
Chapter 7

Simulating more interesting

stochastic processes

7.1 Generating correlated random variables

The lectures contained a lot of motivation and pictures. We'll boil everything
down to pure algebra in these notes.

De�nition. An n dimensional symmetric matrix S is said to be positive semi-
de�nite if xTSx ≥ 0 for all vectors x.

De�nition. An n dimensional symmetric matrix S is said to be positive de�nite
if xTSx > 0 for all non zero vectors x. Note the strict inequality.

Lemma 1. A covariance matrix is always positive semi-de�nite.

Proof. Let Σ be the covariance matrix of random variables X1, X2, . . .Xn. Let
x be a vector in Rn with components xi. Then the variance of the random
variable

∑n
i=1 xiXi is given by xTΣx. Hence xTΣx is positive semi-de�nite.

7.1.1 Multivariate normal distributions

In this section we will motivate the de�nition of the multivariate normal distri-
bution and the notion of a pseudo-square root.

Lemma 2. Let X̃1, X̃2, . . . , X̃n all be independent normally distributed ran-
dom variables each of mean 0 and standard deviation 1 then their joint density
function is

1

(
√

2π)n
exp

(
−1

2

n∑
i=1

x̃2i

)
Proof. The p.d.f. of each X̃i is

1√
2π

exp

(
−1

2
x̃2i

)
.

1

CHAPTER 7. SIMULATINGMORE INTERESTING STOCHASTIC PROCESSES2

They are independent so their joint density function is

Πn
i=1

1√
2π

exp

(
−1

2
x̃2i

)
=

1

(
√

2π)n
Πn
i=1 exp

(
−1

2
x̃2i

)
=

1

(
√

2π)n
exp

(
−1

2

n∑
i=1

x̃2i

)

Suppose we introduce new random variables Xi which are linearly related
to the original independent variables X̃i so that

Xi =

n∑
j=1

aijX̃j

for some constants aij .
We can calculate the covariance of Xi and Xj it is:

Cov(Xi, Xj) = Cov(

n∑
α=1

aiαX̃α,

n∑
β=1

ajβX̃β)

=

n∑
α=1

n∑
β=1

aiαajβ Cov(X̃i, X̃j)

=

n∑
α=1

n∑
α=1

aiαajα.

The �rst line follows by the bi-linearity of Cov. The second line follows from
the fact that Cov(X̃i, X̃j) is equal to 1 if i = j and 0 otherwise.

If we write Σ for the covariance matrix of the Xi and A for the matrix aij
then we can write this equation in matrix form as:

Σ = AAT .

The term
n∑
i=1

x̃2i

that appears in the probability density function can be written in vector notation
as x̃Tx̃. Let us write x = Ax̃. Let us assume that A is invertible so we may
write A−1x = x̃. We can now compute

n∑
i=1

x̃2i = (A−1x)T(A−1x)

= xT(A−1)T(A−1)x

= xT(AT)−1(A−1)x

= xT(AAT)−1x

= xTΣ−1x.

CHAPTER 7. SIMULATINGMORE INTERESTING STOCHASTIC PROCESSES3

This computation allows us to write down the joint density function for the
Xi it is:

1

(
√

2π)n
|detA|−1 exp

(
−1

2
xTΣ−1x

)
We have Σ = AAT so det Σ = (detA)(detAT) = (detA)2 so we can eliminate
A entirely from this formula. We obtain:

1

(
√

2π)n
|det Σ|− 1

2 exp

(
−1

2
xTΣ−1x

)
.

Let us summarize our �ndings:

Proposition 1. Let X̃1, X̃2, . . . , X̃n be independently normally distributed
with mean 0 and standard deviation 1. Let A be an invertible n×n matrix with
components aij. Then de�ning random variables Xi by:

Xi =

n∑
j=1

aijX̃j

we have that the Xi have mean 0 and covariance matrix Σ = AAT . The joint
density function of the Xi is:

1

(
√

2π)n
|det Σ|− 1

2 exp

(
−1

2
xTΣ−1x

)
. (7.1)

Since A is invertible, so is AT . So if x 6= 0, ATx 6= 0. Write y = AT then
since y 6= 0 we have yT y > 0. Expanding this we have xTAATx = xTΣx > 0.
Hence Σ is positive de�nite if A is invertible.

This motivates the following de�nition.

De�nition. The probability density function for a multivariate normal distribu-
tion of dimension n with mean µ and covariance matrix Σ (where Σ is positive
de�nite) is de�ned to be:

1

(
√

2π)n
|det Σ|− 1

2 . exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
where x is vector in Rn.

Note that if we have this joint density function, then the change of variables
x→ x +µ will take us to a density function of the form (7.1). So the mean and
covariance of this distribution are µ and Σ as has been tacitly claimed in this
de�nition.

One thing to observe is that a multivariate normal distribution (7.1.1) is
de�ned using just Σ. We do not need to know A. Σ is a covariance matrix so
is easy to measure statistically, so typically when modelling Σ will be given but
A will not be given.

The following de�nition gives a formal name for the relationship between Σ
and A.

CHAPTER 7. SIMULATINGMORE INTERESTING STOCHASTIC PROCESSES4

De�nition. If S is a symmetric n × n matrix then A is said to be a pseudo
square root of S if S = AAT .

It is important to be aware that pseudo square roots are far from unique.

7.2 Simulating multivariate normal distributions

Algorithm. Suppose we wish to simulate random variables X1, X2, . . .Xn with
joint density (7.1.1). To do this we:

(i) Find a pseudo square root A of Σ.

(ii) Generate independent normally distributed random variables X̃i

(iii) Simulate Xi using the formula:

Xi =

n∑
j=1

aijX̃j .

The challenge is to �nd a pseudo square root of Σ. One approach that
is not recommended is to diagonalize Σ. This approach is discussed in more
detail in the lecture notes. A more e�cient algorithm is given by Cholesky
decomposition.

Theorem 1. If S is a symmetric, positive de�nite n × n matrix then there
exists a unique lower triangular matrix L with positive diagonal such that L is
a pseudo square root of S. This matrix is called the Cholesky decomposition of
S.

Proof. Suppose by induction that the result is true for (n−1)×(n−1) matrices.
We write S in block diagonal form as

S =

(
Sn−1 vn−1

vTn−1 s

)
(7.2)

where Sn−1 is an (n− 1)× (n− 1) symmetric matrix, vn−1 is a vector of length
(n− 1) and s is a scalar.

We now de�ne L by

L =

(
Ln−1 0
wTn−1 w

)
where wn−1 is some n vector to be determined, and w is a scalar to be deter-
mined. We require that Ln−1 is lower triangular with positive diagonal and
that

LLT = S.

This last condition is equivalent to the three conditions

Ln−1L
T
n−1 = Sn−1, (7.3)

CHAPTER 7. SIMULATINGMORE INTERESTING STOCHASTIC PROCESSES5

Ln−1wn−1 = vn−1 (7.4)

and
wTn−1wn−1 + w2 = s. (7.5)

It is easy to check that Sn−1 is positive de�nite. So there is a unique choice for
Ln−1 by our induction hypothesis.

Since Ln−1 is lower triangular with positive diagonal, it has a non-zero deter-
minant and so is invertible. Hence there is a unique wn−1 solving (7.4). (Indeed
this equation will already be in echelon form so it is quick and easy to solve).
We now require that:

w2 = s− wTn−1wn−1.

There will be a unique positive solution to this equation if and only if

s− wTn−1wn−1 > 0.

To see that this inequality will hold, we de�ne a vector v in block diagonal form
by:

v =

(
−(LTn−1)−1wn−1

1

)
we know that vTSv > 0 as S is positive de�nite. We compute

vTSv =
(
−wn−1(Ln−1)−1 1

)(Sn−1 vn−1

vTn−1 s

)(
−(LTn−1)−1wn−1

1

)
=
(
−wn−1(Ln−1)−1 1

)(Ln−1L
T
n−1 Ln−1wn−1

wTn−1L
T
n−1 s

)(
−(LTn−1)−1wn−1

1

)
=
(
−wn−1(Ln−1)−1 1

)(−Ln−1wn−1 + Ln−1wn−1

−wTn−1wn−1 + s

)
=
(
−wn−1(Ln−1)−1 1

)(0
−wTn−1wn−1 + s

)
= s− wTn−1wn−1.

This quantity is positive, so there exists a unique w solving (7.5).

This formal algebraic proof is essentially equivalent to the argument that
was given in the lectures. It is more rigorous but may be a little harder to read.
The argument in the lectures contains a hand-waving "and so on" which we
have tidied up in this rigorous proof using induction. In the lectures we also
skipped the step where we checked that the right hand side of (7.5) is positive.

This proof gives a recursive algorithm for computing the Cholesky decom-
position. First �nd the Cholesky decomposition of the (n− 1)× (n− 1) matrix
Ln−1 in the top left and then solve equations (7.5) and (7.4). The Cholesky
decomposition is then given by (7.2).

CHAPTER 7. SIMULATINGMORE INTERESTING STOCHASTIC PROCESSES6

7.3 Solving SDEs numeically

7.3.1 Multi-dimensional Brownian motion

De�nition. d-dimensional Brownian motion with correlation matrix P is de-
�ned to be a Markov process whose increments over time δt are independent
random vectors which are multivariate normally distributed with mean 0 and
covariance matrix Pδt.

This is exactly analagous to the de�nition of 1-d Brownian motion.

Algorithm. We can simulate d-dimensional Brownian motion as follows:

(i) Take A to be a pseudo-square root of P , so P = AAT .

(ii) Generate Xt by the di�erence equation:

Xt+δt = Xt +A
√
δtε

7.3.2 Simulating stochastic di�erential equations

The material in this section is a brief summary of some key results from the
book �Numerical Solution of Stochastic Di�erential Equations" by Kloeden and
Platen. We won't give proofs.

A 1-dimensional stochastic di�erential equation can be written as:

dXt = a(X, t)dt+ b(X, t)dWt.

An n dimensional stochastic di�erential equation looks essentially identical
but one uses vector notation.

dXt = a(X, t)dt+ b(X, t)dWt (7.6)

where
Xt ∈ Rn

a(X, t) ∈ Rn

b(X, t) is an n× d matrix

Wr is a d-dimensional vector of correlated Brownian motions, with correlation
matrix P .

Whether we are working in 1 or more dimensions we will have an initial
condition X0. For the rest of this section we will drop the bold face for vectors
and matrices, as the formulae are essentially the same in one or more dimensions.

De�nition. The Euler scheme for the SDE (7.6) with time step δt is given by
the di�erence equation:

X̃i = X̃i−1 + a(Xi−1, t)δt+ b(Xi−1, t)δWi

CHAPTER 7. SIMULATINGMORE INTERESTING STOCHASTIC PROCESSES7

where
δWi := Wiδt −W(i−1)δt.

Note that X̃i approximates the value of X at time point i, so i is always an
integer and corresponds to the actual time iδt. (This notation is convenient
when working with vectors on a computer.)

The following result is proved in Kloeden and Platen.

Theorem 2. Suppose that:

|a(x, t)− a(y, t)|+ |b(x, t)− b(y, t)| < K1|x− y|

and
|a(x, t)|+ |b(x, t)| < K2(1 + |x|)

and
|a(x, s)− a(x, t)|+ |b(x, s)− b(x, t)| < K3(1 + |x|)|s− t|− 1

2

for some constants K1, K2, K3 and all s, t, x, y. Then

E(|XT − X̃(T/δt)|) ≤ K4δt
1
2

for some constant K4.

This shows that the X̃i converge to Xiδt in expectation and give the rate
of convergence. Note that in the exam I don't expect you to remember the
full statement of this theorem, but I do expect you to remember the rate of
convergence in expectation.

Convergence in expectation implies convergence in distribution.
Normally we are not actually given the Browniam motion process Wt, we

have to simulate this. As we have discussed, this can be done using Cholesky
decomposition. The net e�ect is that we �rst simulate a d-dimensional vector of
normally distributed εi with mean 0 and standard deviation 1 and correlation
matrix P using Cholesky decomposition. We then de�ne:

X̃i = X̃i−1 + a(Xi−1, t)δt+ b(Xi−1, t)(
√
δt)εi

Note the
√
δt.

Example 1: For the process

dXt = adt+ bdWt

with a and b constants then the solution is Euler scheme is exact. Note this is
elementary and does not use the above general result on convergence.

When we simulate Brownian motion, we can choose the time steps δt to be
as large as we like because the Euler scheme is exact. However, for more general
processes, we will need to choose rather small δt because of the slow rate of
convergence.

CHAPTER 7. SIMULATINGMORE INTERESTING STOCHASTIC PROCESSES8

Note that for geometric Brownian motion, we can make a change of variables
to turn this into Brownian motion. We can then simulate this exactly. This is
why we do not use the Euler scheme to simulate geometric Brownian motion
directly.

Although proving the general convergence result is beyond the scope of the
course we can at least check it is true. We simply want to test if:

E(|XT − X̃T |) ≤ K4δt
1
2

for an example process. Let's �nd an interesting process we can solve. Take

Xt = sin(Wt)

so

dXt = −1

2
Xtdt+

√
1−X2

t dWt

Assuming that we have a vector of the increments of Brownian motion stored
in the parameter dW, the following code can be used to simulate Xt using the
Euler scheme.

function [X] = simulateSinEuler(X0, dW, dt, nSteps)

% Simulate the following process

% dX = -1/2 X + sqrt(1-X^2) dW

% Note this is obtained by taking the sin of brownian motion

currX = X0;

nPaths = size(dW, 1);

X = zeros(nPaths, nSteps);

for i=1:nSteps

 currDW = dW(1:end,i);

 X(1:end,i) = currX - 0.5*currX*dt + sqrt(1-currX.^2).* currDW;

 currX = X(1:end,i);

end

end

On the other hand, we know the exact solution, so we can compute the ahsolute
value of the di�erence between the euler scheme and the true solution. We store
this in a variable called eulerErrors.

We then want to compute the expectation of this variable. We use a helper
function ninetyPercentConfidence to actually �nd an 90% con�dence upper
bound on this expectation.

 dW = randn(nPaths, nSteps(j))*sqrt(dt);

 exactPaths = sin(X0+cumsum(dW,2));

 eulerPaths = simulateSinEuler(X0, dW, dt, nSteps(j));

CHAPTER 7. SIMULATINGMORE INTERESTING STOCHASTIC PROCESSES9

 eulerErrors = abs(eulerPaths(1:end,end)-exactPaths(1:end,end));

 eulerError(j) = ninetyPercentConfidence(eulerErrors);

If we generate a log-log plot of the upper level of the con�dence interval
against the number of steps we expect to see a slope of gradient − 1

2 . See ??.

7.3.3 An application to �nance

We recall that by simulating asset price processes in the risk neutral measure
we can compute derivative prices using risk-neutral valuation.

So if we have a complex asset price model, we can try to simulate it using
the Euler scheme. This is unncessary for the Black�Scholes model as we know
a better way to simulate geometric Brownian motion. However, it can be useful
for more general processes.

You will have seen interesting Q measure models in your interest rate course
and I would encourage you to simulate some of them using the Euler scheme
and use this to price derivatives.

As a concrete example, we will simulate the Heston model. This is quite a
complex modell that requires all that we have learned in this lecture.

The Heston model (with interest rate of 0) assumes that in the Q measure
the stock price and volatility respectively obey:

dSt =
√
vtStdW

1
t

dvt = κ(θ − vt)dt+ ξ
√
vtdW

2
t

where dW 1
t and dW 2

t are Brownian motions with correlation ρ.

� θ is the long run variance

� κ is the mean reversion rate

� ξ is the volatility of volatility

Because of the
√
vt in these formulae we need to be careful to ensure that vt is

always positive. This can be done by requiring that 2κθ > ξ2.
We note thatr = 0 so we require that S is a martingale for this to be a valid

Q measure model. This is why there is no drift term.
Notice that in Black�Scholes model there is a unique compatible Q model

for a given P. This isn't true for more general models, so one usually takes the
Q model as given and does not attempt to derive it from a P measure model.

Note that I do not expect you to remember the formulae for the Heston
model in the exam.

De�nition. Given the market price of a European put or call option, the implied
volatility is the value that you must put into the Black�Scholes formula to get
that market price.

CHAPTER 7. SIMULATINGMORE INTERESTING STOCHASTIC PROCESSES10

According to the Black�Scholes model, the implied volatility will be the same
for all options irrespective of their strike and maturity. In practice one �nd that
the implied volatility depends on both of these parameters. If one plots the
implied volatility against strike one typically obtains a convex curve or �smile�.
This is called the volatility smile.

We would like to use the Heston model to price options to see if it can explain
the volatility smile.

Our existing pricing code looks like this:

function ret = priceByMonteCarlo (...)

paths = generatePricePaths (...);

payoffs = computeOptionPayoffs (...);

ret = mean(payoffs)*exp(-r*T);

end

All we need to do is to change this to use the Heston model to generate price
paths.

function [prices, variances] = generatePricePathsHeston(...

 S0, v0, ...

 kappa, theta, xi, rho, ...

 T, nPaths, nSteps)

%GENERATEPRICEPATHSHESTON Generate price paths according to the

% Heston model

prices = zeros(nPaths, nSteps);

variances = zeros(nPaths, nSteps);

currS = S0;

currv = v0;

dt = T/nSteps;

for i=1:nSteps

 epsilon = randnMultivariate([1 rho; rho 1], nPaths);

 dW1 = epsilon(1,:)*sqrt(dt);

 dW2 = epsilon(2,:)*sqrt(dt);

 currS = currS + sqrt(currv).* currS .* dW1';

 currv = currv + kappa*(theta - currv)*dt + xi*sqrt(currv).* dW2';

 currv = abs(currv); % Forcibly prevent negative variances

 prices(:, i) = currS;

 variances(:, i) = currv;

end

This code contains a hack. Although the exact SDE for the volatility ensures
that it is always positive, our approximation is only an approximation and
sometimes negative volatilities do occur. We simply take the absolute value of
the volatility at each time step to prevent this occuring.

CHAPTER 7. SIMULATINGMORE INTERESTING STOCHASTIC PROCESSES11

Note that our code to simulate the Heston model is quite easy to adapt to
other SDEs, simply change the two lines of code that correspond to the equations
of the Heston model and delete the hack where we take absolute values.

I ran the simulation with the following parameters

� nPaths=100000

� nSteps=50

� T = 1

� S0 = 1

� κ = 2

� θ = 0.04

� v0 = 0.04

� ρ = 0

I then used three di�erent values of ξ.
I plotted the Black�Scholes implied volatility for a number of strikes and for

the three di�erent values of ξ. Also, since the Monte Carlo calculation of the
option prices is only approximate, I included a 95% con�dence interval for the
case when ξ = 0.

80 85 90 95 100 105 110 115 120
0.192

0.194

0.196

0.198

0.2

0.202

0.204

0.206

0.208

0.21
Heston model volatility smile

xi=0
xi=0.2
xi=0.4
95% confidence, xi=0
95% confidence, xi=0

If our pricing code was completely accurate, the curve shown for ξ = 0 should
actually be a straight line value 0.2. That is because if there is no volatility of
volatility, the Heston model simpli�es to the Black-Scholes model. This expected
result is between the error bars, so this gives a test of our calculation.

CHAPTER 7. SIMULATINGMORE INTERESTING STOCHASTIC PROCESSES12

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

Accuracy of schemes

Euler error
Milstein Error

Figure 7.1: Convergence of Euler and Milstein schems. x-axis is number of
steps. Vertical axis is Expectation of absolute value of error.

One can clearly see a smile in the case ξ = 0.4. This smile extends beyond
the error bars, so it seems that the smile really is a consequence of the Heston
model and not simply inaccuracies in our Monte Carlo calculation.

7.3.4 Other schemes

The Euler scheme isn't the end of the story. There are many other numerical
schemes and the book Kloeden and Platen discusses many of them in detail.

As an example, the Milstein scheme for:

dXt = a(Xt, t)dt+ b(Xt, t)dWt

is to take

X̃i = X̃i−1 + aδt+ bδWt +
1

2
b
∂b

∂x

(
(δWt)

2 − δt
)
.

This is Euler scheme plus one more term Under certain bounds on the coe�-
cients, it can be shown to converges in expectation at a rate O(δt). n-d versions
exist but are more complex and so are not often used in practice.

It is easy to implement the Milstein scheme for the sin of Brownian motion
to test this rate of convergence. Figure 7.1 shows a plot I obtained of the results.

BIBLIOGRAPHY 13

7.4 Further Reading

The full theory of simulating discrete time stochastic processes can be found in
[1].

Bibliography

[1] P. Kloeden and E. Platen. Numerical solution of Stochastic Di�erential
Equations. Springer, 1999.

	Simulating more interesting stochastic processes
	Generating correlated random variables
	Multivariate normal distributions

	Simulating multivariate normal distributions
	Solving SDEs numeically
	Multi-dimensional Brownian motion
	Simulating stochastic differential equations
	An application to finance
	Other schemes

	Further Reading

