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Abstract

For a generalized rough Bergomi-type model, we formally show how to replicate a VIX option with dynamic
trading in a VIX future, and a European option with dynamic trading in the underlying and a VIX future, using
the Clark-Ocone formula from Malliavin calculus. As a by-product we also compute the minimal variance hedge
for a European call when we can only dynamically hedge with the underlying which is relevant in practice since
dynamic trading with a VIX future will incur a larger bid-offer spread, and these results are easily extended to
mixed/two-factor rough Bergomi models which give better fits to VIX smiles in practice. This builds on the work
of Keller-Ressel[KR22] who derives asymptotic approximations for the latter, and as a by-product we obtain a
variant of the classical Bass martingale (in this case a path-dependent rough local-stochastic volatility model)
with an exact fit to target laws µ1, µ2, ... at multiple maturities T1 < T2 < .. (with µ1, µ2, .. in convex order)
where the volatility process can be characterized explicitly using the Clark-Ocone formula. We also explain how
to adapt the well known Renault-Touzi[RT96] conditioning trick to reduce the sample variance of Monte Carlo
estimates for the European call hedge at each time instant.1

1 Introduction

The Rough Bergomi (rBergomi) model introduced in [BFG16] has been a popular, tractable and much cited rough
volatility model. For the rBergomi model and the original Rough Fractional Stochastic Volatility (RFSV) model
driven by fBM in [GJR18], the log of the instantaneous variance process V is Gaussian so the VIX index is
approximately log-normally distributed and hence produces VIX smiles which are almost flat, not the concave
upward-sloping smiles that we typically see in practice. A skewed Rough Bergomi model with a linear combination
of exponential terms with two different ν-values as discussed in [Guy21] (see also [JMP21] for extensions/variations
e.g. using two different H-values and [AL24]) can often fit a single-maturity short-maturity VIX smile very well
but if we do this it typically struggles to achieve sufficient at-the-money skew for options on the SPX itself with
the same maturity (see [Guy21] and we have also seen this phenomenon first hand in testing).

Asymmetric GARCH(1,1) (also known as QGARCH) models with i.i.d. symmetric or skewed t-distributed
residuals typically fit daily historical returns data much better than standard rough volatility models across a wide
range of assets when we apply goodness of fit tests (Kolmogorov-Smirnov, Shapiro-Wilks etc) to the residuals implied
by daily returns using maximum likelihood estimates for the model parameters which are easily computed (see
e.g. [F23II], [NPP14]). These techniques are well known in the econometrics literature, but aside from [F23] we have
not seen any articles which examine maximum likelihood estimates and p-values for rough models. Unfortunately
the distribution of the MLEs when we run synthetic simulations of the QGARCH(1,1) model with the fitted MLE
parameters are typically much wider than we would ideally like. The solution to this issue in principle is just to
use decades of data to reduce the sample variance of the MLEs (assuming the MLEs are consistent estimators)
but obviously the further we go back in time in practice the more likely that the dynamics of the asset will have
changed, and using intraday data is too time-inhomogenous due to markets opening/closing, lunch etc. For many
assets an excellent fit is obtained just using the usual symmetric t-distribution for the residuals but for the SPX we
typically need the non-symmetric t-distribution which has an additional asymmetry parameter.

Rough volatility models are typically much better than the aforementioned 1-day timestep GARCH(1,1) models
at fitting observed option prices, specifically the steep short-maturity implied volatility skews we observe in practice
at e.g. 1 month maturity and VIX option smiles, so there appears to be something of a disparity between option
prices and historical behaviour of the assets they are written which may lead to statistical arbitrage opportunities.

The quadratic rough Heston model introduced in [GR20] is complete as it is driven by a single Brownian motion,
and there is an explicit formula for sampling the VIX (cf. chapter 6.2 in [Rom22b]), which is obtained via the
solution to a linear VIE in terms of the resolvent of the fractional kernel of the Z process. Using the Gamma kernel
K(t) = e−λttα−1, the model often has an uncanny ability to fit close-to-1-month and 2 month SPX and 1month VIX
smiles simultaneously very well with only 5 parameters (α, a, c, λ and θ, setting b = 0 W.L.O.G.) and also fitting

1We thank Alan Lewis as always for many stimulating discussions.
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Z0, but calibrated H = α − 1
2 values can bounce around from as high as 0.14 to as low as 0.04 between Jan 2023

to Jan 2024 so out-of-sample fits typically do not work well. Exact hedging for the (non-quadratic) rough Heston
model is formulated in [ER18], where the call option price satisfies an infinite-dimensional PDE in terms of a Frechet
derivative with respect to the entire forward variance cuve ξt(u) which evolves as dξt(u) = 1

λf
α,λ(u − t)ν

√
VtdBt

where fα,λ is the Mittag-Leffler function, but it is rather difficult to implement this in practice since the call payoff
also has to be re-written as a Fourier integral involving complex exponential contracts, each of which can then in
turn be replicated with dynamic trading in the underlying and a continuum of forward variance contracts.

Section 2.2 in Keller-Ressel[KR22] gives a concise background on the mean-variance hedge so we do not repeat
this here, and derives asymptotic approximations for the mean variance hedge using the original SABR formula
for the SABR model with β = 1 and the recent rough SABR formula from [FG22] for the rough Bergomi case
(see also section 4.1 in [Schw95] for the original formulation of the discrete-time variance optimal hedge). For the
QGARCH(1,1) model discussed above, we can also use deep learning to approximate the mean-variance hedge by
exploiting the Markov nature of the model, essentially just adding an extra dimension to existing code which uses
deep hedging to approximate the classical Black-Scholes hedging strategy. One can also attempt to price options
with transaction costs using deep hedging with exponential indifference pricing but for this we need to keep track
of the agent’s risky wealth as additional state variable (see many articles by Buehler et al. on this theme).

[CL21] shows how to calibrate a (one-dimensional) Bass[Bass83] martingale to given marginals at two different
maturities; fitting a single maturity is elementary, but jointly fitting to two maturities requires an iterative fixed
point scheme of the form Fn+1 = AFn for some non-linear integral operator A (see Theorem 2.1 in [CL21]) where A
is a map from the space of distribution functions on R to itself. The aforementioned fixed point scheme just requires
numerically computing two Gaussian convolution integrals, inverting a cdf and then iterating the procedure, for
which [AMP23] establish existence and uniqueness (and linear convergence) results, and (in our experience) the
scheme converges very quickly in practice.

The one-dimensional Bass martingale is also the solution to the martingale optimization problem

infX∈Mc:Xt=X0+
∫ t
0
σsdWs:XT∼µ E(

∫ T
0

(σt−1)2dt), (whereMc is the space of continuous martingales) which is clearly

also the solution to supX∈Mc:Xt=X0+
∫ t
0
σsdWs:XT∼µ E(

∫ T
0
σtdt) (see e.g. introduction of [BST23] and section 1.3

in [BBHK20]); hence the Bass martingale is a stretched Brownian motion2, which (formally at least) can also be

dualized as supf∈Cb(R)(−
∫
R fdµ+ infσ∈A(E(f(XT ) +

∫ T
0

(σt− 1)2dt)) (for a suitable space of adapted processes A)
in the spirit of [GLOW22],[GLW22], which leads to a HJB equation for the inner inf. The [GLOW22] methodology
can in principle be generalized to work with a simple rough reference model using a variational approach, but one
ends up with seemingly intractable non-standard FBSDE.

2 Hedging VIX options

Let W denote a standard Brownian motion and Ft = FWt , and consider a generalized Rough Bergomi model for a
log stock price process Xt = logSt for which the squared spot volatility Vt process satisfies

Vt = ξ0(t)eZt− 1
2 Var(Zt) (1)

under a risk-neutral measure Q, where Zt =
∫ t

0
κ(t− s)dWs for some κ ∈ L2([0, T ]), so Var(Zt) =

∫ t
0
κ(t− s)2ds =∫ t

0
κ(s)2ds. We can easily extend the results in this paper to the case when Vt = ξ0(t)eZt− 1

2 c
2Var(Zt). A popular

choice is the Gamma kernel: κ(t) = tH−
1
2 e−θt for H ∈ (0, 1

2 ] and θ ≥ 0, where the roughness and ergodicity of Z
are controlled by H and θ respectively. Then we can easily verify that ξt(u) := E(Vu|Ft) satisfies

ξt(u) = ξ0(u) e
∫ t
0
κ(u−r)dWr − 1

2

∫ t
0
κ(u−r)2dr

and

dξt(u) = κ(u− t)ξt(u)dWt (2)

so ξt(u) is a driftless time-inhomogenous Geometric Brownian motion for each u and ξt(u) is an Ft-martingale.

The VIX index is a well known estimator of future volatility, which is quoted in the market. Theoretically the

value of the VIX index time is t ≤ T is given by VIXt =
√

1
∆

∫ t+∆

t
ξt(u)du for some ∆ > 0. Then we can consider

an option on the VIX which pays

F = φ(VIXT )

at time T (and we assume interest rates are zero for simplicity). For the specific case of a VIX call option,
φ(x) = (x −K)+ and φ′(x) = 1x>k, even though φ′ is not Lipshitz, we can compute Malliavin derivatives using a
suitable approximation procedure (see e.g. end of page 333 in Nualart[Nua06]).

2See [BST23], [BBST23] and [BBHK20] for more on this, and extension to higher dimensions and randomized X0
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From the Clark-Ocone formula, we have

F = E(F ) +

∫ T

0

E(DW
t F |Ft)dWt (3)

where DW
t F is the Malliavin derivative of F with respect to W .

Recall that we compute DW
t F by perturbing W by a function H(t), such that

∫ T
0
h(t)2dt <∞ where h(t) = H ′(t)

and h ∈ L2([0, T ]). We denote the perturbed value of F by F (W + εH). Then DW
t F is the (in general) random

function such that

lim
ε→0

1

ε
(F (W + εH)− F (W )) =

∫ T

0

DW
t F · h(t)dt

if such a function exists. For our F = φ(VIXT ) payoff here, formally using the chain rule, we see that

DW
t F = φ′(VIXT )DW

t VIXT = φ′(VIXT )DW
t

√
VIX2

T = φ′(VIXT )
1

2
(VIX2

T )−
1
2DW

t (VIX2
T )

=
φ′(VIXT )

2VIXT
·DW

t

1

∆

∫ T+∆

T

ξT (u)du

=
φ′(VIXT )

2VIXT
· 1

∆

∫ T+∆

T

DW
t ξT (u)du . (4)

Using that ξt(u) = ξ0(u) e
∫ t
0
κ(u−r)dWr − 1

2

∫ t
0
κ(u−r)2dr we see that

lim
ε→0

1

ε
(ξT (u)(W + εH)− ξT (u)(W )) = ξT (u) ·

∫ T

0

κ(u− r)h(r)dr .

Then we can just read off DW
r ξT (u) as whatever function is in front of h(r); in this case

DW
t ξT (u) = ξT (u)κ(u− t)

hence

DW
t F =

φ′(VIXT )

2VIXT
· 1

∆

∫ T+∆

T

ξT (u)κ(u− t)du (5)

and recall that VIX2
T = 1

∆

∫ T+∆

T
ξT (u)du. There are two integrals in this expression, which can can be computed

using Gauss-Legendre quadrature; specifically we need to jointly sample ξT (u) at the n-point Gaussian-Legendre
quadrature abcissae values (uni )ni=1 values for the interval [T, T + ∆] and log ξT (u) are jointly Gaussian, so in
principle we can use the Cholesky decomposition for this although in practice this often fails because the covariance
matrix for this is close to singular, so we resort to short time steps instead.

If φ(x) = x, then a VIX call is just a VIX future, so theoretically we can replicate a VIX option using a VIX
future, by holding

E(φ
′(VIXT )
2VIXT

· 1
∆

∫ T+∆

T
ξT (u)κ(u− t)du|FWt )

E( 1
2VIXT

· 1
∆

∫ T+∆

T
ξT (u)κ(u− t)du|FWt )

VIX futures at each time instant t. This may be desirable in practice since the bid-offer spread on VIX futures
(in percentage terms) may be lower than for VIX options or a variance swap synthetically replicated with a finite
number of Europeans. As of 22 Dec 2023, the bid-ask spread on VIX futures was $0.05 with the VIX index itself
at 13.50, and the spread on close-to-the-money VIX options was $0.03 to $0.04.3

3 Hedging European options

Now consider the standard Rough Bergomi model for a log stock price process Xt:

Xt = −1

2

∫ t

0

Vsds +

∫ t

0

√
Vs(ρdWs + ρ̄dBs)

Vt = V0e
∫ t
0
κ(t−s)dWs− 1

2

∫ t
0
κ(s)2ds (6)

3Data obtained from CBOE data services and Charles Schwab.
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Figure 1: Here we have plotted the price of a VIX call option (blue) and the wealth process for the Clark-Ocone

replication strategy (red) for a standard rough Bergomi model with κ(t) = νtH−
1
2 and V0 = .04, H = 0.1, η = 1,

T = 1
12 and strike K = .2, and we see that the paths are more or less indistinguishable. We used 500 time steps for

the single “outer” Monte Carlo path and 200 time steps with 250,000 paths and antithetic sampling for the nested
Monte Carlo at each time point to compute Et(DW

t F ) (see Eq (5)). We have used 20 Gauss-Legendre quadrature
points to compute the VIX here, and we see that the blue and red lines are almost indistinguishable.

where ρ̄ =
√

1− ρ2 and B is another Brownian motion independent of W , and we now define Ft := FW,Bt , and
we assume ρ ∈ [−1, 0] which ensures that S is a true Ft-martingale (see Gassiat[Gass19] for details). Now let
Φ(W,B) := φ(XT ), i.e. the payoff of a general European-type option. Then

lim
ε→0

1

ε
(Φ(W,B + εH)− Φ(W,B)) = ρ̄

∫ T

0

√
Vth(t)dt

so we can read off that

DB
t XT = ρ̄

√
Vt . (7)

Similarly

lim
ε→0

1

ε
(Vt(W + εH)− Vt(W )) = Vt

∫ t

0

κ(t− r)h(r)dr

so DW
r Vt = κ(t− r)1r≤tVt and DW

r

√
Vt = 1

2V
− 1

2
t κ(t− r)1r≤tVt = 1

2κ(t− r)1r≤t
√
Vt. Thus

DW
r XT = −1

2

∫ T

0

DW
r Vsds +

∫ T

0

DW
r (ρ

√
VsdWs + ρ̄

√
VsdBs)

= −1

2

∫ T

0

κ(s− r)1r≤sVsds +
1

2
ρ̄

∫ T

0

κ(s− r)1r≤s
√
VsdBs +

1

2
ρ

∫ T

0

κ(s− r)1r≤s
√
VsdWs + ρ

√
Vr

so

DW
t XT = −1

2

∫ T

t

κ(s− t)Vsds +
1

2
ρ̄

∫ T

t

κ(s− t)
√
VsdBs +

1

2
ρ

∫ T

t

κ(s− t)
√
VsdWs + ρ

√
Vt . (8)

Then from the two-dimensional Clark-Ocone formula, we have

F = E(F ) +

∫ T

0

φtdBt +

∫ T

0

ψtdWt (9)

where F = φ(XT ), φt = E(DB
t F |Ft) and ψt = E(DW

t F |Ft), and hence

Ct := E(F |Ft) = E(F ) +

∫ t

0

φsdBs +

∫ t

0

ψsdWs (10)

and recall that Ft := FW,Bt . From the chain rule, we know that

DB
t F = φ′(XT )DB

t XT , DW
t F = φ′(XT )DW

t XT (11)
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and we derived explicit expressions for DB
t XT and DB

t XT in (7) and (8) above.

Then using that

dSt = St
√
Vt(ρdWt + ρ̄dBt)

dCt = ψtdWt + φtdBt

we see that

d〈C, S〉t = St
√
Vt(ρψt + ρ̄φt)dt

so the minimal variance stock holding at time t is

θt =
d〈C, S〉t
d〈St〉

=
ρψt + ρ̄φt

St
√
Vt

(see also section 10.4 in [CT04] for general background on mean variance hedging and application to exponential
Lévy models).

3.1 Variance reduction for computing the hedge amount using Monte Carlo

A European call option corresponds to φ(x) = (ex − ek)+, and from the tower property we can reduce the sample
variance of the numerical estimation of E(DW

t F |Ft) with Monte Carlo by conditioning on B (similar to the classic
Renault-Touzi[RT96] conditioning trick) as

E(DW
t F |Ft) = E(E(DW

t F |FWT )|Ft)) = E(E(φ′(XT )DW
t XT )|Ft)

and we can use that XT and DW
t XT are bivariate Normal conditioned on FWT to compute this expectation explicitly

in terms of the Erf function in e.g. Mathematica (we omit the details here for the sake of brevity). As usual this
trick is more effective when |ρ| is smaller, and we gain no benefit when |ρ| = 1. We can also use antithetic sampling,
even if |ρ| = 1. It does not appear trivial to adapt this to the two-maturity case as in [CL21] since the proof of the
main result their relies heavily on the Markov structure of the problem.

4 Exact calibration to single or multiple smiles - a rough Bergomi Bass
model

If |ρ| < 1 and φ is chosen so F = φ(XT ) has a given target law µ on (0,∞) with a strictly positive density 4 with∫∞
0
xµ(x)dx = S0 then setting St = E(F |Ft) in (10) yields a martingale price process (St)t∈[0,T ] with ST ∼ µ. In

particular, since DB
t XT = ρ̄

√
Vt (Eq (7)) and DW

t XT both include a
√
Vt term (Eq (8)), and DB

t F = φ′(XT )DB
t XT

(see Eq (11)), we see this model has a rough volatility component if κ(t) ∼ const.× t 1
2−H (for H ∈ (0, 1

2 )) as t→ 0,
because in this case log Vt is a Gaussian process which is H − ε Hölder continuous for ε ∈ (0, H). We can view
the E(φ′(XT )|Ft) term in φt = E(DB

t F |Ft) as a local volatility component since it can be re-written in terms of
Xt. We can then also compute exact or mean-variance hedge quantities for options on XT for this model using the
same computations as Section 3.

If we wish to fit a rough Bergomi Bass model to two target densities µ and ν at maturities T and T2 (both with
mean S0, with 0 < T < T2 and µ and ν in convex order), we first require a coupling π ∈ Cpl(µ, ν) in the martingale
transport MT(µ, ν) of µ and ν, i.e. such that

∫
yπx(dy) = x where π(dx, dy) = πx(dy)µ(dx), so E(ST2 |ST ) = ST

(see e.g. section 2.2 of [BST23] for clarification on this notation) which gives us a a conditional distribution function
FST2

|ST
for ST2

given ST . A viable/sensible choice for π could be to use the two-maturity Bass martingale discussed
in [CL21] (see also [BBHK20]), or the Carr Local Variance Gamma model[Carr09].

By adapting the approach used in [BG24], a martingale model consistent with the two marginals here then takes
the form

St = E(φ(XT )|FW,Bt ) (t ∈ [0, T ])

St = E(F−1
ST2
|ST

(FX̃T2−T
(X̃T2−T ), ST )|FW̃ ,B̃

t−T ) (t ∈ (T, T2]) (12)

where X̃ is the log stock price for another rough Bergomi model of the form in (1) (independent of X, also driven by
two independent Brownians W̃ and B̃). S is continuous on [0, T2], and in particular at t = T since E(ST2

|ST ) = ST
by construction. Note that the instantaneous variance process V for this model will not in general be continuous
at T , but this is also the case for the standard two-maturity Bass martingale in [CL21], and we can also apply
the Clark-Ocone formula to S for t ∈ (T, T2], and we can extend this construction to n maturities using the same
conditional sampling trick.

4we can do this by setting φ(x) = F−1
µ (FXT

(x)), where Fµ is the distribution function of µ and FXT
is the distribution function of

XT ; then φ is strictly monotonically increasing because Fµ and FXT
are strictly monotonically increasing, since µ has a strictly positive

density by assumption and XT has a strictly positive density when |ρ| < 1 because XT |V0≤t≤T is conditionally Gaussian.
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5 The SABR model

We now consider a classical SABR model with β = 1:

dSt = StYtdWt , dYt = νYtdBt

under a risk-neutral measure Q, where W , B are two standard Brownians with dWtdBt = ρdt. Then we know that
the mean-variance hedge for a call option is given by

θt =
d〈C, S〉t
dS2

t

=
S2
t Y

2
t CS(St, Yt, t) + ρStYtνYtCy(St, Yt, t)

S2
t Y

2
t

= CS(St, Yt, t) +
ρνCy(St, Yt, t)

St

where C(S, y, t) := EQ((ST − K)+|St = S, Yt = y). We can avoid directly having to estimate CS(St, Yt, t) with
Monte Carlo and numerical finite differences (which will lead to a noisy estimate in practice) by instead appealing
to the spatial homogeneity property of the model:

C(λS, λK) = λC(S,K)

where here C(S,K) denotes the price of a call option as a function of the initial stock price S and strike K with all
other parameters fixed. If we differentiate this expression with respect to λ and set λ = 0, we get

SCS + KCK = C

and CK = −EQ(1ST>K) is minus the price of a digital option, so CS = (C −KCK)/S. We also note that

∂St(ω)

∂Y0
= St

∫ t

0

eνBs− 1
2ν

2s(ρdBs + ρ̄dWs)

so ∂
∂Y0

(St −K)+ = 1St>K
∂St

∂Y0
(since St admits a density because St is conditionally log-normal if we condition on

(Ys)0≤s≤t) so P(St = K) = 0, and we can (formally) use that

∂

∂Y0
E((ST −K)+) = E(

∂

∂Y0
(ST −K)+) = E(1St>K

∂St
∂Y0

)

to compute the left hand side by computing the right hand side.
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