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Abstract

We derive a full asymptotic expansion for call option prices and a third order approximation for implied volatility
in the large-time, large log-moneyness regime for a general exponential Lévy model, by extending the saddlepoint
argument used in Forde,Jacquier&Mijatović [Proc. R. Soc. A, 466(2124), 3593-3620, 2010] for the Heston model. As
for the Heston model, there are two special log-moneyness values where the call option asymptotics are qualitatively
different, and we use an Edgeworth expansion to deal with these cases. We also characterize the behaviour of the
implied volatility skew at large-maturities; in particular we show that the derivative of the dimensionless implied
variance with respect to log-moneyness exists and is less than or equal to 4 in the large-maturity limit, which is
consistent with the bound on the right and left-side derivative given in Rogers&Tehranchi [Finance and Stochastics,
14(2), 235-248, 2010].

1 Introduction

Using the Gärtner-Ellis theorem from large deviations theory, Forde&Jacquier[FJ09] characterized the leading-
order behaviour of call prices under the Heston model, in a new regime where the maturity and the log-moneyness
are large. Using this result, they derived the implied volatility in the large-time, large-strike limit, and find that
the large-time smile mimics the large-time smile for the Barndorff-Nielsen’s NIG model. The implied volatility smile
does not flatten as the maturity increases, but rather it spreads out, and the new regime is needed to capture this
effect. Gatheral&Jacquier[GJ10] proved that the so-called SVI parameterisation is the true limit of the Heston implied
volatility smile as the maturity tends to infinity. In this regime, there are two special values for the log-moneyness
where the call option asymptotics exhibit qualitatively different behaviour from other strike values, and as a special
case, we can prove the well-known result by Lewis[Lewis00] for the implied volatility in the usual large-time, fixed -strike
regime, at leading order. Using similar tools from large deviations theory, Jacquier,Keller-Ressel&Mijatović[JKM11]
recently extended the study of the large-strike, large-maturity implied volatility to the general class of affine stochastic
volatility models (with jumps). Under mild assumptions, they proved that the limiting smile necessarily corresponds
to the smile generated by an exponential Lévy process. [FJM10] use Laplace’s method for contour integrals to compute
the correction term for the implied volatility in this new regime for the Heston model. The correction term for implied
volatility is important because it takes account of the initial level of the instantaneous volatility process as well and
allows us to approximate call option prices in the large-time limit in contrast to the crude large deviations bounds in
[FJ09].

In the small-maturity limit, the implied volatility of an out-of-the-money call option under an exponential Lévy
model tends to infinity (see Roper[Rop10] and Tankov[Tnkv10]); Furthermore, Figueroa-López&Forde[FF11] devel-
oped a small-time second-order estimate for the out-of-the-money call option prices and derived an estimate for the
dimensionless implied variance of order O(| log t|−2). The latter has recently been sharpened in Gao&Lee[GL11]
using the leading order term in the call option expansion in Figueroa-López&Forde[FF11]. The long-term asymp-
totic behavior of the smile for exponential Lévy models and more general martingale models have been studied in
Rogers&Tehranchi[RT10], where it is proved that for fixed log-moneyness k and large maturity, the implied volatility
converges to a constant value that does not depend on k. This phenomenon is typically referred as the “smile-flattening”
effect, which arises from the large deviation principle for i.i.d. random variables (see e.g. Cramér’s theorem in [DeZ98]).
For a general exponential Lévy model with mild conditions on the cumulant generating function, [GL11] derived an
expansion of the form
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σ̂t(x)
2 = σ2

∞ +
a1(x)

t
+
a2(x)

t2
+ o(

(log t)2

t3
) (t→ ∞), (1)

for the implied volatility σ̂t(x) at log-moneyness x and maturity t, where a1(x) and a2(x) are respectively affine and
quadratic in x. This sharpens the result of Tehranchi[Teh09b] who only computed the a1(x) term.

For the fixed-strike regime, [RT10] also characterized the behaviour of the large-time implied volatility skew, i.e. the
derivative of the implied volatility with respect to the log-moneyness; in particular they showed that the absolute value
of the right and left derivatives of the dimensionless implied variance with respect to the log-moneyness is less than or
equal to 4 as the maturity tends to infinity. If the implied volatility is differentiable with respect to the log-moneyness,
this result can be easily obtained from the simple no-arbitrage bounds on the slope of the implied volatility at all
maturities given in section 3.1.1 in [Lee05]. We also refer the reader to Tankov[Tnkv10] for a review of these and other
results on asymptotics for implied volatilities in exponential Lévy models.

In the classical paper of Lugannani&Rice[LR80], the authors derive an asymptotic expansion for the probability
distribution of the sum of a large number of i.i.d. random variables. Their series take into account the mutual effect
of the pole of the integrand at zero and the “principal saddlepoint” on the imaginary axis, and contains an erf (error
function) term in the expansion which provides greater accuracy over the classic saddlepoint method for values close
to the mean of the distribution. The corresponding saddlepoint expansion for the density, due to Daniels[Dan54],
depends only on the saddlepoint. In this article, we derive a full asymptotic expansion for call options and a third
order estimate for implied volatility (similar to (1)) for the large-time, large log-moneyness regime under a general
exponential Lévy model, by adapting the methods in [FJM10]. Our approach applies the Laplace’s method in a similar
vein to Lugannani&Rice. As will become evident from our numerical results, the correction terms for the implied
volatilities can dramatically improve the rough leading order approximation at large maturities.

Our paper is structured as follows. In Section 2 we state the main asymptotic result (Theorem 2.1) - a large-time
expansion for call options in the large-time, large log-moneyness regime. In Section 3, we translate this into a large-time
expansion for implied volatility (Corollary 3.2). We also provide numerical results in this section which confirm the
accuracy of our asymptotic expansions. The asymptotic behavior of the implied volatility skew is considered in Section
4, while the proofs of the main results are deferred to the appendices.

2 Large-time asymptotics for call option prices

2.1 Preliminary definitions

In this note, we consider an exponential Lévy model St = eXt for the price process of a risky asset. Here X := (Xt)t≥0

is a Lévy process defined on a complete probability space (Ω,P,F) with a Lévy triple (b, σ2, ν) satisfying supp(ν) ̸= ∅
(hence, X has a non-null jump component) and such that St = eXt is a P-martingale relative to its own filtration. The
latter property holds true if and only if

∫
|y|>1

eyν(dy) <∞ and the following martingale condition is satisfied

b+
1

2
σ2 +

∫ ∞

−∞
(ey − 1− y1|y|≤1)ν(dy) = 0. (2)

Here P represents a risk-neutral pricing measure and, for simplicity, the risk-free interest rate and dividend yield are set
to zero. Exponential Lévy models are one of the simplest and most natural generalizations of the classical Black-Scholes
model. Among the better known models are the Variance Gamma model of [CMC98], the so-called CGMY model1 of
[CGMY02], and the generalized hyperbolic motion of [BN98],[EK95] (see also [Ebe01]). We refer the reader to Chapter
4 in [CT04] for more details.

Throughout the paper, ψ denotes the characteristic exponent of X defined by ψ(p) := logEeipX1 and given by

ψ(p) = ibp− σ2

2
p2 +

∫ (
eipy − 1− ipy1{|y|≤1}

)
ν(dy),

for any p ∈ R. We will assume that ψ is analytic with a strip of analyticity of the form {z ∈ C : Im(z) ∈ (p−, p+)} for
some p− < 0 < 1 < p+ (see Section 7 in [Luk70] for definitions and sufficient conditions). We recall that for a Lévy

1The CGMY model was also considered by [Kop95] (see also [Nov94)]) under the name of the “truncated Lévy flight”, while its application
for financial modeling was also proposed in [CBP97] and [Mat00].
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process X, EepXt <∞ if and only if
∫
{|y|>1} e

pyν(dy) <∞ and, thus,

p− = inf{p < 0 :

∫ −1

−∞
epyν(dy) <∞}, and p+ = sup{p > 1 :

∫ ∞

1

epyν(dy) <∞}.

We also let

V (p) := ψ(−ip) = bp+
σ2

2
p2 +

∫ (
epy − 1− py1{|y|≤1}

)
ν(dy), (3)

for p ∈ (p−, p+). Note that V is strictly convex and V ′ is strictly increasing since

V ′(p) = b+ σ2p+

∫
y(epy − 1{|y|≤1})ν(dy) <∞, V ′′(p) = σ2 +

∫
y2epyν(dy) ∈ (0,∞),

for any p ∈ (p−, p+). Furthermore, from the martingale property of (St), we know that V (0) = V (1) = 0 so we have

V ′(p−) < V ′(0) < 0, and V ′(p+) > V ′(1) > 0,

where we had set V ′(p−) := limp↘p− V
′(p) and V ′(p+) := limp↗p+ V

′(p). In particular, V ′(p±) = ±∞ when
limp→±∞ V ′(p) = ±∞. We shall also make use of the following notation:

x− = V ′(0) and x+ = V ′(1). (4)

Throughout the paper, p∗(x) denotes the unique number in (p−, p+) such that

V ′(p∗(x)) = x,

for x ∈ (V ′(p−), V
′(p+)). Note that p∗(x) is unique because V ′′(p) > 0 for p ∈ (p−, p+). Also, V ∗(x) will denote the

Legendre transform of V (p) defined by
V ∗(x) := sup

p∈(p−,p+)

(px− V (p)). (5)

Finally, the formulae below follow directly from the definitions of V and p∗:

(i) V ∗(x) = p∗(x)x− V (p∗(x)), (ii) V ′(p∗(x)) = x, (iii) V ∗′
(x) = p∗(x). (6)

2.2 The main asymptotic result

We now consider the asymptotic behavior of call option prices for large time-to-maturity values t and large positive (or
negative) log-moneyness values x. Below, ∼ means an asymptotic expansion in the sense of page 16 in Olver[Olv74].
Concretely, we will write f(t) ∼

∑∞
n=0 ant

−n as t→ ∞ if for each N ≥ 0,

f(t)−

{
N−1∑
n=0

ant
−n

}
= O

(
t−N

)
, (t→ ∞). (7)

Theorem 2.1 For x ∈ (V ′(p−), V
′(p+)), we have the following asymptotic expansion for call options on St in the

large-time, large log-moneyness regime:

1

S0
E
(
St − S0e

xt
)+ ∼ (1− ext)1{x<x−} + 1{x−<x<x+} +

1

2
1{x=x+} + (1− 1

2
ex−t)1{x=x−}

+ e−t(V
∗(x)−x) 1√

2πt

∞∑
n=0

An(x)
1

tn
, (t→ ∞) , (8)

for some coefficients An(x). For x /∈ {x−, x+}, the formulae for the first two coefficients are

A0(x) =
1

(p∗2(x)− p∗(x))
√
V (2)(p∗(x))

,

A1(x) =
2√
2π

Γ(3/2)

{
2q(2) − 2F (3)q′

F (2)
+

[
5

6

(
F (3)

F (2)

)2

− F (4)

2F (2)

]
q

}
1

(2F (2))3/2
, (9)
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where F (k) := −ikx − ψ(−k), q(k) := 1
ik−k2 , and all derivatives of F and q are evaluated at k := ip∗(x). For

x ∈ {x−, x+}, we have

A0(x+) = − 1√
V (2)(1)

− θ∗3 , A1(x+) =
35

2
θ∗33 − 15θ∗3θ

∗
4 + 3θ∗5 −B1(x+) ,

A0(x−) = − 1√
V (2)(0)

+ θ3 , A1(x−) = B∗
1(x−)−

35

2
θ33 + 15θ3θ4 − 3θ5 . (10)

where θn = 1
n!

V (n)(0)

[V (2)(0)]
1
2
n
, θ∗n = 1

n!
V (n)(1)

[V (2)(1)]
1
2
n
, and B1, B

∗
1 are defined as in Lemmas B.1 and B.2 of Appendix B.

Remark 2.1 It is easy to express (9) in terms of the real-valued function V given in (3). Indeed, we have that

A1(x) =
2√
2π

Γ(3/2)

{
−2ξ(2) +

2V (3)ξ′

V (2)
+

[
− 5

6

(
V (3)

V (2)

)2

+
V (4)

2V (2)

]
ξ

}
1

(2V (2))3/2
, (11)

where ξ(p) := 1
p2−p and all derivatives of V and ξ are evaluated at p∗(x).

Remark 2.2 A similar expansion to (8) has been independently obtained in the recent manuscript by Gao&Lee[GL11]
(see Lemma 8.4 therein), but they do not consider the special cases x /∈ {x−, x+}. [GL11] also impose a monotonicity
condition on V along the approximate horizontal contour of steepest descent in Eqs. 8.5-8.7; it turns out that this
condition is superfluous for our choice of Lévy process, because the condition is automatically satisfied, as shown in
Lemma A.1 in the proof of Theorem 2.1.

Remark 2.3 In the case when V ′(p−) or V ′(p+) is finite and x /∈ (V ′(p−), V
′(p+)) for x ∈ R, we cannot find a

real solution to the saddlepoint equation V ′(p∗) = x. In this case, we can still use Cramér’s theorem from large
deviations theory to show that (Xt/t)t≥0 satisfies a large deviation principle as t → ∞ with rate function V ∗(x) =
supp∈(p−,p+){px− V (p)} (we defer the details for future work). Also, note that |A0(x)| → ∞ as x → x+ and x → x−
because p∗(x+) = 1, p∗(x−) = 0 and V ′′(p) ∈ (0,∞) on (p−, p+), so in both cases the 1

p∗2−p∗ term in A0(x) explodes.

Example 2.1 We now proceed to evaluate some of the above quantities for the CGMY model in [CGMY02]. This
process is a pure-jump Lévy process with Lévy measure

ν(dx) =

(
Ce−G|x|

|x|1+Y
1{x<0} +

Ce−Mx

x1+Y
1{x>0}

)
dx, (12)

for C,G,M > 0 and 0 < Y < 2. Here we exclude the special case Y = 1 for simplicity. The characteristic exponent is
given by

ψ(u) = CΓ(−Y )
{
(M − iu)Y + (G+ iu)Y −MY −GY

}
+ ibu. (13)

for Y ̸= 1 (see Section 4.5 in Cont&Tankov[CT04]). The martingale condition (2) implies that M > 1 and

b := −CΓ(−Y )
{
(M − 1)Y + (G+ 1)Y −MY −GY

}
,

so that V (0) = V (1) = 0. We first note that p+ = M , p− = −G. For Y ∈ (0, 1), we have V ′(p±) → ±∞ as p → p±,
while for Y ∈ (1, 2), we have

V ′(p−) = b− CΓ(−Y )Y (M +G)Y−1, V ′(p+) = b+ CΓ(−Y )Y (M +G)Y−1.

In both cases p∗(x) has to be found numerically from the equation (G+p∗(x))Y−1−(M−p∗(x))Y−1 = (x−b)/CΓ(−Y )Y ,
for x ∈ (V ′(p−), V

′(p+)).

3 Large-time asymptotics for implied volatility

3.1 The large-time, large log-moneyness regime

We first prove the following lemma which we use in the corollary that follows. The lemma characterizes the large-time
behaviour of the Black-Scholes call option formula with a time-dependent volatility function. Below, CBS(S0,K, σ, τ)
denotes the usual Black-Scholes call option formula with initial stock price S0, strike K, volatility σ, maturity τ , and
zero interest rates.
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Lemma 3.1 Let
σ̃2
t := σ2 +

a1
t

+
a2
t2
, (14)

for some constants a1, a2 ∈ R and t large enough so that σ̃2
t > 0. Then we have the following large-time behaviour for

the Black-Scholes call option formula with time-dependent volatility σ̃t:

1

S0
CBS(S0, S0e

xt, σ̃t, t) = (1− ext)1{x<−σ2

2 } + 1{−σ2

2 <x<
σ2

2 } +
1

2
· 1{x=σ2

2 } + (1− 1

2
e−

1
2σ

2t)1{x=−σ2

2 }

+ e−t(V
∗
BS(x,σ)−x) 1√

2πt
M1

[
ABS

0 (x, σ) +ABS
1 (x, σ, a1, a2)

1

t
+O(

1

t2
)

]
, (15)

as t→ ∞, where V ∗
BS(x, σ) =

(x+ 1
2σ

2)2

2σ2 and, for x ̸= ± 1
2σ

2, we have

ABS
0 (x, σ) =

σ3

x2 − 1
4σ

4
, ABS

1 (x, σ, a1, a2) = − 1

2σ3

γ1 + γ2a2
(4x2 − σ4)3

, (16)

and M1 = M1(x, σ, a1) = exp( a1
2σABS

0 (x,σ)
), γ2 = −σ2(4x2 − σ4)3, γ1 = 4a1(4x

2 − σ4)(4a1x
4 − x2σ4(a1 + 12) − σ8) +

32σ12 + 384σ8x2. For x = ±1
2σ

2, we have M1 = 1 and

ABS
0 (x, σ) =

1

σ

(1
2
a1 − 1

)
, ABS

1 (x, σ, a1, a2) = − 1

48σ3
(6a21 − 48− 24a2σ

2 + a31) . (17)

Proof. We just substitute σ̃t into the Black-Scholes formula, and use the asymptotic result

Φc(z) ∼ e−
z2

2

√
2π

[
1

z
− 1

z3
+O(

1

z5
)

]
, (z → +∞) ,

where Φ(z) =
∫∞
z

1√
2π
e−

1
2u

2

du (see e.g. Olver[Olv74]).

Now let σ̂t(x) denote the implied volatility at log-moneyness x and time-to-maturity t, defined in the usual way as the
unique solution to CBS(S0, S0e

x, σ̂t(x), t) = E(St − S0e
x)+. The following corollary gives a third order approximation

for the implied volatility in the large-time, large log-moneynesss regime:

Corollary 3.2 For x /∈ {x−, x+} we have the following expansion for the implied volatility in the large-time, large
log-moneyness regime:

σ̂t(xt)
2 = σ(x)2 +

a1(x)

t
+
a2(x)

t2
+ o(

1

t2
), (18)

where

σ2(x) =

{
2 [2V ∗(x)− x− 2

√
V ∗(x)2 − V ∗(x)x] (x > x+ or x < x−) ,

2 [2V ∗(x)− x+ 2
√
V ∗(x)2 − V ∗(x)x] (x ∈ (x−, x+)) ,

(19)

a1(x) = 2σ(x)ABS
0 (x, σ(x)) log

A0(x)

ABS
0 (x, σ(x))

,

a2(x) =
1

γ2

[
− 2A1(x)σ(x)

3 (4x2 − σ(x)4)3

M1(x, σ(x), a1(x))
− γ1

]
,

and A0 is defined as in Theorem 2.1, while γ1, γ2 are defined as in Lemma 3.1 setting σ = σ(x), a1 = a1(x). For
x ∈ {x−, x+} we have

a1(x) = 2

[
1− σ(x)√

V (2)(p∗)

(
1 + sgn(x)

V (3)(p∗)

6V (2)(p∗)

)]
, (20)

a2(x) = − 1

24σ2(x)
[−48σ3(x)A1(x)− 6a1(x)

2 + 48− a1(x)
3] . (21)

Proof. We give the proof for the case x > x−, the other cases follow similarly. We first assume that the implied
volatility admits an expansion of the form (18), and we then prove this rigorously by establishing upper and lower
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bounds for the implied volatility. If we formally equate call prices under the exponential Lévy model and the Black-
Scholes model with this maturity-dependent implied volatility expansion we obtain

e−t(V
∗(x)−x)) 1√

2πt
[A0(x)+A1(x)

1

t
+O(

1

t2
)] = e−t(V

∗
BS(x,σ)−x)) 1√

2πt
M1(x, σ, a1)[A

BS
0 (x, σ)+ABS

1 (x, σ, a1, a2)
1

t
+O(

1

t2
)] .

Taking logs of both sides and cancelling terms and dividing by t, we have

−(V ∗(x)− x) + logA0(x)
1

t
+
A1(x)

A0(x)

1

t2
= −(V ∗

BS(x, σ)− x) + log[M1(x, σ, a1)A
BS
0 (x, σ)]

1

t
+
ABS

1 (x, σ, a1, a2)

ABS
0 (x, σ)

1

t2
+O(

1

t3
) .

We then just match coefficients (recall the definitions of ABS
0 (x, σ) and ABS

1 (x, σ, a1, a2) which depend on σ, a1, a2) and
then solve in turn for σ, a1, a2. To establish tight bounds for σ̂t(xt), consider δ > 0 and let

σ̃2
t,δ(x) = σ(x)2 +

a1(x)

t
+
a2(x) + δ

t2
. (22)

Combining Theorem 2.1 and Lemma 3.1, cancelling the coefficients that we have equated and noting the affine depen-
dence of ABS

1 (x, σ, a1, a2) on a2, we have

log
E(St − S0e

xt)+

CBS(S0, S0ext, σ̃t,δ(x), t)
≤ 1

ABS
0 (x, σ(x))

[ABS
1 (x, σ(x), a1(x), a2(x) + δ)−ABS

1 (x, σ(x), a1(x), a2(x))]
1

t

=
δ

2σ(x)ABS
0 (x, σ(x))

1

t
(23)

for t = t(δ) sufficiently large. Proceeding similarly for the upper bound, and using the strict monotonicity of CBS in
the volatility argument, we have

σ̃2
t,−δ(x) ≤ σ̂t(xt) ≤ σ̃2

t,δ(x) ,

for t sufficiently large. This completes the proof since δ is arbitrary.

3.2 The large-time, fixed log-moneyness regime

In this subsection, we briefly discuss how to obtain a second order estimate for the implied volatility in the large-time,
fixed log-moneyness regime. A higher order estimate for implied volatility in this regime has been quoted in the recent
preprint by [GL11], but their arguments are more involved, so we give a short self contained proof of the second order
approximation here, which is all we need in the next section to characterize the volatility skew. To this end, we define

p0 = p∗(0); (24)

i.e. p0 is the unique solution to V ′(p0) = 0. Since V ′′(p) > 0, for p ∈ (p−, p+), and V (0) = V (1) = 0, we have that
p0 ∈ (0, 1). The following result in this subsection. A similar result has been obtained in [Teh09b] in a more general
framework. We however provide here an explicit representation for the coefficients of the expansion.

Proposition 3.3 For x ∈ R, we have the following expansion for the implied volatility in the large-time, fixed log-
moneyness regime

σ̂2
t (x) = σ2

∞ + a(x)
1

t
+ o(

1

t
) . (25)

where σ2
∞ := σ2(0) = 8V ∗(0) , a(x) = −8[log( 14A0σ∞) + ( 12 − p0)x] and A0 = |A0(0)|.

Proof. By a similar argument to the proof of Theorem 2.1 we can prove the following large-time estimate for call
options of fixed-strike

E(St ∧K) = S0 − E(St −K)+ =
A0√
2πt

e(1−p0)xe−V
∗(0)t[1 +O(

1

t
)] (t→ ∞). (26)

Then, by Theorem 3.1 in [Teh09b], we have

σ̂t(x)
2 = −8 logE(St ∧K)− 4 log[− logE(St ∧K)] + 4x− 4 log π + o(1)

= 8V ∗(0)t− 8 logA0 + 8(p0 − 1)x+ 4 log(2πt)− 4 log[
1

8
σ2
∞t (1 +O(

1

t
))] + 4x− 4 log π + o(1)

= 8V ∗(0)t+ 4 log 2 + 4 log 8− 8 logA0 − 8 log σ∞ + (
1

2
− p0)x+ o(1). (27)
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3.3 Numerics

The second and third order approximations for the implied volatility at large-maturities given in (18) appear to be
very accurate even for relatively low time-to-maturity values. To illustrate this point, Figure 3.3 shows the first three
approximations for the CGMY model with a time-to-maturity T = 1.1 years. The choice of parameters was motivated
by the seminal paper of [CGMY02], where the CGMY model was calibrated using 2009 option data on Microsoft stock.
The figure also illustrates the values of the second and third order approximations, computed using (20) and (21), at
the two special x-values: x+ = 0.0518911 and x− = −0.053822.

-0.4 -0.2 0.0 0.2 0.4
x

0.31

0.32

0.33

0.34

0.35

0.36

0.37

Implied Volatility

Figure 1: Here we have plotted the asymptotic implied volatility smile σ(x) (dark blue), the second order approximation

[σ2(x) + a1(x)/t]
1
2 (lighter blue), the third order approximation [σ2(x) + a1(x)

t + a2(x)
t2 ]

1
2 (black dashed) for the large-

strike, large log-moneyness regime all taken from (18), and the smile obtained numerically using the inverse Fourier
transform in (A.1) (grey) along the approximate horizontal contour of steepest descent kr + ip∗(x) for kr ∈ R, for
the large-time, large log-moneyness regime under the CGMY model with the same parameters as in [CGMY02]:
C = 1.1, Y = 0.4456,M = 8.6, G = 5.09 and T = 1.1 years. The two vertical lines correspond to the two special cases
x+ = 0.0518911 and x− = −0.053822, and the horizontal dashed lines are the values of the second and third order
approximations at the two special x-values, computed using (20) and (21).

4 Large-time asymptotics for the implied volatility skew

We now consider the asymptotic behavior of the skew ∂σ̂t(x)
∂x of the implied volatility σ̂t(x):

Proposition 4.1 We have the following large-time behaviour for the implied volatility skew ∂σ̂t(x)
∂x for all x ∈ R:

lim
t→∞

∂

∂x
[σ̂t(x)

2t] = a′(0) = 8(p0 −
1

2
) (28)

where a(x) and p0 are defined in Proposition (3.3) and (24), respectively.

Remark 4.1 p0 ∈ (0, 1), so | ∂∂x [σ̂t(x)
2t]| ≤ 4 as t→ ∞, which is consistent with the general bounds given in Theorem

5.1 in Rogers&Tehranchi[RT10]. Note that ∂
∂x σ̂t(x)

2 ∼ a′(0) 1t as t → ∞, so we recover the well-known fact that the
skew flattens as the maturity tends to infinity. Note that (28) is also what we obtain from formal differentiation of
(25) with respect to x, even though here we are interchanging taking limits in x and t.

Proof. The existence of the derivative ∂
∂x [σ̂

2
t (x)] follows from Appendix C. Now let K = S0e

x and σ∞ = σ(0) with σ
as in (19). By a similar argument we have the following large-time behaviour for digital call options

P(St > K) = P(Xt > x) ∼ e−p0xe−V
∗(0)t

p0
√
2πV ′′(p0)t

(t→ ∞)
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For the Black-Scholes model with volatility σ, p0 = 1
2 so we have

PBS
σ (St > K) ∼ e−

1
2xe−

1
8σ

2t

1
2σ

√
2πt

, (t→ ∞) ,

where PBS
σ (St > K) = P(σWt − σ2t/2 > x); i.e., the probability of the event {St > K} when the stock price process

(St) follows the Black-Scholes model with zero interest rate, volatility σ, and log-moneyness x. Replacing σ by the
asymptotic expansion in (25), we obtain

PBS√
σ2
∞+a(x) 1

t+o(
1
t )
(St > K) ∼ e−

1
2xe−

1
8 [σ

2
∞t+a(x)]

1
2σ∞

√
2πt

, (t→ ∞) . (29)

Similarly, evaluating the Black-Scholes Vega at σ =
√
σ2
∞ + a(x) 1t + o( 1t ) we have

∂CBS

∂σ
∼ S0

e−
1
2d

2
1

√
2π

√
t = S0e

1
2x−

1
8a(x)e−

1
8σ

2
∞t 1√

2π

√
t

where d1 =
−x+ 1

2σ
2t

σ
√
t

. Using that σ∞ = 8V ∗(0) and (C.2), the exponentially small terms cancel and we have

∂σ̂t(x)

∂x
= S0e

xPBS(St > K)− P(St > K)
∂CBS

∂σ

∼ [
e−

1
2xe−

1
8a(x)

1
2σ∞

− e−p0x

p0
√
V ′′(p0)

] e
1
2x+

1
8a(x)

1

t
(t→ ∞)

=
1

σ∞
[2− 4

A0p0
√
V ′′(p0)

]
1

t
. (30)

Noting that V ∗(0) = −V (p0) and plugging in the definition of A0 = |A0(0)| from (9), we have

1

σ∞
[2− 4

A0p0
√
V ′′(p0)

] =
2

σ∞
(2p0 − 1) , (31)

and the result follows by noting that ∂
∂x [σ̂t(x)

2t] = 2σ̂t(x)
∂
∂x σ̂t(x)t and σ̂t(x) → σ∞ as t→ ∞ by Proposition 3.3.
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Princeton Lecture Notes in Mathematical Finance, Springer.

[Teh09a] Tehranchi, M. (2009), “Implied volatility: long maturity behavior”, Encyclopedia of Quantitative Finance,
Wiley, 2010.

[Teh09b] Tehranchi, M. (2009), “Asymptotics of implied volatility far from maturity”, Journal of Applied Probability,
46 (3): 629–650.

9



A Proof of Theorem 2.1 for the case x /∈ {x−, x+}
From [Lee04] (see also, [FJM10]), we have the following Fourier representation for the price of a call option of log-
moneyness xt:

1

S0
E(St − S0e

xt)+ = Rα +
ext

π

∫ +∞+i(α+1)

0+i(α+1)

Re[eikxt
etψ(−k)

ik − k2
]dk , (A.1)

for α + 1 ∈ (p−, p+), where Rα = 1{−1<α<0} + (1 − ext) 1{α<−1} + 1
21{α=0} + (1 − ext

2 )1{α=−1}. We now break the
proof into four parts for clarity:

1. Computing the saddlepoint

Recall that, for each x ∈ (V ′(p−), V
′(p+)), p

∗(x) ∈ (p−, p+) is defined so that V ′(p∗(x)) = x. We now define

F (k) = −ikx− ψ(−k) . (A.2)

Then, F (k) has a saddlepoint at k∗(x) = ip∗(x) since F ′(k) = − ix + ψ′(−k∗(x)) = −i(x− V ′(p∗(x))) = 0 (see, e.g,
Definition 5.2 in [FJM10] for the definition of saddle point).

2. Re-writing the indicator functions

Setting α+ 1 = p∗(x), we can re-write (A.1) as

1

S0
E(St − S0e

xt)+ = Rp∗(x)−1 +
ext

π

∫ +∞+ip∗(x)

0+ip∗(x)

Re[
e−F (k)t

ik − k2
]dk, (A.3)

We now show that we have the following simplified expression for Rp∗(x)−1 (which we shall need later):

Rp∗(x)−1 = (1− ext)1{x<x−} + 1{x−<x<x+} +
1

2
1{x=x+} + (1− 1

2
ex−t)1{x=x−} . (A.4)

From the definitions of x−, x+ in (4) and the property (6)-(iii), we have V ∗′
(x+) = 1 and V ∗′

(x−) = 0. But
V ′(x) is strictly increasing, so p∗(x) is strictly increasing and, hence, p∗(x+,∞) = (1,∞), p∗(x−, x+) = (0, 1),
p∗(−∞, x−) = (−∞, 0) and, also, p∗(x+) = 1 and p∗(x−) = 0. Now since α + 1 = p∗(x), we have {−1 < α < 0} =
{x− < x < x+} , {α < −1} = {x < x−} , {α = 0} = {x = x+} , {α = −1} = {x = x−} , {α > 0} = {x > x+} , and the
expression (A.4) follows.

3. Strict minimal point for Re(F (y + ip∗(x)))

Lemma A.1 We have the following property for F along the horizontal contour y + ip∗(x) for y ∈ R\{0}:

Re(F (y + ip∗(x))) > Re(F (ip∗(x))). (A.5)

Proof. Recall that

F (k) = −ikx− ψ(−k) = −ikx− V (−ik) = −ikx+ ibk +
σ2

2
k2 −

∫
(e−ikz − 1 + ikz1|z|≤1)ν(dz),

From this we see that

Re(F (y + ip∗(x))) = xp∗(x)− bp∗(x)− σ2

2
p∗(x) +

σ2

2
y2 −

∫
{ezp

∗(x) cos(zy)− 1− zp∗(x)1|z|≤1}ν(dz). (A.6)

Given that the first four terms on the right hand side of (A.6) are all strictly monotone increasing in y ∈ [0,∞), we
only have to worry about the last term in (A.6). This term can be split into the following two finite integrals∫

{1− cos(zy)} ezp
∗(x)ν(dz)−

∫
{ezp

∗(x) − 1− zp∗(x)1|z|≤1}ν(dz). (A.7)

The second term above does not depend on y and since {1− cos(zy)} ezp∗(x) ≥ {1− cos(zy)} ezp∗(x)
∣∣
y=0

= 0, the first

term in (A.7) is always non-negative. Furthermore, it is strictly positive unless {1− cos(zy)} ezp∗(x) = 0 for ν-a.e. z.
This contradicts our assumption that supp(ν) ̸= ∅.
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4. Applying Laplace’s method along the horizontal contour

Evaluating the exponent F (k) = −ikx − ψ(−k) at the saddlepoint k∗(x) = ip∗(x), we have the important property
that

F (k∗(x)) = p∗(x)x− V (p∗(x)) = V ∗(x).

Also, note that F (k) is analytic in the strip Im(k) ∈ (p−, p+) and, from (A.1), we know that Re(F (y + ip∗(x)) −
F (ip∗(x))) > 0 for y ̸= 0 and Re(F (y + ip∗(x)) − F (ip∗(x))) is bounded away from zero as y → ±∞. Finally, using
Laplace’s method for contour integrals along the horizontal contour going through the saddlepoint k∗(x) = ip∗(x), as
in Theorem 7.1 of chapter 4 in Olver[Olv74], we obtain the result.

B Proof of Theorem 2.1 for the case x ∈ {x−, x+}
Following the density transformation construction of Sato[Sat99] (see Definition 33.4 and Example 33.4 therein) and
using the martingale condition (2), we define a probability measure P∗ such that P∗(B) = E

(
eXt1B

)
, for any t > 0

and B ∈ Ft. P∗ is sometimes called the Share measure (see, e.g., Carr&Madan[CM09]). One can readily check that
(Xt) is a Lévy process under P∗ with characteristic triplet (b∗, σ2, ν∗), where

ν∗(dx) = exν(dx) and b∗ = b+

∫
|x|≤1

x (ex − 1) ν(dx) + σ2. (B.1)

(see [FF11] for further details). Then,

VS(p) := ψS(−ip) := logEP∗
(epX1) = logE(eX1epX1) = V (p+ 1) , (B.2)

for p ∈ (p− − 1, p+ − 1), and
VS(0) = V (1) <∞ . (B.3)

To compute the Fenchel-Legendre transform V ∗
S (x) of VS(p), we have to solve for the unique p

∗
S(x) such that V ′

S(p
∗
S(x)) =

V ′(p∗S(x) + 1) = x. From this we see that p∗S(x) = p∗(x)− 1, and

V ∗
S (x) = p∗S(x)x− VS(p

∗
S(x)) = p∗x− V (p)− x = V ∗(x)− x . (B.4)

We now give expansions for the tail probabilities of (Xt) under the pricing measure P and the Share measure P∗. For
the sake of brevity, we only present the proof for the Share measure case below. The proof for the case of P is similar.

Lemma B.1 Let F be as in (A.2). Then, for x ̸= x−, we have the following asymptotic behaviour for Xt:

P(Xt > xt) ∼ 1{x<x−} + e−tV
∗(x) 1√

2πt

∞∑
n=0

Bn(x)
1

tn
(t→ ∞) (B.5)

for some coefficients Bn(x), where ∼ here means asymptotic expansion as in (7). The formulae for the first two
coefficients are

B0(x) =
1

p∗
√
V (2)(p∗)

, B1(x) =
2√
2π

Γ(3/2)

{
2q̃(2) − 2F (3)q̃′

F (2)
+

(
5(F (3))2

6(F (2))2
− F (4)

2F (2)

)
q̃

}
1

(2F (2))3/2
, (B.6)

where p∗ = p∗(x) > 0, q̃(k) = − 1
ik and all derivatives of F and q̃ are evaluated at k = ip∗(x).

Lemma B.2 Assume the same notation as in Proposition B.1. Then, for x ̸= x+, we have the following asymptotic
behaviour for Xt under P∗:

P∗(Xt > xt) ∼ 1{x<x+} + e−t(V
∗(x)−x) 1√

2πt

∞∑
n=0

B∗
n(x)

1

tn
, (t→ ∞), (B.7)

for some coefficients B∗
n(x). The formulae for the first two coefficients are

B∗
0(x) =

1

p∗S
√
V (2)(p∗)

, B∗
1(x) =

2√
2π

Γ(3/2)

{
2q̃(2) − 2F (3)q̃′

F (2)
+

(
5(F (3))2

6(F (2))2
− F (4)

2F (2)

)
q̃

}
1

(2F (2))3/2
, (B.8)

where p∗S = p∗S(x) = p∗(x)− 1, q̃(k) = − 1
ik , all derivatives of F are evaluated at k = ip∗(x), and all the derivatives of

q̃ are evaluated at k = ip∗S(x).
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Proof. We recall the following well-known formula for the tail probability:

P∗(Xt > xt) =
1

2π

∫ ∞

−∞
eikxt

etψS(k)

ik
dk,

where ψS(k) := logEP∗
(eikX1) = logE(e(1+ik)X1) = ψ(k− i). Then, applying similar arguments to those leading to (9)

as in Appendix A, we have the following asymptotic behaviour for Xt under P∗ for x ̸= x+

P∗(Xt > xt) ∼ 1{x<x+} + e−t(V
∗(x)−x) 1√

2πt

∞∑
n=0

B̃∗
n(x)

1

tn
, (t→ ∞) , (B.9)

for some coefficients B̃∗
n(x), where B̃

∗
0(x) =

1

p∗S

√
V ′′
S (p∗S)

and

B̃∗
1(x) =

2√
2π

Γ(3/2)

{
2q̃(2) −

2F
(3)
S q̃′

F
(2)
S

+

(
5
(
F

(3)
S

)2
6
(
F

(2)
S

)2 −
F

(4)
S

2F
(2)
S

)
q̃

}
1(

2F
(2)
S

)3/2 , (B.10)

where p∗S(x) = p∗(x) − 1, FS(k) = −ikx − ψS(−k) where all derivatives of FS and q̃ are evaluated at k = ip∗S(x).
V ′′
S (p) = V ′′(p+ 1) so

V ′′
S (p

∗
S(x)) = V ′′

S (p
∗(x)− 1) = V ′′(p∗(x))

and F ′′
S (k) = −ψ′′(−k − i) which implies that

F ′′
S (ip

∗
S(x)) = −ψ′′(−ip∗S(x)− i) = −ψ′′(−i(p∗(x)− 1)− i) = F ′′(ip∗(x)) .

From this we see that B̃∗
1(x) in (B.10) reduces to the expression B∗

1(x) in (B.8). Finally we use the identity in (B.4)
to re-write the exponent in terms of V ∗(x).

We now give the main proof for the case x = x+. From page 479 in [LR80] or 26.2.48 in [AS72] with ȳ = x+,
ϕ = VS and N = t, we have

P∗(Xt > x+t) =
1

2
+

1√
2πt

[−θ∗3 + (
35

2
θ∗33 − 15θ∗3θ

∗
4 + 3θ∗5)

1

t
+O(

1

t2
)] (B.11)

where θ∗n = 1
n!

V
(n)
S (0)

[V ′′
S (0)]

1
2
n
= 1

n!
V (n)(1)

[V ′′(1)]
1
2
n
. Combining (B.11) with Lemma B.1, we have

1

S0
E(St − S0e

x+t)+ = P∗(Xt > x+t)− ex+tP(Xt > x+t)

=
1

2
+

1√
2πt

[−θ∗3 + (
35

2
θ∗33 − 15θ∗3θ

∗
4 + 3θ∗5)

1

t
+O(

1

t2
)] (B.12)

−ex+te−(p∗x+−V (p∗))t[B0(x+) +B1(x+)
1

t
+O(

1

t2
)]

=
1

2
+

1√
2πt

[−θ∗3 + (
35

2
θ∗33 − 15θ∗3θ

∗
4 + 3θ∗5)

1

t
+O(

1

t2
)]− [B0(x+) +B1(x+)

1

t
+O(

1

t2
)]

=
1

2
− 1√

t
[

1√
2πV ′′(1)

(1 +
1

6

V ′′′(1)

V ′′(1)
)− (

35

2
θ∗33 − 15θ∗3θ

∗
4 + 3θ∗5 −B1(x+))

1

t
+O(

1

t2
)] .

Similarly, for x = x− and fixing θn = 1
n!

V (n)(0)

[V ′′(0)]
1
2
n
, we have

1

S0
E(St − S0e

x−t)+ = P∗(Xt > x−t)− ex−tP(Xt > x−t)

= 1 +
e−V

∗
S (x−)t

√
2πt

(B∗
0(x−) +B∗

1(x)
1

t
+O(

1

t2
)) (B.13)

−ex−t[
1

2
+

1√
2πt

[−θ3 + (
35

2
θ33 − 15θ3θ4 + 3θ5)

1

t
+O(

1

t2
)]]

= 1 +
1√
2πt

ex−t[(B∗
0(x−) + θ3) + (B∗

1(x−)−
35

2
θ33 + 15θ3θ4 − 3θ5))

1

t
+O(

1

t2
)] .

This concludes the proof.
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C Differentiability of call option prices and implied volatility

The following Lemma shows that the skew is well-defined whenever the log-return Xt is continuous (i.e. P(Xt = x) = 0,
for all x) for each t. In the case of Lévy processes, it is known thatXt is continuous if and only if σ ̸= 0 or ν(R\{0}) = ∞
(see Theorem 27.4 in [Sat99]).

Lemma C.1 If the log-return Xt is continuous for any t > 0, then the skew ∂σ̂t(x)
∂x is well-defined.

Proof. We first note that the Black-Scholes call price CBS(t, x, σ) := E(eσWt− 1
2σ

2 − ex)+ is continuously differentiable
in σ and x for each fixed t > 0, and the Vega

V =
∂CBS(t, x, σ)

∂σ
=

√
t

2π
exp

{
−(σ2t/2− x)2/2σ2t

}
,

is strictly positive. Hence, for ∂σ̂t(x)
∂x to exist, it suffices to show that C(t, x) = E

(
eXt − ex

)+
is continuously differen-

tiable in x (so that F (t, x, σ) := CBS(t, x, σ) − C(t, x) will be continuously differentiable in x and σ and the implicit
function theorem can be applied). To check the differentiability of C, note that for fixed h > 0,

1

h
{C(t, x+ h)− C(t, x)} = −e

x

h

(
eh − 1

)
P(Xt ≥ x+ h)− E

{
1{x<Xt<x+h}

1

h

(
eXt − ex

)}
.

Given that 1{x<Xt<x+h}
1
h

(
eXt − ex

)
≤ (ex+h − ex)/h = 1 + O(h), we can apply the dominated convergence theorem

and obtain that
∂C(t, x)

∂x
= −exP(Xt ≥ x), (C.1)

which is continuous when P(Xt = x) = 0, for all x.

Remark C.1 As a corollary of the proof above, we recover the following formula for pricing digital call options

exP (Xt ≥ x) = exP
(
σt(x)Wt −

1

2
σt(x)

2 ≥ x

)
− V ∂σ̂t(x)

∂x
, (C.2)

by implicitly differentiating F (t, x) = CBS(t, x, σt(x))− C(t, x).
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