
Computing for Geometry and Number Theory

Mathematica implementation

clebschFunction[{x1_, x2_, x3_, x4_, x5_}] :=

 x1^3 + x2^3 + x3^3 + x4^3 + x5^3

cubicInCP3[{x_, y_, z_, w_}] :=

 clebschFunction[{x, y, z, w, -x - y - z - w}]

cubicInC3[{x_, y_, z_}] := cubicInCP3[{x, y, z, 1}]

point[u1_, v1_, u2_, v2_, lambda_] :=

 lambda {5, u1, v1} + (1 - lambda) {-5, u2, v2}

lines = Solve[{cubicInC3[point[u1, v1, u2, v2, 0]] == 0,

 cubicInC3[point[u1, v1, u2, v2, 1]] == 0,

 cubicInC3[point[u1, v1, u2, v2, 2]] == 0,

 cubicInC3[point[u1, v1, u2, v2, 3]] == 0},

 {u1, v1, u2, v2}];

Computing for Geometry and Number Theory

Remarks

This gives us 18 lines on the cubic surface. There are 9 more

to �nd, but we can worry about that later.

Look carefully at the de�nition of clebschFunction and

cubicInC3. These are functions that apply to lists. For

example cubicInC3 is a function which takes a single

parameter consisting of a list of three points.

sumOfSquares[x_,y_]:= x^2 + y^2

normSq[{ x_,y_ }]:= x^2 + y^2

sumOfSquares[3,4] == 25

normSq[{3,4}] == 25

Computing for Geometry and Number Theory

Goal - plot these lines

The �rst ingredient we need is to know how to plot �graphics

primitives�

To create a cylinder starting at point1, ending at point2 and

with radius 0.1 we would use the following code:

point1 = {0,0,0};

point2 = {0,0,1};

cylinder = Cylinder[{point1,point2}, 0.1];

Graphics3D[cylinder];

There are lots of �graphics primitives� such as spheres, cones

etc. that you can combine to create 3D pictures

Use Graphics3D to display a list of primitives.

Computing for Geometry and Number Theory

The ReplaceAll function

The ReplaceAll function allows you to substitute values in an

expression. Try the following

ReplaceAll[x^2 + 3 x + 2, x->y]

ReplaceAll[x^2 + 3 x + 2, 3->5]

ReplaceAll[x^2 + 3 x + 2, {x->y, 3->z}]

ReplaceAll is so useful there is a short hand for it /.

x^2 + 3 x + 2 /. x->y

Computing for Geometry and Number Theory

The Map function

Very often you want to apply the same function to every

element of a list you can do this with the Map function.

squareIt[x_]:=x^2;

Map[squareIt, {0,1,2,3,4}]

Map[Factorial, {0,1,2,3,4}]

Map is so useful it too has its own shorthand

squareIt[x_]:=x^2;

squareIt /@ {0,1,2,3,4}

Factorial /@ {0,1,2,3,4}

Map is called "map" because if a function is a mapping, map

applies this mapping to a list. Thus whenever you want to

apply a function repeatedly, you'll probably want to use Map.

Computing for Geometry and Number Theory

Anonymous functions

You might �nd it tedious to write a whole new function just

because you want to perform an operation on every element of a

list. You can de�ne �anonymous functions� to minimize typing:

squareIt[x_]:=x^2;

squareIt /@ {0,1,2,3,4}

#^2 & /@ {0,1,2,3,4}

The # is a placeholder for the element of a list and the & means I've

�nished de�ning my function. Here's how to compute sin(xx) for
every element x of a list.

Sin(#^#) & /@ {0,1,2,3,4}

Computing for Geometry and Number Theory

Putting it together

We can plot the lines on the cubic surface by combining the

Cylinder, Map and ReplaceAll functions

We use ReplaceAll to �nd the coordinates where each line

intersects the planes x = 5 and x = −5
We use Cylinder to draw a cylinder of small radius

connecting these points

We use Map to apply the function to every line

Computing for Geometry and Number Theory

Solution

findPoint1[line_] := ReplaceAll[{5, u1, v1}, line]

findPoint2[line_] := ReplaceAll[{-5, u2, v2}, line]

createCylinder[line_] :=

 Cylinder[{findPoint1[line], findPoint2[line]}, 0.1]

cylinders = Map[createCylinder, lines];

Graphics3D[cylinders]

Computing for Geometry and Number Theory

A �line� in this code is one of the items in the list returned by

Solve

Type lines[[1]] to see the �rst line, for example:

{u1 -> -5, v1 -> -1, u2 -> 5, v2 -> -1}

So findPoint1[lines[[1]]] means the same as

ReplaceAll[{5, u1, v1}, {u1 -> -5, v1 -> -1, u2 -> 5, v2 -> -1}]

So findPoint1 computes the point where the given line

intersects the plane x = 5

findPoint2 �nds the point where the line intersects the plane

x = −5.
It may seem strange to use the ReplaceAll function, but we

don't have much choice: the output of Solve is a replacement

expression.

Computing for Geometry and Number Theory

Once we understand findPoint1 and findPoint2,

createCylinder is easy to understand

We then use Map to apply createCylinder to every line

This gives us a list of cylinders which we plot using Graphics3D

Computing for Geometry and Number Theory

Using Show

Now we have a plot of the lines

We saw last week how to use ContourPlot3D to plot the

surface itself

To combine to sets of graphics, one can use the Show

command

surface =

 ContourPlot3D[

 cubicInC3[{x, y, z}] == 0,

 {x, -5, 5}, {y, -5, 5}, {z, -5, 5},

 ContourStyle -> Opacity[0.5], Mesh -> None];

Show[surface, Graphics3D[cylinders]]

Computing for Geometry and Number Theory

Summary

We can de�ne functions using patterns (more on this in a

moment)

We can use Map to automate tasks on lists

We can use ReplaceAll to perfom substitutions

ReplaceAll is the natural way to work with the output of

Solve.

Our code is in�nitely more sophisticated than last week - we've

started programming!

Computing for Geometry and Number Theory

Making your code unreadable?

findPoint1[line_] := {5, u1, v1} /. line

findPoint2[line_] := {-5, u2, v2} /. line

createCylinder[line_] :=

 Cylinder[{findPoint1[line], findPoint2[line]}, 0.1]

cylinders = createCylinder /@ lines;

Graphics3D[cylinders]

This is the same code as before except we've used the shorthand /.

and /@ for ReplaceAll and Map. An experienced Mathematica

programmer would probably be more likely to write this less

immediately readable version. Of course, once you are an

experienced Mathematica programmer this should be reasonably

readable.

Computing for Geometry and Number Theory

Using Table for repetitive tasks

Another useful method of automating tasks in Mathematica is to

use Table

Table[x^2, {x, 1, 10}]

Table[x*y, {x, 1, 10}, {y, 1, 10}]

Table[x*y, {x, 1, 10}, {y, x, 10}]

You can see that Table creates 2× 2 tables when you supply 2× 2

ranges. Use Flatten to get rid of unwanted nesting.

Computing for Geometry and Number Theory

Exercises

8 Create a table of values of n2 + n + 41 as n ranges from 0 to

39. Apply the function PrimeQ to every element of your table.

8 By using Flatten and Table create a list of all the composite

numbers between 1 and 100 - don't worry if your list contains

duplicates. You can treat lists as sets in Mathematica using the

functions Union, Complement, Intersection and

DeleteDuplicates. Use this to get a list of primes between 1 and

100.

8 Write a function primes that takes a parameter n and outputs

a list of all the primes up to n.

Computing for Geometry and Number Theory

8 Use the two dimensional graphics primitive Circle together

with the command Graphics that displays two dimensional

graphics to plot 12 small circles which are evenly spaced on a large

circle (i.e. a clockface). Do this in two di�erent ways: by using the

Table command and by applying Map to the list

{1,2,3,4,5,6,7,8,9,10,11,12}.

8 Use the function Select and the function PrimeQ to obtain a

list of all prime numbers up to 100.

Computing for Geometry and Number Theory

Summary

Here are some key functions for working with lists. Search for �List

Manipulation� for even more.

Table, Array, {}

First, Last, [[]], Length

Select, DeleteDuplicates

Flatten, Join, Sort, Reverse

Map

Total, Count

Computing for Geometry and Number Theory

Schla�i graph

Schlä�i graph

We've found 18 lines on the cubic. We'd like to �nd all 27. In

addition, we'd like to �nd which lines intersect. The graph of

the intersections was found by Schlä�i.

As a �rst step, let's �nd a better representation of a line than

a list of replacement expressions.

Our �matrix representation� of a line consists of a list of two

vectors which lie on the line. This is a valid representation if

the resulting matrix has rank 2.

How can we test if two such lines are equal? That they

intersect?

How can we transform the 18 replacement expressions we've

found using Solve into a list of Matrices?

Computing for Geometry and Number Theory

Schla�i graph

Testing for equality and intersection

equalsQ[mRep1_, mRep2_] :=

 MatrixRank[Join[mRep1, mRep2]] == 2

intersectQ[mRep1_, mRep2_] :=

 MatrixRank[Join[mRep1, mRep2]] == 3

Computing for Geometry and Number Theory

Schla�i graph

Converting to matrix form

clebschFunction[{x1_, x2_, x3_, x4_, x5_}] :=

 x1^3 + x2^3 + x3^3 + x4^3 + x5^3

cubicInCP3[{x_, y_, z_, w_}] :=

 clebschFunction[{x, y, z, w, -x - y - z - w}]

cubicInC3[{x_, y_, z_}] := cubicInCP3[{x, y, z, 1}]

point[u1_, v1_, u2_, v2_, lambda_] :=

 lambda {1, u1, v1} + (1 - lambda) {-1, u2, v2}

lines = Solve[{cubicInC3[point[u1, v1, u2, v2, 0]] == 0,

 cubicInC3[point[u1, v1, u2, v2, 1]] == 0,

 cubicInC3[point[u1, v1, u2, v2, 2]] == 0,

 cubicInC3[point[u1, v1, u2, v2, 3]] == 0}, {u1, v1, u2, v2}];

p1[line_] := {1, u1, v1, 1} /. line

p2[line_] := {-1, u2, v2, 1} /. line

matrixRep[replacementRep_] :=

 Simplify[{p1[replacementRep], p2[replacementRep]}]

lineMatrices = matrixRep /@ lines;

Computing for Geometry and Number Theory

Schla�i graph

Remarks

We've rerun our calculation of the lines using the planes x = ±1
instead of x = ±5. This makes the computation a bit easier for

Mathematica to handle. The values of ±5 were used before to give

a prettier picture.

Clearly the cubic in CP3 is symmetric in the variables (x1, x2, x3, x4)
but we've thrown away this symmetry when moving to

homogeneous coordinates and choosing two planes.

If we apply the linear transformations corresponding to all the

permutations of coordinates to the lines we've found, we expect to

�nd every line on the cubic.

Computing for Geometry and Number Theory

Schla�i graph

Here's how we can create a linear transformation corresponding to

a permutation:

matrixForPerm[perm_] :=

 Table[If[perm[[i]] == j, 1, 0], {i, 1, 4}, {j, 1, 4}]

matrixForPerm[{1, 2, 4, 3}]

Note the If function.

If[test, valueIfTrue, valueIfFalse]

The If function occurs often in mathematical expressions, though

this is the conventional notation:

mσ
ij =

{
1 σ(i) = j
0 otherwise

Here mσ is a matrix associated with a permutation σ of the set

{1, 2, 3, 4}.

Computing for Geometry and Number Theory

Schla�i graph

Computing all permutation matrices

Using the built in Permutations function we can generate all

permutations of the list {1, 2, 3, 4}. Using Map we can then

generate a list of all the desired linear transformations.

permutationMatrices =

 matrixForPerm /@ Permutations[{1, 2, 3, 4}];

Computing for Geometry and Number Theory

Schla�i graph

Permuting the lines

Using Map again we can write a function permuteLines that takes

a permutation and returns all the lines with the permutation

applied:

permutationMatrices =

 matrixForPerm /@ Permutations[{1, 2, 3, 4}];

permuteLines[perm_] := Module[{applyMatrix},

 applyMatrix[mRep_] := Transpose[perm . Transpose[mRep]];

 applyMatrix /@ lineMatrices

]

Computing for Geometry and Number Theory

Schla�i graph

Permuting the lines

Using Map again we can apply permuteLines to every one of our

permutations and Flatten the result to obtain a list of all the lines

with all the symmetries applied.

permutationMatrices =

 matrixForPerm /@ Permutations[{1, 2, 3, 4}];

permuteLines[perm_] := Module[{applyMatrix},

 applyMatrix[mRep_] := Transpose[perm . Transpose[mRep]];

 applyMatrix /@ lineMatrices

]

permutedLines =

 Flatten[permuteLines /@ permutationMatrices, 1];

Note we pass the value 1 to Flatten. We only want it to remove

one level of nesting.

Computing for Geometry and Number Theory

Schla�i graph

Deleting duplicates

Clearly this will have generated a lot of duplicates. So lets remove

them using DeleteDuplicates.

distinctLines = DeleteDuplicates[permutedLines, equalsQ];

Length[distinctLines]

Note that we're passing two parameters to DeleteDuplicates one

is the list to process, the second is a function to use to test if two

entries should be considered as duplicates.

Computing for Geometry and Number Theory

Schla�i graph

Summary so far

(* Compute permutation matrices *)

matrixForPerm[perm_] :=

 Table[If[perm[[i]] == j, 1, 0], {i, 1, 4}, {j, 1, 4}]

permutationMatrices =

 matrixForPerm /@ Permutations[{1, 2, 3, 4}];

permutationMatrices =

 matrixForPerm /@ Permutations[{1, 2, 3, 4}];

(* Apply the permutation matrices to our lines *)

permuteLines[perm_] := Module[{applyMatrix},

 applyMatrix[mRep_] := Transpose[perm . Transpose[mRep]];

 applyMatrix /@ lineMatrices

]

permutedLines =

 Flatten[permuteLines /@ permutationMatrices, 1];

(* Remove duplicates and count the result *)

distinctLines = DeleteDuplicates[permutedLines, equalsQ];

Length[distinctLines]

Computing for Geometry and Number Theory

Schla�i graph

Final touch

intersectionMatrix =

 Table[

 intersectQ[distinctLines[[i]], distinctLines[[j]]],

 {i, 1, 27},

 {j, 1, 27}];

MatrixForm[intersectionMatrix]

This completes the computation of the lines on the Clebsch cubic

and their intersection matrix.

	Schlafli graph

