Introduction to Riemann Surfaces — Lecture 4

John Armstrong

KCL

26 November 2012

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1. Definition and examples of Riemann Surfaces

- 1. Definition and examples of Riemann Surfaces
- 2. Understand statement: S^2 is unique genus 0 Riemann surface.
- 3. Understand statement: All genus 1 surfaces are given as $\mathbb{C}/\Lambda.$ The moduli space is biholomorphic to $\mathbb{C}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. Definition and examples of Riemann Surfaces
- 2. Understand statement: S^2 is unique genus 0 Riemann surface.
- 3. Understand statement: All genus 1 surfaces are given as $\mathbb{C}/\Lambda.$ The moduli space is biholomorphic to $\mathbb{C}.$
- 4. S^2 is unique surface with a meromorphic function with exactly 1 pole of degree 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. Definition and examples of Riemann Surfaces
- 2. Understand statement: S^2 is unique genus 0 Riemann surface.
- 3. Understand statement: All genus 1 surfaces are given as \mathbb{C}/Λ . The moduli space is biholomorphic to \mathbb{C} .
- 4. S^2 is unique surface with a meromorphic function with exactly 1 pole of degree 1.
- 5. **TODO:** The \mathbb{C}/Λ are the only compact surfaces with a non-vanishing holomorphic 1 form.
- 6. TODO: Definition and examples of De Rham cohomology.
- 7. TODO: Definition of Dolbeault cohomology.
- 8. **TODO:** Understand statement: The existence and uniqueness of meromorphic functions and forms is encoded by Dolbeault cohomology.
- 9. **TODO:** Equivalence of De Rham and Dolbeault cohomology on surfaces.

- 1. Definition and examples of Riemann Surfaces
- 2. Understand statement: S^2 is unique genus 0 Riemann surface.
- 3. Understand statement: All genus 1 surfaces are given as $\mathbb{C}/\Lambda.$ The moduli space is biholomorphic to $\mathbb{C}.$
- 4. S^2 is unique surface with a meromorphic function with exactly 1 pole of degree 1.
- 5. **TODO:** The \mathbb{C}/Λ are the only compact surfaces with a non-vanishing holomorphic 1 form.
- 6. TODO: Definition and examples of De Rham cohomology.
- 7. TODO: Definition of Dolbeault cohomology.
- 8. **TODO:** Understand statement: The existence and uniqueness of meromorphic functions and forms is encoded by Dolbeault cohomology.
- 9. **TODO:** Equivalence of De Rham and Dolbeault cohomology on surfaces.
- 10. **TODO:** 2 and 3 follow from 4 and 5 given 7 and 8.

Except...

<□▶ <圖▶ < ≧▶ < ≧▶ = ● ● ● ●

1. We may only get as far as the S^2 results — i.e. may not prove 4.

(ロ)、(型)、(E)、(E)、 E) のQ(()

1. We may only get as far as the S^2 results — i.e. may not prove 4.

(ロ)、(型)、(E)、(E)、 E) のQ(()

2. We won't prove equivalence of Dolbeault and De Rham cohomology.

Except...

1. We may only get as far as the S^2 results — i.e. may not prove 4.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 2. We won't prove equivalence of Dolbeault and De Rham cohomology.
- 3. We *will* show that it is equivalent to the existence and uniqueness of solutions to a certain partial differential equation.

Except...

- 1. We may only get as far as the S^2 results i.e. may not prove 4.
- 2. We won't prove equivalence of Dolbeault and De Rham cohomology.
- 3. We *will* show that it is equivalent to the existence and uniqueness of solutions to a certain partial differential equation.
- 4. In Part II of Donaldson's book he develops enough functional analysis to "solve" this partial differential equation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Easier reading

- 1. Our description of the fundamental group has been ultra brief. Any algebraic topology book can fill in the gaps. I learned this from M Armstrong, Basic Topology.
- 2. Our description of differential forms and calculus on surfaces will proceed at a break-neck pace. Spivak's "Comprehensive introduction to differential geometry" is much much slower.
- 3. Kirwan's "Complex Algebraic Curves" covers similar ground to this course at a slower pace.

Integration on one manifolds

Suppose $x : U \longrightarrow \mathbb{R}$ and $y : U \longrightarrow \mathbb{R}$ and X are two coordinates on a 1 manifold. Let $\psi = x \circ y^{-1}$ be the transition function. If f is a real valued on \mathbb{R} then:

$$\int_{x(U)} f(x) dx = \int_{y(U)} f(\psi(y)) \frac{dx}{dy} dy$$
$$= \int_{y(U)} f(x(y)) \frac{dx}{dy} dy$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Definition

A density at a point p on a 1-manifold is an equivalence class of a pair (f, x) where f is a number and x is a chart $x \longrightarrow \mathbb{R}$ centered at p. The equivalence relation is given by:

$$(f,x) \sim (g,y) \quad \Leftrightarrow \quad g = f \frac{\mathrm{d}x}{\mathrm{d}y}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A density at a point p on a 1-manifold is an equivalence class of a pair (f, x) where f is a number and x is a chart $x \longrightarrow \mathbb{R}$ centered at p. The equivalence relation is given by:

$$(f,x) \sim (g,y) \quad \Leftrightarrow \quad g = f \frac{\mathrm{d}x}{\mathrm{d}y}$$

A *density* is a smoothly varying set of densities at each point of the 1-manifold.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

A density at a point p on a 1-manifold is an equivalence class of a pair (f, x) where f is a number and x is a chart $x \longrightarrow \mathbb{R}$ centered at p. The equivalence relation is given by:

$$(f,x) \sim (g,y) \quad \Leftrightarrow \quad g = f \frac{\mathrm{d}x}{\mathrm{d}y}$$

A *density* is a smoothly varying set of densities at each point of the 1-manifold.

The *integral of a density* $\rho \sim (f, x)$ over U is given by

$$\int_U \rho = \int_{x(U)} f \, \mathrm{d}x$$

Definition

A density at a point p on a 1-manifold is an equivalence class of a pair (f, x) where f is a number and x is a chart $x \longrightarrow \mathbb{R}$ centered at p. The equivalence relation is given by:

$$(f,x) \sim (g,y) \quad \Leftrightarrow \quad g = f \frac{\mathrm{d}x}{\mathrm{d}y}$$

A *density* is a smoothly varying set of densities at each point of the 1-manifold.

The *integral of a density* $\rho \sim (f, x)$ over U is given by

$$\int_U \rho = \int_{x(U)} f \, \mathrm{d}x$$

We denote the equivalence class [f, x] by f dx.

If $\psi : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a diffeomorphism we have:

$$\int_{U} f(x_1, \dots, x_n) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_n = \int_{U} f(x(y)) \partial(\mathbf{x}, \mathbf{y}) \mathrm{d}y_1 \dots \, \mathrm{d}y_n$$

=
$$\int_{psi(U)} f(\psi^{-1}(y)) \partial(\psi, \mathbf{x})^{-1} \mathrm{d}y_1 \dots \, \mathrm{d}y_n$$

Where $\partial(\mathbf{x},\mathbf{y})$ is shorthand for the determinant of the Jacobian matrix.

Definition

A *density* on an *n*-manifold is an equivalence class (f, ϕ) where:

$$(f,\phi) \sim ((f \circ \psi)\partial(\psi, \mathbf{x})^{-1}, \phi \circ \psi)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If $\psi : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a diffeomorphism we have:

$$\int_{U} f(x_1, \dots, x_n) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_n = \int_{U} f(x(y)) \partial(\mathbf{x}, \mathbf{y}) \mathrm{d}y_1 \dots \, \mathrm{d}y_n$$

=
$$\int_{psi(U)} f(\psi^{-1}(y)) \partial(\psi, \mathbf{x})^{-1} \mathrm{d}y_1 \dots \, \mathrm{d}y_n$$

Where $\partial(\mathbf{x}, \mathbf{y})$ is shorthand for the determinant of the Jacobian matrix.

Definition

A *density* on an *n*-manifold is an equivalence class (f, ϕ) where:

$$(f,\phi) \sim ((f \circ \psi)\partial(\psi, \mathbf{x})^{-1}, \phi \circ \psi)$$

We can now define the integral of a density over a manifold. Use a "partition of unity" to define the integral over the entire atlas.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Definition

A *tangent vector* at a point p on a 1-manifold is an equivalence class of a number v and a chart x with:

$$(v,x) \sim (v \frac{\mathrm{d}y}{\mathrm{d}x}, y)$$

Whereas for a density we had:

$$(f,x) \sim (v \frac{\mathrm{d}x}{\mathrm{d}y}, y)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Transformation of densities and vectors on a 1-manifold

If we change coordinates using y = 2x then, in local coordinates, vectors double in length but densities halve.

On a 1-manifold, densities are dual to vectors. Given a density (p, x) and a vector (v, x) the quantity pv is independent of x. So a density defines an invariant map from the tangent space of p to \mathbb{R} . A density is an element of the dual vector space of the tangent space.

A D N A 目 N A E N A E N A B N A C N

Definition

A tangent vector p on an n-manifold is an equivalence class of an element $\mathbf{v} = (v^i) \in \mathbb{R}^n$ and a chart $\mathbf{x} = (x^1, \dots, x^n)$ centered at p with:

$$(\mathbf{v}^i, \mathbf{x}) \sim (\sum_j \frac{\partial y^i}{\partial x^j} \mathbf{v}^j, \mathbf{y})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A tangent vector p on an n-manifold is an equivalence class of an element $\mathbf{v} = (v^i) \in \mathbb{R}^n$ and a chart $\mathbf{x} = (x^1, \dots, x^n)$ centered at p with:

$$(\mathbf{v}^i, \mathbf{x}) \sim (\sum_j rac{\partial y^i}{\partial x^j} \mathbf{v}^j, \mathbf{y})$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The upper indices are simply labels not powers. So x^2 is a completely different coordinate from x^1 . It isn't its square. Surprisingly this convention doesn't end up causing too much confusion!

Definition

A tangent vector p on an n-manifold is an equivalence class of an element $\mathbf{v} = (v^i) \in \mathbb{R}^n$ and a chart $\mathbf{x} = (x^1, \dots, x^n)$ centered at p with:

$$(\mathbf{v}^i, \mathbf{x}) \sim (\sum_j \frac{\partial y^i}{\partial x^j} \mathbf{v}^j, \mathbf{y})$$

The upper indices are simply labels not powers. So x^2 is a completely different coordinate from x^1 . It isn't its square. Surprisingly this convention doesn't end up causing too much confusion!

A vector field is a smoothly varying choice of vector at each point.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition

A tangent vector p on an n-manifold is an equivalence class of an element $\mathbf{v} = (v^i) \in \mathbb{R}^n$ and a chart $\mathbf{x} = (x^1, \dots, x^n)$ centered at p with:

$$(\mathbf{v}^i, \mathbf{x}) \sim (\sum_j \frac{\partial y^i}{\partial x^j} \mathbf{v}^j, \mathbf{y})$$

The upper indices are simply labels not powers. So x^2 is a completely different coordinate from x^1 . It isn't its square. Surprisingly this convention doesn't end up causing too much confusion!

A vector field is a smoothly varying choice of vector at each point. The tangent space T_pM at a point p on a manifold M is the set of all tangent vectors at p. It has an obvious vector space structure.

Definition

A cotangent vector p on an *n*-manifold is an equivalence class of an element $\omega = (\omega_i) \in \mathbb{R}^n$ and a chart $\mathbf{x} = (x^1, \dots, x^n)$ centered at p with:

$$(\omega_i, \mathbf{x}) \sim (\sum_j \frac{\partial x^j}{\partial y^i} \omega_j, \mathbf{y})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

A cotangent vector p on an n-manifold is an equivalence class of an element $\omega = (\omega_i) \in \mathbb{R}^n$ and a chart $\mathbf{x} = (x^1, \dots, x^n)$ centered at p with:

$$(\omega_i, \mathbf{x}) \sim (\sum_j rac{\partial x^j}{\partial y^i} \omega_j, \mathbf{y})$$

It is a standard convention to use upper-indices for components of vectors and coordinates and lower-indices for components of forms.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition

A cotangent vector p on an n-manifold is an equivalence class of an element $\omega = (\omega_i) \in \mathbb{R}^n$ and a chart $\mathbf{x} = (x^1, \dots, x^n)$ centered at p with:

$$(\omega_i, \mathbf{x}) \sim (\sum_j rac{\partial x^j}{\partial y^i} \omega_j, \mathbf{y})$$

- It is a standard convention to use upper-indices for components of vectors and coordinates and lower-indices for components of forms.
- Equivalently a cotangent vector is an element of (T_pM)* the dual space of the tangent space. To see this, given a cotangent vector (ω_i) we define a map from the tangent space to ℝ by (vⁱ) → ∑_iω_ivⁱ. This map does not depend on the choice of coordinates.

The exterior derivative of a function

Given a function f on a manifold and coordinates \mathbf{x} define

$$\mathbf{d}_{\mathbf{x}}f = \left(\frac{\partial f}{\partial x^1}, \dots, \frac{\partial f}{\partial x^n}\right)$$

The exterior derivative of a function

Given a function f on a manifold and coordinates \mathbf{x} define

$$\mathbf{d}_{\mathbf{x}}f = \left(\frac{\partial f}{\partial x^1}, \dots, \frac{\partial f}{\partial x^n}\right)$$

This looks like the definition of the gradient of a function. What happens if we change coordinates?

$$\frac{\partial f}{\partial y^{i}} = \sum_{j} \frac{\partial f}{\partial x^{j}} \frac{\partial x^{j}}{\partial y^{i}}$$

・ロト ・西ト ・ヨト ・ヨー うへぐ

The exterior derivative of a function

Given a function f on a manifold and coordinates \mathbf{x} define

$$\mathbf{d}_{\mathbf{x}}f = \left(\frac{\partial f}{\partial x^1}, \dots, \frac{\partial f}{\partial x^n}\right)$$

This looks like the definition of the gradient of a function. What happens if we change coordinates?

$$\frac{\partial f}{\partial y^i} = \sum_j \frac{\partial f}{\partial x^j} \frac{\partial x^j}{\partial y^i}$$

We conclude that $(d_x f, x)$ and $(d_y f, y)$ are equivalent cotangent vectors. Hence we have a well defined cotangent vector df given independently of our choice of coordinates.

Transformation of covectors and vectors

A good way to draw df is to draw its contours. If we rescale by a factor of 2, the terrain becomes shallower by a factor of two as vectors become longer by a factor of 2. The total distance travelled up or down remains constant.

A vector is a collection of *n*-numbers in local coordinates that transform like a vector.

A vector is a collection of *n*-numbers in local coordinates that transform like a vector.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 A density is a single number in local coordinates that transforms like a density.

- A vector is a collection of *n*-numbers in local coordinates that transform like a vector.
- A density is a single number in local coordinates that transforms like a density.
- A covector is an element of the dual space of the tangent space. Alternatively it is something that transforms like a cotangent vector.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- A vector is a collection of *n*-numbers in local coordinates that transform like a vector.
- A density is a single number in local coordinates that transforms like a density.
- A covector is an element of the dual space of the tangent space. Alternatively it is something that transforms like a cotangent vector.
- We can associated a smooth covector field df to a smooth function f. It is somewhat analagous to the gradient of a function, but it is defined independent of coordinates. The standard gradient is only defined up to isometries of ℝⁿ — it depends on the metric.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
Summary so far:

- A vector is a collection of *n*-numbers in local coordinates that transform like a vector.
- A density is a single number in local coordinates that transforms like a density.
- A covector is an element of the dual space of the tangent space. Alternatively it is something that transforms like a cotangent vector.
- ► We can associated a smooth covector field df to a smooth function f. It is somewhat analagous to the gradient of a function, but it is defined independent of coordinates. The standard gradient is only defined up to isometries of ℝⁿ it depends on the metric.
- On 1-manifolds covectors and densities are the same thing but they're completely different concepts in higher dimensions.

Pushing vectors forward

Given a smooth map $F: X \longrightarrow Y$ betwen smooth manifolds if sending a point $p \in X$ to $q \in Y$ we can define a mapping $F_*: T_pX \longrightarrow T_qY$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Formal definition of F_*

Given charts **x** for X and **y** for Y. If v^i are the components of a vector V define $F_*(V)$ to have components:

$$(F_*(V))^i = \sum_a \frac{\partial y^i}{\partial x^a} v^a$$

It is easy to check that this definition is independent of the choice of chart.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Formal definition of F_*

Given charts **x** for X and **y** for Y. If v^i are the components of a vector V define $F_*(V)$ to have components:

$$(F_*(V))^i = \sum_a \frac{\partial y^i}{\partial x^a} v^a$$

It is easy to check that this definition is independent of the choice of chart.

(Notice that our sums always combine a lower index and an upper index — so long as we think of $\frac{d}{dx^i}$ as having a lower index on account of being the denominator of a fraction. In the *Einstein summation convention*, one drops the \sum symbols and always sums over repeated indices.).

Pulling back

▶ By standard linear algebra we have can define a dual map $F^*: T^*_q Y \longrightarrow T^*_p X$. We can "pull back" covectors using F^* .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Pulling back

- By standard linear algebra we have can define a dual map F^{*}: T^{*}_qY → T^{*}_pX. We can "pull back" covectors using F^{*}.
- Notice that if we have a function g : Y → ℝ we can define F*(g) = g ∘ f so functions on a manifold "pull back" too.

Pulling back

- By standard linear algebra we have can define a dual map F^{*}: T^{*}_qY → T^{*}_pX. We can "pull back" covectors using F^{*}.
- Notice that if we have a function g : Y → ℝ we can define F*(g) = g ∘ f so functions on a manifold "pull back" too.
- Notice that d(F*g) = F*(dg). You can prove this by a direct calculation, or you can think in terms of contours and say that it is obvious. Both are worth doing!

Given a vector space V a good definition of an area A for V would be a function that associates an area $A(v_1, v_2)$ to any two vectors v_1 and v_2 that also satisfies:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Linearity: $A(v_1 + \lambda v_2, v_3) = A(v_1, v_3) + \lambda A(v_2, v_3)$
- Anti-symmetry: $A(v_1, v_2) = -A(v_2, v_1)$.

Given a vector space V a good definition of an area A for V would be a function that associates an area $A(v_1, v_2)$ to any two vectors v_1 and v_2 that also satisfies:

- Linearity: $A(v_1 + \lambda v_2, v_3) = A(v_1, v_3) + \lambda A(v_2, v_3)$
- Anti-symmetry: $A(v_1, v_2) = -A(v_2, v_1)$.

In other words we want something that behaves rather like the cross product on 2-vectors. The anti-symmetry condition means that our concept of area detects orientation just as the cross product does.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Given a vector space V a good definition of an area A for V would be a function that associates an area $A(v_1, v_2)$ to any two vectors v_1 and v_2 that also satisfies:

• Linearity:
$$A(v_1 + \lambda v_2, v_3) = A(v_1, v_3) + \lambda A(v_2, v_3)$$

• Anti-symmetry: $A(v_1, v_2) = -A(v_2, v_1)$.

In other words we want something that behaves rather like the cross product on 2-vectors. The anti-symmetry condition means that our concept of area detects orientation just as the cross product does.

Similarly if we wanted to define a concept of a 3-volume on a vector space we could define it as an antisymmetric multi-linear map from $V \times V \times V \longrightarrow \mathbb{R}$. Antisymmetric means that the value changes sign if you swap any two vectors.

Given a vector space V a good definition of an area A for V would be a function that associates an area $A(v_1, v_2)$ to any two vectors v_1 and v_2 that also satisfies:

• Linearity:
$$A(v_1 + \lambda v_2, v_3) = A(v_1, v_3) + \lambda A(v_2, v_3)$$

• Anti-symmetry: $A(v_1, v_2) = -A(v_2, v_1)$.

In other words we want something that behaves rather like the cross product on 2-vectors. The anti-symmetry condition means that our concept of area detects orientation just as the cross product does.

Similarly if we wanted to define a concept of a 3-volume on a vector space we could define it as an antisymmetric multi-linear map from $V \times V \times V \longrightarrow \mathbb{R}$. Antisymmetric means that the value changes sign if you swap any two vectors.

With these ideas in mind we define $\Lambda^p V^*$ of a vector space to be the vector space of antisymmetric multi-linear maps from V to \mathbb{R} .

A smooth *p*-form ω on an *n*-dimensional manifold *M* is a smoothly varying choice from Λ^p T^{*}M. This is usually called a section of Λ^p T^{*}M.

- A smooth *p*-form ω on an *n*-dimensional manifold *M* is a smoothly varying choice from Λ^pT*M. This is usually called a section of Λ^pT*M.
- Locally a *p*-dimensional submanifold V of M is given by a smooth map

 $F: \mathbb{R}^p \longrightarrow M$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- A smooth *p*-form ω on an *n*-dimensional manifold *M* is a smoothly varying choice from Λ^p T^{*}M. This is usually called a section of Λ^p T^{*}M.
- Locally a p-dimensional submanifold V of M is given by a smooth map

 $F: \mathbb{R}^p \longrightarrow M$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Divide ℝ^p into cubes of length ε. The edges of each cube correspond to vectors so we can push them forward into M using F. We can then use ω to measure the volume of the cube we have pushed forward.

- A smooth *p*-form ω on an *n*-dimensional manifold *M* is a smoothly varying choice from Λ^p T^{*}M. This is usually called a section of Λ^p T^{*}M.
- Locally a p-dimensional submanifold V of M is given by a smooth map

 $F: \mathbb{R}^p \longrightarrow M$

- Divide ℝ^p into cubes of length ε. The edges of each cube correspond to vectors so we can push them forward into M using F. We can then use ω to measure the volume of the cube we have pushed forward.
- Define the integral of ω over V by:

$$\int_{V} \omega = \lim_{\epsilon \to 0} \sum_{\text{cubes}} (p \text{-volume given by } \omega)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Integrating df on a 1-dimensional submanifold

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Fundamental theorem of calculus

The fundamental theorem of calculus is obvious. Given a 1-form ω we write $\omega(X)$ for the length that ω associated to a vector X.

$$\int_{V} df = \lim_{\epsilon \to 0} \sum_{i} ((df)X_{i})$$
$$\approx \lim_{\epsilon \to 0} \sum_{i} \text{change in f over interval}$$
$$= \text{Total change in } f$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fundamental theorem of calculus

The fundamental theorem of calculus is obvious. Given a 1-form ω we write $\omega(X)$ for the length that ω associated to a vector X.

$$\int_{V} df = \lim_{\epsilon \to 0} \sum_{i} ((df)X_{i})$$
$$\approx \lim_{\epsilon \to 0} \sum_{i} \text{ change in f over interval}$$
$$= \text{ Total change in } f$$

The geometry of the situation is clear. To make the argument rigorous one just needs to use Taylor's theorem to get a bound on the error in the approximation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Geometric definition of the exterior derivative

Definition

(Non standard) Given a p form ω on a manifold M and vectors $X_1, X_2, \ldots, X_{p+1}$ at a point in M choose a smooth map F from R^{p+1} to M such that F_* sends the coordinate axes to the X_i . Let Δ_{ϵ} be the the tetrahedron:

$$\Delta_{\epsilon} = \{(x_1, x_2, \ldots, x_p) : x_i \ge 0, \sum_i (x_i) \le \epsilon\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Geometric definition of the exterior derivative

Definition

(Non standard) Given a p form ω on a manifold M and vectors $X_1, X_2, \ldots, X_{p+1}$ at a point in M choose a smooth map F from R^{p+1} to M such that F_* sends the coordinate axes to the X_i . Let Δ_{ϵ} be the the tetrahedron:

$$\Delta_{\epsilon} = \{(x_1, x_2, \ldots, x_p) : x_i \ge 0, \sum_i (x_i) \le \epsilon\}$$

Define $d\omega$ by:

$$\mathrm{d}\omega(X_1, X_2, \dots X_{p+1}) = \lim_{\epsilon \to 0} \frac{(p+1)!}{epsilon^{p+1}} \int_{F(\partial \Delta_{\epsilon})} (\omega)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

A 0-form is just a function, f, on a manifold. The integral of 0-form over a 0-dimensional submanifold is just the sum of f over the points in the 0-dimensional submanifold.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- A 0-form is just a function, f, on a manifold. The integral of 0-form over a 0-dimensional submanifold is just the sum of f over the points in the 0-dimensional submanifold.
- Let x be a chart centered at a point p on the manifold. Let V be a tangent vector at p and assume that the path γ : ℝ → ℝ has tangent vector V at 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- A 0-form is just a function, f, on a manifold. The integral of 0-form over a 0-dimensional submanifold is just the sum of f over the points in the 0-dimensional submanifold.
- Let x be a chart centered at a point p on the manifold. Let V be a tangent vector at p and assume that the path γ : ℝ → ℝ has tangent vector V at 0.
- Use t to denote the coordinate on \mathbb{R}

$$df(X) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\gamma(\partial[0,\epsilon])} f$$
$$= \lim_{\epsilon \to 0} \frac{1}{\epsilon} (f(\gamma(\epsilon)) - f(\gamma(0)))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- A 0-form is just a function, f, on a manifold. The integral of 0-form over a 0-dimensional submanifold is just the sum of f over the points in the 0-dimensional submanifold.
- Let x be a chart centered at a point p on the manifold. Let V be a tangent vector at p and assume that the path γ : ℝ → ℝ has tangent vector V at 0.
- Use t to denote the coordinate on \mathbb{R}

$$df(X) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\gamma(\partial[0,\epsilon])} f$$

= $\lim_{\epsilon \to 0} \frac{1}{\epsilon} (f(\gamma(\epsilon)) - f(\gamma(0)))$

It is now clear from the chain rule that the two definitions we have given for d on 0-forms are equivalent.

Properties of d

It is well defined because it only depends on first order term of *F*.

(ロ)、(型)、(E)、(E)、 E) の(()

${\sf Properties} \ of \ d$

It is well defined because it only depends on first order term of *F*.

(ロ)、(型)、(E)、(E)、 E) の(()

It generalizes the notion of the derivative of a function.

${\sf Properties} \ of \ d$

It is well defined because it only depends on first order term of *F*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- It generalizes the notion of the derivative of a function.
- It measures the rate at which the notion of length/area/volume changes over an infinitessimal tetrahedron.

${\sf Properties} \ of \ d$

It is well defined because it only depends on first order term of *F*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- It generalizes the notion of the derivative of a function.
- It measures the rate at which the notion of length/area/volume changes over an infinitessimal tetrahedron.
- $d\omega$ is alternating in the X_i .

${\sf Properties} \ {\sf of} \ d$

- It is well defined because it only depends on first order term of *F*.
- It generalizes the notion of the derivative of a function.
- It measures the rate at which the notion of length/area/volume changes over an infinitessimal tetrahedron.
- $d\omega$ is alternating in the X_i .
- (Less obvious) it is linear in the X_i so is a (p+1)-form.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

${\rm Properties} \ {\rm of} \ {\rm d}$

- It is well defined because it only depends on first order term of *F*.
- It generalizes the notion of the derivative of a function.
- It measures the rate at which the notion of length/area/volume changes over an infinitessimal tetrahedron.
- $d\omega$ is alternating in the X_i .
- (Less obvious) it is linear in the X_i so is a (p+1)-form.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• It satisfies Stokes' theorem $\int_V d\omega = \int_{\partial V} \omega$.

Properties of d

- It is well defined because it only depends on first order term of *F*.
- It generalizes the notion of the derivative of a function.
- It measures the rate at which the notion of length/area/volume changes over an infinitessimal tetrahedron.
- $d\omega$ is alternating in the X_i .
- (Less obvious) it is linear in the X_i so is a (p+1)-form.
- ▶ It satisfies Stokes' theorem $\int_V d\omega = \int_{\partial V} \omega$.
- It satisfies ddω = 0. This follows from Stoke's theorem because ∂∂Δ_ϵ is empty.

Proof of Stokes' theorem

The definition of \boldsymbol{d} ensures that Stokes' theorem is infinites simally true.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

• Given two 1-forms ω and ν we define $\omega \wedge \nu$ as follows:

$$(\omega \wedge \nu)(X_1, X_2) = \omega(X_1)\nu(X_2) - \omega(X_2)\nu(X_1)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Where X_1 and X_2 are vectors.

• Given two 1-forms ω and ν we define $\omega \wedge \nu$ as follows:

$$(\omega \wedge \nu)(X_1, X_2) = \omega(X_1)\nu(X_2) - \omega(X_2)\nu(X_1)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Where X_1 and X_2 are vectors.

• $\omega \wedge \nu$ is clearly a two form.

• Given two 1-forms ω and ν we define $\omega \wedge \nu$ as follows:

$$(\omega \wedge \nu)(X_1, X_2) = \omega(X_1)\nu(X_2) - \omega(X_2)\nu(X_1)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Where X_1 and X_2 are vectors.

- $\omega \wedge \nu$ is clearly a two form.
- This definition is pure linear algebra on the tangent space.

• Given two 1-forms ω and ν we define $\omega \wedge \nu$ as follows:

$$(\omega \wedge \nu)(X_1, X_2) = \omega(X_1)\nu(X_2) - \omega(X_2)\nu(X_1)$$

Where X_1 and X_2 are vectors.

- $\omega \wedge \nu$ is clearly a two form.
- This definition is pure linear algebra on the tangent space.
- ln general if ω and ν are p and q forms we can define:

$$(\omega \wedge \nu)(X_1, X_2, \dots, X_{p+q})) = \frac{1}{p! q!} \sum_{\sigma \in S^n} \operatorname{sgn}(\sigma) \omega(X_{\sigma(1)}, X_{\sigma(2)}, \dots, X_{\sigma(p)}) \times \nu(X_{\sigma(p+1)}, X_{\sigma(p+2)}, \dots, X_{\sigma(p+q)})$$
The wedge product

• Given two 1-forms ω and ν we define $\omega \wedge \nu$ as follows:

$$(\omega \wedge \nu)(X_1, X_2) = \omega(X_1)\nu(X_2) - \omega(X_2)\nu(X_1)$$

Where X_1 and X_2 are vectors.

- $\omega \wedge \nu$ is clearly a two form.
- This definition is pure linear algebra on the tangent space.
- ln general if ω and ν are p and q forms we can define:

$$(\omega \wedge \nu)(X_1, X_2, \dots, X_{p+q})) = \frac{1}{p! q!} \sum_{\sigma \in S^n} \operatorname{sgn}(\sigma) \omega(X_{\sigma(1)}, X_{\sigma(2)}, \dots, X_{\sigma(p)}) \times \nu(X_{\sigma(p+1)}, X_{\sigma(p+2)}, \dots, X_{\sigma(p+q)})$$

Note that ω ∧ ν = (−1)^{pq} ν ∧ ω. So ∧ is anti-commuting on 1-forms.

Definition

 $\Omega^{p}(M)$ is defined to be the space of smooth forms on M. $d: \Omega^{p}(M) \longrightarrow \Omega^{p+1}(M)$ is defined to be the unique \mathbb{R} -linear map satisfying:

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Definition

 $\Omega^{p}(M)$ is defined to be the space of smooth forms on M. d: $\Omega^{p}(M) \longrightarrow \Omega^{p+1}(M)$ is defined to be the unique \mathbb{R} -linear map satisfying:

1. df is the differential of f for smooth functions f as defined earlier.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

 $\Omega^{p}(M)$ is defined to be the space of smooth forms on M. d: $\Omega^{p}(M) \longrightarrow \Omega^{p+1}(M)$ is defined to be the unique \mathbb{R} -linear map satisfying:

1. df is the differential of f for smooth functions f as defined earlier.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2. d(df) = 0 for any smooth function f.

Definition

 $\Omega^{p}(M)$ is defined to be the space of smooth forms on M. $d: \Omega^{p}(M) \longrightarrow \Omega^{p+1}(M)$ is defined to be the unique \mathbb{R} -linear map

satisfying:

1. df is the differential of f for smooth functions f as defined earlier.

- 2. d(df) = 0 for any smooth function f.
- 3. $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^{p} \alpha \wedge d\beta$ when α is a *p*-form.

Definition

 $\Omega^p(M)$ is defined to be the space of smooth forms on M.

 $d: \Omega^{p}(M) \longrightarrow \Omega^{p+1}(M)$ is defined to be the unique \mathbb{R} -linear map satisfying:

1. df is the differential of f for smooth functions f as defined earlier.

- 2. d(df) = 0 for any smooth function f.
- 3. $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^{p} \alpha \wedge d\beta$ when α is a *p*-form.

For surfaces, this last item simplifies to the special case $d(f\alpha) = df \wedge \alpha + f d\alpha$. if f is a function.

If (x¹, x²) are coordinates for S centered at p then {dx¹, dx²} gives a basis for T^{*}_pM.

If (x¹, x²) are coordinates for S centered at p then {dx¹, dx²} gives a basis for T^{*}_pM.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $dx^1 \wedge dx^2$ gives a basis for $\Lambda^2 T_p^* M$.

- If (x¹, x²) are coordinates for S centered at p then {dx¹, dx²} gives a basis for T^{*}_pM.
- $dx^1 \wedge dx^2$ gives a basis for $\Lambda^2 T_p^* M$.
- We can write any 1-form as α₁dx¹ + α₂dx². Using the axioms we compute:

$$d(\alpha_1 dx^1 + \alpha_2 dx^2) = (d\alpha_1) \wedge dx^1 + (d\alpha_2) \wedge dx^2$$

$$= \frac{\partial \alpha_1}{\partial x^1} dx^1 \wedge dx^1 + \frac{\partial \alpha_1}{\partial x^2} dx^2 \wedge dx^1$$

$$+ \frac{\partial \alpha_2}{\partial x^1} dx^1 \wedge dx^2 + \frac{\partial \alpha_2}{\partial x^2} dx^2 \wedge dx^2$$

$$= (\frac{\partial \alpha_2}{\partial x^1} - \frac{\partial \alpha_1}{\partial x^2}) dx^1 \wedge dx^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- If (x¹, x²) are coordinates for S centered at p then {dx¹, dx²} gives a basis for T^{*}_pM.
- $dx^1 \wedge dx^2$ gives a basis for $\Lambda^2 T_p^* M$.
- We can write any 1-form as α₁dx¹ + α₂dx². Using the axioms we compute:

$$d(\alpha_1 dx^1 + \alpha_2 dx^2) = (d\alpha_1) \wedge dx^1 + (d\alpha_2) \wedge dx^2$$

$$= \frac{\partial \alpha_1}{\partial x^1} dx^1 \wedge dx^1 + \frac{\partial \alpha_1}{\partial x^2} dx^2 \wedge dx^1$$

$$+ \frac{\partial \alpha_2}{\partial x^1} dx^1 \wedge dx^2 + \frac{\partial \alpha_2}{\partial x^2} dx^2 \wedge dx^2$$

$$= (\frac{\partial \alpha_2}{\partial x^1} - \frac{\partial \alpha_1}{\partial x^2}) dx^1 \wedge dx^2$$

Notice that this proves that d is determined by the axioms (on a surface).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We could have used the formula from the previous slide to define d on a surface.

- We could have used the formula from the previous slide to define d on a surface.
- The condition ddf = 0 is equivalent to $\frac{\partial^2 f}{\partial x \partial y} \frac{\partial^2 f}{\partial y \partial x} = 0$.

- We could have used the formula from the previous slide to define d on a surface.
- The condition ddf = 0 is equivalent to $\frac{\partial^2 f}{\partial x \partial y} \frac{\partial^2 f}{\partial y \partial x} = 0$.
- To check that my non-standard definition is correct, simply check that it satisfies the axioms.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- We could have used the formula from the previous slide to define d on a surface.
- The condition ddf = 0 is equivalent to $\frac{\partial^2 f}{\partial x \partial y} \frac{\partial^2 f}{\partial y \partial x} = 0$.
- To check that my non-standard definition is correct, simply check that it satisfies the axioms.
- The standard definition is the more practical choice for most computations.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Poincaré Lemma

Theorem On \mathbb{R}^2 if ω is a 1-form and $d\omega = 0$ there exists a function f with $df = \omega$.

The Poincaré Lemma

Theorem

On \mathbb{R}^2 if ω is a 1-form and $d\omega = 0$ there exists a function f with $df = \omega$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A closed p-form ω is one that satisfies $d\omega = 0$.

The Poincaré Lemma

Theorem

On \mathbb{R}^2 if ω is a 1-form and $d\omega = 0$ there exists a function f with $df = \omega$.

Definition

A closed p-form ω is one that satisfies $d\omega = 0$.

Definition

An *exact p*-form ω is one that can be written $\omega = d\nu$ for some (p-1)-form. exact forms are always closed.

Proof of the Poincaré lemma

Theorem On \mathbb{R}^2 a closed 1-form ω is always exact.

Proof of the Poincaré lemma

Theorem On \mathbb{R}^2 a closed 1-form ω is always exact. Define $f(x) = \int_{\gamma_1} \omega$. Since $\int_{\gamma_1} \omega - \int_{\gamma_2} \omega = \int_R d\omega = 0$ we see that f is well defined. By the fundamental theorem of calculus $df = \omega$. (Result follows because \mathbb{R}^2 is simply connected.)

A closed form ω on $\mathbb{R}^2 \backslash \{0\}$ which is not exact

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 - のへで

For clarity write d_i = d : Ωⁱ⁻¹(M) → Ωⁱ(M) on an *n*-manifold M. We have the *exact sequence*:

 $0 \xrightarrow{\mathrm{d}_0} \Omega^0(M) \xrightarrow{\mathrm{d}_1} \Omega^1(M) \xrightarrow{\mathrm{d}_2} \Omega^2(M) \xrightarrow{\mathrm{d}_3} 0$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

For clarity write d_i = d : Ωⁱ⁻¹(M) → Ωⁱ(M) on an *n*-manifold M. We have the *exact sequence*:

$$0 \xrightarrow{\mathrm{d}_0} \Omega^0(M) \xrightarrow{\mathrm{d}_1} \Omega^1(M) \xrightarrow{\mathrm{d}_2} \Omega^2(M) \xrightarrow{\mathrm{d}_3} 0$$

• Define $H^i(M)$ to be the *cohomology* of the sequence:

$$H^i(M) = \ker d_i / (\operatorname{Im} d_{i-1})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

For clarity write d_i = d : Ωⁱ⁻¹(M) → Ωⁱ(M) on an *n*-manifold M. We have the *exact sequence*:

$$0 \xrightarrow{\mathrm{d}_0} \Omega^0(M) \xrightarrow{\mathrm{d}_1} \Omega^1(M) \xrightarrow{\mathrm{d}_2} \Omega^2(M) \xrightarrow{\mathrm{d}_3} 0$$

• Define $H^i(M)$ to be the *cohomology* of the sequence:

$$H^{i}(M) = \ker d_{i}/(\operatorname{Im} d_{i-1})$$

The dimension of Hⁱ(M) is a topological invariant of M called the *i*-th betti number. (It is not obvious whether or not the betti numbers are finite.)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

For clarity write d_i = d : Ωⁱ⁻¹(M) → Ωⁱ(M) on an *n*-manifold M. We have the *exact sequence*:

$$0 \xrightarrow{\mathrm{d}_0} \Omega^0(M) \xrightarrow{\mathrm{d}_1} \Omega^1(M) \xrightarrow{\mathrm{d}_2} \Omega^2(M) \xrightarrow{\mathrm{d}_3} 0$$

• Define $H^i(M)$ to be the *cohomology* of the sequence:

$$H^{i}(M) = \ker d_{i}/(\operatorname{Im} d_{i-1})$$

- The dimension of Hⁱ(M) is a topological invariant of M called the *i*-th betti number. (It is not obvious whether or not the betti numbers are finite.)
- We have shown that the 1-st betti number is zero for simply connected spaces, but non-zero for ℝ².

Bezout's theorem

Definition

Two complex curves in $\mathbb{C}P^2$ intersect transversally at a point p if p is a non-singular point of each curve and if the tangent space of $\mathbb{C}P^2$ at that point is the direct sum of the tangent spaces of the two curves.

Theorem

(Bezout) Two complex curves of degrees p and q that have no common component meet in no more than pq points. If they intersect transversally, they exactly in pq points.

If the polynomial defining a curve factorizes then each factor defines a component of the curve. Smooth curves have only one component because they would clearly not be smooth at ther intersections of the components.

Proof of degree genus formula

- Given a smooth plane curve C of degree d consider the projection from a point p to a line L with p not lieing on C.
- By the fundamental theorem of algebra, the degree of this projection map will be d.
- We can choose coordinates so that the projection of a point (z, w) in affine coordinates is just z. If P(z, w) = 0 defines the curve then branch points correspond to points where P_w = 0. These have ramification index 1 unless P_{ww} = 0.
- ▶ By Bezout's theorem we expect there to be d(d − 1) branch points and that so long as p does not lie on a line of inflection (i.e. a tangent to the curve through a point of inflection) there will be exactly d(d − 1) branch points.
- By Bezout's theorem there are a finite number of lines of inflection (clearly points of inflection will be given by some algebraic condition)
- So for generic p there are exactly d(d − 1) branch points of ramification index 1.
- The degree genus formula now follows from the Riemann