold is an equivalence class of an element $\omega=\left(\omega_{i}\right) \in \mathbb{R}^{n}$ and a chart $\mathbf{x}=\left(x^{1}, \ldots, x^{n}\right)$ centered at p with:

$$
\left(\omega_{i}, \mathbf{x}\right) \sim\left(\sum_{j} \frac{\partial x^{j}}{\partial y^{i}} \omega_{j}, \mathbf{y}\right)
$$

Cotangent vectors on n-manifolds

Definition

A cotangent vector p on an n-manifold is an equivalence class of an element $\omega=\left(\omega_{i}\right) \in \mathbb{R}^{n}$ and a chart $\mathbf{x}=\left(x^{1}, \ldots, x^{n}\right)$ centered at p with:

$$
\left(\omega_{i}, \mathbf{x}\right) \sim\left(\sum_{j} \frac{\partial x^{j}}{\partial y^{i}} \omega_{j}, \mathbf{y}\right)
$$

- It is a standard convention to use upper-indices for components of vectors and coordinates and lower-indices for components of forms.

Cotangent vectors on n-manifolds

Definition

A cotangent vector p on an n-manifold is an equivalence class of an element $\omega=\left(\omega_{i}\right) \in \mathbb{R}^{n}$ and a chart $\mathbf{x}=\left(x^{1}, \ldots, x^{n}\right)$ centered at p with:

$$
\left(\omega_{i}, \mathbf{x}\right) \sim\left(\sum_{j} \frac{\partial x^{j}}{\partial y^{i}} \omega_{j}, \mathbf{y}\right)
$$

- It is a standard convention to use upper-indices for components of vectors and coordinates and lower-indices for components of forms.
- Equivalently a cotangent vector is an element of $\left(T_{p} M\right)^{*}$ the dual space of the tangent space. To see this, given a cotangent vector $\left(\omega_{i}\right)$ we define a map from the tangent space to \mathbb{R} by $\left(v^{i}\right) \longrightarrow \sum_{i} \omega_{i} v^{i}$. This map does not depend on the choice of coordinates.

The exterior derivative of a function

Given a function f on a manifold and coordinates \mathbf{x} define

$$
\mathrm{d}_{\mathbf{x}} f=\left(\frac{\partial f}{\partial x^{1}}, \ldots, \frac{\partial f}{\partial x^{n}}\right)
$$

The exterior derivative of a function

Given a function f on a manifold and coordinates \mathbf{x} define

$$
\mathrm{d}_{\mathbf{x}} f=\left(\frac{\partial f}{\partial x^{1}}, \ldots, \frac{\partial f}{\partial x^{n}}\right)
$$

This looks like the definition of the gradient of a function. What happens if we change coordinates?

$$
\frac{\partial f}{\partial y^{i}}=\sum_{j} \frac{\partial f}{\partial x^{j}} \frac{\partial x^{j}}{\partial y^{i}}
$$

The exterior derivative of a function

Given a function f on a manifold and coordinates \mathbf{x} define

$$
\mathrm{d}_{\mathbf{x}} f=\left(\frac{\partial f}{\partial x^{1}}, \ldots, \frac{\partial f}{\partial x^{n}}\right)
$$

This looks like the definition of the gradient of a function. What happens if we change coordinates?

$$
\frac{\partial f}{\partial y^{i}}=\sum_{j} \frac{\partial f}{\partial x^{j}} \frac{\partial x^{j}}{\partial y^{i}}
$$

We conclude that $\left(\mathrm{d}_{\mathbf{x}} f, x\right)$ and ($\left.\mathrm{d}_{\mathbf{y}} f, y\right)$ are equivalent cotangent vectors. Hence we have a well defined cotangent vector $\mathrm{d} f$ given independently of our choice of coordinates.

Transformation of covectors and vectors

A good way to draw $\mathrm{d} f$ is to draw its contours. If we rescale by a factor of 2, the terrain becomes shallower by a factor of two as vectors become longer by a factor of 2 . The total distance travelled up or down remains constant.

Summary so far:

- A vector is a collection of n-numbers in local coordinates that transform like a vector.

Summary so far:

- A vector is a collection of n-numbers in local coordinates that transform like a vector.
- A density is a single number in local coordinates that transforms like a density.

Summary so far:

- A vector is a collection of n-numbers in local coordinates that transform like a vector.
- A density is a single number in local coordinates that transforms like a density.
- A covector is an element of the dual space of the tangent space. Alternatively it is something that transforms like a cotangent vector.

Summary so far:

- A vector is a collection of n-numbers in local coordinates that transform like a vector.
- A density is a single number in local coordinates that transforms like a density.
- A covector is an element of the dual space of the tangent space. Alternatively it is something that transforms like a cotangent vector.
- We can associated a smooth covector field $\mathrm{d} f$ to a smooth function f. It is somewhat analagous to the gradient of a function, but it is defined independent of coordinates. The standard gradient is only defined up to isometries of \mathbb{R}^{n} - it depends on the metric.

Summary so far:

- A vector is a collection of n-numbers in local coordinates that transform like a vector.
- A density is a single number in local coordinates that transforms like a density.
- A covector is an element of the dual space of the tangent space. Alternatively it is something that transforms like a cotangent vector.
- We can associated a smooth covector field $\mathrm{d} f$ to a smooth function f. It is somewhat analagous to the gradient of a function, but it is defined independent of coordinates. The standard gradient is only defined up to isometries of \mathbb{R}^{n} - it depends on the metric.
- On 1-manifolds covectors and densities are the same thing but they're completely different concepts in higher dimensions.

Pushing vectors forward

Given a smooth map $F: X \longrightarrow Y$ betwen smooth manifolds if sending a point $p \in X$ to $q \in Y$ we can define a mapping $F_{*}: T_{p} X \longrightarrow T_{q} Y$.

X

F

- Y

Formal definition of F_{*}

Given charts \mathbf{x} for X and \mathbf{y} for Y. If v^{i} are the components of a vector V define $F_{*}(V)$ to have components:

$$
\left(F_{*}(V)\right)^{i}=\sum_{a} \frac{\partial y^{i}}{\partial x^{a}} v^{a}
$$

It is easy to check that this definition is independent of the choice of chart.

Formal definition of F_{*}

Given charts \mathbf{x} for X and \mathbf{y} for Y. If v^{i} are the components of a vector V define $F_{*}(V)$ to have components:

$$
\left(F_{*}(V)\right)^{i}=\sum_{a} \frac{\partial y^{i}}{\partial x^{a}} v^{a}
$$

It is easy to check that this definition is independent of the choice of chart.
(Notice that our sums always combine a lower index and an upper index - so long as we think of $\frac{d}{d x^{i}}$ as having a lower index on account of being the denominator of a fraction. In the Einstein summation convention, one drops the \sum symbols and always sums over repeated indices.).

Pulling back

- By standard linear algebra we have can define a dual map $F^{*}: T_{q}^{*} Y \longrightarrow T_{p}^{*} X$. We can "pull back" covectors using F^{*}.

Pulling back

- By standard linear algebra we have can define a dual map $F^{*}: T_{q}^{*} Y \longrightarrow T_{p}^{*} X$. We can "pull back" covectors using F^{*}.
- Notice that if we have a function $g: Y \longrightarrow \mathbb{R}$ we can define $F^{*}(g)=g \circ f$ so functions on a manifold "pull back" too.

Pulling back

- By standard linear algebra we have can define a dual map $F^{*}: T_{q}^{*} Y \longrightarrow T_{p}^{*} X$. We can "pull back" covectors using F^{*}.
- Notice that if we have a function $g: Y \longrightarrow \mathbb{R}$ we can define $F^{*}(g)=g \circ f$ so functions on a manifold "pull back" too.
- Notice that $\mathrm{d}\left(F^{*} g\right)=F^{*}(\mathrm{~d} g)$. You can prove this by a direct calculation, or you can think in terms of contours and say that it is obvious. Both are worth doing!

Areas and volumes in vector spaces

Given a vector space V a good definition of an area A for V would be a function that associates an area $A\left(v_{1}, v_{2}\right)$ to any two vectors v_{1} and v_{2} that also satisfies:

- Linearity: $A\left(v_{1}+\lambda v_{2}, v_{3}\right)=A\left(v_{1}, v_{3}\right)+\lambda A\left(v_{2}, v_{3}\right)$
- Anti-symmetry: $A\left(v_{1}, v_{2}\right)=-A\left(v_{2}, v_{1}\right)$.

Areas and volumes in vector spaces

Given a vector space V a good definition of an area A for V would be a function that associates an area $A\left(v_{1}, v_{2}\right)$ to any two vectors v_{1} and v_{2} that also satisfies:

- Linearity: $A\left(v_{1}+\lambda v_{2}, v_{3}\right)=A\left(v_{1}, v_{3}\right)+\lambda A\left(v_{2}, v_{3}\right)$
- Anti-symmetry: $A\left(v_{1}, v_{2}\right)=-A\left(v_{2}, v_{1}\right)$.

In other words we want something that behaves rather like the cross product on 2 -vectors. The anti-symmetry condition means that our concept of area detects orientation just as the cross product does.

Areas and volumes in vector spaces

Given a vector space V a good definition of an area A for V would be a function that associates an area $A\left(v_{1}, v_{2}\right)$ to any two vectors v_{1} and v_{2} that also satisfies:

- Linearity: $A\left(v_{1}+\lambda v_{2}, v_{3}\right)=A\left(v_{1}, v_{3}\right)+\lambda A\left(v_{2}, v_{3}\right)$
- Anti-symmetry: $A\left(v_{1}, v_{2}\right)=-A\left(v_{2}, v_{1}\right)$.

In other words we want something that behaves rather like the cross product on 2 -vectors. The anti-symmetry condition means that our concept of area detects orientation just as the cross product does.
Similarly if we wanted to define a concept of a 3-volume on a vector space we could define it as an antisymmetric multi-linear map from $V \times V \times V \longrightarrow \mathbb{R}$. Antisymmetric means that the value changes sign if you swap any two vectors.

Areas and volumes in vector spaces

Given a vector space V a good definition of an area A for V would be a function that associates an area $A\left(v_{1}, v_{2}\right)$ to any two vectors v_{1} and v_{2} that also satisfies:

- Linearity: $A\left(v_{1}+\lambda v_{2}, v_{3}\right)=A\left(v_{1}, v_{3}\right)+\lambda A\left(v_{2}, v_{3}\right)$
- Anti-symmetry: $A\left(v_{1}, v_{2}\right)=-A\left(v_{2}, v_{1}\right)$.

In other words we want something that behaves rather like the cross product on 2 -vectors. The anti-symmetry condition means that our concept of area detects orientation just as the cross product does.
Similarly if we wanted to define a concept of a 3-volume on a vector space we could define it as an antisymmetric multi-linear map from $V \times V \times V \longrightarrow \mathbb{R}$. Antisymmetric means that the value changes sign if you swap any two vectors.
With these ideas in mind we define $\Lambda^{p} V^{*}$ of a vector space to be the vector space of antisymmetric multi-linear maps from V to \mathbb{R}.

Integration on submanifolds

- A smooth p-form ω on an n-dimensional manifold M is a smoothly varying choice from $\Lambda^{p} T^{*} M$. This is usually called a section of $\Lambda^{p} T^{*} M$.

Integration on submanifolds

- A smooth p-form ω on an n-dimensional manifold M is a smoothly varying choice from $\Lambda^{p} T^{*} M$. This is usually called a section of $\Lambda^{p} T^{*} M$.
- Locally a p-dimensional submanifold V of M is given by a smooth map

$$
F: \mathbb{R}^{p} \longrightarrow M
$$

Integration on submanifolds

- A smooth p-form ω on an n-dimensional manifold M is a smoothly varying choice from $\Lambda^{p} T^{*} M$. This is usually called a section of $\Lambda^{p} T^{*} M$.
- Locally a p-dimensional submanifold V of M is given by a smooth map

$$
F: \mathbb{R}^{p} \longrightarrow M
$$

- Divide \mathbb{R}^{p} into cubes of length ϵ. The edges of each cube correspond to vectors so we can push them forward into M using F. We can then use ω to measure the volume of the cube we have pushed forward.

Integration on submanifolds

- A smooth p-form ω on an n-dimensional manifold M is a smoothly varying choice from $\Lambda^{p} T^{*} M$. This is usually called a section of $\Lambda^{p} T^{*} M$.
- Locally a p-dimensional submanifold V of M is given by a smooth map

$$
F: \mathbb{R}^{p} \longrightarrow M
$$

- Divide \mathbb{R}^{p} into cubes of length ϵ. The edges of each cube correspond to vectors so we can push them forward into M using F. We can then use ω to measure the volume of the cube we have pushed forward.
- Define the integral of ω over V by:

$$
\int_{V} \omega=\lim _{\epsilon \rightarrow 0} \sum_{\text {cubes }}(p \text {-volume given by } \omega)
$$

Integrating $\mathrm{d} f$ on a 1-dimensional submanifold

Fundamental theorem of calculus

The fundamental theorem of calculus is obvious. Given a 1-form ω we write $\omega(X)$ for the length that ω associated to a vector X.

$$
\begin{aligned}
\int_{V} \mathrm{~d} f & =\lim _{\epsilon \rightarrow 0} \sum_{i}\left((\mathrm{~d} f) X_{i}\right) \\
& \approx \lim _{\epsilon \rightarrow 0} \sum_{i} \text { change in } f \text { over interval } \\
& =\text { Total change in } f
\end{aligned}
$$

Fundamental theorem of calculus

The fundamental theorem of calculus is obvious. Given a 1-form ω we write $\omega(X)$ for the length that ω associated to a vector X.

$$
\begin{aligned}
\int_{V} \mathrm{~d} f & =\lim _{\epsilon \rightarrow 0} \sum_{i}\left((\mathrm{~d} f) X_{i}\right) \\
& \approx \lim _{\epsilon \rightarrow 0} \sum_{i} \text { change in } f \text { over interval } \\
& =\text { Total change in } f
\end{aligned}
$$

The geometry of the situation is clear. To make the argument rigorous one just needs to use Taylor's theorem to get a bound on the error in the approximation.

Geometric definition of the exterior derivative

Definition

(Non standard) Given a p form ω on a manifold M and vectors $X_{1}, X_{2}, \ldots, X_{p+1}$ at a point in M choose a smooth map F from R^{p+1} to M such that F_{*} sends the coordinate axes to the X_{i}. Let Δ_{ϵ} be the the tetrahedron:

$$
\Delta_{\epsilon}=\left\{\left(x_{1}, x_{2}, \ldots, x_{p}\right): x_{i} \geq 0, \sum_{i}\left(x_{i}\right) \leq \epsilon\right\}
$$

Geometric definition of the exterior derivative

Definition

(Non standard) Given a p form ω on a manifold M and vectors $X_{1}, X_{2}, \ldots, X_{p+1}$ at a point in M choose a smooth map F from R^{p+1} to M such that F_{*} sends the coordinate axes to the X_{i}. Let Δ_{ϵ} be the the tetrahedron:

$$
\Delta_{\epsilon}=\left\{\left(x_{1}, x_{2}, \ldots, x_{p}\right): x_{i} \geq 0, \sum_{i}\left(x_{i}\right) \leq \epsilon\right\}
$$

Define $d \omega$ by:

$$
\mathrm{d} \omega\left(X_{1}, X_{2}, \ldots X_{p+1}\right)=\lim _{\epsilon \rightarrow 0} \frac{(p+1)!}{\text { epsilon }^{p+1}} \int_{F\left(\partial \Delta_{\epsilon}\right)}(\omega)
$$

d on 0-forms.

- A 0 -form is just a function, f, on a manifold. The integral of 0 -form over a 0-dimensional submanifold is just the sum of f over the points in the 0 -dimensional submanifold.

d on 0-forms.

- A 0 -form is just a function, f, on a manifold. The integral of 0 -form over a 0-dimensional submanifold is just the sum of f over the points in the 0-dimensional submanifold.
- Let \mathbf{x} be a chart centered at a point p on the manifold. Let V be a tangent vector at p and assume that the path $\gamma: \mathbb{R} \rightarrow \mathbb{R}$ has tangent vector V at 0 .

d on 0-forms.

- A 0 -form is just a function, f, on a manifold. The integral of 0 -form over a 0-dimensional submanifold is just the sum of f over the points in the 0-dimensional submanifold.
- Let \mathbf{x} be a chart centered at a point p on the manifold. Let V be a tangent vector at p and assume that the path $\gamma: \mathbb{R} \rightarrow \mathbb{R}$ has tangent vector V at 0 .
- Use t to denote the coordinate on \mathbb{R}

$$
\begin{aligned}
\mathrm{d} f(X) & =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int_{\gamma(\partial[0, \epsilon])} f \\
& =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}(f(\gamma(\epsilon))-f(\gamma(0)))
\end{aligned}
$$

d on 0-forms.

- A 0 -form is just a function, f, on a manifold. The integral of 0 -form over a 0-dimensional submanifold is just the sum of f over the points in the 0-dimensional submanifold.
- Let \mathbf{x} be a chart centered at a point p on the manifold. Let V be a tangent vector at p and assume that the path $\gamma: \mathbb{R} \rightarrow \mathbb{R}$ has tangent vector V at 0 .
- Use t to denote the coordinate on \mathbb{R}

$$
\begin{aligned}
\mathrm{d} f(X) & =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int_{\gamma(\partial[0, \epsilon])} f \\
& =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}(f(\gamma(\epsilon))-f(\gamma(0)))
\end{aligned}
$$

- It is now clear from the chain rule that the two definitions we have given for d on 0 -forms are equivalent.

Properties of d

- It is well defined because it only depends on first order term of F.

Properties of d

- It is well defined because it only depends on first order term of F.
- It generalizes the notion of the derivative of a function.

Properties of d

- It is well defined because it only depends on first order term of F.
- It generalizes the notion of the derivative of a function.
- It measures the rate at which the notion of length/area/volume changes over an infinitessimal tetrahedron.

Properties of d

- It is well defined because it only depends on first order term of F.
- It generalizes the notion of the derivative of a function.
- It measures the rate at which the notion of length/area/volume changes over an infinitessimal tetrahedron.
- $\mathrm{d} \omega$ is alternating in the X_{i}.

Properties of d

- It is well defined because it only depends on first order term of F.
- It generalizes the notion of the derivative of a function.
- It measures the rate at which the notion of length/area/volume changes over an infinitessimal tetrahedron.
- $\mathrm{d} \omega$ is alternating in the X_{i}.
- (Less obvious) it is linear in the X_{i} so is a $(p+1)$-form.

Properties of d

- It is well defined because it only depends on first order term of F.
- It generalizes the notion of the derivative of a function.
- It measures the rate at which the notion of length/area/volume changes over an infinitessimal tetrahedron.
- $\mathrm{d} \omega$ is alternating in the X_{i}.
- (Less obvious) it is linear in the X_{i} so is a $(p+1)$-form.
- It satisfies Stokes' theorem $\int_{V} \mathrm{~d} \omega=\int_{\partial V} \omega$.

Properties of d

- It is well defined because it only depends on first order term of F.
- It generalizes the notion of the derivative of a function.
- It measures the rate at which the notion of length/area/volume changes over an infinitessimal tetrahedron.
- $\mathrm{d} \omega$ is alternating in the X_{i}.
- (Less obvious) it is linear in the X_{i} so is a $(p+1)$-form.
- It satisfies Stokes' theorem $\int_{V} \mathrm{~d} \omega=\int_{\partial V} \omega$.
- It satisfies $\mathrm{dd} \omega=0$. This follows from Stoke's theorem because $\partial \partial \Delta_{\epsilon}$ is empty.

Proof of Stokes' theorem

The definition of d ensures that Stokes' theorem is infinitessimally true.

The wedge product

- Given two 1-forms ω and ν we define $\omega \wedge \nu$ as follows:

$$
(\omega \wedge \nu)\left(X_{1}, X_{2}\right)=\omega\left(X_{1}\right) \nu\left(X_{2}\right)-\omega\left(X_{2}\right) \nu\left(X_{1}\right)
$$

Where X_{1} and X_{2} are vectors.

The wedge product

- Given two 1-forms ω and ν we define $\omega \wedge \nu$ as follows:

$$
(\omega \wedge \nu)\left(X_{1}, X_{2}\right)=\omega\left(X_{1}\right) \nu\left(X_{2}\right)-\omega\left(X_{2}\right) \nu\left(X_{1}\right)
$$

Where X_{1} and X_{2} are vectors.

- $\omega \wedge \nu$ is clearly a two form.

The wedge product

- Given two 1-forms ω and ν we define $\omega \wedge \nu$ as follows:

$$
(\omega \wedge \nu)\left(X_{1}, X_{2}\right)=\omega\left(X_{1}\right) \nu\left(X_{2}\right)-\omega\left(X_{2}\right) \nu\left(X_{1}\right)
$$

Where X_{1} and X_{2} are vectors.

- $\omega \wedge \nu$ is clearly a two form.
- This definition is pure linear algebra on the tangent space.

The wedge product

- Given two 1-forms ω and ν we define $\omega \wedge \nu$ as follows:

$$
(\omega \wedge \nu)\left(X_{1}, X_{2}\right)=\omega\left(X_{1}\right) \nu\left(X_{2}\right)-\omega\left(X_{2}\right) \nu\left(X_{1}\right)
$$

Where X_{1} and X_{2} are vectors.

- $\omega \wedge \nu$ is clearly a two form.
- This definition is pure linear algebra on the tangent space.
- In general if ω and ν are p and q forms we can define:

$$
\begin{aligned}
& \left.(\omega \wedge \nu)\left(X_{1}, X_{2}, \ldots X_{p+q}\right)\right)= \\
& \frac{1}{p!q!} \sum_{\sigma \in S^{n}} \operatorname{sgn}(\sigma) \omega\left(X_{\sigma(1)}, X_{\sigma(2)}, \ldots, X_{\sigma(p)}\right) \times \\
& \quad \nu\left(X_{\sigma(p+1)}, X_{\sigma(p+2)}, \ldots, X_{\sigma(p+q)}\right)
\end{aligned}
$$

The wedge product

- Given two 1-forms ω and ν we define $\omega \wedge \nu$ as follows:

$$
(\omega \wedge \nu)\left(X_{1}, X_{2}\right)=\omega\left(X_{1}\right) \nu\left(X_{2}\right)-\omega\left(X_{2}\right) \nu\left(X_{1}\right)
$$

Where X_{1} and X_{2} are vectors.

- $\omega \wedge \nu$ is clearly a two form.
- This definition is pure linear algebra on the tangent space.
- In general if ω and ν are p and q forms we can define:

$$
\begin{aligned}
& \left.(\omega \wedge \nu)\left(X_{1}, X_{2}, \ldots X_{p+q}\right)\right)= \\
& \frac{1}{p!q!} \sum_{\sigma \in S^{n}} \operatorname{sgn}(\sigma) \omega\left(X_{\sigma(1)}, X_{\sigma(2)}, \ldots, X_{\sigma(p)}\right) \times \\
& \quad \nu\left(X_{\sigma(p+1)}, X_{\sigma(p+2)}, \ldots, X_{\sigma(p+q)}\right)
\end{aligned}
$$

- Note that $\omega \wedge \nu=(-1)^{p q} \nu \wedge \omega$. So \wedge is anti-commuting on 1 -forms.

Formal definition of d

Definition

$\Omega^{p}(M)$ is defined to be the space of smooth forms on M. $\mathrm{d}: \Omega^{p}(M) \longrightarrow \Omega^{p+1}(M)$ is defined to be the unique \mathbb{R}-linear map satisfying:

Formal definition of d

Definition

$\Omega^{p}(M)$ is defined to be the space of smooth forms on M. $\mathrm{d}: \Omega^{p}(M) \longrightarrow \Omega^{p+1}(M)$ is defined to be the unique \mathbb{R}-linear map satisfying:

1. $\mathrm{d} f$ is the differential of f for smooth functions f as defined earlier.

Formal definition of d

Definition

$\Omega^{p}(M)$ is defined to be the space of smooth forms on M.
$\mathrm{d}: \Omega^{p}(M) \longrightarrow \Omega^{p+1}(M)$ is defined to be the unique \mathbb{R}-linear map
satisfying:

1. $\mathrm{d} f$ is the differential of f for smooth functions f as defined earlier.
2. $\mathrm{d}(\mathrm{d} f)=0$ for any smooth function f.

Formal definition of d

Definition

$\Omega^{p}(M)$ is defined to be the space of smooth forms on M.
$\mathrm{d}: \Omega^{p}(M) \longrightarrow \Omega^{p+1}(M)$ is defined to be the unique \mathbb{R}-linear map satisfying:

1. $\mathrm{d} f$ is the differential of f for smooth functions f as defined earlier.
2. $\mathrm{d}(\mathrm{d} f)=0$ for any smooth function f.
3. $\mathrm{d}(\alpha \wedge \beta)=\mathrm{d} \alpha \wedge \beta+(-1)^{p} \alpha \wedge \mathrm{~d} \beta$ when α is a p-form.

Formal definition of d

Definition

$\Omega^{p}(M)$ is defined to be the space of smooth forms on M.
$\mathrm{d}: \Omega^{p}(M) \longrightarrow \Omega^{p+1}(M)$ is defined to be the unique \mathbb{R}-linear map satisfying:

1. $\mathrm{d} f$ is the differential of f for smooth functions f as defined earlier.
2. $\mathrm{d}(\mathrm{d} f)=0$ for any smooth function f.
3. $\mathrm{d}(\alpha \wedge \beta)=\mathrm{d} \alpha \wedge \beta+(-1)^{p} \alpha \wedge \mathrm{~d} \beta$ when α is a p-form.

For surfaces, this last item simplifies to the special case $\mathrm{d}(f \alpha)=\mathrm{d} f \wedge \alpha+f \mathrm{~d} \alpha$. if f is a function.

Calculating d on a surface

- If $\left(x^{1}, x^{2}\right)$ are coordinates for S centered at p then $\left\{\mathrm{d} x^{1}, \mathrm{~d} x^{2}\right\}$ gives a basis for $T_{p}^{*} M$.

Calculating d on a surface

- If $\left(x^{1}, x^{2}\right)$ are coordinates for S centered at p then $\left\{\mathrm{d} x^{1}, \mathrm{~d} x^{2}\right\}$ gives a basis for $T_{p}^{*} M$.
- $\mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}$ gives a basis for $\Lambda^{2} T_{p}^{*} M$.

Calculating d on a surface

- If $\left(x^{1}, x^{2}\right)$ are coordinates for S centered at p then $\left\{\mathrm{d} x^{1}, \mathrm{~d} x^{2}\right\}$ gives a basis for $T_{p}^{*} M$.
- $\mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}$ gives a basis for $\Lambda^{2} T_{p}^{*} M$.
- We can write any 1 -form as $\alpha_{1} \mathrm{~d} x^{1}+\alpha_{2} \mathrm{~d} x^{2}$. Using the axioms we compute:

$$
\begin{aligned}
\mathrm{d}\left(\alpha_{1} \mathrm{~d} x^{1}+\alpha_{2} \mathrm{~d} x^{2}\right)= & \left(\mathrm{d} \alpha_{1}\right) \wedge \mathrm{d} x^{1}+\left(\mathrm{d} \alpha_{2}\right) \wedge \mathrm{d} x^{2} \\
= & \frac{\partial \alpha_{1}}{\partial x^{1}} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{1}+\frac{\partial \alpha_{1}}{\partial x^{2}} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{1} \\
& \quad+\frac{\partial \alpha_{2}}{\partial x^{1}} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2}+\frac{\partial \alpha_{2}}{\partial x^{2}} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{2} \\
= & \left(\frac{\partial \alpha_{2}}{\partial x^{1}}-\frac{\partial \alpha_{1}}{\partial x^{2}}\right) \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}
\end{aligned}
$$

Calculating d on a surface

- If $\left(x^{1}, x^{2}\right)$ are coordinates for S centered at p then $\left\{\mathrm{d} x^{1}, \mathrm{~d} x^{2}\right\}$ gives a basis for $T_{p}^{*} M$.
- $\mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}$ gives a basis for $\Lambda^{2} T_{p}^{*} M$.
- We can write any 1 -form as $\alpha_{1} \mathrm{~d} x^{1}+\alpha_{2} \mathrm{~d} x^{2}$. Using the axioms we compute:

$$
\begin{aligned}
\mathrm{d}\left(\alpha_{1} \mathrm{~d} x^{1}+\alpha_{2} \mathrm{~d} x^{2}\right)= & \left(\mathrm{d} \alpha_{1}\right) \wedge \mathrm{d} x^{1}+\left(\mathrm{d} \alpha_{2}\right) \wedge \mathrm{d} x^{2} \\
= & \frac{\partial \alpha_{1}}{\partial x^{1}} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{1}+\frac{\partial \alpha_{1}}{\partial x^{2}} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{1} \\
& \quad+\frac{\partial \alpha_{2}}{\partial x^{1}} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2}+\frac{\partial \alpha_{2}}{\partial x^{2}} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{2} \\
= & \left(\frac{\partial \alpha_{2}}{\partial x^{1}}-\frac{\partial \alpha_{1}}{\partial x^{2}}\right) \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}
\end{aligned}
$$

- Notice that this proves that d is determined by the axioms (on a surface).

Remarks

- We could have used the formula from the previous slide to define d on a surface.

Remarks

- We could have used the formula from the previous slide to define d on a surface.
- The condition $\mathrm{dd} f=0$ is equivalent to $\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}=0$.

Remarks

- We could have used the formula from the previous slide to define d on a surface.
- The condition $\operatorname{dd} f=0$ is equivalent to $\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}=0$.
- To check that my non-standard definition is correct, simply check that it satisfies the axioms.

Remarks

- We could have used the formula from the previous slide to define d on a surface.
- The condition $\operatorname{dd} f=0$ is equivalent to $\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}=0$.
- To check that my non-standard definition is correct, simply check that it satisfies the axioms.
- The standard definition is the more practical choice for most computations.

The Poincaré Lemma

Theorem
On \mathbb{R}^{2} if ω is a 1-form and $\mathrm{d} \omega=0$ there exists a function f with $\mathrm{d} f=\omega$.

The Poincaré Lemma

Theorem
On \mathbb{R}^{2} if ω is a 1-form and $\mathrm{d} \omega=0$ there exists a function f with $\mathrm{d} f=\omega$.

Definition
A closed p-form ω is one that satisfies $\mathrm{d} \omega=0$.

The Poincaré Lemma

Theorem
On \mathbb{R}^{2} if ω is a 1-form and $\mathrm{d} \omega=0$ there exists a function f with $\mathrm{d} f=\omega$.

Definition
A closed p-form ω is one that satisfies $\mathrm{d} \omega=0$.
Definition
An exact p-form ω is one that can be written $\omega=\mathrm{d} \nu$ for some ($p-1$)-form. exact forms are always closed.

Proof of the Poincaré lemma

Theorem
On \mathbb{R}^{2} a closed 1 -form ω is always exact.

Proof of the Poincaré lemma

Theorem
On \mathbb{R}^{2} a closed 1 -form ω is always exact.
Define $f(x)=\int_{\gamma_{1}} \omega$. Since $\int_{\gamma_{1}} \omega-\int_{\gamma_{2}} \omega=\int_{R} \mathrm{~d} \omega=0$ we see that f is well defined. By the fundamental theorem of calculus $\mathrm{d} f=\omega$. (Result follows because \mathbb{R}^{2} is simply connected.)

A closed form ω on $\mathbb{R}^{2} \backslash\{0\}$ which is not exact

De Rham cohomology

- For clarity write $\mathrm{d}_{i}=\mathrm{d}: \Omega^{i-1}(M) \longrightarrow \Omega^{i}(M)$ on an n-manifold M. We have the exact sequence:

$$
0 \xrightarrow{\mathrm{~d}_{0}} \Omega^{0}(M) \xrightarrow{\mathrm{d}_{1}} \Omega^{1}(M) \xrightarrow{\mathrm{d}_{2}} \Omega^{2}(M) \xrightarrow{\mathrm{d}_{3}} 0
$$

De Rham cohomology

- For clarity write $\mathrm{d}_{i}=\mathrm{d}: \Omega^{i-1}(M) \longrightarrow \Omega^{i}(M)$ on an n-manifold M. We have the exact sequence:

$$
0 \xrightarrow{\mathrm{~d}_{0}} \Omega^{0}(M) \xrightarrow{\mathrm{d}_{1}} \Omega^{1}(M) \xrightarrow{\mathrm{d}_{2}} \Omega^{2}(M) \xrightarrow{\mathrm{d}_{3}} 0
$$

- Define $H^{i}(M)$ to be the cohomology of the sequence:

$$
H^{i}(M)=\operatorname{ker} d_{i} /\left(\operatorname{lm} d_{i-1}\right)
$$

De Rham cohomology

- For clarity write $\mathrm{d}_{i}=\mathrm{d}: \Omega^{i-1}(M) \longrightarrow \Omega^{i}(M)$ on an n-manifold M. We have the exact sequence:

$$
0 \xrightarrow{\mathrm{~d}_{0}} \Omega^{0}(M) \xrightarrow{\mathrm{d}_{1}} \Omega^{1}(M) \xrightarrow{\mathrm{d}_{2}} \Omega^{2}(M) \xrightarrow{\mathrm{d}_{3}} 0
$$

- Define $H^{i}(M)$ to be the cohomology of the sequence:

$$
H^{i}(M)=\operatorname{ker} d_{i} /\left(\operatorname{lm} d_{i-1}\right)
$$

- The dimension of $H^{i}(M)$ is a topological invariant of M called the i-th betti number. (It is not obvious whether or not the betti numbers are finite.)

De Rham cohomology

- For clarity write $\mathrm{d}_{i}=\mathrm{d}: \Omega^{i-1}(M) \longrightarrow \Omega^{i}(M)$ on an n-manifold M. We have the exact sequence:

$$
0 \xrightarrow{\mathrm{~d}_{0}} \Omega^{0}(M) \xrightarrow{\mathrm{d}_{1}} \Omega^{1}(M) \xrightarrow{\mathrm{d}_{2}} \Omega^{2}(M) \xrightarrow{\mathrm{d}_{3}} 0
$$

- Define $H^{i}(M)$ to be the cohomology of the sequence:

$$
H^{i}(M)=\operatorname{ker} d_{i} /\left(\operatorname{lm} d_{i-1}\right)
$$

- The dimension of $H^{i}(M)$ is a topological invariant of M called the i-th betti number. (It is not obvious whether or not the betti numbers are finite.)
- We have shown that the 1 -st betti number is zero for simply connected spaces, but non-zero for \mathbb{R}^{2}.

Bezout's theorem

Definition

Two complex curves in $\mathbb{C} P^{2}$ intersect transversally at a point p if p is a non-singular point of each curve and if the tangent space of $\mathbb{C} P^{2}$ at that point is the direct sum of the tangent spaces of the two curves.

Theorem

(Bezout) Two complex curves of degrees p and q that have no common component meet in no more than pq points. If they intersect transversally, they exactly in pq points.
If the polynomial defining a curve factorizes then each factor defines a component of the curve. Smooth curves have only one component because they would clearly not be smooth at ther intersections of the components.

Proof of degree genus formula

- Given a smooth plane curve C of degree d consider the projection from a point p to a line L with p not lieing on C.
- By the fundamental theorem of algebra, the degree of this projection map will be d.
- We can choose coordinates so that the projection of a point (z, w) in affine coordinates is just z. If $P(z, w)=0$ defines the curve then branch points correspond to points where $P_{w}=0$. These have ramification index 1 unless $P_{w w}=0$.
- By Bezout's theorem we expect there to be $d(d-1)$ branch points and that so long as p does not lie on a line of inflection (i.e. a tangent to the curve through a point of inflection) there will be exactly $d(d-1)$ branch points.
- By Bezout's theorem there are a finite number of lines of inflection (clearly points of inflection will be given by some algebraic condition)
- So for generic p there are exactly $d(d-1)$ branch points of ramification index 1.
- The degree genus formula now follows from the Riemann

