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Abstract

We adapt the static Schrödinger bridge approach in [Guy20] to the problem of constructing a joint density
for two FX rates X and Y consistent with observed European option prices on all three cross-rates. This can be
solved as a pure optimal transport (OT) (linear programming) problem where we compute the max or min price
of a non-tradeable option given tradeable European options on all three cross-rates, see e.g. numerical results
in subsection 2.8), but the Schrödinger bridge solution is arguably more realistic since the optimal coupling
µ∗ has a joint density unlike OT problems where the support of µ∗ is typically just the graph of n functions
(the so-called Brenier map(s), see e.g. [BJ16],[HK15],[HN12]). Under mild assumptions, the upper (resp. lower)
bound for options on X/Y which pay (X−KY )+ in the original currency is attained by the lower (resp. upper)
Fréchet-Hoeffding bound (see also Hobson et al. [HLW05],[HLW05b] for a more involved analysis with basket
options where the weights are assumed to be non-negative or 1 unlike our example here). As in [Guy20], we
minimize relative entropy H(µ, µ̄) with respect to a reference measure µ̄ over calibrated models, but we simplify
the dualization of the problem by adapting the tightness arguments in [GTT16]. We show that an optimal
coupling is attained, and a variational argument as in [Guy20] (see also Remark 3.4 in [Nutz22]) leads to a first-
order optimality condition (Euler-Lagrange equations) with three coupled integral equations for the optimal
European option portfolios u, v and w, and we prove convergence for the three marginals (in the total variation
metric) for the Sinkhorn fixed point scheme to solve these equations1. Two of the Sinkhorn equations are of
the usual fixed-point type but the final equation requires numerical root finding (as is the case for the fourth
and fifth equations in the first order optimality conditions for the SPX-VIX problem in [Guy20]). The primary
application here is pricing e.g. Basket, Quanto, Best-of, or other varietals of Rainbow options on X and Y so as to
be consistent with all three smiles, and we implement the Sinkhorn scheme numerically using recent cross-smile
data for the EUR-USD-GBP and EUR-USD-JPY currency triangles from Bloomberg. The Sinkhorn scheme
typically converges quickly in practice (around 40 iterations). We also construct a continuous-time martingale
model consistent with the three marginals using conditional sampling as in [BG24], and a rough extension of
this model using a rough Bergomi Bass martingale as in section 4 in [F24], and we discuss more realistic choices
for the reference measure e.g. using the Gaussian copula. We also show how to adapt the Sinkhorn scheme for
the forward-starter calibration problem in the usual setup with one asset and two maturities, and (as an aside)
we formally simplify the analysis of the SPX-VIX calibration problem for a Markov stochastic volatility model
discussed in [GLOW22].2

1 Background

Regularized optimal transport methods have been a game changer for exotic option calibration problems in recent
years, because it allows the inner inf in the minmax problem which arises from dualization to be computed explicitly
(see e.g. pg 8 in [Guy20] or [GLOW22]). For regularized problems in the discrete-time setting, if we use an entropic
penalty then can apply the Sinkorn fixed point scheme (with provable convergence in certain standard cases, see
e.g.[Nutz22]), for which the most notable practical application has been a discrete-time solution to the fabled SPX-
VIX calibration problem in [Guy20], and a partial continuous-time model in [BG24] (the solution in the latter gives
rise to a fully continuous-time model if we define the price of the T1-maturity VIX future at time t ∈ [0, T1] to

be E(F−1
V |ST1

(Φ(BT /
√
T ))|FW,Bt ) = E(VIXT1

|FW,Bt ) in the notation of section 4.4 in [BG24], where B is another

Brownian motion independent of their original Brownian motion W rather than using an independent standard
Uniform random variable as they do).

In the continuous time setting, we can also solve calibration problems using a Markov local and/or stochastic
volatility models with finite tradeable European and/or VIX or barrier options using more general penalty terms,
by numerically solving a HJB equation which emerges from dualization (see e.g. [GLOW22] and further discussion
below), although rigorous duality results are more cumbersome too establish. The cross-smile problem we consider
in this article (as outlined in the abstract) falls under the general class of problems of the form infµ∈C H(µ, µ̄) for

1(once one has verified strict convexity of G(u, v, w) using Hölder’s inequality), our Sinkhorn scheme can be viewed as a coordinate
ascent scheme for the concave maximization problem in (9), see also page 52 in [Nutz24]; however proving convergence of (un, vn, wn)
appears difficult due to non-compactness issues which don’t arise in the standard simple proof in e.g. Proposition 6.5.1 in [Bert15]

2We thank David Hobson and Amir Dembo for sharing their insights, and Gianfranco Ameri and Youpeng Cheng for their careful
proofreading
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a convex set C which is closed under the total variation metric, for which there is a general existence/uniqueness
result in Theorem 1.10 in [Nutz22] (see also Proposition 1.17 and Example 1.18).

In principle, a bivariate [Carr09] Local Variance Gamma (LVG) model (see also [CN17]) can also give an exact
fit to three cross-smiles, but in practice the implied local correlation function ρloc(x, y) := (σX(x)2 + σY (y)2 −
σZ(x/y)2)/(2σX(x)σY (y)) that comes out from the three smiles typically falls outside [−1, 1] (similarly a two-
maturity standard Carr LVG model can be fitted to a single SPX and VIX smile with the same maturity, but in
practice the vol function for the 2nd epoch typically has a singularity, and a simpler (albeit somewhat unrealistic)
model that achieves the same goal is described in Eq 6.3 in [Guy20]). Alternatively, we can use two-dimensional
Bass local volatility model to extract a time-inhomogenous ρloc(x, y, t) but one then needs to check that the implied
correlation function |ρloc(., ., t)| ≤ 1 for all t ∈ [0, T ].

Guo et al. [GLW22],[GLOW22] (see also [HL19] and [Guy22]) show how to construct a generalized local/stochastic
volatility model consistent with a finite number of European tradeable options at multiple maturities by minimizing
a cost function over calibrated models which penalizes deviations from a standard reference model (e.g. Black-
Scholes or Heston), and then re-casting the problem via dualization as an (unconstrained) minmax problem in
terms of a non-linear HJB equation (so the cost function effectively regularizes the problem). If options at multiple
maturities are used in the calibration set, the HJB equation unfortunately also includes Dirac source terms (but
this can be avoided using a nested PDE, see subsection 2.11 below), and this method is extended to include VIX

options in section 3.3 in [GLOW22], by re-expressing Vt for the reference model in terms of E(
∫ T
t
σ2
sds|Ft) (this

analysis is simplified in subsection 2.11 here using that VIX2
t is just an affine function of Vt when the drift of

V under the reference model has a Heston-type drift). This approach is mathematically rich and exciting albeit
numerically intensive since it requires numerically solving a non-linear HJB equation using e.g. very fiddly implicit
policy-iteration finite difference schemes and then maximizing over the option weights vector. If path-dependent
options are included in the calibration set we have the issue that we do not know whether such a consistent model
exists to begin with. The [GLOW22] methodology can in principle be generalized to a rough reference model using
a variational approach, but one ends up with an intractable non-standard FBSDE.

2 Outline of problem

For major currencies like the Euro, Dollar and Pound, European options are very actively traded on all three
cross-rates between them. A natural question to ask is: how to we construct a model so as to be consistent with
observed European option prices at multiple strikes (at a single maturity) on all three cross-rates. This problem is
attempted in [Aus11] but the article does not check that the resulting joint density is non-negative.

Assuming our home currency is dollars, we let X denote the price of 1 Euro in dollars at time T in the future
(known as the EUR/USD rate), and Y denote the price of 1 pound in dollars at time T (the GBP/USD rate). A
European option on EUR/GBP (i.e. on the cross-rate Z = X/Y ) pays (Z−K)+ pounds at time T , or equivalently
Y (Z − K)+ dollars. If we assume interest rates are zero for simplicity (otherwise we work with forward rates
instead), then given a risk-neutral measure Q, the initial price of such an option (in pounds) is

1

Y0
EQ(Y (

X

Y
−K)+) = EQ̃((Z −K)+)

where Y0 = EQ(Y ), and we have re-written the expectation on the left side here using the probability measure

Q̃(A) := EQ(
Y

EQ(Y )
A)

associated with using GBP as the home currency. From here, we will just use E(.) to denote expectations under Q.

From the Breeden-Litzenberger formula, we can extract the law of X and Y under Q from European call prices
at all strikes on X, and the law of X/Y under Q̃, and in practice this would typically be done using a SVI-type
parametrization to interpolate between tradeable strikes with parameters chosen so as to preclude butterfly arbitrage
(see the many articles by Gatheral, Jacquier, Martini, Mingone et al. on this theme).

2.1 Formulation of the problem

Now suppose we are given three target laws µX , µY and µZ on [0,∞) and (without loss of generality) we assume
that ∫

[0,∞)

xµX(dx) =

∫
[0,∞)

yµY (dy) =

∫
[0,∞)

zµZ(dz) = 1 (1)

i.e. the initial rates X0 = Y0 = 1 and hence Z0 = X0/Y0 = 1 as well. Let Π(µ, ν) denote the space of joint
probability measures on [0,∞) × [0,∞) with marginals µ and ν respectively. We wish to find a µ∗ ∈ Π(µX , µY )
such that if X,Y have joint distribution µ∗, then X/Y ∼ µZ under the probability measure Q̃ defined above.
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Remark 2.1 If such a µ∗ exists, it can then be used to price quanto options like e.g. Best-of options which pay
(XT −K1)+/K1 ∧ (YT −K2)+/K2, or a quanto option which pays (XY −K)+ dollars (as opposed to EUR).

This leads to the following definitions:

Definition 2.1 Let

P(µ1, µ2, µ3) = {µ ∈ Π(µ1, µ2) :

∫
[0,∞)×[0,∞)

(x−Ky)+µ(dx, dy) =

∫
[0,∞)

(z −K)+µ3(dz) for all K ≥ 0} (2)

(note there is no 1
Y0

factor on the left here as we have already assumed Y0 = 1).

Definition 2.2 Let P denote the space of admissible triples, i.e. (µ1, µ2, µ3) ∈ P([0,∞))× P([0,∞))× P([0,∞))
with

∫
[0,∞)

xµ1(dx) =
∫

[0,∞)
yµ2(dy) =

∫
[0,∞)

zµ3(dz) = 1 such that P(µ1, µ2, µ3) is non-empty and supp(µ2) ⊆
[0, Ȳ ] where 0 < Ȳ <∞.

We make the following three assumptions from here on:

Assumption 2.1 P(µX , µY , µZ) is non-empty.

Assumption 2.2 supp(µY ) = [0, Ȳ ].

Assumption 2.3 µX , µY and µZ have densities.

Remark 2.2 Assumption 2 is needed for Eq 7 below, but is not so unrealistic/restrictive given that we are dealing
with exchange rates of major currencies here, not stock, index or crypto prices. One may be able to avoid this
assumption by working with the S-topology instead (as in [GTT16]), but the latter is somewhat cumbersome to
work with, so we defer this for future work.

2.2 Extremal values for Eµ((X −KY )+) over µ ∈ Π(µX , µY ) and Kantorovich duality

We first note the triangle-type inequality:

(x− y)+ ≤ (x− x1)+ + (x1 − y)+ (3)

for all x, y, x1 ∈ R (we just have to check all cases to verify this identity). Now let y = p(x) = F−1
µY (1 − FµX (x))

so Y = p(X) ∼ µY if X ∼ µX i.e. the counter monotonic (or Fréchet-Hoeffding lower bound) coupling, and note
that p is strictly decreasing if we assume µX and µY have strictly positive densities. We further assume there is a
unique root of p(x∗) = x∗, with p(x) > x∗ for x < x∗ and vice versa (see first plot in Fig 4 below). Then setting
x1 = x∗ and y = p(x) and assuming x > x∗, (3) becomes

x− p(x) ≤ x− x∗ + x∗ − p(x)

i.e. an equality. Conversely if y = p(x) and x < x∗, both sides of (3) are zero. Hence (x− x∗)+ + (x∗ − y)+ (i.e.
a call option on X plus a put option on Y ) is a superhedge for c(x, y) = (x− y)+, and equality is obtained for the
coupling where Y = p(X), so this coupling is optimal for the max problem, i.e.∫ 1

0

(F−1
µX (u)− F−1

µY (1− u))+du = sup
µ∈Π(µX ,µY )

Eµ((X − Y )+)

(see also [HLW05],[HLW05b] who look at this problem in greater generality in the context of basket options). For
the general case when c(x, y) = (x −Ky)+, we just regard KY as the new Y variable, then p(x) is just replaced
with p(x) = Kx in the proof above, which is otherwise unchanged except now x∗ depends on K.3

For the lower bound, we first note that

(x− y)+ ≥ −(x1 − x)+ + (x1 − y)+ (4)

for all x, y, x1 ∈ R. Now let y = p(x) = F−1
µY (FµX (x)) so Y = p(X) ∼ µY if X ∼ µX i.e. the Fréchet-Hoeffding

upper bound coupling, and note that p is strictly increasing if we assume µX and µY have strictly positive densities.
We again assume that is a unique root of p(x∗) = x∗, but now with p(x) > x∗ for x > x∗ and vice versa (see first
plot in Fig 4 below). Then again setting x1 = x∗ and y = p(x) and assuming x ≤ x∗, (4) becomes

x− p(x) ≥ −(x∗ − x) + (x∗ − p(x))

3Note if we set p(x) = V ′(x), then dy = V ′′(x)dx, and since µY (y)dy = µX(x)dx, µX(x) = V ′′(x)µY (V ′(x)) = ∇2V µY (∇V (x))
which is the Monge-Ampére equation for V in one dimension (see e.g. [Wu21]).
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so we have equality. Conversely, if x > x∗, both sides of (4) vanish. Hence (repeating the same arguments as
above), the coupling with Y = p(X) is optimal for the min problem, i.e.∫ 1

0

(F−1
µX (u)− F−1

µY (u))+du = inf
µ∈Π(µX ,µY )

Eµ((X − Y )+)

and again we can extend this argument to the general case when c(x, y) = (x −Ky)+. Note our assumption that
p(x) = x has a unique root fails for our EUR-USD-GBP triangle example in the third plot in Fig 4 where p(x) = x
at three distinct x-values (see also Corollary 1.2 in [BJ16], although their result requires strict a strict convexity
condition on c(x, y) = h(y − x)). See also Subsection 2.10 below for an analysis for the classical quadratic payoff
c(x, y) = (x− y)2 which has a natural financial application to quanto forward contracts.

Remark 2.3 These upper and lower price bounds for each strike give us necessary conditions on the admissible
laws for µZ (and its corresponding cross-smile) for a given pair (µX , µY ). Note these may not give a sufficient
condition, which is an interesting open problem. 4

2.3 Technical results

Let

P (µX , µY , µZ) := inf
µ∈P(µX ,µY ,µZ)

H(µ, µ̄) (5)

where H(µ, µ̄) := Eµ(log dµ
dµ̄ ) = Eµ̄(dµdµ̄ log dµ

dµ̄ ) is the entropy of µ with respect to µ̄. Since h(z) = z log z is convex,

limz↘0 h(z) = 0 and Eµ̄(dµdµ̄ ) = 1, we see that H(µ, µ̄) ≥ 0, and H(µ̄, µ̄) = 0, and H(., µ̄) is lower semicontinuous

(LSC), see e.g. Lemma 1.3 in [Nutz22]. This is a variant of the static Schrödinger bridge problem (see again [Nutz22]
for more on this). At this point we make our final standing assumption for the problem that follows to be well
defined:

Assumption 2.4

P (µX , µY , µZ) < ∞

(see also Theorem 1.10, Proposition 1.17 and Example 1.18 in [Nutz22]). Note this assumption automatically
implies Assumption 1 since the inf of an empty set is +∞.

Let M denote the space of all finite signed measures ν on R such that
∫
R(1 + |x|)|ν|(dx) <∞. We will require

the following lemma when we apply the Fenchel-Moreau theorem below:

Lemma 2.5 M is a locally convex Hausdorff space under W1, and its dual space can be identified by M∗ = C1 (the
space of continuous functions with linear growth on R).

Proof. See Lemma 4.2 in [GTT16].

We first prove the analogue of Lemma 4.3 in [GTT16] for our problem:

Lemma 2.6 Let (µnX , µ
n
Y , µ

n
Z) be a sequence in P (see Definition 2.2) which converges to (µ0

X , µ
0
Y , µ

0
Z) in the

Wasserstein topology, and consider any sequence µn ∈ P(µnX , µ
n
Y , µ

n
Z). Then µn is tight, and any limit point lies in

P(µ0
X , µ

0
Y , µ

0
Z).

Proof. To establish tightness, we note that

µn(X > K ∪ Y > K) ≤ µn(X > K) + µn(Y > K) = µnX((K,∞)) + µnY ((K,∞))

≤ X0

K
+
Y0

K
=

1

K
+

1

K
(6)

since we have assumed X0 = Y0 = 1. [0,K]× [0,K] is a compact subset of the metric space [0,∞)× [0,∞) under
the usual Euclidean metric, so by Prokhorov’s theorem, the closure of the sequence (µn)∞n=1 is sequentially compact,
and since the original sequence (µn)∞n=1 lies in this closure, it has a subsequence (µnk)∞k=1 which tends weakly to
some µ0 ∈ P([0,∞)× [0,∞)) which lies in this closure. Then for any u ∈ R we see that∫ ∞

0

eiuxdµ0
X = lim

k→∞

∫ ∞
0

eiuxdµnkX = lim
k→∞

Eµnk (eiuX) = Eµ0(eiuX)∫ ∞
0

eiuxdµ0
Y = lim

k→∞

∫ ∞
0

eiuxdµnkY = lim
k→∞

Eµnk
∫ ∞

0

eiuydµ0
Y = Eµ0(eiuY )∫ ∞

0

eiuzdµ0
Z = lim

k→∞

∫ ∞
0

eiuxdµnkZ = lim
k→∞

Eµnk (Y eiuX/Y ) = Eµ0(Y eiuX/Y ) (7)

4We thank David Hobson for pointing this out.
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since µnk(Y > Ȳ ) = 0 (or we can replace the complex exponentials with a general test function f ∈ Cb here). Hence
we see that µ0 ∈ P(µ0

X , µ
0
Y , µ

0
Z) (see also Proposition 1.5 in [Tho18] for a similar argument).

We next prove the analogue of Lemma 4.4 in [GTT16] for our problem (which can be viewed as a stability result,
see e.g. the introduction in [GTT17]).

Lemma 2.7 P (.) is convex and lower semicontinuous on P in the Wasserstein topology and the infimum is attained.

Proof. See Appendix A.

We now prove the analogue of Theorem 4.2 i) in [GTT16] for our problem:

Proposition 2.8 We have the duality relation:

P (µX , µY , µZ) = sup
u,v,w∈C1

inf
µ∈P(R+×R+)

(H(µ, µ̄)− Eµ(u(X) + v(Y ) + Y w(Z)) + EµX (u(X)) + EµY (v(Y )) + EµZ (w(Z))) . (8)

Proof. See Appendix B.

Finally, we know that the inner inf in (8) can be computed explicitly as described on pg 8 in [Guy20], so we can
re-write (8) as the concave maximization problem:

P (µX , µY , µZ) = sup
u,v,w∈C1

G(u, v, w) (9)

where

G(u, v, w) = EµX (u(X)) + EµY (v(Y )) + EµZ (w(Z))− logEµ̄(eu(X)+v(Y )+Y w(X/Y )) (10)

(see also Theorem 3.2 in [Nutz22]), and we know that the optimal µ (for each u, v, w ∈ C1 fixed) for the inner inf
in (8) is of the form

eu(x)+v(y)+yw( xy )

Eµ̄(eu(X)+v(Y )+Y w(XY ))
µ̄(x, y) (11)

(see definition of µ̄X in and hence we expect the optimal µ for the full sup inf problem to also be of this form, but
we have not proved here that the sup is attained in C1 (i.e. that the dual optimizer is attained). In the next section,
we use (11) as our ansatz for the optimal µ∗, and if this is the case we can assume that the denominator here is 1,
i.e. that

µ∗(x, y) = eu
∗(x)+v∗(y)+yw∗( xy )µ̄(x, y) (12)

because when we enforce that µ∗ has marginals µX and µY below, this forces E(eu
∗(x)+v∗(y)+yw∗( xy )) to be 1, or else

the marginals will be out by a multiplicative factor (u, v and w are known as the Schrödinger potentials).

Remark 2.4 Given this normalization (as [Guy20] remarks) using a variational argument as in [Guy20], we can
remove the log term in (9) and we still end up with the same equations for u, v and w below (this is also the
formulation used in [Nutz22]), so we can re-write the maximization problem in (9) as

P (µX , µY , µZ) = sup
u,v,w∈C1

(EµX (u(X)) + EµY (v(Y )) + EµZ (w(Z))− Eµ̄(eu(X)+v(Y )+Y w(X/Y ))) .

Remark 2.5 If we choose µ̄(x, y) = µX(x)µY (y), then we see that the conditional density of Y |X is given by

p(y|x) =
µ∗(x, y)

µX(x)
= eu

∗(x)+v∗(y)+yw∗( xy )µY (y) .

2.4 Integral equations for u, v, w

Let µ̄ denote a reference probability measure, typically chosen to be the product measure of µX and µY , so µ̄
already satisfies two of the three marginal constraints. Then using the ansatz in (12) the marginal constraints can
be written

µX(x) = eu(x)

∫ ∞
0

ev(y)+yw( xy )µ̄(x, y)dy

µY (y) = ev(y)

∫ ∞
0

eu(x)+yw( xy )µ̄(x, y)dx

µZ(K) =

∫ ∞
0

∫ ∞
0

yδ(
x

y
−K)eu(x)+v(y)+yw( xy )µ̄(x, y)dydx (13)

=

∫ ∞
0

∫ ∞
0

x

z
δK(dz)eu(x)+v(y)+ x

zw(z) x

z2
µ̄(x,

x

z
)dzdx

=

∫ ∞
0

x

K
eu(x)+v(x/K)+ x

Kw(K) x

K2
µ̄(x,

x

K
)dx

5



where we have made the transformation z = x/y (i.e. y = x/z), so dy = − x
z2 dy in the inner integral. Or we can

obtain the same three equations using a variational argument as on pg 8 in [Guy20] (or Remark 3.4 in [Nutz22]),
so we can view the three Eqs in (13) as Euler-Lagrange equations for the concave maximization problem in (9).

The first two equations can be re-arranged as

u(x) = logµX(x)− log

∫ ∞
0

ev(y)+yw( xy )µ̄(x, y)dy

v(y) = logµY (y)− log

∫ ∞
0

eu(x)+yw( xy )µ̄(x, y)dx

From here on we make the usual choice that µ̄(x, y) = µX(x)µY (y), so the first two Eqs simplify further to

u(x) = F (x;u, v, w) := − log

∫ ∞
0

ev(y)+yw( xy )µY (y)dy

v(y) = G(y;u, v, w) := − log

∫ ∞
0

eu(x)+yw( xy )µX(x)dx

and setting K = z, we see that

H(z;u, v, w) =

∫ ∞
0

eu(x)+v( xz )+ x
zw
x2

z3
µ̄(x,

x

z
)dx− µZ(z) = 0 . (14)

2.4.1 Uniqueness of the root

H(z;u, v, w) is clearly strictly monotonically increasing in w. Moreover, the integrand in (14) tends monotonically
to ±∞ as w → ±∞, so from the monotone convergence theorem, H(z;u, v, w) tends to ±∞ as w → ±∞, so a
unique root w = w(z) exists.

2.5 The Sinkhorn scheme - implementation and convergence

The Sinkhorn-type fixed point iterative scheme to solve these coupled equations is then given by

un+1(x) = F (x;un, vn, wn)

vn+1(y) = G(y;un+1, vn, wn)

0 = H(z;un+1, vn+1, wn+1)

with e.g. u0 ≡ v0 ≡ w0 ≡ 0, which typically converges very quickly in practice. Note the third equation here
requires numerical root-finding as for the SPX-VIX calibration problem discussed in [Guy20], but we have one less
dimension here since we only have to compute w(z) for a range of values for the one argument z not a two-variable
function of the form ∆(s1, v) as in [Guy20].

Set µi,j,k(x, y) = eui(x)+vj(y)+ywk(x/y)µ̄(x, y), and let µXi,j,k(x) (resp. µYi,j,k(y)) denote the first (resp. second)

marginal of µi,j,k, and µZi,j,k(z) denote the Z−marginal of µi,j,k under Q̃.

Proposition 2.9 Under our standing Assumptions 2.2-2.4 5, the marginals for the Sinkhorn scheme converge in
the following sense: ‖µXn,n,n − µX‖TV → 0 and ‖µYn,n,n − µY ‖TV → 0 as n → ∞ (where ‖.‖TV denotes the total

variation distance) and µZn,n,n = µZ for all n ≥ 1.

Remark 2.6 If Assumptions 2.2 and 2.3 hold (which just relate to the three given marginals), then the proposition
implies that if the Sinkhorn scheme fails to converge, then Assumption 2.4 cannot hold, i.e. there is no µ∗ ∈
P(µX , µY , µZ) with H(µ∗|µ̄) < ∞. The result does not discount the possibility that we could have a µ∗ ∈
P(µX , µY , µZ) with H(µ∗|µ̄) = ∞ for which the marginals still converge in the sense above. The result does not
tell us about convergence (or otherwise) of (un, vn, wn) in C. It does seem immediately obvious how to adapt the
proof here to prove convergence for the three marginals and the martingale condition for the Sinkhorn scheme for
the forward-starter problem in Subsection 2.9.

Proof. (of Proposition 2.9). Following Lemma 6.4 in [Nutz22], we see that

H(µn+1,n,n|µn,n,n) =

∫
log

dµn+1,n,n

dµn,n,n
dµn+1,n,n =

∫
(un+1 − un)dµn+1,n,n =

∫
(un+1 − un)dµX

5recall that Assumption 2.4 implies Assumption 2.1
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and similarly

H(µn+1,n+1,n|µn+1,n,n) =

∫
(vn+1 − vn)dµn+1,n+1,n =

∫
(vn+1 − vn)dµY

H(µn+1,n+1,n+1|µn+1,n+1,n) =

∫
y(wn+1 − wn)dµn+1,n+1,n+1 =

∫
(wn+1 − wn)dµZ

for all n ≥ 0, where the final equations in each line here follow since each of the three integral equations for
(u, v, w) separately enforces one of the three marginal conditions (cf. Eq 6.5 in [Nutz22]). From Assumption 2.4,
an admissible µ∗ exists with H(µ∗|µ̄) <∞, so (from Lemma 1.4b) in [Nutz22]) we see that

H(µ∗|µ̄)−H(µ∗|µ̄n,n,n) = Eµ
∗
(log

dµn,n,n
dµ̄

)

which (from the definition of the scheme) we can re-write as

Eµ
∗
(log

dµn,n,n
dµ̄

) = Eµ
∗
(un(X) + vn(Y ) + Y wn(X/Y )) = EµX (un(X)) + EµY (vn(Y )) + EµZ (wn(Z)).

Re-writing the right hand side here as a telescoping sum using the three equations at the beginning of the proof,
we see that

H(µ∗|µ̄n,n,n) = H(µ∗|µ̄) −
n−1∑
i=0

(H(µi+1,i,i|µi,i,i) +H(µi+1,i+1,i|µi+1,i,i) +H(µi+1,i+1,i+1|µi+1,i+1,i)) . (15)

The left hand side is non-negative, so the sum on the right is finite for all n, so the summand tends to zero. Then
from the Data Processing Inequality (Example 1.7 in [Nutz22]), for i ≥ 1, the third term in the summand in (15)
dominates H(µYi+1,i+1,i+1|µY ) and the first term dominates H(µX |µXi,i,i) so these two quantities also tend to zero
as i→∞. The result then follows from Pinsker’s inequality (Lemma 1.2 in [Nutz22]).

Remark 2.7 See Section 6.2 in [Nutz22] for discussion on the rate of convergence for Sinkhorn schemes.

EUR/USD 1.0567 1.0680 1.0798 1.0950 1.1025
Implied vol 5.69/6.315% 5.621/5.966% 5.54/5.815% 5.509/5.854% 5.45/6.075%
a, b, σ, ρ,m -0.0005100 0.009510 0.08579 0.30719 0.03433
GBP/USD 1.2331 1.2480 1.2632 1.2718 1.2919
Implied vol 6.148/7.239% 6.125/6.727% 5.985/6.465% 5.873/6.475% 5.681/6.772%
a, b, σ, ρ,m 0.0002773 0.002254 0.01867 -0.3272 0.003880
EUR/GBP 0.84261 0.84852 0.85478 0.86142 0.8681
Implied vol 3.414/4.584% 3.59/4.232% 3.66/4.17% 3.735/4.373% 3.681/4.841%
a, b, σ, ρ,m 0.0001047 0.001959 0.01139 0.2032 -0.001484

Table of (bid-ask) implied volatilities with 1-month maturity (with strikes going horizontally in the 1st, 3rd and
5th rows) on 11th Feb 2024, and SVI parameters fitted to the mid-implied vols. The forward prices here are 1.0796
for EUR/USD, 1.2630 for GBP/USD and .85483 for EUR/GBP (data obtained from Bloomberg), and these SVI
parameters are used for the Sinkhorn scheme.

EUR/JPY 156.71 159.59 162.06 164.15 165.93
Implied vol 8.368/9.824% 7.55/8.352% 6.63/7.265% 6.048/6.839% 5.54/6.977%
a, b, σ, ρ,m 0.0003044 0.004750 0.01382 -1.0000 0.005668
USD/JPY 143.94 146.87 149.35 151.50 153.40
Implied vol 9.546/10.496% 8.463/8.987% 7.46/7.875% 6.917/7.433% 6.616/7.551%
a, b, σ, ρ,m 0.0003764 0.005681 0.01445 -0.8632 0.005049
EUR/USD 1.0614 1.0731 1.0852 1.0971 1.1081
Implied vol 5.702/6.213% 5.589/5.871% 5.465/5.69% 5.404/5.686% 5.342/5.853%
a, b, σ, ρ,m -0.00007481 0.005242 0.06315 -0.04437 0.006762

Corresponding table of (bid-ask) implied volatilities and SVI parameters calibrated to mid implied vols with 1-
month maturity on 3rd Mar 2024 for the EUR-USD-JPY triangle. The forward prices here are 162.09, 149.39 and
1.0851.
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Figure 1: Here we have plotted the maximizing u, v and w respectively after 40 iterations of the Sinkhorn algorithm.

Figure 2: Here we have plotted the Sinkhorn smiles (blue) as a function of moneyness K/F0 associated with the u,
v and w in the plot above verses the original (mid)-market smiles (grey crosses) and the SVI interpolated smiles
(grey line, which can barely be seen as it’s very close to the blue curve) for EUR/USD, GBP/USD and EUR/GBP
on 11th Feb 2024. Five options were used for each cross-rate (At-the-money, and .10, .25, .75, and .90 Delta calls,
as is customary in FX options markets), using the standard SVI parametrization to interpolate between them and
400 point Gaussian quadrature for the single and double integrals which appear in the Sinkorn equations, and the
bisection method for the root-finding.

Figure 3: Here we have the same plots for EUR/JPY, USD/JPY and EUR/USD on 3rd Mar 2024
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Figure 4: On the left we see the optimal transport map y = p(x) (in blue) from Subsection 2.2 using the lower
Frechet-Hoeffding bound verses the y = x line (dashed), which leads the maximal smile of a EUR/GBP option
given (SVI interpolated) mid-EUR/USD and GBP/USD smiles (second plot). In the 3rd plot we see the p(x) map
for the minimal price for EUR/GBP options which comes from the upper Frechet-Hoeffding bound (and we see
there are three points of equality), and the final plot shows the same p(x) function for EUR/USD options (given
the EUR/JPY and USD/JPY smiles in the later data set). The lower bound smile is very close to zero so we do
not plot it here.

2.5.1 Using a copula for µ̄

A more flexible choice for µ̄ would be to e.g. use the Gaussian copula, and fit the correlation parameter ρ to
e.g. historical data or use the Margrabe formula: σ2

Z = σ2
X + σ2

Y − 2ρσXσY (used for pricing EUR/GBP options
under a bivariate Black-Scholes model) to back out ρ using implied volatilities, although this would still non-trivial
amendments to our current implementation.

To compute µ̄ for the Gaussian copula, we set X = F−1
X (Φ(Z1)) and Y = F−1

Y (Φ(Z2)) where Z1, Z2 ∼ N(0, 1)
with E(Z1Z2) = ρ, then X ∼ µX and Y ∼ µY as required, and

P(X ≤ x, Y ≤ y) = P(F−1
X (Φ(Z1)) ≤ x, F−1

Y (Φ(Z2)) ≤ y)

= P(Z1 ≤ Φ−1(FX(x)), Z2 ≤ Φ−1(FY (y))) .

µ̄ is then given by

µ̄(x, y) =
∂2

∂x∂y
P(X ≤ x, Y ≤ y) = F (x)G(x)f(Φ−1(FX(x)),Φ−1(FY (y)))

where f is the joint density of Z1 and Z2, and F (x) = d
dx (Φ−1(FX(x))) and G(x) = d

dy (Φ−1(FY (y))).

Remark 2.8 Using the Magrabe formula with all combinations of the 5×5×5 (mid) implied vols in the table
below for the EUR-USD-GBP triangle leads to a range for the implied correlation for EUR/USD and GBP/USD of
[0.7445, 0.8156], and the same computation for the EUR-USD-JPY triangle leads to range for the implied correlation
between EUR/JPY and USD/JPY of [0.6074, 0.8677].

2.5.2 Entropically regularized optimal transport

If we modify the problem to P (µX , µY , µZ) := infµ∈P(µX ,µY ,µZ) Eµ( 1
ε c(X,Y ) + H(µ, µ̄)) for ε > 0 and some

measurable cost function c(x, y) (i.e. the entropically regularized optimal transport problem), then H(µ, µ̄) changes
to H(µ, µ̄)−−c(X,Y ) in (8), so (9) and (11) change to

P (µX , µY , µZ) = sup
u,v,w∈C1

EµX (u(X)) + EµY (v(Y )) + EµZ (w(Z))− logEµ̄(eu(X)+v(Y )+Y w(X/Y )− 1
ε c(X,Y )))

µ(x, y) = eu(x)+v(y)+yw( xy )e−
1
ε c(x,y)µ̄(x, y)

i.e. 1
ε c(x, y) gets absorbed into the reference measure (see [Nutz22],[Nutz21]). We do not pursue this problem

further in this article.

2.5.3 Interpretation of u∗, v∗, w∗ via exponential indifference pricing

Since U(x) = −e−x is strictly increasing, u∗ clearly also maximizes

−e−(Emkt(u(X)+v(Y )+Y w(X/Y ))−log Eµ̄(eu(X)+v(Y )+Y w(X/Y ))) = −e−E
mkt(u(X)+v(Y )+Y w(X/Y ))Eµ̄(eu(X)+v(Y )+Y w(X/Y ))
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so −u∗ maximizes

−e−E
mkt(−u(X)−v(Y )−Y w(X/Y ))Eµ̄(e−(u(X)+v(Y )+Y w(X/Y ))) = −Eµ̄(e−(u(X)+v(Y )+Y w(X/Y )−Emkt(u(X)+v(Y )+Y w(X/Y ))))

i.e. −u maximizes expected utility E(U(WT )) = E(−e−WT ) of terminal wealth WT using European options on all
three cross-rates under µ̄, if the u contracts are priced according to the market, so the interpretation is somewhat
artificial, since µ̄ and the market yield different prices for the European options on Z (see also Remark 13 in [Guy24],
where a similar remark to this applies).

2.6 A continuous martingale consistent with (µX , µY , µZ)

We can construct a Markov functional-type continuous (Markov) martingale model (Xt, Yt)t≥0 consistent with the
three marginals (µX , µY , µZ) using conditional sampling as in [BG24]. Specifically, we let

Xt = E(F−1
X (Φ(

WT√
T

))|FWt ) = E(f(WT )|FWt )

Yt = E(F−1
Y |X(Φ(

BT√
T

), XT )|FW,Bt ) = E(g(WT , BT )|FW,Bt )

for t ∈ [0, T ] (setting X = XT and Y = YT ), where W,B are two independent Brownian motions, Φ is the standard
Normal cdf, FX is the distribution function of µX , and FY |X(., x) is the conditional distribution function of Y given
X (which comes from the solution µ∗ to the Sinkhorn equations). f and g(., .) are shorthand for the functions
which appear inside the expectations in the middle eqs in each line but with the second function re-expressed in
terms of BT . To see that Y has the correct conditional law given X at time zero, we note that

YT = F−1
Y |X(Φ(

BT√
T

), X) = F−1
Y |X(V,X)

and B and W are independent, so the U [0, 1] random variables U = Φ(WT√
T

) and V = Φ(BT√
T

) are independent, so

we are sampling Y |X correctly.

This then allows us to price path-dependent quanto-type options whilst remaining consistent with µX , µY , and
µZ , and from Ito’s lemma, X and Y satisfy

dXt = fx(Wt, t)dWt = σX(Xt, t)dWt

dYt = fx(Wt, t)dWt + gx(Wt, Bt, t)dBt = σ1
Y (Xt, t)dWt + σ2

Y (Xt, Yt, t)dBt

for some local volatility functions σ1
Y , σ

2
Y . Note this approach is somewhat antisymmetic in so far as the Y process

is more complicated that the X process; a more symmetric approach would to be use the true Bass martingale
where (X,Y ) = (Vx(WT , BT ), Vy(WT , BT )) for some convex function V characterized in terms of the standard
stretched Brownian motions s2BM (see [BBHK20], [BST23], [AMP23]), however it seems not much is known about
the explicit form of V aside from V satisfying the Monge-Ampére equation (see footnote on this above).

2.7 A bivariate rough model consistent with (µX , µY , µZ)

We can construct a (potentially) more realistic rough volatility model consistent with (µX , µY , µZ) with a two-
dimensional version of the Bass-type martingale introduced in section 4 of [F24]:

Xt = E(φ(XT )|FW,Bt )

Yt = E(F−1
Y |X(FY (φ̃(X̃T )), XT )|FW,B,W̃ ,B̃

t )

where X and X̃ are the log stock price process for two (independent) generalized rough Bergomi models of the
form in Eq 5 in [F24] driven by two independent Brownian motions W,B and another two independent Brownians
W̃ , B̃ (with the latter two also independent of the first two), and φ (and φ̃) are chosen so that φ(XT ) ∼ µX and
φ̃(X̃T ) ∼ µY .

2.8 The cross-smiles problem as an optimal transport problem, finite tradeable op-
tions and linear programming

If we are happy to work with a discrete joint target law µij = P(Xi = xi, Yj = yj), we can re-cast our cross-smile
calibration problem as a finite-dimensional linear programming (LP) problem:

P = maxµ

m∑
i=1

n∑
j=1

µijc(xi, yj)
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Figure 5: Here we have computed multiple solutions to the FX cross-rate problem as an pure optimal transport
problem; specifically, we compute the maximal (and minimal) price of a single EUR-USD call option for each strike
on the horizontal axis, where we just include the five tradeable calls on each cross-rate EUR/JPY, USD/JPY and
EUR/USD in the calibration set (using the market bid and ask prices for each rate as inequality constraints in the
LP problem and no use of smile interpolation), plus the forward prices (with no bid-ask spread assumed for the
latter since this would be an order of magnitude smaller in practice). In the plot we have converted the max and
min call prices into their associated implied volatilities.

for some payoff function c(x, y), subject to market constraints
∑m
i=1

∑n
j=1 µij(xi−K)+ = cX,mkti ,

∑m
i=1

∑n
j=1 µij(yj−

K)+ = cY,mkti and
∑m
i=1

∑n
j=1 µij(xi −Kyj)+ = cZ,mkti plus forward constraints and µij ∈ [0, 1] (or we can work

with bid/offer inequality constraints). By stacking µ into a column vector (as opposed to its original formula-
tion as a matrix), we can transform this problem to the standard form for LP problems: maxx:Ax≤b;0≤xc

Tx; then
from the strong duality theorem for linear programming problems (see e.g. [Burke]), if P (or its dual problem
D = miny:AT y≥b,0≤yb

T y, i.e. to compute the cheapest superhedge for c(X,Y )) has a finite optimal value, then so
does the other, and these optimal values coincide.

We can compute P and D numerically in e.g. MATLAB or Python using the linprog command, and see [HN12],
[HK15] for explicit solutions in the case of the at-the-money forward-starting straddle which of course requires an
additional martingale condition (see next subsection), and [BJLR17] and [GMN17] for related problems). We
implement this approach in Fig 5 below; specifically just use the five market bid-ask call prices on each cross-rate
as inequality constraints and the forward prices as equality constraints.

2.9 Calibration to forward-starter options and another Markov functional-type model

If instead X = ST2
and Y = ST1

for a martingale stock price process S with 0 < T1 < T2, then our third marginal
constraint

∫
[0,∞)×[0,∞)

(x−Ky)+µ(dx, dy) =
∫

[0,∞)
(z−K)+µ3(dz) for all K ≥ 0 now corresponds to having observed

option prices for forward-starter options for all strikes rather than cross-rate options as above. In this case, we
require the additional martingale constraint which here reads that E(∆(S1)(S2−S1)) = 0 i.e. E(∆(Y )(Y −X)) = 0
for all ∆ ∈ Cb(R+) (using a denseness argument as in e.g. Lemma 5.5 in [F19]), which leads to a fourth equation:

0 =

∫ ∞
0

(x− y)eu(x)+yw( xy )+∆(y)(x−y)µ̄X(x)dx (16)

(see similar equation at top of page 9 in [Guy20]) for which we have to find the root ∆ = ∆(y) for each y. Note
we have divided out the ev(y) term since we have zero on the right hand side and this terms do not depend on the
variable of integration x, and the other three equations take a similar form to before but with an additional hedging
term in the exponent:

u(x) := − log

∫ ∞
0

ev(y)+yw( xy )+∆(y)(x−y)µY (y)dy

v(y) := − log

∫ ∞
0

eu(x)+yw( xy )+∆(y)(x−y)µX(x)dx

µZ(z) =

∫ ∞
0

eu(x)+v( xz )+ x
zw(z)+∆( xz )(x− xz )x

2

z3
µ̄(x,

x

z
)dx (17)
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A martingale model consistent with the three marginals here then takes the form

St = E(F−1
ST1

(Φ(
WT1√
T1

))|FWt ) = E(f(WT1
)|FWt ) (t ∈ [0, T1])

St = E(F−1
ST2
|ST1

(Φ(
WT2

−WT1√
T2 − T1

), ST1
)|FW,Bt ) = E(g(WT2

, ST1
)|FWt ) (T1 < t ≤ T2)

where W is a standard Brownian motion, and S is continuous on [0, T2] (including at T1). Note this is not the Bass
martingale because it is not of the “additive” form St = E(g(Z + BT2

− BT1
)|FWt ) for some random variable Z

which is independent of W as in [CL21] (see also Definition 1.2 in [BST23]).

2.10 The classical quadratic cost function and quanto forward contracts

For the optimal transport minimization problem with the classical quadratic cost function c(x, y) = (x− y)2, using
a Lagrangian formulation with L(x, y) = α(x) + β(y)− (x− y)2 and imposing the touch conditions L(x, p(x))) = 0
and Ly(x, p(x)) = 0 as in Section 2.2 in [HK15] leads to the following ODEs for the optimal subhedge (α, β):

2x− 2p(x) + β′(p(x)) = 0

−(x− p(x))2 + α(x) + β(p(x)) = 0

and if e.g. X ∼ U [−1, 1] and Y ∼ U [−2, 2], then for Y to equal p(X) we can only have that p(x) = ±2x. If
p(x) = 2x (i.e. the co-monotonic coupling in this case), then L(x, y) ≤ 0 for all x ∈ [−1, 1] so we have a subhedge
for the quadratic contract, and α(x) = −x2, β(y) = 1

2y
2, and the minimal price of the quadratic contract is

P =

∫ 1

−1

1

2
(x− p(x))2dx

and this is also the maximal subhedging cost:

D =

∫ 1

−1

α(x)µX(dx) +

∫ 2

−2

β(y)µY (dy) =
1

3

i.e. duality holds (i.e. P = D).

Moreover, since (x− y)2 = x2 − 2xy + y2, (ignoring the 2) this corresponds to maximizing E(XY ) which is the
maximum price of quanto forward contract which pays the price of asset X at time T but in currency Y , e.g pays
the EUR/USD rate at T but in pounds, and for the quanto forward this maximal price is∫ 1

−1

1

2
x(x− p(x))dx =

2

3
.

Conversely, if p(x) = −2x (the counter-monotonic coupling) then α(x) = 3x2, β(y) = 3
2y

2, and L(x, y) ≥ 0 for all
x ∈ [−1, 1] so we have a superhedge for the quadratic contract and the two extremal prices computed above change
to 3 and - 2

3 respectively in this case.

2.11 Calibrating Markov stochastic volatility models to SPX and VIX options using
HJB equations

We now consider a Markov stochastic volatility model of the form

dSt = St
√
VtdBt

dVt = κ(θ − Vt)dt + β(St, Vt, t)dWt

where W and B are two Brownian motions with dWtdBt = ρdt. The VIX index at time t is (theoretically) defined

as VIX2
t := 1

∆E(
∫ t+∆

t
Vsds|Ft) which in practice is inferred from option prices, where ∆ = 1/12 i.e. 1 month. For

a V process with a drift of this form, we can easily show that VIX2
t = aVt + b, for two constants a and b that only

depend on κ, θ and ∆, using the expression for E(Vt|Vs) for s ≤ t (see e.g. section 1.6 in [FS23]). This also means
we can observe V directly if the model is correct and we know κ and θ.

We wish to find a β(S, V, t) so this model calibrates to n European call options and m VIX options at a fixed
maturity T with market prices (ci)

n
i=1 and (cvj )

m
j=1 respectively. From standard theory we know that

u(S, v, t) = E(

n∑
i=1

wi(ST −Ki)
+ +

m∑
j=1

wvi (VIXT −Kv
j )+ + α

∫ T

0

(β(St, Vt, t)− νV pt )2dt |St = S, Vt = v) (18)
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(for p ∈ (0, 1]) satisfies the backward Kolmogorov equation

Lu := ut +
1

2
S2V uSS + κ(θ − v)uv +

1

2
β2uvv + ρS

√
vβuSv + α(β − νvp)2) = 0

with u(S, v, T ) =
∑n
i=1 wi(x −Ki)

+ +
∑m
i=1 w

v
i (V −Kv

j )+ +
∑m
j=1 wi(

√
aV + b −Kv

j )+. We can consider a more
general model where

dVt = κ(θ − Vt)dt + βtdWt

where βt is any FW,Bt -adapted process, and then ask how do we optimally choose β so as to minimize
∑n
i=1 wiE((XT−

Ki)
+) + ...+ αE(

∫ T
0

(βt − νV pt )2dt).
This approach penalizes the “distance” from a reference stochastic volatility model, which is the Hull-White

model when p = 1 and Heston when p = 1
2 . From standard stochastic control theory, formally at least we know the

solution satisfies the HJB eq: minβ Lu = 0. Then (assuming we can interchange the sup and inf)

supw inf
β∈A

(−
∑
i

w̃ic̃i +
∑
i

w̃iEβ(fi(XT , VT )) + αEβ(

∫ T

0

(βt − νV pt )2dt)

= inf
β∈A

supw̃i(...)

= inf
β∈A :Eβ((XT−Ki)+)=ci,Eβ((

√
aVT+b−Kv

j )+)=cvj

αEβ(

∫ T

0

(βt − νV pt )2dt) (19)

(where we have aggregated the payoffs, weights and market prices of the European and VIX payoffs into single
vectors f , w̃ and c̃ in the first line here to ease notation), and the third line line follows because the inner sup in the
middle line is +∞ if for a particular a ∈ A the options are not correctly calibrated, since e.g. we can choose wi to
be arbitrarily large if

∑n
i=1 wiEβ((XT −Ki)

+)−
∑n
i=1 wici > 0, and vice versa, and similarly for the VIX options.

The main contributions on this problem are due to Guo,Loeper,Ob lój&Wang et al.(see [GLW22],[GLOW22]),
and conceptually similar ideas for a specific case are considered in Henry-Labordére[HL19] and [Guy22] using an
entropic penalty function which only allows Girsanov perturbations from the reference model. These articles do not
appear to have noticed/used the simple relation VIX2

t = aVt + b to simplify this problem.

The final line in (19) is the model-independent lower bound for a contract which pays α
∫ T

0
(βt−νV pt )2dt at time

T , subject to matching the market prices of the n given European options and m VIX options. If duality holds i.e.
inf sup = sup inf, this is also the maximum subhedging cost of this contract, using just cash, dynamic trading in
X and a static position in the stock and VIX options. Note when we minimize here we are also including rough
models since we do not assume a priori that βt is Markov, but the optimal model is Markovian by the usual “rules”
of how the HJB eq works, because the reference model is Markovian. One can generalize this methodology to use
a rough reference model, but one ends up with an intractable non-standard FBSDE.

If we have an additional SPX options to fit at a later maturity T2 > T , then we need a nested PDE scheme to
solve this problem, i.e. we solve the PDE on [T, T2] with the boundary condition for the weights for the additional
European options expiring at T2. This then gives us a (non-trivial/non-explicit) boundary condition at time T and
we then add-on the usual boundary condition for the SPX and VIX options expiring at the earlier maturity T . One
can use explicit FD scheme or semi-explicit ADI scheme, e.g. the Douglas-Rachford scheme.
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A Proof of Lemma 2.7

We first show convexity: consider (µX , µY , µZ) and (µ2
X , µ

2
Y , µ

2
Z). Then there exists a µ ∈ P(µX , µY , µZ) and a

µ2 ∈ P(µ2
X , µ

2
Y , µ

2
Z) such that

P (µX , µY , µZ) ≥ H(µ, µ̄) − ε

P (µ2
X , µ

2
Y , µ

2
Z) ≥ H(µ2, µ̄) − ε .

Let α ∈ [0, 1] and ᾱ = 1− α. Then αµ+ ᾱµ2 ∈ P(αµX + ᾱµ2
X , αµY + ᾱµ2

Y ;αµZ + ᾱµ2
Z), so

P (αµX + ᾱµ2
X , αµY + ᾱµ2

Y , αµZ + ᾱµ2
Z) ≤ H(αµ+ ᾱµ2, µ̄)

= Eαµ+ᾱµ2(log(α
dµ

dµ̄
+ ᾱ

dµ2

dµ̄
))

= Eµ̄((α
dµ

dµ̄
+ ᾱ

dµ2

dµ̄
) log(α

dµ

dµ̄
+ ᾱ

dµ2

dµ̄
))

≤ Eµ̄(α
dµ

dµ̄
log

dµ

dµ̄
+ ᾱ

dµ2

dµ̄
log

dµ2

dµ̄
) (using convexity of z log z)

= αH(µ, µ̄) + ᾱH(µ2, µ̄)

≤ αP (µX , µY , µZ) + ᾱP (µ2
X , µ

2
Y , µ

2
Z) + αε + ᾱε

and the required convexity follows after sending ε→ 0. To establish lower semicontinuity, let (µmX , µ
m
Y , µ

m
Z )
W→ (µ0

X , µ
0
Y , µ

0
Z).

By definition of the inf, there exists a µm ∈ P(µmX , µ
m
Y , µ

m
Z ) such that

H(µm, µ̄) − 1

m
≤ P (µmX , µ

m
Y , µ

m
Z ) ≤ H(µm, µ̄) .

Since 1
m →∞ as m→∞, this implies that

lim inf
m→∞

P (µmX , µ
m
Y , µ

m
Z ) = lim inf

m→∞
H(µm, µ̄)

and the final liminf is a true limit along a subsequence. But from the previous Lemma 2.6, µm tends weakly to
some µ0 ∈ P(µ0

X , µ
0
Y , µ

0
Z) along a further subsequence mk. Then since H(., µ̄) is LSC, we see that

lim inf
m→∞

P (µmX , µ
m
Y , µ

m
Z ) = lim inf

k→∞
H(µmk , µ̄) ≥ H(µ0, µ̄) ≥ P (µ0

X , µ
0
Y , µ

0
Z) .

B Proof of Proposition 2.8

Following the proof of Theorem 2.4 in [GTT16], we first extend the definition of P (.) to the linear space M of finite
signed measures on R, setting P (µ1, µ2, µ3) = +∞. Then P is still convex, and P is LSC because (by Lemma 2.6)
we know that Pc is open; thus by the Fenchel-Moreau theorem (see e.g. Theorem 4.1 in [GTT17]), we have that
P (µ1, µ2, µ3) = P ∗∗(µ1, µ2, µ2) . But we also have

sup
u,v,w∈C1

inf
µ∈P(R+×R+)

(H(µ, µ̄)− Eµ(u(X) + v(Y ) + Y w(Z)) + EµX (u) + EµY (v) + EµZ (w))

= sup
u,v,w∈C1

[EµX (u) + EµY (v) + EµZ (w) + inf
(µ1,µ2,µ3)∈P

inf
µ∈P(µ1,µ2,µ3)

(H(µ, µ̄)− Eµ1(u)− Eµ2(v)− Eµ3(w))]

= sup
u,v,w∈C1

[EµX (u) + EµY (v) + EµZ (w) + inf
µ1,µ2,µ3∈P(R+)

(P (µ1, µ2, µ3)− Eµ1(u)− Eµ2(v)− Eµ3(w)]

= sup
u,v,w∈C1

[EµX (u) + EµY (v) + EµZ (w) + inf
(µ1,µ2,µ3)∈M

(P (µ1, µ2, µ3)− Eµ1(u)− Eµ2(v)− Eµ3(w)]

= sup
u,v,w∈C1

[EµX (u(X)) + EµY (v(Y )) + EµZ (w(Z))− P ∗(u, v, w)] = P ∗∗(µX , µY , µZ)

where C1 is defined above.
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