MOCK EXAM "Introduction to Riemann Surfaces"

August 22, 2020

1. Prove the inverse function theorem for holomorphic functions:

Theorem 1 Let f be a holomorphic function on an open neighbourhood U of 0 in \mathbb{C} . Suppose that f(0) = 0, but $f'(0) \neq 0$. Then there exists a neighbourhood U' of 0 such that f is a homeomorphism of U' onto f(U') and such that f^{-1} is holomorphic.

- 2. (i) State Liouville's theorem.
 - (ii) Give an example of two non-compact Riemann surfaces which are diffeomorphic but not biholomorphic. Justify your answer.
 - (iii) Use Liouville's theorem to show that the holomorphic automorphisms of \mathbb{C} are the maps $z \to az + b$ for $a \neq 0$.
 - (iv) Give an example of two compact Riemann surfaces which are diffeomorphic but not biholomorphic. Justify your answer.
- 3. Prove that the for the torus T^2 , $H^1(T^2) \cong \mathbb{R}^2$. You may assume that $H^1(\mathbb{R}^2) \cong \{0\}$.
- 4. Give a summary of the key steps of the proof given in the lectures that all compact genus 1 Riemann surfaces are biholomorphic to a torus \mathbb{C}/Λ for some lattice Λ . You may assume without proof that $\dim H^{1,0} = \dim H^{0,1} = \frac{1}{2} \dim H^1$.