
- 1 - ****

These answers indicate the solutions to the 2014 exam questions. Obviously

you should plot graphs where I have simply described the key features. It is

important when plotting graphs to label the axes etc. and to mention key

features like approximate gradients that are important when interpreting the

graph.

1. (a) By Ito’s Lemma,

d(lnS) = (µ− (1/2)σ2)dt+ σdWt

Hence

d(
lnS − (µ− (1/2)σ2)t

σ
) = dWt

So by the definintion of Brownian motion, we can simulate stock prices at

time point i as follows. Generate normally distributed (mean 0, s.d. 1) εi.

Define s0 = log(S0). Then define

si = si−1 + (µ− (1/2)σ2)iδt+ σ
√
δtεi

Hence define Si = exp(si).

(b) The process above with µ = r. Run lots of simulations in the Q measure,

compute the payoff in each case. The price is sample mean discounted

payoff.

(c) The sample standard deviation of the discounted payoff is an unbiased es-

timator of the standard deviation. So by central limit theorem, error is

approx sample standard deviation divided by root number of paths.

(d) If the barrier is high, we expect the call price, if the barrier is low it should

be zero.

(e) Decompose the code into two pieces, test the monte carlo pricing by pricing

a call option, test computing the payoff of a knockout option separately.

For high barriers, one would expect to see the call option price. (Either will

do as an answer)

See Next Page

- 2 - ****

2. (a) See the lecture notes for the definitions. VaR is easy to understand and

easy to back test but suffers from hiding risk in the tail. Expected shortfall

deals with the tail, but at the expense of straightforward back testing.

(b) Parameteric VaR approximates returns on risk factors as being normally

distributed. The returns of more complex products are approximated as

depending linearly on these risk factors. One can then use analytic formulae

to compute VaR. This method is fast, but highly inaccurate for nonlinear

products and tied to a particular risk model.

Monte Carlo VaR is calculated by performing repeated P measure simu-

lations using the stochastic model of your choice and then calculating the

desired percentiles. It is very flexible but computationally expensive. The

choice of stochastic model is subjective.

Historic VaR uses historical log-return data to provide scenarios. For each

historical scenario, the risk factors today are scaled to change in a manner

proportionate to the historical changes. This is done by multiplying historic

log-returns over a 1-day time period by
√
d to obtain d-day returns. One

can then use these log-returns to compute the change in asset prices and

the portfolio is then repriced accordingly. One then reads off the given

percentile. Its key advantage is the lack of subjectivity of the model, but it

suffers from a lack of historical data and the assumption that the past will

reflect the future.

(c) Note that the code below could be simplified a little by removing the logs.

function var = computeVar(historicalPrices, quantity, price)

n = length(historicalPrices);

logReturns = log(historicalPrices(2:n)./historicalPrices(1:n-1));

profits = quantity*price*(exp(logReturns)-1);

var = prctile(-profits, 99);

end

See Next Page

- 3 - ****

3. (a) The strategy is to ensure that, at all times, your portfolio (including) your

liabilities has a Black Scholes delta of zero.

(b) At time 0 we receive P and purchase delta stocks. Bank balance is b0 =

P − ∆0S0. At time point i we receive interest and purchase ∆i − ∆i−1

stocks. So the new bank balance is bi = erδtbi−1 − (∆i −∆i−1)Si. At time

point N we dissolve our stock holding and make good on our liability, so

bN = erδtbN−1 + ∆N−1SN −max{SN −K, 0}.

(c) S = generatePricePaths();

delta = blackScholesDelta(sValues);

b(0) = P - delta(0)*S(0)

for (i=1:N-1)

b(i)=exp(r*dt)*b(i-1) - (delta(i)-delta(i-1))*S(i);

end

b(N) = exp(r*dt)*b(N-1) + delta(N-1)*S(N) - max(S(N)-K,0)

(d) The histogram should be centered on zero and look approximately normal.

(e) The graph should be of root mean squared error or some similar measure

against N . It should have gradient −1
2
. This means that delta hedging

converges rather slowly.

(f) If you add in transaction costs, after a brief period of improvement as N ,

the graph begins to move upwards.

See Next Page

- 4 - ****

4. (a) Let N be number of steps. Define

h = (b− a)/N ;

Define

sn = a+ (n− 1

2
)h

Then the rectangle rule estimate for the integral of f is∑
n=1N

hf(sn)

(b) function r=integral(f, a, b, N)

h = (b-a)/N;

s = a+ ((1:N)-1/2);

r = 0;

for i=1:N

r = r + h*f(s(i));

end

end

function example() {

function ret=expXSquared(x)

ret = exp(-x*x);

end

integral(@expXSquared, a, b, 1000);

}

(c) One choice would be the substitution y = N(x) where N is the pdf of the

normal distribution.

(d) The trapezium rule has slope -2, Simpson’s rule has slope -4, Monte Carlo

has slope -1/2. For high numbers of steps, the lines should start going up

with an approx gradient of 1/2 due t rounding errors.

(e) The pricing kernel is the pdf in the risk neutral measure. So integrating the

payoff times the pricing kernel gives the risk neutral price.

See Next Page

- 5 - ****

5. (a)

Rectangle rule Monte Carlo Finite Difference

European Call Option Yes Yes Yes

Knockout Call Option Yes Yes

Asian Call Option Yes

American Call Option Yes

(b) The quickest way to do this is using the Feynman–Kac theorem. The S.D.E.

associated by Feynman–Kac to the given p.d.e. is:

dS = Sσ dWt

so writing z = logS we have by Ito’s lemma:

dz = −1

2
σ2 dt+ σ dWt

hence writing x = logS + 1
2
σ2t we have that x satisfies:

dx = σ dWt

So by the Feynman–Kac theorem the associated p.d.e. for the expectation

of a function of x at time T is:

Ct = −1

2
σ2Cxx

Alternatively you might guess the change of variables and use brute force

as follows:

Define x = logS + 1
2
σ2t and τ = t. It’s important to introduce the variable

τ otherwise you will find the partial differentiation formulae misleading. By

the chain rule we have:

∂C

∂S
=
∂C

∂x

∂x

∂S
+
∂C

∂τ

∂τ

∂S

=
1

S

∂C

∂x

Similarly.
∂C

∂t
=

1

2
σ2∂C

∂x
+
∂C

∂τ

Differentiating the first of these formulae and applying the chain rule again

gives:
∂2C

∂S2
= − 1

S2

∂C

∂x
+

1

S

∂

∂S

(
∂C

∂x

)
= − 1

S2

∂C

∂x
+

1

S2

∂2C

∂x2

See Next Page

- 6 - ****

Putting these together we have

∂C

∂t
+

1

2
σ2S2 ∂C

∂S2
= 0

is equivalent to:
∂C

∂τ
= −1

2
σ2 ∂C

∂x2

one can now write this as

Cτ = −1

2
σ2Cxx.

The reason why you need to introduce τ is that ∂
∂t

is a slightly unclear nota-

tion. In the context of the Black–Scholes equation it means “the derivative

with respect to time holding S fixed”. So even though we’ve defined t = τ

it’s better to write ∂
∂τ

whenever we mean “the derivative with respect to

time holding x fixed”.

(c)
ut+1,x − ut,x

δt
= −1

2
σ2ut+1,x+1 − 2ut+1,x + ut+1,x−1

δx2

ut,x = βut+1,x+1 + (1− 2β)ut+1,x + βut+1,x−1

Where β = 1
2
σ2α. Starting from the boundary condition of the final pay-

off, step backwards in time using this recurrence relation. Use additional

boundary conditions as appropriate on the boundary of the solution region

- for example for a knock out option one might take the boundary condition

that the option has value zero on the boundary.

(d) We interpret β as a risk neutral probability of the the variable x moving up

or down by δx. One can consider it as being calibrated by requiring that

the resulting variance corresponds to σ.

(e) A numerically stable algorithm is one whose values remains stable when

small random rounding errors are added. The stability condition is that

(1 − 2β) > 0, which we can interpret as saying that it must represent a

probability.

Final Page

