
Chapter 3

Flow of control

3.1 For loops

If you want to repeat the same piece of code multiple times, you can use a for

loop. Here is a silly program that illustrates loops:

function bowieIsCool ()

for j=1:100

disp(j);

disp('Bowie is cool!');

end

end

This prints out alternately the numbers from 1 to 100 and the phrase �Bowie is
cool!�. Feel free to write your own version of this program with whatever name
you think is cool. The for loop executes the code

disp(j);

disp('Bowie is cool!');

one hundred times with the value of the variable j moving from 1 up to 100.
Incidentally, this is the �rst time we have used a string in our code. By

enclosing text in single quotation marks, you create a string which MATLAB
can then print out using the disp command. If you want to include a single
quotation mark inside your string then simply double up the quotation marks.
For example 'Bowie''s first album'. MATLAB colours strings in for you so
you can easily check if you've matched up the quote marks.

The code that is executed in a for loop is determined by the �rst end state-
ment. I've indented the code to make it clearer which part is repeated, but

1

CHAPTER 3. FLOW OF CONTROL 2

MATLAB actually just ignores the spaces. It is the end statement that deter-
mines where the code ends.

Here is a more sensible example that actually does something useful:

function result = computeFactorial(n)

current = 1;

for j=1:n

current = current * j;

end

result = current;

end

If you have programmed before, this is probably very easy to follow. For the
bene�t of those who are new to programming let us consider what happens if
we call this function with the value n = 4.

Then the �rst thing that will happen is that current will be assigned the
value 1. Then we repeat the code inside the for loop 4 times each time with
a di�erent value of j. Each time the code is executed, the value of current is
multiplied by the current value of j.

So current starts at 1. On the �rst iteration we multiply it by 1 to obtain
current=1. On the second iteration we multiply this new value of current
by 2 to obtain current=2. On the third iteration we mutliply current by 3 to
obtain current=6. On the fourth iteration we multiply current by 4 to obtain
24. This is the desired result, so after the loop is completed we assign the value
of current to result.

In the code below, we've added some disp statements to the code so you
can see the functions working.

function result = computeFactorial(n)

current = 1;

disp('The initial value of current ');

disp(current);

for j=1:n

disp('The value of j');

disp(j);

disp('The old value of current ');

disp(current);

current = current * j;

disp('The new value of current ');

disp(current);

end

disp('The final value of current ');

result = current;

CHAPTER 3. FLOW OF CONTROL 3

If you have never seen a loop in a computer program before, you should
write down what you think this loop will print out and then try it to see if you
are correct.

If you want to count down from 10 to 1. You could use the following code:

function launchRocket ()

for j=10: -1:1

disp(j);

end

disp('Blast off');

end

There's nothing special about the name j in the code above. We could also
have written:

function launchRocket ()

for number =10: -1:1

disp(number);

end

disp('Blast off');

end

In general in MATLAB you can run loop through the elements of any vector.
For example

function digitsOfPi ()

nums = [3 1 4 1];

for j=nums

disp(j);

end

end

You aren't restricted to using loops inside of the Command Window. For
example you can type

nums = [3 1 4 1];

for j=nums

disp(j);

end

straight into the command window. Notice that no output is printed by the
loop until you type end.

CHAPTER 3. FLOW OF CONTROL 4

3.2 If statements

A for loop is an example of a ��ow of control� statement because it determines
how MATLAB chooses which line of the program to execute next. In other
words it decides what the next MATLAB statement is that has �control� of the
program execution.

Another �ow of control statement is an if statement. This makes a decision
on whether MATLAB will execute the next line of code or not.

function max = maximum(a, b)

if a>b

disp('a is bigger ');

max = a;

else

disp('b is bigger ');

max = b;

end

disp('The maximum value is:');

disp(max);

end

The if statement chooses which branch of code to execute according to
whether the statement a>b is true. If it is true, it executes the �rst branch
of code. In this case the text �a is bigger� is printed out and max is assigned
the value a. If the statement is false, the code in the else branch is executed.

Notice that like for loops, an if statement must be ended with an end

statement.
You can use the operators >, >=, <, <= in the comparisons for if statements.

You can also test if two numbers are equal using two equals signs as shown
below:

function isValueSeven(value)

if value ==7

disp('The value is seven ');

else

disp('The value is not seven ');

end

end

To test if two numbers are not equal use ~= that is a tilde sign followed by
equals.

CHAPTER 3. FLOW OF CONTROL 5

You can use the operators && meaning �and� and || meaning �or� and ~

meaning �not� to construct more complex tests if you wish.
For example this function tests whether a value is 3 or 7:

function isValue3Or7(value)

if value ==3 || value ==7

disp('The value is either 3 or 7');

else

disp('The value is neither 3 nor 7');

end

end

You can build quite complex expressions. For example the following code
prints out 'Test passed' if either:

� a and b are both positive

� or b is not equal to 7

function complexTest(a, b)

if (a>0 && b>0) || ~(b==7)

disp('Test passed ');

else

disp('Test failed ');

end

end

Notice the use of brackets in the expression. Without the brackets it is very
hard to work out what the code will actually do.

The if statement is quite �exible. If you don't want anything to happen if
the condition isn't true, you can omit the else block completely. You can also
add in elseif blocks to perform additional tests.

Here is the general syntax for an if statement in MATLAB:

if test1

statements

elseif test2

statements

elseif test3

statements

elseif test4

...

CHAPTER 3. FLOW OF CONTROL 6

else

statements

end

3.3 While loops

Another common programming construction is that you want to keep repeating
some task until a condition is met. For this you can use while loops.

The general syntax for a while loop is

while conditionIsTrue

statements

end

This will repeatedly execute the statements until the condition is no longer true.
For example here is how you can use a while loop to print the numbers from

1 to 10.

function countUsingWhile ()

count = 1;

while count <=10

disp(count);

count = count + 1;

end

end

This code uses a counter called count which it increments on each step of the
while loop until such time as count<=10 evaluates to false.

Most people would agree that the equivalent code using a for loop is easier
to understand. Nevertheless, while loops have their uses, particularly when you
don't know in advance how big the loop needs to be.

For example, here is a function nextPrime that computes the next prime
number:

function prime2=nextPrime(prime1)

current = prime1 +1;

while ~isprime(current)

current = current +1;

end

prime2 = current;

end

CHAPTER 3. FLOW OF CONTROL 7

We're using the MATLAB function isprime here to test if a number is a prime
number or not. This code keeps incrementing the variable current until such
time as isprime(current) evaluates to true. (Recall that ~ means �not� in
MATLAB).

At the end of the loop, we know that the value of the next prime number is
contained in the variable current.

3.4 Accessing individual cells in a matrix

Suppose that we have created an m × n matrix called A then to �nd out the
value of the cell at the coordinates (i,j) one simply types A(i,j). Here is an
example:

A = [1 2 3 4; 4 6 7 8];

A(2,3)

This code prints out the number 7.
If you try to access read the value in a cell that doesn't exist, MATLAB will

produce an error.
As well as using this notation to �nd out the value of a cell, you can use it

to set the value of a cell. For example

A = [1 2 3 4; 4 6 7 8];

A(2,3) = -7;

Would change A so it contains the values:(
1 2 3 4
5 6 −7 8

)
If you try to write a value to a cell that doesn't exist, MATLAB will make

the matrix bigger to accomodate the value. It pads up the rest of the matrix
with zeros. For example the code:

A = [1 2 3 4; 4 6 7 8];

A(3,6) = -7;

changes A to be the matrix: 1 2 3 4 0 0
5 6 7 8 0 0
0 0 0 0 0 −7



CHAPTER 3. FLOW OF CONTROL 8

You can also access entire submatrices using the : operator. For example if
A is a 3×7 matrix as above then to access the fourth column of A you can write
A(1:3,4).

Similarly if you wanted to access the second row you can write A(2,1:6).
Since accessing entire rows and columns is so common, you can use the

keyword end rather than having to type in the length of an array. For example
to access the second row of A you can type A(2,1:end) and this will access the
second row irrespective of the number of columns.

Similarly the expression A(1:2,1:2) refers to the two by two matrix in the
top corner of A.

In actual fact, these are all special cases of the general syntax:

<matrix >(vectorOfRows >, <vectorOfColumns >)

which can be used to extract any desired submatrix from a matrix.
MATLAB treats row and column vectors as special cases of matrices, so you

can access their elements using indices just as you do for matrices. However, if
you like you can also specify just a single coordinate. For example v(5) accesses
the �fth element of a vector v.

In fact, you can use a single coordinate for all matrices, not just vectors.
Each cell in a matrix has an associated number, the numbers start at 1 in the
top left, then increase by one up each column in turn. Here is a diagram showing
how a 5× 3 matrix is ordered. 

1 6 11
2 7 12
3 8 13
4 9 14
5 10 15


Try to work out what the code below will print out and see if you are correct.

A = [1 2 3 4; 4 6 7 8];

A(3,6) = -7;

A

A(1:3 ,4)

A(2 ,1:6)

A(2,1:end)

A(1:2 ,1:2)

rows = [1 3];

columns = [2 4];

A(rows , columns)

A(8)

CHAPTER 3. FLOW OF CONTROL 9

3.5 Putting it all together

We can combine for loops, if statements and accessing elements of arrays to
write interesting programs.

Example 1: Without using the sum function, write a function called mySum

which takes a vector x as parameter and adds up all the cells of x.

Solution: We use a variable total to store our working and iterate through all
the elements of x using a for loop increasing total as we go:

function [total] = mySum(x)

total = 0;

for j=1: length(x)

total = total + x(j);

end

end

Example 2: Write a function primesUpTo that takes a parameter n and returns
a vector containing all the prime numbers less than n.

Solution: We use the function isprime mentioned above. We use a for loop
to run through all the integers from 2 up to n. We start with an empty array
primes and add a new element on the end whenever we �nd a new prime. In
order to decide where to add the new element we use a variable called counter

which keeps track of the number of primes found so far.

function primes = primesUpTo(n)

counter = 1;

for j=2:n

if (isprime(j))

primes(counter) = j;

counter = counter + 1;

end

end

end

Try entering this code in MATLAB.
Whenever we add a new prime to the vector primes, MATLAB has to resize

the vector. This is a bit slow since to resize a vector you often have to shu�e
round quite a bit of computer memory. For this reason MATLAB prefers it if
you decide how large the vector should be at the beginning. This is why the
line primes(counter)=j is marked with a red line in the MATLAB editor.
Here is some code without the red line:

CHAPTER 3. FLOW OF CONTROL 10

function primes = primesUpTo(n)

primes = zeros(1, n);

counter = 1;

for j=2:n

if (isprime(j))

primes(counter) = j;

counter = counter + 1;

end

end

primes = primes(1, 1:(counter -1));

end

3.6 Exercises

1) Write a function myProd to compute the product of all the elements in a
vector.

2) Write a function to �nd the maximum value in a vector. You are not allowed
to use the MATLAB max, min or sort functions!

If you are new to programming, you may �nd this question di�cult. If
you struggle, imagine you were given one thousand cards each with a di�erent
number printed on it. How would you �nd the maximum? Write down detailed
instructions for how you would do this in English and then try to convert them
into MATLAB code.

3) Modify the integrateNumerically function from the last chapter so that
it uses a for loop rather than a sum statement. The bene�t of this is that
integrateNumerically will now work for functions like cumulativeNormal

that can only process a single argument rather than a vector of values.

4) In the game paper-scissors-stone, let the number 0 represent paper, the num-
ber 1 represent scissors and the number 2 represent stone.

Write a function hasPlayerAWon(A, B) that uses if statements to decide
who has won given the numbers representing the selections of player A and
player B.

5) You can use the value inf to represent in�nity and the value -inf to represent
negative in�nity in MATLAB.

Given this, write a function integrateNumericallyVersion2(f, a, b, N)

that allows you to specify in�nite values for the integration range [a,b]. You
will need to perform appropriate substitutions before calling the old function
integrateNumerically with a �nite range.

CHAPTER 3. FLOW OF CONTROL 11

6) The Fibonnacci sequence is de�ned by x1 = 1, x2 = 1 and thereafter by
xn = xn−1 + xn−2. Write a function fibonnacci(n) that computes the n-th
Fibonnaci number xn.

3.7 Logical values

Expressions such as 3>5 have values of either true or false. These are called
logical values or �boolean values� after the English mathematician George Boole.

Most of the functions we have written so far have all returned numeric values,
but functions can return logical values if you like. The function isprime, for
example, returns whether or not a given number is a prime number.

When MATLAB prints out a logical value it prints the number 1 for the
value �true� and 0 for the value �false�.

In general MATLAB is quite happy to use non-zero numbers to mean true

and the number zero to mean false. So for example the code:

if 3

disp('3 is non -zero');

end

will print out the message �3 is non-zero�. The code isn't very readable though,
is it? So I recommend that you don't use this technique.

Like most other MATLAB operators you can use operators such as >, < and
== on matrices. This will then produce matrices of logical values which are
displayed as matrices of zeros and ones.

Here is an example:

v = [-3 -2 -1 0 1 2 3];

isPositive = v > 0;

disp(isPositive);

If you run the code above you will see that the vector isPositive is assigned
the values [0 0 0 0 1 1 1].

You could have written the code above using a for loop. Here is the equiv-
alent code:

v = [-3 -2 -1 0 1 2 3];

isPositive = zeros(1, length(v));

for j=1: length(v)

isPositive(j) = v(j) > 0;

end

disp(isPositive);

CHAPTER 3. FLOW OF CONTROL 12

In MATLAB, the �rst version of the code would be preferred: as well as being
shorter it actually runs marginally faster.

3.8 Matrix Programming

In general for loop statements are quite slow in MATLAB, but statements
which perform repeated the same operation on all the elements of a matrix are
fast.

The reason why vector operations are fast is that computer processors con-
tain special optimizations for performing such repeated tasks.

If you ask MATLAB to perform a computation using matrix operations,
it will use these optimizations. If you write a for loop, MATLAB won't use
these optimizations. So it can often be useful to rewrite your code to avoid
unnecessary for loops (however, see the tip below). Rewriting your code in this
way is called matrix programming or sometimes vectorization.

I'll mostly present e�cient code in the lectures, but you may �nd it tricky
to write vectorized code yourself at �rst. I've collected together in this section
some tips that you can use to eliminate unnecesary for loops.

Tip: Don't optimize unless you need to

It is more important that your code works than that it works quickly. You
should not worry about speed when you write your code, only worry about it if
it proves to be too slow for your needs. Don't waste time and energy optimizing
code that is fast enough already.

3.8.1 Use MATLAB's libraries when possible

The �rst tip for matrix programming your code is to use MATLAB's libraries
wherever possible. They are well written and use vector operations wherever
possible.

For example, a simple improvement to the blackScholesCallPrice from
the last chapter is to make it use the MATLAB library function normcdf rather
than our cumulativeNormal function. This function will be both more accurate
and more e�cient than the cumulativeNormal function.

3.8.2 Make your functions work with vectors

The second tip is to write all your functions so that they can take arrays of
values and perform the same computation for the entire array. This is the way
that MATLAB functions such as sin and exp all work. You should try to write
functions like this too.

CHAPTER 3. FLOW OF CONTROL 13

As an example here is a function computeInterest(P,r,t) that computes
the interest earned on a principal P over time t given that the continuously
compounded interest rate is r.

function interest = computeInterest(P, r, t)

interest = P * (exp(r * t)-1);

end

We can write an almost identical function which takes an array of principals,
an array of time periods and an array of interest rates and computes the interest
earned in each case.

function interest = computeInterest(P, r, t)

interest = P .* (exp(r .* t)-1);

end

The only di�erence in the code is a few dots. However, if you have to calculated
interest on a lot of accounts (as a bank might well have to do), the second
function can allow these similar calculations to be vectorized.

3.8.3 Using arithmetic with logical values

Since MATLAB treats the value true almost interchangeably with the value
1, you can often get rid of if statements and replace them with arithmetic
calculations.

As an example, suppose that we wish to write a function computeProfit that
calculates the pro�t made after tax for a number of scenarios simultaneously.
The function takes three parameters: a vector representing the earnings in each
scenario; a vector representing the costs in each scenario; the the tax on positive
pro�ts as a proportion.

Here is a �rst version of the code that uses a for loop:

function netProfit = ...

computeNetProfit(earnings , costs , tax)

grossProfit = earnings -costs;

taxPayable = zeros(length(grossProfit), 1);

for j=1: length(grossProfit)

if (grossProfit >0)

taxPayable(j) = tax * grossProfit;

end

end

netProfit = grossProfit - taxPayable;

end

CHAPTER 3. FLOW OF CONTROL 14

This can be rewritten without the for loop as follows:

function netProfit = ...

computeNetProfit(earnings , costs , tax)

grossProfit = earnings -costs;

isTaxPayable = grossProfit >0;

taxPayable = isTaxPayable .* grossProfit .* tax;

netProfit = grossProfit - taxPayable;

end

The trick here is that, viewed as a number, isTaxPayable is 0 if there is no
tax payable. In this case totalTax will come to 0. On the other hand when
isTaxPayable is equal to 1, totalTax will simplify to just grossProfit .* tax.

Here's another example which gives a general recipe for getting rid of if
statements.

if test1

v = value1;

elseif test2

v = value2;

else

v = value3;

end

Can be replaced with

v = test1 * value1 ...

+ (~test1)*(test2*value2 + (~ test2)* value3);

You can often then simplify the expression for v further.
Of course there is always a danger that a change like this will make your

code harder to understand. This is why you should only optimize if there is an
actual performance problem.

3.8.4 Using logical indices

We have seen how to access elements of a matrix by specifying the coordinates
of a particular cell. Another approach is called logical indexing. To access an
array, A, using logical indexing, you supply an array of true/false values and
ask MATLAB to return you the vector consisting of all the elements of A where
the logical value is true.

For example given the array A=[-1 3 5 7] you could specify the logical
indices [true true false true] in order to access the subvector [-1 3 7].

Here is some MATLAB code to try to demonstrate this:

CHAPTER 3. FLOW OF CONTROL 15

A = [-1 3 5 7];

cellsToAccess = [true true false true];

A(cellsToAccess)

Here is an example of how you can use logical indexing to rewrite the function
primesUpTo that we saw earlier:

function primes = primesUpTo(n)

allIntegers = 1:n;

logicalIndices = isprime(allIntegers);

primes = allIntegers(logicalIndices);

end

Notice that the function now contains no for loop. Notice that in this case
the code is not really actually appreciably quicker. This is because the part of
the code that tests if a number is prime is much slower than the code needed
for a loop. This gives another example of why you shouldn't optimize your code
unless there is a problem.

Nevertheless, there are occasions when this technique can give a performance
boost.

3.8.5 How to work out if code can be improved using ma-

trix programming

Not all for loops can be replaced with a matrix calculation. A loop can be
replaced with a matrix calculation if all the calculations in the loop are inde-
pendent of each other. If you need the result from iteration n − 1 to perform
iteration n then you probably can't make it more e�cient.

3.9 Exercises

1) Write your own function myisprime that tests if a number is a prime or not.
You can use the function rem which computes the remainder of two numbers
after a division.

2) Modify the function blackScholesCallPrice from the last chapter so that
it can take a vector for each parameter and so compute call option prices for a
variety of scenarios all with one function call.

3) Write a function blackScholesPrice which behaves like blackScholesCall-
Price except that it also takes an array of logical values indicating whether the
option is a put or a call and prices the option accordingly.

CHAPTER 3. FLOW OF CONTROL 16

Can you write this code so that it operates on vectors of parameters without
using any for loops? To do so you will need to vectorize any if statements.

4) Without using a for loop, �nd the sum of all the numbers sin(n) where n is
between 1 and 100 (inclusive) and sin(n) is greater than one half.

3.10 Summary

We have learned how to use for loops, while loops and if statements to control
the behaviour of our programs and to automate repetitive tasks.

We have learned how to specify parts of a matrix using indexes, vector indices
and logical indices.

We have learned some tricks to avoid writing loops in order to make MAT-
LAB code faster. The process of getting rid of loops is called matrix program-
ming.

	 Flow of control
	For loops
	If statements
	While loops
	Accessing individual cells in a matrix
	Putting it all together
	Exercises
	Logical values
	Matrix Programming
	Use MATLAB's libraries when possible
	Make your functions work with vectors
	Using arithmetic with logical values
	Using logical indices
	How to work out if code can be improved using matrix programming

	Exercises
	Summary

