
Chapter 1

Performing calculations in

MATLAB

In this chapter we'll learn how to perform calculations with MATLAB. First
we'll learn how to use it as a sort of advanced calculator. Next we'll see how
to use it to perform some linear algebra calculations. Then we'll take a look at
how to use it for some simple stochastic simulations. We'll be able to do quite
a lot with only a very little MATLAB knowledge.

Tip: Obtaining MATLAB

While you are a student at King's you can obtain MATLAB using the following
link https://internal.kcl.ac.uk/it/software/matlab.aspx.

1.1 MATLAB's user interface

When you �rst open MATLAB the screen should look something like the schematic
diagram shown in Figure 1.1:

The main part of the screen to focus on is the so-called Command Win-

dow. This is where you type commands that you want MATLAB to act on
immediately.

For example you can enter the command:

a = 3

and MATLAB will create a variable called a and assign it the value 3. It will
also print out a message to indicate what it has done. In this case it simply
reports that a = 3.

1

CHAPTER 1. PERFORMING CALCULATIONS IN MATLAB 2

Figure 1.1: The layout of the MATLAB User Interface

Similarly we can create a variable called b and assign it the value 2 by
entering:

b=2

If you now enter the command:

a + b

Matlab should report that the answer is 5.
If you now look over in theWorkspace window you will see all the variables

that you have created. These are a, b and a temporary variable called ans which
is used to store the result of the last computation.

If you look over at the Command History window, you will see a record
of all the commands that you have entered. You can use the command history
to easily rerun commands.

An alternative method is to press the up and down arrows in the Command
Window. Try doing this now to run the calculation of a+ b a second time.

You can change the values of any variable if you like for example by entering

a = b + 25

MATLAB even understands the statement

CHAPTER 1. PERFORMING CALCULATIONS IN MATLAB 3

a = a + 1

This is how you say �add one to the variable a� in the MATLAB language.
Naturally you are not restricted to adding numbers. You can use * to multi-

ply numbers, / to divide them, - to substract them, ^ to raise one to the power
of another. In addition you can use brackets to group terms together.

You can also use the standard functions that you might expect such as sin,
cos, sqrt, exp log. You should use brackets when you call a function. Here's
an example:

sin(360)

ans =

0.9589

1.2 Exercises

Experiment with the MATLAB command window to answer the following ques-
tions

1) What is the cube root of 2?

2) Does sin use degrees or radian's?

3) What base is used for logarithms using the log command?

4) What happens if you forget the brackets and type log 1?

5) What happens if you type a+1=a instead of a=a+1?

6) Use the up arrow to run the command a=a+1 repeatedly. Check that it is
doing what you expect.

7) Work out how to compute 10 factorial using the help if you can't guess.

1.3 Matrices in MATLAB

1.3.1 Matrix basics

The name MATLAB actually stands for �Matrix laboratory� and not �Maths
laboratory�. So you might expect it makes working with matrices very easy.

CHAPTER 1. PERFORMING CALCULATIONS IN MATLAB 4

To store the 3× 3 matrix:  2 4 5
−3 1 7
4 9 2


in a variable called a you use the following command:

a = [2 4 5 ; -3 1 7 ; 4 9 2]

Note that spaces are used to separate columns and semi-colons are used to
separate the rows. If you aren't sure what a semi-colon is, see table 1.1

So we can create two 1× 3 row vectors v1 and v2 as follows:

v1 = [1 2 3]

v2 = [4 5 6]

and a 3× 1 column vectors w1 and w2 as follows:

w1 = [1; 2; 3]

w2 = [4; 5; 6]

Performing matrix operations is just as easy as performing normal calcula-
tions for example to multiply a and w1 just enter

a * w1

or to add w1 and w2 just enter

w1 + w2

The operators - and ^ work as you expect too. For example you can use ^2 to
square a matrix.

What about division? Well division of matrices isn't a standard mathemati-
cal operation, so you can't simply divide matrices. However, to invert a matrix
you can use the function inv (raising it to the power −1 works too, but may
be slower and less accurate since the function inv will have been optimized for
computing inverses).

MATLAB uses the division operator \ for solving matrix equations - which is
the matrix analog of division. But since matrix multiplication is non-commutative
MATLAB makes a distinction between between dividing matrices on the right
and dividing on the left. For example, suppose we want to solve the matrix

CHAPTER 1. PERFORMING CALCULATIONS IN MATLAB 5

equation Av = w where v and w are vectors and A is a matrix. Then the
solution is v = A−1w, which requires us �to divide w by A on the left�. In
MATLAB one can write v = A \ w to mean �let v be the solution of Av = w. If
you wanted to solve the equation vA = w where v and w are row vectors, you
would write v = w / A but this is less common.

Another common function with matrices is to compute the conjugate trans-

pose, also known as the adjoint of the matrix. For the real valued matrices
we'll use in this course, the conjugate transpose is the same thing as the trans-
pose. To compute the conjugate transpose in MATLAB you use the apostrophe
symbol '. For example, here is how you compute the transpose of v1

v1'

It is quite normal to create column vectors by creating a row vector and then
taking its transpose. Here is how we could have initialized the vectors w1 and
w2:

w1 = [1 2 3]'

w2 = [4 5 6]'

1.3.2 Creating matrices

As you have probably already found, entering a matrix by hand is quite a boring
task. So MATLAB provides several functions to quickly create matrices with
given values. Here are some functions that we will use a lot:

� zeros Create a matrix which consists only of zeros.

� ones Create a matrix consisting only of ones.

� rand Create a matrix containing random numbers uniformly distributed.

� randn Create a matrix containing random numbers which are normally
distributed.

You use all of these functions in similar ways. To 4× 6 matrix of zeros you
would type:

zeros (4,6)

To create a 3× 5 matrix of random numbers between 0 and 1 you would type:

rand (3,5)

CHAPTER 1. PERFORMING CALCULATIONS IN MATLAB 6

Table 1.1: Some English words for punctuation marks

In computer programs punctuation is very important. Many non-native English
speakers are unfamiliar with the names for the di�erent punctuation marks used
in programming. For their bene�t, here is a guide:

Symbol Term

. Full stop or just �dot�.
, Comma.
: Colon.
; Semi-colon.
' Apostrophe or single quote.
" Double quote
_ Underscore.
() Brackets, also called round brackets or parentheses.
[] Square brackets.
{} Curly brackets.
<> Angle brackets.
~ Tilde or twiddle.
& Ampersand or and sign.
| Pipe or vertical line

As a shortcut, MATLAB allows you to pass only one parameter if you want
to create square matrices. For example:

zeros (4)

creates a 4× 4 square matrix of zeros.
Two other useful functions for creating matrices are

� eye. This creates an identity matrix. This will always be a square matrix,
so you only pass in one parameter. For example eye(5) creates the 5× 5
matrix. Notice that the name of this function is a pun. The word eye is
pronounced the same as the letter I.

� diag. This creates a diagonal matrix. E.g. diag([2 4 7]) creates a 3×3
diagonal matrix with the numbers 2, 4 and 7 on the diagonal. Note that
diag takes a vector parameter.

Creating evenly spaced vectors is also a very common task. One way to do
this is to use the special colon operator :.

CHAPTER 1. PERFORMING CALCULATIONS IN MATLAB 7

To create a horizontal vector containing all the whole numbers between 1
and 100 one enters:

1:100

For the whole numbers between 20 and 50 one enters:

20:50

You can also specify the step size. For example, for the numbers between 20
and 50 going up in steps of 3 type

20:3:50

The general syntax is

<start value >:<step size >:<end value >

Note that the above box doesn't contain real code, you are meant to replace the
text in angle brackets with your choice of variables and numbers. We'll use this
notation without comment from now on.

One other way to create evenly spaced vectors is to use the function linspace.
For example linspace(30,70,10) creates a vector containing 10 elements evenly
spaced between 30 and 70. Whether you use the colon operator or linspace
simply depends on whether you want to specify the number of steps or the step
size.

1.3.3 Dot operators

Suppose that dollarPrices contains the stock price (in dollars) for the ACME
corporation for every day in the last week and that r contains the USD to GBP
exchange rate for every day in the last week:

dollarPrices = [100 105 103 102 103]

gbpToUsdRates = [0.61 0.62 0.63 0.62 0.61]

then to compute the stock price for ACME in GBP for every day in the last
week, we want to multiply together the vectors s and r cell by cell. We do this
using the operator .*. That is a star with a dot in front.

gbpPrices = dollarPrices .* gbpToUsdRates

CHAPTER 1. PERFORMING CALCULATIONS IN MATLAB 8

So .* multiplies vectors in a very di�erent (and simpler) way than standard
matrix multiplication. In particular you can use .* to multiply an m×n matrix
with another m× n matrix whereas you can use .* to multiply a m× a matrix
with an a× n matrix.

There are dotted versions of the operators ^\lstinline and / too for when
you want to raise every cell of a matrix to a given power or when you want to
divide matrices cell by cell. There is no need for dotted versions of + and −
because + and − already add and subtract cell by cell.

It is always easy to work out if you want to use a dot operator or a standard
matrix operator � apart from anything else you will usually get an error caused
by the matrices being the wrong size if you attempt to use the wrong type of
operator. Generally speaking you use normal matrix multiplication if you are
thinking of your matrices as linear transformations and your vectors as points
in a vector space. If, as in the stock example above, the vectors just contain
data without any geometric interpretation, you will usually use dot operators.

Notice that functions such as exp and sin work on matrices, but they behave
like the dotted operators. In otherwords they perform exp and sin component-
wise. This is standard in MATLAB, whenever it makes sense, functions can take
matrices as arguments and they perform their standard operation component
by component.

Tip: Choosing variable names

At the start of this tutorial we used short variable names like a and b. We've
now started using longer names like gbpToUsdRates.

Variable names in MATLAB should not contain spaces and should not begin
with numbers but otherwise they can be a mix of numbers and letters. MATLAB
is case sensitive, so the variables a and A are di�erent. The fact that you can't
use spaces isn't much of a problem, just use camel case (starting new words
with a capital letter). Its called camel case because the words have humps like
camels.

In mathematics it is conventional to use single letter variable names � to the
extent that mathematicians borrow letters from Greek and Hebrew to make their
formulae shorter. In computing longer names are preferred. The big advantage
of longer names is that it is much easier to understand what is going on when you
look at code with long variable names. The code: gbpToUsdRates = dollar-
Prices .* gbpToUsdRates is pretty self explanatory. I strongly recommend
using long variable names.

1.3.4 Statistical functions

When you think of a matrix as being a matrix of data rather than a linear
transformation, there are various statistical functions you might want to apply
to the matrix: sum, mean, std, median, prctile all work in a similar way. For

CHAPTER 1. PERFORMING CALCULATIONS IN MATLAB 9

example sum(v) computes the sum of the elements in a vector or the sum of the
columns of a matrix.

The function std computes the standard deviation of a vector. By default
it computes the sample standard deviation, but you can get it to compute the
population standard devation if you want - see the online help.

The function prctile computes a given percentile of a vector of data.
Another very useful function is size which tells you the dimensions of the

vector or array and length which tells you the largest dimension.
The function hist plots a histogram of a vector of data. For example, recall

that the function randn generates normally distributed random numbers. So
the following code will plot a histogram of a random sample of ten thousand
numbers from the normal distribution:

sample = randn (10000 , 1)

hist(sample)

There are two things you probably won't like about this - �rstly the his-
togram doesn't contain very many bars so it doesn't look as normally distributed
as you might like and secondly it isn't very helpful to print out the array of ten
thousand numbers. Here is how you �x those issues:

sample = randn (10000 , 1);

hist(sample , 100)

We have added a semi-colon on the end of the �rst line. It means �don't print
the result�.

On the second line we have passed in an extra parameter of 100, this is the
number of bars to show in the histogram.

1.4 Putting it all together

We can combine all of these ideas to perform some quite sophisticated calcula-
tions.

Example 1: Use MATLAB to compute the sum

1 + 2 + 22 + 23 + 24 + . . .+ 210

Solution: We �rst create a vector of the numbers 0 through 10. We then use
the .^ operator to compute the associated powers of 2 and store the result in
powers. We then compute the sum.

CHAPTER 1. PERFORMING CALCULATIONS IN MATLAB 10

x = 0:10;

powers = 2.^x;

sum(powers)

You could do this all in one line if you wanted: sum(2.^(0:10)) but it is
usually easier to understand code that has been broken into small pieces.

Example 2: A robot walks a distance X1 east, a distance X2 south and then
climbs a distance X3 up. The Xi are independent and normally distributed with
mean 1. Negative distances should be interpreted in the obvious way. Using
a MATLAB simulation, plot an approximate histogram of the total distance
travelled.

Solution: We create a sample of 1000 possibilities.

X1 = randn (1000 ,1);

X2 = randn (1000 ,1);

X3 = randn (1000 ,1);

distance = sqrt(X1.^2 + X2.^2 + X3.^2);

hist(distance , 20);

1.5 Exercises

Use MATLAB to answer all these questions.

1) What is
(

1√
2
(1 + i)

)4
?

2) What is the 95-th percentile of the normal distribution (with mean 0 and
standard deviation 1)? Answer this question approximately by creating a large
sample of normally distributed random numbers and then �nding the 95th per-
centile.

3) How would you create a vector containing the �rst 50 odd integers in MAT-
LAB? What is the sum of the �rst 50 odd integers?

4) How would you create a vector of the cubes of the �rst 50 odd integers in
MATLAB?

5) What is the sum of the cubes of the �rst 50 odd integers?

CHAPTER 1. PERFORMING CALCULATIONS IN MATLAB 11

6) Use the matrix inverse function inv to solve the equations:

x1 + 2x2 + 3x3 = 5

−2x1 + 3x2 + 4x3 = 6

1x1 + 3x2 + 2x3 = 7

Solve the same equations using the \ and / operators. MATLAB will use Gaus-
sian elimination if you use the division operators, but will compute the matrix
inverse if you use inv. These are two quite di�erent algorithms for solving linear
equations. Which is more e�cient?

7) Recall that π = 4(1− 1
3+

1
5−

1
7+ . . .). Compute π to three decimal places.

8) Create a sample of ten thousand numbers selected from a normal distribution
with mean 10 and standard deviation 20. Plot a histogram to make sure it looks
right. Also check your answer using the mean and std functions.

9) Use the documentation to �nd out how to use the function randi. Suppose
that 100 dice are thrown and the numbers on the dice are added. Use randi
to simulate throwing all 100 dice 10000 times and plot a histogram of the sum.
What do you expect the histogram should look like and why?

1.6 Further Reading

The �rst three chapters of these notes are all about using MATLAB and cover
everything needed for the course.

If you are struggling with MATLAB you could try MATLAB demysti�ed
[2].

MATLAB have many online resources you can use to learn MATLAB and
develop your knowledge further [1].

1.7 Summary

We have learned how to use MATLAB as a sophisticated calculator.
We have learned how to store intermediate steps of a calculation in variables.
We have learned how to create matrices by entering them in full or by using

the functions zeros, ones, eye, randn and diag.
We have learned how to perform operations on matrices. We can perform

standard matrix operations such as multiplication with *. We can perform
elementwise operations with operators such as .*.

We have learned how to compute statistics for a vector of data using func-
tions such as std, mean, sum, length and hist.

BIBLIOGRAPHY 12

Bibliography

[1] MATLAB. Matlab tutorials. https://tinyurl.com/y74vxd8g.

[2] David McMahon. MATLAB demysti�ed. McGraw-Hill New York, 2007.

https://tinyurl.com/y74vxd8g

	 Performing calculations in MATLAB
	MATLAB's user interface
	Exercises
	Matrices in MATLAB
	Matrix basics
	Creating matrices
	Dot operators
	Statistical functions

	Putting it all together
	Exercises
	Further Reading
	Summary

