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AN OBJECTIVISTACCOUNT OF PROBABILITIES
IN STATISTICAL MECHANICS

D. A. Lavis

1 Introduction

The foundations of classical (meaning nonquantum) statistical mechanics can be
characterized by the triplet

(i) classical mechanics → (ii) probability → (iii) thermodynamics,

and the primary-level classification of theories of probability is between

(a) epistemic interpretations, in which probability is a measure of the degree of
belief (rational, or otherwise) of an individual or group, and

(b) objective interpretations, in which probability is a feature of the material world
independent of our knowledge or beliefs about that world.

Hoefer (2007, p. 550) offers the opinion that ‘the vast majority of scientists using
non-subjective probabilities overtly or covertly in their research feel little need to
spell out what they take their objective probabilities to be.’ My experience (as a
member of that group) accords with that view; indeed it goes further, in finding
that most scientists are not even particularly interested in thinking about whether
their view of probability is objective or subjective. The irritation expressed by
Margenau (1950, p. 247) with ‘the missionary fervor with which everybody tries
to tell the scientist what he ought [his italics] to mean by probability’ would not be
uncommon. The relevant question here is, of course, the meaning of probability
in statistical mechanics, and the approach most often used in textbooks on
statistical mechanics (written for a scientific, as distinct from philosophically
inclined, audience) is to either sidestep discussion of interpretations1 or offer
remarks of a somewhat ambiguous nature. Compare, for example, the assertion
by Tolman (1938, pp. 59–60) that in ‘the case of statistical mechanics the typical
situation, in which statistical predictions are desired, arises when our knowledge
of the condition of some system of interest [his italics] is not sufficient for a
specification of its precise state’ with the remark two pages later that by ‘the

1See, for example, Lavis & Bell 1999, Ch. 2.
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probability [his italics] of finding the system in any given condition, we mean
the fractional number of times it would actually be found in that condition on
repeated trials of the same experiment.’

The intention of this essay is to propose the use of a particular hard-objective,
real-world chance, interpretation for probability in statistical mechanics. This
approach falls into two parts and is applicable to any system for which the
dynamics supports an ergodic decomposition. Following von Plato 1989b we
propose the use of the time-average definition of probability within the mem-
bers of the ergodic decomposition. That part of the program has already been
presented in Lavis 2005 and 2008. It is now augmented by the second part,
in which a version of Cartwright’s (1999) nomological machine is used to as-
sign probabilities over the members of the decomposition. It is shown that this
probability scheme is particularly well adapted to a version of the Boltzmann
approach to statistical mechanics, in which the preoccupation with the tem-
porally local increase in entropy is replaced by an interest in the temporally
global entropy profile, and in which the binary property of being or not being
in equilibrium is replaced by a continuous equilibrium-like property which is
called ‘commonness.’ The place of the Gibbs approach within this program is
also discussed.

2 The dynamic system

In this section we introduce the dynamic structure of the system and the idea of
ergodic decomposition.2

2.1 Dynamic flow and invariant subsets

The states of the dynamic system are represented by points x ∈ Γ, the phase
space of the system, and the dynamics is given by a flow which is a semigroup
{ φt | t≥0 } of automorphisms on Γ, parameterized by time t ∈ Z? or R?. The
points of Γ can also form a continuum or be discrete. The Hamiltonian motion
of the particles of a gas in a box is a case where both Γ and t are continuous, the
baker’s gas (see, for example, Lavis 2005) is a case where Γ is continuous and t is
discrete, and the ring model of Kac (1959) (see also Lavis 2008) is a case where
both Γ and t are discrete.

In the following we shall, for simplicity, restrict most of the discussion to
systems, like that of Ex. 2 below, where Γ is a suitably compactified Euclidean
space; implying, of course, a metric measuring the distance between points and
a Lebesgue measure, which we denote by mL. Ergodic decomposition applies to
compact metric spaces (see Thm A.2), and also to systems, like Ex. 1 below, which
have discrete time and a phase space consisting of a finite number of points;

2For the interested reader the mathematical underpinning of this section is provided in App. A.
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there the ergodic decomposition is just the partition into cycles. For all systems
the dynamics is assumed to be3

(i) forward-deterministic: if the phase point at some time t0 > 0 is x0, then the
trajectory of phase points x0 → φtx0, for all t ≥ 0, is uniquely determined
by the flow;

(ii) reversible (or invertible): there exists a self-inverse operator I on the points
of Γ, such that φtx0 = x1 =⇒ φtIx1 = Ix0; then φ−t := (φt)−1 = IφtI,
and {φt} becomes a group, with t ∈ R or Z. A forward-deterministic
system defined by an invertible flow is also backward-deterministic and
thus simply deterministic;

(iii) autonomous (or stationary): if x0 and x1 are related by the condition that,
if x0 is the phase point at t0 then x1 is the phase point at t0+ t1, then this
relationship between x0 and x1 would also hold if t0 were replaced by any
other time t′0.

Determinism, as defined by (i) and (ii), means that, if two trajectories
{

x(t)
}

and{
x̃(t)

}
occupy the same state x(t0) = x̃(t0) at some specified time t0, then they

coincide for all times. If the system is also autonomous, then the determinism
condition is generalized to one in which, if two trajectories

{
x(t)

}
and

{
x̃(t)

}
have x(t0) = x̃(t0+ t′), then they coincide with x(t) = x̃(t+ t′), for all times t.
The time parameter now measures relative time differences rather than absolute
times, and for the trajectory

{
x(t)

}
containing x0, which we denote byLx0 , we

can, without loss of generality, let x(0) = x0. Hamiltonian systems, for which
the Hamiltonian is nontrivially a function of t, are examples of nonautonomous
systems.

For our discussion we need to define on Γ a sigma-algebra Σ of subsets,
which is preserved by the flow, meaning that

(a) σ ∈ Σ =⇒ φtσ ∈ Σ;

(b) σ1, σ2 ∈ Σ =⇒ φt(σ1∪σ2) = (φtσ1)∪ (φtσ2) and φt(σ1∩σ2) = (φtσ1)∩
(φtσ2).

A set σ ∈ Σ is φ-invariant iff every trajectory with a phase point in σ is completely
contained in σ, that is, φtσ = σ. A φ-invariant σ ∈ Σ is Lebesgue-indecomposable iff
there do not exist any φ-invariant proper subsets of σ.4 We denote by Σφ the set
of φ-invariant members of Σ and by Σ̃φ the subset of Σφ consisting of Lebesgue-
indecomposable members. It is not difficult to show that Σ̃φ is a decomposition (or

3Although we state the following assumptions cumulatively, and (ii) and (iii) are predicated on (i),
they could be applied separately. Indeed, most of the discussion in this essay could be adapted to a
system which is only forward-deterministic.

4σ′ is a proper subset of σ iff mL(σ
′) > 0 and mL(σ\σ′) > 0.
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FIG. 1. The ergodic decomposition of Γ, where Γ1, . . . , Γ5 are Lebesgue-
indecomposable.

partition) of Γ, meaning that almost every5 x ∈ Γ belongs to exactly one member
of Σ̃φ. We denote the members of Σ̃φ by Γλ, where λ could take integer values
or a range of real values. This situation is represented schematically in Fig. 1,
where Σ̃φ := {Γ1, . . . , Γ5} and Σφ is Σ̃φ together with any unions of its members;
thus Γ1∪ Γ2 belongs to Σφ but not to Σ̃φ.

2.2 Invariant measures and ergodicity

A measure m is said to be φ-invariant if it is preserved by the dynamics; that is,
m(φtσ) = m(σ), for all σ ∈ Σ and t. We denote byMφ the set of φ-invariant
measures on Σ such that6

(1) m(Γ) = 1 (the measure is normalized over phase space);

(2) m is absolutely continuous with respect to mL, meaning that for all σ ∈ Σ,
mL(σ) = 0 =⇒ m(σ) = 0.

A set σ is total (or of total measure) if m(Γ\σ) = 0 for all m ∈ Mφ, and an
important consequence of assuming absolute continuity is that we can interpret
‘almost everywhere’ as ‘in a set of total measure,’ which is the condition for the
validity of the conclusions reached in this section and App. A. The motivation for

5‘Almost every’ means, for all but a set of points of mL-measure zero. ‘Almost everywhere’ is
used in the same sense.

6We shall assume thatMφ 6= ∅, which is true (Mañé 1987, Thm 1.8.1) if φ is continuous.
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restricting attention to normalized absolutely continuous φ-invariant measures
is discussed in Sec. 3.1 when we define the Boltzmann entropy.

The measure m ∈ Mφ is said to be ergodic with respect to φ if, for all σ ∈ Σ̃φ,
m(σ) = 1 or m(σ) = 0, and we denote the set of such ergodic measures byM̃φ.
In the case of the simple system illustrated in Fig. 1 there must be exactly five
ergodic measures m( · | λ), with m(Γλ | λ) = 1, m(Γλ′ | λ) = 0, for λ, λ′ = 1, 2,
. . . , 5 and λ′ 6= λ, and, in general, it is clear that there is a one-to-one relationship
between the ergodic measures M̃φ and the Lebesgue-indecomposable sets Σ̃φ.
These are thus referred to as ergodic sets. A system is ergodic if Γ is indecomposable
(consists of one ergodic set) andMφ has one member which is ergodic.

Based on a system with this dynamic structure, the objective probability scheme
proposed in this essay is founded on two properties of ergodic measures, both
of which are derived in App. A:7

(i) The ergodic measure associated with Γλ is uniquely given by

m( · | λ) := T( · | Γλ),

almost everywhere in Γλ, where T(σ | Γλ) is the average time that a phase
point moving along a trajectory in Γλ spends in σ.

(ii) Any m ∈ Mφ can be ergodically decomposed almost everywhere in Γ, in the
form

m( · ) = ∑
{λ}

m( · | λ)π(λ), ∑
{λ}

π(λ) = 1, (1)

if the values of λ are discrete, or

m( · ) =
∫ β

α
m( · | λ)π(λ)dλ,

∫ β

α
π(λ)dλ = 1, (2)

if λ ∈ [α, β].

The implication of the caveat with respect to a possible set of points of Lebesgue-
measure zero is considered in detail in Sec. 4. Two examples are used to illustrate
the discussion:

Example 1 Γ has a finite number N of points and a discrete time flow, which
must necessarily be cyclic, with Γ consisting either of the points of one cycle,
making the system ergodic, or of a decomposition {Γλ} into a finite number of
cycles. Let Nλ be the number of points in Γλ and Nλ(σ) be the number of points
of Γλ in σ ∈ Σ. Then m(σ | λ) = Nλ(σ)/Nλ. The Kac ring is an example of
such a system. But an even simpler example would be that where Γ consists
of N points equally spaced around a circle with the dynamic step consisting
of a jump of two phase points in the clockwise direction. It is obvious that, if

7And subject to the analytic conditions specified there.
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N is odd, the system is ergodic with each phase point being visited during two
passages around the circle and, if N is even, there is an ergodic decomposition
into two cycles consisting of alternate phase points.

Example 2 Γ is the 2N-dimensional phase space of a system with Hamiltonian
H(p, q), where p and q are the N-dimensional momentum and configuration
vectors. H is an isolating integral of motion; meaning that an energy surface
ΓE :=

{
(p, q)

∣∣ H(p, q) = E
}

divides Γ into invariant regions. If H is the only
isolating integral of motion then the set of energy surfaces forms an ergodic
decomposition of Γ parameterized by the energy E (which here replaces λ). The
existence of other isolating integrals of motion would lead to a multiparameter
ergodic decomposition. However, for the sake of this example, this is assumed
not to be the case.8 With the change of variables

dΓ → dΓE dE∣∣∇H(p, q)
∣∣

H=E
,

where dΓE is in terms of local curvilinear variables (pE, qE) on ΓE, the induced
Lebesgue measure on ΓE is

m(σ | E) =
1

Ω(E)

∫
σ∩ΓE

dΓE∣∣∇H(p, q)
∣∣

H=E
, (3)

where
Ω(E) :=

∫
ΓE

dΓE∣∣∇H(p, q)
∣∣

H=E
(4)

is the structure function (Khinchin 1949, Ch. 4).

3 Approaches to statistical mechanics

The aim of all programs for classical statistical mechanics is to provide a real-
ization of the triplet: dynamics→ probability→ thermodynamics, given at the
beginning of Sec. 1, where ‘thermodynamics’ should include both equilibrium
and the transition to equilibrium. Broadly classified, there are three approaches
to this: that of Boltzmann, that of Gibbs, and an information-theory approach
most closely associated with the work of Jaynes.9 For reasons explained in more
detail in Sec. 6, Jaynes’ approach is beyond the remit of this essay.10 This section,
however, will give a brief account of the Boltzmann approach and an even briefer

8While admitting that the number of systems for which this can be proved, although growing, is
still severely restricted. (For an account of recent work, see de Oliveira &Werlang 2007.)

9The most comprehensive reference for this work is his 1983 collected papers.
10For discussions of Jaynes’ approach, see the contributions in this book by Jos Uffink (pp. 25–49)

and by Roman Frigg and Charlotte Werndl (pp. 115–42) and the essay review of Jaynes 1983 by Lavis
& Milligan (1985).
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account of the Gibbs approach. The imbalance is because, as we shall argue, and
have already argued elsewhere (Lavis 2005, 2008), the canonical formulation of
statistical mechanics is that of Boltzmann, with the wide and successful use of
the Gibbs approach being sanctioned by the fact that its variables approximate to
the time averages, along typical trajectories, of those derived from the Boltzmann
approach.

3.1 The Boltzmann approach

To refer to ‘Boltzmann’s approach [in the singular] to statistical mechanics’ is in
danger of being misleading, since his ‘ideas on the precise relationship between
the thermodynamical properties of macroscopic bodies and their microscopic
constitution, and the role of probability in this relationship are involved and
differed quite remarkably in different periods of his life’ (Uffink 2004, p. 1).
However, one may (although Boltzmann did not) impose a broad division
between his work on kinetic theory (before 1877) and his work on statistical
mechanics proper (after that date). The first is important because it includes the
evolution of Boltzmann’s ideas from distribution functions to probability density
functions, but it is not pertinent to this discussion. Although Boltzmann’s work
from 1877 does not present a coherent development of one approach, the core
concept, usually taken (Bricmont 1995, 2001; Goldstein 2001; Lebowitz 1993,
1994, 1999a, 1999b)11 to be at its heart, is his entropy (Boltzmann 1877).12

To describe the Boltzmann approach it is necessary first to introduce some
macroscopic variables. In general, these will be at the observational level for the
system, but will encapsulate more detail than the thermodynamic variables.13

Examples of these would be local variables which quantify spatial inhomo-
geneities of density or magnetization. Given such a set of variables let {µ} be a
set of macrostates, with each µ ∈ Σ and such that

(i) every x ∈ Γ is in exactly one macrostate, denoted by µx;
(ii) each macrostate gives a unique set of values for the macrovariables;

(iii) the phase points x and Ix are in macrostates of the same size;
(iv) if there exists a symmetry operation S (like a permutation of identical

particles) on the points of Γ, such that φtx = x̃ ⇐⇒ φtSx = Sx̃, then
x and Sx are in macrostates of the same size.

The Boltzmann entropy

SB(x) := SB(µx) := kB ln
[
cm(µx)

]
, (5)

11These authors will, henceforth, be referred to as ‘the Neo-Boltzmannians.’
12Although the famous formula S = k log W, which was engraved on his tombstone, does not

appear explicitly in the 1877 paper.
13Ridderbos (2002) refers to them as ‘supra-thermodynamic variables.’
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at x∈ Γ is a measure of the size of µx. It is, of course, the case that this definition
could use any measure on phase space. However, we choose to impose the condi-
tion that m ∈ Mφ, and this needs some justification. In the case of condition (1)
of Sec. 2.2 the restriction is quite benign; one would wish to have an upper bound
on SB, and this is provided by defining the Boltzmann entropy of the whole of
phase space SB(Γ) := kB ln

[
cm(Γ)

]
= kB ln[c].14 The plausible need for condi-

tion (2) relates to a second well-known arbitrary feature of the definition of SB,
that of the choice of macrostates. It is obvious that radically different choices of
the set {µ} are likely to lead to very different temporal evolutions of the entropy,
and this can be dealt with only by incorporating, on a case-by-case basis, the
choice of macrostates as part of the definition of the model system. However,
it is reasonable to demand that SB be stable with respect to small changes in
the macrostates. This will be achieved if m has translational continuity,15 and it
can be shown (Malament & Zabell 1980) that m is translationally continuous
if and only if it is absolutely continuous. Then, as is shown in App. A, the
measure is unique if the system is ergodic and otherwise can be expressed as an
ergodic decomposition. The remaining condition for m ∈ Mφ is φ-invariance. It
is important to note that we do not impose the condition that the macrostates
are φ-invariant; φtµ is not necessarily a macrostate.16 However, when φtµx is
the macrostate µφtx, we would expect the Boltzmann entropy to have the same
values at x and φtx, and this is achieved by specifying that m is φ-invariant.

Since SB(x) is a dynamic property of the system, once Γ has been partitioned
into macrostates, dynamic evolution and the values of SB(x) can in principle be
calculated. But, in practice, this remark needs heavy qualification. It is necessary
to obtain, with specified initial conditions, either an analytic, or a numerically
stable, solution of the equations of motion. This procedure, leading to entropy
profiles, has been implemented for the baker’s gas in Lavis 2005 and for the Kac
ring model in Lavis 2008; but, of course, these two models are very simple, not
least because each has a discrete time parameter.

However, the fact remains that prima facie the Boltzmann approach provides
a ‘probability-free’ version of statistical mechanics. And this is further reinforced
by the preference on the part of the Neo-Boltzmannians for using the notion of
‘typical.’ Having first specified that the system is in equilibrium when the phase
point is in a particular ‘equilibrium’ region of phase space and that

14This does not, of course, mean that Γ is taken as a macrostate, otherwise it would necessarily be
the largest macrostate. Note also that all the measures inMφ have the property 0 < m(σ) ≤ 1, for
all σ ∈ Σ, and this would mean that, in the absence of a constant c in (5), SB(x) ≤ 0.

15The measure m has translational continuity if it is continuous with respect to any small translation
in σ, for all σ ∈ Σ.

16If it were, then SB(φtx) = SB(x), meaning that the Boltzmann entropy is a constant along a
trajectory.
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by far the largest volumes [of phase space] correspond to the equilibrium values of the
macroscopic variables (and this is how ‘equilibrium’ should be defined) (Bricmont 1995,
p. 179),17

the expectation is expressed that

SB will typically increase in a way which explains and describes qualitatively the evolution
towards equilibrium of macroscopic systems. (Lebowitz 1999b, p. S 338)

The idea is that the system, having begun in a small macrostate, with a cor-
respondingly low value of entropy, will typically evolve through increasingly
larger macrostates, and higher values of entropy, to the equilibrium state, where
the entropy is at its maximum value. Our aim now is to examine this picture and
to propose a modified and more general version, which moves from a concentra-
tion on the temporally local increase in the Boltzmann entropy to a consideration
of its temporally global profile.

3.1.1 Equilibrium in the Boltzmann approach According to the ‘standard’ Boltz-
mann approach, summarized above, a certain part of phase space corresponds
to the equilibrium state. But is it possible to make such a designation? Because
of the system’s reversibility and recurrence the possibility that such a region is
one which, once entered by x(t), will not be exited, must be discounted. As was
well understood by both Maxwell and Boltzmann, equilibrium must be a state
which admits the possibility of fluctuations out of itself. Lebowitz (1993, p. 34)
and Goldstein (2001, p. 8) refer to a particular macrostate as the equilibrium
macrostate, and the remark by Bricmont, cited at the top of this page, is in a
similar vein. So is there a single equilibrium macrostate? If so, it must be that
in which the phase point spends more time than in any other macrostate and, if
the system were ergodic,18 it would be the largest macrostate µMax,19 with the
largest Boltzmann entropy. There is one immediate problem associated with
this. Suppose the system has entropy levels

{
SB(µ) : µ a macrostate

}
. Then,

as has been shown in Lavis 2005 for the baker’s gas and in Lavis 2008 for the
Kac ring, these levels may have degeneracies ω(µ) such that, for some µ with
m(µ)<m(µMax), m(µ)ω(µ) > m(µMax).20 The effect of this is that the entropy
will be likely, in the course of evolution, to spend more time in a level less than
the maximum.21 An obvious way round this problem would seem to be to take

17A similar statement appears in Albert 2000, p. 57.
18Although the Neo-Boltzmannians deny the need for such a property (see e.g. Goldstein 2001,

p. 45), they still seem to make the implicit assumption that a system will spend more time in a larger
region of phase space than in a smaller.

19Assuming, for simplicity, that there is only one largest macrostate.
20The degeneracy ω(µ) of the entropy level SB(µ) is simply the number of macrostates µ′ such

that SB(µ
′) = SB(µ). As already indicated, we have assumed that ω(µMax) = 1.

21See Lavis 2005, Figs 4 and 5, and Lavis 2008, Fig. 1.
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a band of the larger macrostates as the equilibrium state. However, this will
lead to an arbitrary division between fluctuations within and out of equilibrium,
according to how the band edge is set. It may be supposed that these problems
decrease as the size parameter N increases. However, computer studies in Lavis
2008 for a Kac ring of N sites indicate that

(i) just choosing the largest macrostate as the equilibrium region does not
guarantee that this region becomes an increasing proportion of phase space
as N increases; in fact the opposite is the case.

(ii) If an equilibrium band of the (2k+1) largest macrostates is chosen,22 then,
for it to contain 99.999 % of Γ, we must choose k = 22 for N = 100, k = 70
for N = 1000, and k = 221 for N = 10,000, and, with this proportion of Γ in
the equilibrium state, still only about 47 % of a ‘typical’ trajectory will be in
equilibrium.

But why define equilibrium in this binary way? We have already suggested
(Lavis 2005, 2008), and propose again here, that the quality which we are trying
to capture is a matter of degree, rather than the two-valued property of either
being in equilibrium or not in equilibrium. The proposal is:

All references to a system’s being, or not being, in equilibrium should be replaced by
references to the commonness of the state of the system, with this property being
measured by (some, possibly scaled, form of ) the Boltzmann entropy.

So commonness could be regarded as just a measure of the degree of ‘equilibri-
umness.’ This, the first of our suggested modifications to the Neo-Boltzmannian
approach, would leave it largely unaltered, with ‘being in equilibrium’ now
replaced by ‘having large commonness,’ and ‘approaching equilibrium’ being
replaced by ‘exhibiting increasing commonness.’

3.1.2 Typicality, measure, and probability For the Neo-Boltzmannians, typical
behavior is characterized by evolution from a smaller into a larger macrostate.
However, they avoid making an explicit link between probability and typicality
and also argue that there is no need for the system to have special properties like
ergodicity or mixing. Frigg (2010b) has examined in detail what he discerns to be
a number of distinct treatments of typicality and he concludes that they almost
all fail either for technical reasons or because they leave unanswered essential
questions. In two cases he reserves his judgment. The first of these involves the
undeveloped concession (and departure from Neo-Boltzmannian orthodoxy) by
Bricmont (2001, p. 16) ‘that some form of mixing is important for the approach to
equilibrium to take place.’23 The second is the program proposed by the present

22There is one largest macrostate and all other macrostates have degeneracy 2.
23Contrasting with the view of Goldstein (2001) that attempts to explain the approach to equi-

librium by appeal to specific dynamical properties such as ergodicity or mixing are ‘thoroughly
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author (Lavis 2005, 2008) and further developed here. This can be understood in
terms of modifications to the ‘standard’ Neo-Boltzmannian approach, and to see
what these are it is useful to consider three questions:

(a) What type of behavior is being posited as typical?
(b) What is meant by the behavior being typical?
(c) Why is the behavior typical?

As we have seen, the Neo-Boltzmannian answer to (a) is clear: entropy tem-
porally increases, or equivalently, the system evolves from smaller to larger
macrostates.24 To answer (b) the Neo-Boltzmannians tend to rely on an ordinary-
language use of the word ‘typical,’ meaning that it is behavior which is not
‘ridiculously special’ (Goldstein 2001, p. 43). With this ‘common-sense’ view
of ‘typically’ two plausible answers are given to (c). In the first it is argued25

that, if (at least for large systems) equilibrium corresponds to the overwhelm-
ingly largest macrostate, then the system will quickly evolve into that state. The
problems associated with this description of equilibrium have been discussed
in Sec. 3.1.1. They are, however, circumvented in a second and even more tem-
porally local answer to (c). In this it is argued (Lebowitz 1999a, p. 521) that
the region around a small macrostate will be mainly contained within larger
macrostates and thus that typical behavior will be from a smaller to a larger
macrostate, with a consequent increase in entropy. The problems with this
approach are discussed in Lavis 2008.

We now begin our proposed modifications to this program. The initial step
appears quite benign and is prompted by a comparison between ‘Boltzmann’s
Law,’ which states that

[if we take] an arbitrary instant of time t′ and assume that at that time the Boltzmann
entropy SB(t′) of the system is low, [it is] highly probable that at time t′′ > t′ we have
SB(t′′) ≥ SB(t′)[,] (Frigg 2010a)

and the quote, given on page 59 above, from Lebowitz 1999b, p. S 338. This
suggests that typical behavior in (b) is translated into having a high conditional
probability that, given the system has a low entropy SB(t′) at t′, it will have
higher entropy SB(t′′) at t′′ > t′ (where |t′′− t′| is small). It is often supposed
that a combination of Boltzmann’s Law with the ‘Past Hypothesis’ (Albert 2000,
Ch. 4) provides a way to answer (c). However, it is difficult to envisage the
kind of proof that could be given for Boltzmann’s Law. As Frigg (2010a) has
pointed out, Boltzmann took it to be in the nature of systems that they tend
to move from states of lower probability to states of higher probability, and

misguided.’
24Although little emphasis is placed on this point it is clear that this behavior has to be understood

as over a short time-period, since the dynamics is reversible and recurrent.
25See the quotes from Bricmont 1995 and Lebowitz 1999b, given on p. 59.
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the attempt to substantiate this claim by Ehrenfest & Ehrenfest-Afanassjewa
(1911, pp. 31–6) is based on a model without deterministic dynamics, making
it of limited relevance. However, both Boltzmann’s perception and the work of
the Ehrenfests make it clear that the problem becomes more tractable if it can
be moved from one concerning conditional probabilities (transitions) to one of
nonconditional probabilities (being in).

This suggests a more substantial modification to the Neo-Boltzmannian ap-
proach. It concerns (a) and involves a change of viewpoint, from the temporally
local one espoused by the Neo-Boltzmannians (and others, including Albert
(2000)), for which the main preoccupation is the study of the local increase of
entropy from some initial low-entropy state, to a temporally global interest in the
overall behavior of entropy. This change is effected by the restatement of the def-
inition of thermodynamic-like behavior in Lavis 2005, p. 255. Thermodynamic-like
behavior is now characterized as the situation where

the Boltzmann entropy SB, for the evolving system, is most of the time close to its
maximum value (SB)Max := SB(µMax), from which it exhibits frequent small fluctuations
and rare large (downward) fluctuations.

This definition makes no reference to probability and, as we shall see below, for
an ergodic system a ‘Boltzmann account’ of statistical mechanics can be given
without resort to probabilities, using only an assertion that thermodynamic-like
behavior is ‘typical,’ where the explication of that type of typicality (type I) is not
susceptible to a probabilistic interpretation. However, part of the aim of this essay
is to provide a link between the Boltzmann and Gibbs approaches. For this we
need to use the time-average definition of probability to relate thermodynamic-
like behavior to the probabilities of the system being in macrostates of different
sizes. Probabilities of a different kind (see Sec. 5) also play an essential role in
the case of nonergodic systems.

3.2 The Gibbs approach to statistical mechanics

The Gibbs approach begins with a slightly extended version of the notion of
the φ-invariance of measures given in Sec. 2. Now we allow the possibility of
measures which are explicit functions of time. Thus m(σ; t) will be the measure
of σ ∈ Σ at time t, and φ-invariance is the condition m(σ; t′) = m(φtσ; t′+ t), for
all t′, t and σ ∈ Σ. The measures m( · ; t) parameterized by t are assumed to be
members ofMφ, and from the Radon–Nikodym Theorem (Mañé 1987, p. 6) they
will be associated with density functions ρ( · ; t), given by26

m(σ; t) =
∫

σ
ρ(x; t)dΓ, for all t,

26We assume, for ease of presentation, that Γ has a continuum of points.



An Objectivist Account of Probabilities in Statistical Mechanics 63

for which the φ-invariance condition is Liouville’s Equation. This density, for
fixed t, is normalized over Γ and is taken, without further interpretation, as the
probability density function for the distribution of x ∈ Γ at time t. Equilibrium is
defined as the situation where the probability density function is stationary, that
is to say, not an explicit function of time, when it becomes a function of the global
integrals of motion.27 The statistical-mechanical ‘analogues’ of thermodynamic
quantities are either fixed external parameters, related to phase functions, or
functionals of ρ. In particular, the analogue of thermodynamic entropy is the
Gibbs entropy

SG[ρ] := −kB

∫
Γ

ρ(x) ln
[
ρ(x)

]
dΓ. (6)

From a practical point of view this scheme is very satisfactory. However, prob-
lems arise when an attempt is made to extend it to nonequilibrium situations,
which are given by nonstationary solutions of Liouville’s Equation. Specifically:

(i) When ρ(x) is replaced in (6) by any time-dependent solution ρ(x; t) of
Liouville’s Equation, SG

[
ρ(t)

]
remains invariant with respect to time.

(ii) Given an arbitrary initial condition ρ(x; 0), the evolving solution ρ(x; t) of
Liouville’s Equation will not, in general, converge to a stationary solution
as t→ ∞.

4 The time-average interpretation of probability and typicality

As indicated in Sec. 2, our scheme for assigning probability is predicated upon
the system having an ergodic decomposition, and in this section we introduce the
time-average definition used for probabilities conditional upon the system being
in a particular member of the decomposition. There is a number of well-known
objections to this interpretation, which are listed and discussed in Sec. 4.1.

In App. A it is shown that the time-sum in (A.1), or time-integral in (A.3),
exists, according to Birkhoff’s Theorem (Thm A.1), for all trajectories Lx0 , except
possibly for those for which x0 lies in a set of Lebesgue-measure zero, which will
henceforth be denoted by Γ̊. It is clear that if x0 ∈ Γ̊ then x ∈ Γ̊, for all x ∈ Lx0 ;
Γ̊ consists of the union of a set of ‘special’ trajectories for which time-integrals
(or sums) do not exist.28 With this in mind, we define the conditional probability
that x ∈ σ, given that x ∈ Lx0 and Lx0 * Γ̊, by

P
[

x ∈ σ
∣∣∣ x ∈ Lx0 ∧ Lx0 * Γ̊

]
:= T(σ | Lx0), (7)

where, as defined in App. A, T(σ | Lx0) is the average time that x, moving along
the trajectoryLx0 through x0, spends in σ.

27This is the ‘conventional’ definition of equilibrium in the Gibbs approach. Van Lith (2001a) has
proposed a weakened definition involving a new concept of ‘ε-equilibrium.’

28With the proviso, of course, that in some cases, like that where Γ consists of a finite number of
points and t takes discrete values, there will be no set Γ̊.
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With Γ̊λ := Γ̊ ∩ Γλ, when x ∈ Γλ\Γ̊λ, it follows from (A.5) that

P
[

x ∈ σ
∣∣ x ∈ Γλ\Γ̊λ

]
= T(σ | Γλ) = m(σ | λ), (8)

and in the special case where the system is ergodic,

P
[

x ∈ σ
∣∣ x ∈ Γ\Γ̊

]
= T(σ) = m(σ), (9)

m, in this case, being the sole member ofMφ.
This leaves the question of how we define P

[
x ∈ σ

∣∣ x ∈ Γ\Γ̊
]

when the
system is not ergodic, which cannot, of course, be completely resolved within
the context of the time-average definition. However, we do know that any viable
definition must correspond to a measure belonging toMφ and hence, from the
ergodic decomposition (1) or (2),

P
[

x∈ σ
∣∣ x∈ Γ\Γ̊] =

〈
T(σ | Γλ)

〉
π :=


∑
{λ}

T(σ | Γλ)π(λ),

∫ β

α
T(σ | Γλ)π(λ)dλ,

for all σ ∈ Σ,

(10)
according to whether the ergodic decomposition has a discrete or continuous
parametrization. The probability for x ∈ σ is the decomposition-mean 〈 · 〉π ,
with respect to the probability distribution

{
π(λ)

}
over the members of the

decomposition, of the time-average probabilities within each Γλ.
The time-average probabilities are clearly objective. Indeed it can be ar-

gued that they ‘are some kind of continuous counterparts to limits of relative
frequencies’ (von Plato 1989b, p. 434).29 However, it is clear that, in order to
construct a wholly objective interpretation for statistical mechanics, an objective
interpretation must be given for π(λ). Since this is grounded very specifically in
particular models, we reserve discussion of this to Sec. 5. First we show how,
in the Boltzmann approach, typicality and thermodynamic-like behavior can
be interpreted using (10), and then, in Sec. 4.2, how this is reconciled with the
different concepts of equilibrium and entropy in the Gibbs approach and in
thermodynamics.

For an ergodic system and all x ∈ Γ\Γ̊, from (5) and (9), the Boltzmann en-
tropy SB(µ) is a monotonically increasing function of m(µ) = T(µ). Along
a trajectory the phase point will thus spend an amount of time in a macrostate
proportional to the exponential of the value of the entropy, meaning that it
behaves in a thermodynamic-like way.

However, we must consider the set Γ̊, for which the average time T(µ) that
the phase point x(t) spends in µ is not defined.30 The event x(t)∈ Γ̊ is equivalent

29This is a contention which is discussed in App. B.
30Or, perhaps more precisely, not quantifiable in terms of the time integral of the indicator function

of µ.
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to x(0)∈ Γ̊ and, as has been pointed out many times in the literature, the fact
that m(Γ̊) = 0 does not mean that it is impossible for the system to start its
evolution in Γ̊. Nor may it be inferred that P[x ∈ Γ̊] = 0; the definition of
probability (9) expressly excludes the set Γ̊, for the points of which probability
is undefined. We have here (at least in my opinion) a place where typicality must
be brought into play and cannot be translated into probability. The choice of
an initial point for the evolution in a prespecified set of measure zero would, to
use Goldstein’s words, be ‘ridiculously special,’ meaning that the experimenter
would need to take ridiculously special steps to ensure the event x(0)∈ Γ̊. Thus
we say that x(0) will typically be in Γ\Γ̊ and we call this typicality type I. An
ergodic system will typically (type I) behave in a thermodynamic-like way. Thus
we have, for an ergodic system, an answer to question (b) of Sec. 3.1.2 (the
meaning of typicality), and the answer to question (c) is the ergodicity of the
dynamics.

For a nonergodic system we first consider motion in a particular member Γλ of
the ergodic decomposition, for which x(0) will typically (type I) be in Γλ\Γ̊λ.
Assuming this to be the case, the Boltzmann entropy is still given by (5), but
the only part of the macrostate µ which is accessible is µ ∩ Γλ. The time spent
in µ is the time spent in µ ∩ Γλ, which, from (8), is T(µ | Γλ) = m(µ | λ). Now
we see what the problem might be. The entropy states are determined by the
members of

{
m(µ) : µ a macrostate

}
, whereas the entropy profile is determined

by
{
m(µ | λ) : ∀µ

}
. It is tempting to suppose that thermodynamic-like be-

havior will occur because of an approximate proportionality between these
two sets. However, computer experiments with the Kac ring model (Lavis
2008) indicate that this is not always the case. It is quite possible for there to
be some macrostates with SB(µ) near to (SB)Max and µ∩ Γλ = ∅. For an er-
godic system thermodynamic-like behavior was typical (type I); for motion in
a member of an ergodic decomposition, x(0) ∈ Γλ\Γ̊λ is not sufficient to ensure
thermodynamic-like behavior. We must establish criteria for thermodynamic-like
behavior to be high probability, that is to say, to be typical in a new sense, which
we call typicality type II. To do this we need conditions first for the degree to
which behavior within the set Γλ is thermodynamic-like and second for the
probability of the phase point being within a Γλ for which these conditions are
satisfied.

Following Lavis 2008 (with some slight changes of notation), the degree to
which the evolution of the system is thermodynamic-like in Γλ is measured by
the extent to which

∆λ[SB] :=
1
N

[
(SB)Max − 〈SB〉λ

]
(11)

and

Ψλ[SB] :=
1
N

√〈[
SB − 〈SB〉λ

]2〉
λ (12)
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are small, where N is an extensive parameter (usually the number of microsys-
tems),

〈SB〉λ := ∑
{µ}

T(µ | Γλ) SB(µ)

is the time average of SB along a typical type-I trajectory in Γλ, and Ψλ[SB] is the
standard deviation with respect to the time distribution. All we now need to do
is to set a criterion for the system to be regarded as having thermodynamic-like
behavior in Γλ in terms of some small values of ∆λ[SB] and Ψλ[SB]. Let T (α, β)
be the criterion that ∆λ[SB] < α and Ψλ[SB] < β.31

We now consider the whole decomposition {Γλ} and denote by Γ(T) the union
of all members which satisfy T (α, β), for some specified small (positive) values of
α and β, with Γ(A) = Γ\Γ(T). The probability of the phase point x(t) ∈ Γλ is π(λ),
which is, of course, equivalent to the probability of the initial point x(0) ∈ Γλ.
Thermodynamic-like behavior is now said to be typical type II if

P
[
x(0) ∈ Γ(A)

]
= ∑

Γλ⊆Γ(A)

π(λ) � 1. (13)

An ergodic system is behaving typically (meaning in a thermodynamic way)
if it is behaving typically type I. A nonergodic system is behaving typically if it
is behaving typically type I and type II. Of course, typicality type II is predicated
both on chosen values for α and β and on a level for the inequality in (13). For
simple discrete-time systems with a finite phase space (where typicality type I
is automatic) it is possible to test every point of Γ to determine (given a choice
for T (α, β)) whether it belongs to Γ(T) or Γ(A). This allows the numerical value of
P
[
x(0) ∈ Γ(A)

]
in (13) to be computed.

4.1 Problems with the time-average definition of probability

The traditional role of ergodic theory is to give support to the proposition that
thermodynamic variables are analogues of the expectation values of phase func-
tions calculated using the microcanonical distribution. This is done by arguing
that the measurement of the value of a thermodynamic variable is equivalent to
the infinite-time average of the corresponding phase function. This is an attrac-
tive idea but the problems associated with it are well known. In particular, rather
few systems are ergodic, and while the measurement process may correspond to
a long-time average, it is certainly not an infinite-time average; this distinction is
important for any discussion of equilibrium and nonequilibrium, as we will see
below. Van Lith (2001a) discusses the problems associated with the ergodic pro-
gram in general and with the version which leads to the time-average definition
of probability, which as we have seen specializes from the time integral of phase
functions in general to those for the indicator functions of sets in phase space.

31Cases of this for the Kac ring model are discussed in Lavis 2008.
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She lists (ibid., p. 587) four problems which still remain for this more specialized
use of ergodic theory. In this section we shall consider each of these32 and show
how they are resolved within the program described above:

Objection 1: ‘Infinite-time averages need not even exist! It may well be that the
limit in [(A.1) or (A.3)] does not exist’ (van Lith, ibid.). As is seen in App. A,
the time average does exist for almost every x(0) ∈ Γ. The exceptional
points lie in a set which we have denoted by Γ̊. We have not argued from
m(Γ̊) = 0 that P

[
x(0) ∈ Γ̊

]
= 0, indeed this probability is not even defined.

Nor have we argued that the event x(0) ∈ Γ̊ is impossible. We simply argue
that, since the implementation of this event would be, for the experimenter,
a task requiring exceptional effort, the event x(0) ∈ Γ\Γ̊ would be typical,
designating this as typicality type I.

Objection 2: As is clear from (7), ‘the probability of a set [σ] depends on the
initial state [x(0)]’ (van Lith, ibid.). This objection is clearly invalid for
typical (type I) behavior of an ergodic system. The same applies to a system
with an ergodic decomposition {Γλ} with respect to the location of x(0)
within Γλ. The probability of the phase point being in a set σ (or a macro-
state µ) does, of course, depend on which member of the decomposition
x(0) is in. However, this is provided for in our analysis by proposing in
Sec. 5 ways of generating the probabilities

{
π(λ)

}
and giving criteria for

whether this leads to typical (type II) behavior.

Objection 3: ‘There is no obvious way to extend the application of this notion
of probability to time-dependent phenomena, and thus to the more gen-
eral theory of nonequilibrium statistical mechanics’ (van Lith, ibid.). This
objection is related to the meaning of equilibrium/nonequilibrium in sta-
tistical mechanics. As we have indicated, in Sec. 3.1.1, we do not admit
this binary division, which is replaced by degrees of commonness. We
have adopted a temporally global view-point, in which the probability of
the system being in a state of more or less commonness is time-invariant,
with no role for time-dependent measures or probabilities. This hav-
ing been said, what we take to be the substantive element of van Lith’s
point still remains to be answered. This could be encapsulated in the
following question: Given that, at some time t, the system is in a state
with a certain commonness, what is the probability that it will be in a
state with greater commonness at t′ > t (with |t′− t| small)? We must,
of course, admit that, apart from the kind of direct calculations carried
out for simple models like the baker’s gas and the Kac ring, the picture
of statistical mechanics proposed here does not include the possibility

32For the sake of our discussion these are given in a different order from that of van Lith.
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of calculating such transition probabilities. This is a problem which re-
quires much more input than simply the time interval (t′− t) and the
measures of the macrostates at t and t′. More particularly, it is necessary
to know the distribution and sizes of the macrostates contiguous to µx(t)
and the location of x(t) in µx(t); different parts of µx(t) can, in general,
lead to transitions to different neighboring macrostates. It may, of course,
be possible to obtain some insight and some approximate solution by
treating the problem using a time-dependent probability density function
driven by a kinetic equation. However, we would argue that this does not
mean that the system is in some part of its evolution which could be la-
belled as ‘nonequilibrium’; merely that this is a convenient approximation
for the part of the global entropy profile where the entropy is increasing
steeply.

Objection 4: This is the problem of the relationship between the time-average
and relative-frequency interpretations of probability asserted in the quota-
tion from von Plato 1989b, p. 434, given on page 64 above. This objection,
which is different in kind from the preceding three, presents no threat
to the time-average definition of probability per se, but only to putative
support for it derived from its being some kind of relative-frequency in-
terpretation. Van Lith (ibid.) identifies what she takes to be a weakness
in this argument, arising from the supposed limitation of the relative-
frequency interpretation to a sequence of independent trials. She com-
ments that ‘the fact that repetitions are determined by a deterministic
process puts pressure on the condition that repetitions should be inde-
pendent.’ The question of whether the relative-frequency interpretation
is indeed restricted to independent trials and whether it is plausible and
illuminating to make a link between it and the time-average interpreta-
tion is rather peripheral to our discussion and we have relegated it to
App. B.

4.2 The Gibbs approach and thermodynamic entropy

Since P
[

x ∈ σ
∣∣ x ∈ Γλ\Γ̊λ

]
= T(σ | Γλ) = m(σ | λ) ∈ Mφ, it follows from

the Radon–Nikodym Theorem that it is associated with the probability density
function ρ(xλ | λ) by33

P
[

x ∈ σ
∣∣∣ x ∈ Γλ\Γ̊λ

]
:=

∫
σ∩Γλ

ρ(xλ | λ) J(xλ, λ)dΓλ, (14)

33As in Sec. 3.2, we assume, for ease of presentation, that Γ has a continuum of points. In the
case where Γ consists of a denumerable or finite set of points the integrals in (14), (16), and (17) are
replaced by sums. In the integrals on the right-hand sides of (14) and (17) the distinction between
Γλ and Γλ\Γ̊λ can be ignored since they differ only by a set of measure zero, which would make no
contribution.
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where xλ represents the local variables on Γλ and J(xλ, λ) is the Jacobian of the
transformation to the variables (xλ, λ). From (6) and (10), the Gibbs entropy
takes the form

SG[ρ] = SG[π] +
〈

SG

[
ρ(λ)

]〉
π

, (15)

where

SG[π] := −kB

∫ β

α
π(λ) ln

[
π(λ)

]
dλ, (16)

SG

[
ρ(λ)

]
:= −kB

∫
Γλ

ρ(xλ | λ) ln
[
ρ(xλ | λ)

]
J(xλ, λ)dΓλ. (17)

The entropy is the sum of the entropy SG[π] of the decomposition and the
decomposition-mean of the entropies SG

[
ρ(λ)

]
in the members of the decompo-

sition.

In particular, for Ex. 2 of Sec. 2, from (3),

ρ
(

pE, qE
∣∣ E
)
=

1
Ω(E)

, J
(

pE, qE, E
)
=

1∣∣∇H(p, q)
∣∣

H=E
, (18)

and, from (4), (17), and (18),

SG

[
ρ(E)

]
= SMC(E) := kB ln

[
Ω(E)

]
, (19)

the microcanonical entropy (Huang 1963, Sec. 7.2).

Lavis 2005 proposed a general scheme for relating a phase function f, defined
on x ∈ Γ, to a macro-function F defined on the macrostates {µ} and then to
a thermodynamic function F. The first step is to coarse-grain f (x) over the
macrostates to produce F(µ).34 The second step (assuming typicality type I)
is to define the thermodynamic variable F along the trajectoryLx as the time
average 〈F 〉x of F along the trajectory. The special case of interest here is the
relationship between the Boltzmann and thermodynamic entropies. Now the
first step is unnecessary since SB is already, by definition, coarse-grained over
the macrostates. The dimensionless thermodynamic entropy is then identified
with 〈SB〉x. For a system with an ergodic decomposition this would yield a
different thermodynamic entropy Sλ for each member of the decomposition,
with, from (11),

Sλ := 〈SB〉λ = (SB)Max − N∆λ[SB].

When the behavior is thermodynamic-like in Γλ, the ratio Sλ/N differs from
(SB)Max/N by at most some small amount and, if (13) holds, this will be the
case for measurements along typical trajectories. In the case of the Kac ring,
with N = 10,000 and the trajectory investigated for Figs 1 and 2 of Lavis 2008,
∆λ[SB] = 0.58122723× 10−2, a value which is likely to decrease with increasing N.

34It is argued that F is a good approximation to f for the phase functions relevant to thermody-
namics since their variation is small over the points in a macrostate.
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To connect the Boltzmann and Gibbs entropies it is first necessary to make a
suitable choice of c in (5) so that, as defined in Sec. 3.1, the Boltzmann entropy
of the whole of phase space SB(Γ) = kB ln[c] = SG. It is often said that in
‘equilibrium [the Gibbs entropy] agrees with Boltzmann and Clausius entropies
(up to terms that are negligible when the number of particles is large) and
everything is fine’ (Bricmont 1995, p. 188). In the present context this means
that the good approximation (SB)Max, for the entropy of a system for which
thermodynamic-like behavior is typical, can be replaced by SG = SB(Γ). The
advantage of this substitution is obvious, since (SB)Max is dependent on the
division into macrostates and SB(Γ) is not. However, a little care is needed in
justifying this substitution. It is valid not because, as asserted in the quote from
Bricmont 1995, p. 179, on page 59 above, µMax occupies an increasing proportion
of Γ as the system size increases. Indeed, as was shown in Lavis 2008 for the
Kac ring, the reverse is the case. That proportion becomes vanishingly small as
the number N of sites increases. However, the required substitution can still be
made, since, for that model,

(SB)Max

SG
' 1− ln(N)

2N ln(2)
, as N→ ∞. (20)

Although it may seem that the incorrect intuition on the part of Neo-Boltzmann-
ians concerning the growth in the relative size of the largest macrostate, leading
as it does to the correct conclusion with respect to entropy, is easily modified
and of no importance, it has been shown in Sec. 3.1.1 that it has profound
consequences for the attempt to define equilibrium in the Boltzmann approach.

In Sec. 3.2 we indicated that, in the Gibbs approach, equilibrium and nonequi-
librium states correspond to the probability density function not being or being
an explicit function of time. In the picture we are now advocating, the only
part of the approach which features is that with a time-independent probability
density function. The Gibbs entropy (6) is no longer taken as that of some (we
would argue) nonexistent equilibrium state, but as an approximation to the
true thermodynamic entropy, which is the time average over macrostates of
the Boltzmann entropy. The reason for using a time-independent probability
density function for the Gibbs entropy is not that the system is in equilibrium
but that the underlying dynamics is autonomous.35 The thermodynamic entropy
approximated by the Gibbs entropy (6) remains constant if Γ remains unchanged,
but changes discontinuously if a change in external constraints leads to a change
in Γ. An example of this, for a perfect gas in a box when a partition is removed, is
considered in Lavis 2005, where it is shown that the Boltzmann entropy follows
closely the step-change in the Gibbs entropy.

35A nonautonomous dynamic system will not yield a time-independent solution to Liouville’s
Equation.
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5 Interpreting
{

π(λ)
}

: Stochastic nomological machines

We now consider the problem of building into our model an objective proce-
dure for assigning the probabilities

{
π(λ)

}
. Once this is done, and assuming

typicality type I (that x(0) /∈ Γ̊λ), it can be determined whether thermodynamic-
like behavior is typical (type II). If x(0) were fixed to lie in a particular Γλ0

(specifically, in terms of Ex. 2 given in Sec. 2, if the system were thermally
isolated with energy E0), then π(λ) would be a delta-distribution at λ = λ0
and the system evolution would be thermodynamic-like or not according to
whether the specified T (α, β) criterion were satisfied.36 Typicality type II implies
a non-delta probability distribution which has most probable behavior which is
thermodynamic-like according to the criterion (13). For this to have meaning the
system must include as part of its definition a probability-generating mechanism
for assigning x(0). The contention of this section is that this mechanism can
be understood as a stochastic nomological machine, and to make this case it is
necessary to outline the origin of this idea and to show that it validly applies in
this case. A nomological machine was described by Cartwright (1999, p. 50) as

a fixed (enough) arrangement of components, or factors, with stable (enough) capacities
that in the right sort of stable (enough) environment will, with repeated operation, give
rise to the kind of regular behavior that we represent in our scientific laws.

A ‘fixed arrangement’ and a ‘stable environment’ are needed to give meaning to
‘repeated operation,’ and they imply what she calls ‘shielding conditions’ (ibid.)
preventing intrusion of extraneous external effects from one operation to the
next. The planetary motion of the solar system is, for her, a rare example of a
naturally occurring nomological machine. More usually they are either the result
of laboratory experiment or a theoretical construct. The power of a nomological
machine to generate regular behavior is what Cartwright calls its ‘capacity,’ and
here our interest is in a machine which has the capacity to generate probabilities.
Such a nomological machine is called by Cartwright a chance setup (ibid., p. 152)
and by Hoefer (2007, p. 574) a stochastic nomological machine (SNM).37 So, in
practical terms, what are the ingredients of an SNM and is such a one compatible
with our assumed deterministic system? The answer to the first part of this
question would, of course, answer the second part if it is the case that SNMs

36Or we could, of course, redefine the Boltzmann entropy (5) in terms of macrostates and a measure
on Γλ0 , in which case the system would be effectively ergodic, with thermodynamic-like behavior
typical type I.

37Hoefer develops this idea into a theory of ‘Humean objective chance’ supported by a version of
Lewis’s (1980) Best-System Analysis and representing a ‘third way’ for defining objective probabilities
differing from, on the one hand, hypothetical (infinite) or actual (finite) frequencies and, on the other,
the various versions of propensities. This will not be our concern, since our interest is simply in
defining the part of the system which gives the probability distribution {π(λ)} of initial points as
an SNM.
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can be constructed in a deterministic world. However, as Hoefer (2007, p. 568)
points out, their ‘characterization is obviously vague,’ and he approaches the
problem by giving some examples. The first two of them: the chance of getting
double-zero on an American roulette wheel and the probability of heads (say)
from good coin flips,38 exemplify two important features of one kind of SNM:

[1.1] The system behaves in a pseudo-random way. This is achieved by a setup
which is sensitive to initial conditions (of the ball and the wheel in roulette
and the velocity and position of the flip of the coin). While the coin flip
is good in the sense that it is shielded against bias, in both cases random
external influences (from air currents etc.) will make things more random-
looking.

[1.2] The system has some kind of symmetry in terms of which a probability
distribution can be hypothesized.

If we are engaged in theoretic model construction, these conditions will be
enough to satisfy us that SNMs can be constructed in a deterministic world.39

But if our aim is to physically construct something that works then we shall need
to test reliability using relative frequencies. It is now quite easy to apply these
ideas to Ex. 1 of Sec. 2.

One possibility is to take a well-shuffled pack of N cards, with each card identi-
fied with a point in Γ and Nλ in ‘suit’ λ. Draw a card and run the system, starting
at that initial point in Γ. The chance of obtaining a card in suit λ is π(λ) = Nλ/N.
So

P[x∈ σ] =
1
N ∑
{λ}

Nλ(σ) =
N(σ)

N
,

where N(σ) is the number of points in Γ belonging to σ. A procedure of this
kind was applied to the Kac ring model in Lavis 2008, except that the pack
of cards was replaced by a random number generator. Runs were tested for
thermodynamic-like behavior by comparing them with a benchmark created by
supposing that the system were ergodic.

Another example given by Hoefer, that of the decay of radium atoms, is of
a different kind. Here the important features which enable the system to be
characterized as an SNM are the following:

[2.1] The stochastic behavior (the emission of alpha particles by 226Ra, say) is
given by a physical system.

38‘Good’ is used by Hoefer (2007, p. 567) to include conditions for shielding from bias, both in the
way the coin is flipped and in the physical structure of the coin.

39And as Hoefer (2007, p. 566) points out it would still be a good scheme even if the suggested
machine never had been, and probably never would be, constructed: like a roulette wheel with
43 slots.
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[2.2] The probability distribution is given by a physical theory (quantum me-
chanics). Specifically the probable number of particles emitted in a fixed
time interval is given by a Poisson distribution.

It is clear that the two elements defining an SNM, namely stochastic behavior and
a probability distribution, are present in [1.1], [1.2], and in [2.1], [2.2]. However,
their origin is different and, importantly for us, the latter scheme is more closely
akin to Ex. 2 of Sec. 2.

It is plausible to suppose that, while we may be able to isolate this system, which
for the sake of brevity we denote as H, with a fixed energy at t = 0, it may
be more difficult to specify the exact value of that energy. So we consider one
possible way of ‘letting the physics’ prepare an initial distribution of chances
over different values of 0 ≤ E < ∞. Suppose that, at some t < 0, the systemH is
weakly coupled to a similar system H′ with Hamiltonian H′(p′, q′) and phase
space Γ′. The weak coupling means that the single global constant of motion
is H(p, q) + H′(p′, q′) and the system H+H′ is ergodic on an energy surface
H(p, q) + H′(p′, q′) = E? in Γ×Γ′. Given that the motion on this surface is
typical type I, and using the time-average definition of probability, it can be
shown (Khinchin 1949, Ch. 4) that

P
[
H(p, q) = E

]
=

Ω(E)Ω′(E?−E)
Ω?(E?)

, (21)

where Ω′(E′) is the structure function ofH′ and

Ω?(E?) :=
∫ ∞

0
Ω(E)Ω′(E?−E)dE

is the structure function ofH+H′. Now suppose that, at t = 0, the systemH is
detached fromH′. The distribution of energies given by (21) is preserved.

π(E) =
Ω(E)Ω′(E?−E)

Ω?(E?)
(22)

and, from (18),

ρ(pE, qE, E) = ρ(pE, qE | E)π(E) =
Ω′(E?−E)

Ω?(E?)
.

giving, from (15), (19), and (22),

SG[ρ] = S?
MC(E?)−

〈
S′MC(E?−E)

〉
π

,

where S?
MC(E?) and S′MC(E′) are respectively the microcanonical entropies of

H+H′ andH′. It should perhaps be emphasized that, although (21) is normally
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seen as part of the derivation of the canonical distribution in statistical me-
chanics,40 it is not a consequence of any additional use of statistical-mechanical
theory; it results simply from the mechanical properties of the system, together
with the use of the time-average definition of probability. Here we have used
contact ofH withH′ as a mechanical SNM for assigning objective probabilities to
the energies ofH.

6 Conclusions

As indicated in Sec. 1 we have chosen to interpret ‘objective,’ when used to
qualify probability, in the ‘hard’ sense of real-world chance. An alternative to
this, where the probability distribution is derived according to some agreed
procedure from a certain specified state of knowledge of (or information about)
the system, could also be construed as objective but in a ‘softer,’ interpersonal
sense. Such a program for statistical mechanics has, as was indicated above, been
developed by Jaynes (1983), who called it ‘predictive statistical mechanics’ (ibid.,
p. 2). However, for him, this is ‘not a physical theory but a form of statistical
inference’ (ibid., p. 416) and it has (at least for the present writer) the undesirable
consequence that ‘entropy is an anthropomorphic concept, not only in the well-
known statistical sense that it measures the extent of human ignorance as to the
microstate. Even at the purely phenomenological level, entropy is an anthropomorphic
concept [his italics]’ (ibid., p. 86).

The problem with developing a hard-objective theory of probability for sta-
tistical mechanics is not that there is a variety of possible interpretations, which,
developed for probability theory in general, can be ‘taken off the shelf’ and
applied to statistical mechanics, but rather that there is a paucity of suitable
interpretations. That, for most practitioners, this has not seemed to be an urgent
problem, is partly because of the way the probability distribution appears in sta-
tistical mechanics. Unlike other areas of science and economics, where the power
of a theory is given directly in terms of the predicted probability of an event, in
statistical mechanics the probability distribution is buried deep in the theory.
Predictions are made for heat capacities, susceptibilities, critical temperatures,
etc. Although there is, within the theory, something which can be understood as
a prediction for the probability that x(t) lies in σ ⊂ Γ, there is no pretence that
this can (even approximately) be tested. Bearing this in mind, it is relevant to
ask for the possible hard-objective answers to the question: ‘What is meant by
the probability P

[
x(t)∈ σ

]
?’ In this essay an answer to this question has been

proposed based on the ergodic decomposition of σ into the subsets {σ ∩ Γλ}

40The rest of the derivation (see, for example, Khinchin 1949, Ch. 5) establishes that, when
H is small in comparison with H′, Ω′(E?−E)

/
Ω?(E?) ' exp(−βE)

/
Z(β), where Z(β) =∫ ∞

0 exp(−βE)dE and β is the solution of d ln
[
Z(β)

]/
dβ = −E?, which is subsequently identified

as 1/kBT.
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and the assignment of probabilities within the subsets using the time-average
definition of probability, and between subsets using an SNM. Of course, the
future may yield other interpretations and in particular offer plausible alter-
natives to the use of an SNM. However, with the exception of the ‘traditional’
ensemble approach such do not seem to be currently on offer. It is therefore
worth considering whether the use of ensembles is really an alternative view to
that proposed here.

The ensemble picture is usually credited to Gibbs (1902),41 who invites his
readers to ‘imagine a great number of independent systems, identical in nature,
but differing in phase’ (ibid., p. 5). This ‘mental picture of such a collection of
systems is called an ensemble [his italics]’ (Huang 1963, p. 144) and P

[
x(t)∈ σ

]
is the proportion of the number of representative phase points of the ensemble
which lie in σ at time t. The use of the term ‘ensemble’ is widespread in statistical
mechanics and, although it sometimes seems little more than a synonym for
‘distribution,’ it is worthwhile examining whether it gives a hard-objective
interpretation of probability in statistical mechanics. We are invited to enter
the imaginary world in which we have a large number of systems, identical
(in some specified way) apart from the locations of their phase points. These
phase points are then ‘sprinkled’ in a single phase space Γ. Accepting that this
gives a conceptually useful picture, does it give a practically useful picture? The
ensemble is meant to represent all systems sharing certain properties. But does
it lead to a specification of the probability distribution? The answer is clearly
‘no.’ The only practical consequence of this point of view is Liouville’s Equation,
which is just the conservation condition for the flow of phase points. It is then
necessary to justify in some other way the appropriate solution to Liouville’s
Equation for the various ensembles. Thus, for example, Gibbs (1902, p. 33)
justifies the canonical distribution on the grounds that it

seems to represent the most simple case conceivable, since it has the property that, when
the system consists of parts with separate energies, the laws of the distribution in phase
of the separate parts are of the same nature,– a property which enormously simplifies the
discussion.

The crucial features to be taken into account in the assignment of a proba-
bility distribution are dynamic structure and preparation. The strengths of the
present work are that it applies to a wide class of systems (those whose dynamic
structure gives an ergodic decomposition)42 and that it demonstrates that part
of the probability assignment (that between members of the decomposition)
is essentially the probability associated with the mode of preparation. In this

41Who, however, cites (ibid., p. viii) an earlier reference to the use of the picture of ‘a great number
of systems’ by Boltzmann. For a discussion of this historical question, in which Maxwell also appears,
see Emch & Liu 2002, p. 105.

42The precise conditions for ergodic decomposition are given in Thm A.2.
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context we have recognized that it is possible, although very difficult, to prepare
the system in a state for which the subsequent evolution will not support the
time-average definition of probability. We have argued that this is a place where
the Neo-Boltzmannian idea of typicality is not synonymous with ‘highly prob-
able’ and we have called system preparation and subsequent evolution which
avoids this exceptional (measure-zero) set ‘typical type I.’ We have then given
criteria for the system to be such that thermodynamic-like behavior is typical
type II, where this type of typicality is to be understood as meaning ‘highly
probable.’

The weaknesses of our use of SNMs are evident. These are essentially black-
box probability generators, whether they are justified, as recommended by
Hoefer (2007), as the result of best-systems analysis or, as not recommended
by Hoefer, as something with a certain propensity. Either way the SNM is the
part of the system which for the experimenter or model constructor is most
arbitrary. The aim should be to make the choice which is most plausible for a
model which aims to reflect the ‘overall pattern of actual events in the world
[which] . . . make these chances exist’ (ibid., p. 558). Inevitably this needs to
be done on a case-by-case basis, as we have demonstrated in Sec. 5 for the two
examples introduced in Sec. 2.

Appendix A: Ergodicity and ergodic decomposition

It is convenient at this stage to represent time as discrete and, to avoid confusion,
it is denoted by an integer superscript, rather than subscript; thus φ := φ1 and
xn = φnx0 on the trajectoryLx0 . If the underlying time parameter t is continuous
then it is discretized with a small interval ∆t and t := n ∆t, φ := φ∆t. An
important part of this discussion is Birkhoff’s Theorem:43

Theorem A.1 Let m ∈ Mφ, let f be a phase function integrable over Γ with respect
to m, and let Υ∈ Σφ with m(Υ) 6= 0. Then, for almost every x0 ∈ Υ, the infinite-time
average of f along Lx0 , which is the limit

f̂ (x0) := lim
n→∞

1
n

n−1

∑
k=0

f (φkx0), (A.1)

exists, with

f̂ (φnx0) = f̂ (x0),
∫

Υ
f̂ (x)dm =

∫
Υ

f (x)dm. (A.2)

For a system with continuous time made discrete by taking a time interval ∆t,
(A.1) is equivalent, as ∆t→ 0, to

43In this appendix we draw on the notation and definitions given in Sec. 2.
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f̂ (x0) := lim
τ→∞

1
τ

∫ τ

0
f (φtx0)dt. (A.3)

(For a proof, see, for example, Mañé 1987, Sec. 2.1.)

Any function g for which g(φx) = g(x), for all x ∈ Γ, is said to be φ-invariant. It
is clear, from (A.1) and (A.2), that f̂ is such a function.44

Now, substituting into (A.1) or (A.3) f = iσ, the indicator function of some
σ ∈ Σ, gives, for almost all x0∈Υ, f̂ (x0) = T(σ | Lx0), the average time spent by
x(t) ∈ Lx0 in σ.

Although T(σ | Lx0) is constant along Lx0 , that is, independent of the partic-
ular point x0 chosen to specify the trajectory, it will, in general, differ between
trajectories. However, if Υ is Lebesgue-indecomposable (that is to say, according
to the definition in Sec. 2.1, one of the ergodic sets in Σ̃φ), then T(σ | Lx0) is
constant almost everywhere in Υ (Mañé 1987, Sec. 2.2); meaning that it takes
the same value, denoted by T(σ | Υ), along all trajectories in Υ for which it is
defined. From (A.2),

T(σ | Υ) =
m(σ ∩Υ)
m(Υ)

. (A.4)

The right-hand side of (A.4) is the average time spent by the phase point x(t)
in σ, as it moves along a trajectory, which, as we have seen, for an autonomous
system can be uniquely identified by specifying x(0). It follows from the as-
sumed Lebesgue-indecomposability of Υ that this time will be the same for
almost all specifications of x(0) ∈ Υ. The exceptional set of points of Lebesgue-
measure zero corresponds to cases where the infinite-time sum or time-integral,
in (A.1) or (A.3) respectively, does not exist.

Up to this point we have made no assumption about the measure m, except
that it belongs toMφ and is non-zero on Υ. However, an important consequence
of (A.4) is that, to within normalization over Υ, it is unique and given by T(σ | Υ).

In Sec. 2.1 it was shown that the members of Σ̃φ form a decomposition of Γ,
denoted by {Γλ}. So, by setting Υ = Γλ ∈ Σ̃φ, it is clear that, starting with any
m ∈ Mφ for which m(Γλ) 6= 0, (A.4) will yield a unique ergodic measure

m( · | λ) := T( · | Γλ) =
m( · ∩ Γλ)

m(Γλ)
. (A.5)

To complete the mathematical results, we now need the Ergodic Decomposition
Theorem, and given that the range of application of our approach depends on the
applicability of this theorem, it is useful to state it in full technical detail:

Theorem A.2 If Γ is a compact metric space withMφ 6= ∅ then the set of points x ∈ Γ
which can be associated with measures, according to the formula m( · | x) := T( · | Lx),

44This does not mean, of course, that f is constant throughout Υ; only along a particular trajectory.
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is total45 and any other m ∈ Mφ can be expressed as a linear combination of these
measures (Mañé 1987, Sec. 6.2).

In Sec. 4 we denoted the set of points, of measure zero, in Γ for which the time
average T( · | Lx) was not defined as Γ̊, with Γ̊λ = Γλ∩ Γ̊. Then it follows,
from Thm A.2, that, since every x ∈ Γλ\Γ̊λ is associated with the same ergodic
measure m( · | λ), given by (A.5), any m ∈ Mφ can be decomposed into a linear
combination of the ergodic measures M̃φ, in the form given by (1) or (2).

Appendix B: The relative-frequency and time-average interpretations of
probability

The starting point of the relative-frequency interpretation is a space Ω := {ω} of
outcomes of a trial or experiment and a sequence En of n repetitions of the trial.
For some particular ω ∈ Ω, and k = 1, 2, . . . , n, let ξk(ω) := 1 if the outcome of
the k-th trial is ω, and zero otherwise. Then

Ξ(ω | En) :=
ξ1(ω)+ ξ2(ω)+ · · ·+ ξn(ω)

n

counts the relative frequency of the outcome ω in the n trials, and von Mises
(1928, pp. 28–9) specified two conditions necessary to relate this to probability:

(i) The convergence criterion: that, when the sequence of trials is infinitely
extended to E,

lim
n→∞

Ξ(ω | En) =: Ξ(ω | E) exists for all ω ∈ Ω. (B.1)

(ii) The randomness criterion, which is defined as the nonexistence of an im-
plementable gambling strategy46 which could determine an infinite subse-
quence E ′of E for which the relative frequency of any ω ∈ Ω had a limiting
value Ξ(ω | E ′) 6= Ξ(ω | E).

The probability of the occurrence of ω is then defined to be Ξ(ω | E).

Aside from the question47 that the only realizable sequences of trials are of finite
length, the von Mises approach is operational. A procedure is carried out to
determine (to within some level of accuracy) a relative frequency, which is then
taken to be a probability. In this straightforward sense it is clear that the relative-
frequency approach has little or no relevance to statistical mechanics; no one
takes literally the idea that the probability density function can be obtained by

45The definition of a total set is given in Sec. 2.2.
46The way that this can be done is by means of a recursive gambling system, for which the rigorous

mathematical development is due to Wald and Church. For references to their work and for a
summary of their conclusions see Gillies 2000a, pp. 105–9.

47Discussed in detail by Gillies (2000a, pp. 96–105).
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a sequence of experiments on a single system or simultaneous experiments on
an ensemble of systems. The connection to relative frequencies is not through
gathering data, but through the dynamics. We consider motion with discrete
(or discretized) time along the trajectory Lx0 . With a particular σ ∈ Σ and
Ω := {σ, Γ\σ}, let

ξk(σ) := iσ(φ
kx0) for all k.

It then follows from Birkhoff’s Theorem (Thm A.1) that the convergence criterion
is satisfied with Ξ(σ | E) = T(σ | Lx0), for all Lx0 for which x0 /∈ Γ̊; that is
to say, for all trajectories which are typical type I, these being the only ones
for which we have used the time-average definition of probability. Thus we
have at least a partial relationship between the relative-frequency and time-
average definitions. The problem is the randomness criterion (ii). The sequence
ξ1(σ), ξ2(σ), ξ3(σ), . . . is determined by specifying x0 and the dynamics, and
the time-average probability is part of the theory. As in von Mises’ treatment
of a gas, ‘the possibility of a direct determination of the probability does not
exist’ (1928, p. 21)48 and consequently the possibility of choosing a subsequence
cannot arise. So in order to understand the relationship to the relative-frequency
interpretation, it is necessary to investigate the role of condition (ii). What is
von Mises aiming to avoid by imposing this condition and what, if anything, is
needed to replace it in our case of dynamic determination of the sequence?

It would seem that the underlying aim is to avoid the possibility of a bias
leading to different values for the limiting frequency. Von Mises (1928) explicitly
excludes biases arising from subsequence selection. But given, as we have seen,
that such a selection cannot be made for our dynamic system, it is still necessary
to consider other possible ways in which it could, in principle, be possible to
obtain different values for the time average. In fact there is only one way, which
is to choose different initial points x(0); once this is done the dynamics takes
over and determines whether the time average exists and if so its value. For
systems without any ergodic properties this will happen; different x(0) not
lying on the same trajectory will yield different time averages. In the case of
an ergodic system this possibility is eliminated for all cases for which we use
the time-average definition, that is to say, for all x(0) /∈ Γ̊. Then, from (9), the
probability of x(t) ∈ σ is m(σ), where m is the unique member ofMφ. For a
system with an ergodic decomposition, and x(0) /∈ Γ̊, it is, of course, the case
that the probability of x(t) ∈ σ will have a different value depending on the
member Γλ of the decomposition containing x(0). However, we have used the
time-average definition of probability only within the ergodic sets {Γλ}, and in
each of these the probability x(t)∈ σ is m(σ | λ) for all x(0) ∈ Γλ\Γ̊λ. Although

48He, however, goes on to say that ‘there is nevertheless no fundamental difference between it’
and other examples, which he cited, where such measurements are possible.



80 D. A. Lavis

motion along a trajectory is not random, the role played by the randomness
criterion (ii) is here played by ergodicity and ergodic decomposition.

We now return to van Lith’s fourth objection and ask why she sees indepen-
dence as a necessary ingredient of the relative-frequency interpretation. Von
Mises (1928) introduces his relative-frequency definition of probability in Lec-
ture 1 without stating that the trials are independent. But this is hardly surprising,
since independence is a probabilistic concept49 whereas the relative-frequency
limit (B.1) is a means of defining probability. The question of independence arises
only if the order of the argument is reversed. That is: Given that the random
variables ξ1(ω), ξ2(ω), . . . , ξn(ω) are jointly distributed with a given probability,
under what conditions does the limit on the left-hand side of (B.1) exist? One an-
swer to this question is that it converges to limn→∞

〈
Ξ(ω | En)

〉
with probability 1

if the Strong Law of Large Numbers is satisfied. The argument is then completed
by the proof (Loève 1963, p. 14) that the Strong Law of Large Numbers is satisfied
if the random variables are independently and identically distributed.50 In that
sense independence justifies the relative-frequency interpretation of probability,
and it is clear, in particular from his discussion of Bernoulli and non-Bernoulli
sequences (von Mises 1928, pp. 112–13), that von Mises equated randomness,
at least in an informal way, with a physical concept of the independence of the
trials in the sequence. In this sense van Lith’s objection has weight, since, as
she says, the only systems for which the steps along the flow are independent
are Bernoulli systems, like the baker’s gas, at the top of the ergodic hierarchy,
and we have not restricted our discussion to such systems. A partial reply to
this point is contained in von Mises’ lectures. In his discussion of the Law of
Entropy Increase (ibid., pp. 192–3) he considers ‘linkages of events’ in the form
of Markov chains, the example being the distribution of molecules of a gas over
the macrostates. He expects

with very great probability that the different distributions occurring in the natural time
succession will appear with relative frequencies which are approximately equal to the
corresponding probabilities [calculated from the combinatorial formula]. And [that] this
holds even though this succession does not exhibit complete randomness.

If randomness means (in some sense) independence then he does not regard it
as a sacrosanct element of the relative-frequency interpretation, always provided
(presumably) that it is replaced by something which fulfils the same role. Given,
as we have argued, that this role is to avoid bias, this is achieved by ergodicity.

49The events A and B are independent if, according to an already defined probability, P[A∧B] =
P[A]P[B].

50In fact the Strong Law of Large Numbers is satisfied for sequences which satisfy the weaker
condition of exchangeability (ibid., p. 400).
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Prugovečki, E. (1981). Quantum Mechanics in Hilbert Space, 2nd edn. New York:
Academic Press.



References 413

Quételet, A. (1846). Lettres á S.A.R. le duc régnant du Saxe-Coburg et Gotha sur la
théorie des probabilités. Brussels: Hayez.

Rae, A. I. M. (2009). Everett and the Born Rule. Studies in History and Philosophy
of Modern Physics 40 (3), 243–50.

Ramsey, F. P. (1926). Truth and probability. In Studies in Subjective Probability
(eds H. Kyburg & H. Smokler), pp. 63–92. New York: John Wiley & Sons.

Rédei, M. (1992). When can non-commutative statistical inference be Bayesian?
International Studies in Philosophy of Science 6, 129–32.

——— & Summers, S. (2007). Quantum probability theory. Studies in History
and Philosophy of Modern Physics 38, 390–417. arXiv e-print quant-ph/0601158.

Redhead, M. (1974). On Neyman’s Paradox and the theory of statistical tests.
British Journal for the Philosophy of Science 25, 265–71.

——— (1980). Models in physics. British Journal for the Philosophy of Science 31,
145–63.

——— (1987). Incompleteness, Nonlocality, and Realism. Oxford: Clarendon Press.
Reichenbach, H. (1935). Wahrscheinlichkeitslehre. Leiden: A.W. Sijthoff.
——— (1948). The Principle of Anomaly in quantum mechanics. Dialectica 2,

337–50.
——— (1949). The Theory of Probability. Berkeley, Calif.: University of California

Press.
——— (1971). The Direction of Time. Berkeley, Calif.: University of California

Press. Repr. (ed. M. Reichenbach) Mineola, N.Y.: Dover, 1999.
Reiss, H. (1965). Methods of Thermodynamics. Mineola, N.Y.: Dover.
Rényi, A. (1961). On measures of entropy and information. In Proceedings

of the Fourth Berkeley Symposium of Mathematical Statistics and Probability (ed.
J. Neyman), pp. 547–61. Berkeley, Calif.: University of California Press.

Ridderbos, K. (2002). The coarse-graining approach to statistical mechanics:
How blissful is our ignorance? Studies in History and Philosophy of Modern
Physics 33, 65–77.

Robert, C. P. (1994). The Bayesian Choice. New York etc.: Springer.
Rosenthal, J. (2010). The natural-range conception of probability. In Ernst &

Hüttemann 2010, pp. 71–91.
Ruetsche, L. (2003). Modal semantics, modal dynamics, and the problem of

state preparation. International Studies in the Philosophy of Science 17, 25–41.
Ryder, J. M. (1981). Consequences of a simple extension of the Dutch book

argument. British Journal for the Philosophy of Science 32, 164–7.
Salmon, W. C. (1967). The Foundations of Scientific Inference. Pittsburgh, Pa.:

University of Pittsburgh Press.
——— (1979). Propensities: A discussion review of D. H. Mellor, The Matter of

Chance. Erkenntnis 14, 183–216.
Saunders, S. (1995). Time, quantum mechanics, and decoherence. Synthese 102,



414 References

235–66.
——— (1996a). Relativism. In Perspectives on Quantum Reality (ed. R. Clifton),

pp. 125–42. Dordrecht: Kluwer.
——— (1996b). Time, quantum mechanics, and tense. Synthese 107, 19–53.
——— (1998). Time, quantum mechanics, and probability. Synthese 114, 373–

404.
——— (2004). Derivation of the Born Rule from operational assumptions.

Proceedings of the Royal Society of London A 460, 1771–88.
——— (2005). What is probability? In Quo Vadis Quantum Mechanics? (eds

A. Elitzur, S. Dolev & N. Kolenda), pp. 209–38. Berlin: Springer.
———, Barrett, J., Kent, A. &Wallace, D. (eds) (2010). Many Worlds? Everett,

Quantum Theory, and Reality. Oxford: Oxford University Press.
——— &Wallace, D. (2008). Branching and uncertainty. British Journal for the

Philosophy of Science 59, 293–305.
Savage, L. J. (1954). The Foundations of Statistics. New York: John Wiley & Sons.
——— (1972). The Foundations of Statistics, 2nd edn. Mineola, N.Y.: Dover.
Schack, R., Brun, T. A. & Caves, C. M. (2001). Quantum Bayes Rule. Physical

Review A 64, 014305.
Schaffer, J. (2007). Deterministic chance? British Journal for the Philosophy of

Science 58, 113–40.
Schlosshauer, M. & Fine, A. (2005). On Zurek’s derivation of the Born Rule.

Foundations of Physics 35, 197–213.
Schrödinger, E. (1926a). Quantisierung als Eigenwertproblem (erste Mitteilung).

Annalen der Physik 79, 361–76.
——— (1926b). Quantisierung als Eigenwertproblem (zweite Mitteilung).

Annalen der Physik 79, 489–527.
——— (1935a). Discussion of probability relations between separated systems.

Proceedings of the Cambridge Philosophical Society 31, 555–63.
——— (1935b). The present situation in quantum mechanics. Naturwissenschaf-

ten 23, 807–12, 823–8, 844–9. Repr. in Wheeler & Zurek 1983, pp. 152–67.
——— (1950). Irreversibility. Proceedings of the Royal Irish Academy 53 A, 189–95.
Segal, I. (1959). The mathematical meaning of operationalism in quantum me-

chanics. In Studies in Logic and the Foundations of Mathematics (eds L. Henkin,
P. Suppes & A. Tarski), pp. 341–52. Amsterdam: North-Holland.

Seidenfeld, T. (1986). Entropy and uncertainty. Philosophy of Science 53, 467–91.
———, Schervish, M. & Kadane, J. (1995). A representation of partially ordered

preferences. Annals of Statistics 23, 2168–2217.
Sewell, G. (1986). Quantum Theory of Collective Phenomena. Oxford: Oxford

University Press.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System

Technical Journal 27, 379–423, 623–56.



References 415

——— &Weaver, W. (1949). The Mathematical Theory of Communication. Urbana,
Ill., Chicago, Ill. & London: University of Illinois Press.

Shaw, R. (1985). The Dripping Faucet as a Model Chaotic System. Santa Cruz,
Calif.: Aerial Press.

Shen, J. &Wu, J. (2009). Sequential product on standard effect algebra E(H).
Journal of Physics A 42, 345203.

Shenker, O. (1994). Fractal geometry is not the geometry of nature. Studies in
History and Philosophy of Modern Physics 25, 967–81.

Shimony, A. (1985). The status of the Principle of Maximum Entropy. Synthese
63, 55–74.

——— (2009a). Bell’s Theorem. In Stanford Encyclopedia of Philosophy (ed. E. N.
Zalta). 〈http://plato.stanford.edu/entries/bell-theorem〉.

——— (2009b). Probability in quantum mechanics. In Compendium of Quantum
Physics (eds D. Greenberger, K. Hentschel & F. Weinert), pp. 492–7. Berlin:
Springer.

———, Horne, M. A. & Clauser, J. F. (1976). Comment on ‘The theory of local
beables.’ Lettres épistémologiques 13, 1–8. Repr. in Dialectica 39 (1985), pp.
97–102.

Sinai, Y. (1959). On the concept of entropy for dynamical systems. Doklady
Akademii Nauk SSSR 124, 768–71.

Sklar, L. (1993). Physics and Chance: Philosophical Issues in the Foundations of
Statistical Mechanics. Cambridge & New York: Cambridge University Press.

——— (2006). Why does the standard measure work in statistical mechan-
ics? In Interactions: Mathematics, Physics and Philosophy, 1860–1930 (eds V. F.
Hendricks, K. F. Jørgensen, J. Lützen & S. A. Pedersen), pp. 307–20. Boston
Studies in the Philosophy of Science, Vol. 251. Dordrecht: Springer.

Skyrms, B. (1999). Choice and Chance: An Introduction to Inductive Logic, 4th edn.
Belmont, Calif.: Wadsworth.

Sober, E. (2010). Evolutionary theory and the reality of macro-probabilities.
In The Place of Probability in Science: In Honor of Ellery Eells (1953–2006) (eds
E. Eells & J. H. Fetzer), pp. 133–61. Boston Studies in the Philosophy of
Science, Vol. 284. Heidelberg: Springer.

Sorkin, R. (2005). Ten theses on black hole entropy. Studies in History and
Philosophy of Modern Physics 36, 291–301.

Spekkens, R. (2005). Contextuality for preparations, transformations, and
unsharp measurements. Physical Review A 71, 052108.

Spiegelhalter, D. & Rice, K. (2009). Bayesian statistics. Scholarpedia 4 (8), 5230.
〈http://www.scholarpedia.org/article/Bayesian_statistics〉.

Spohn, H. (1991). Large Scale Dynamics of Interfacing Particles. Berlin & Heidel-
berg: Springer.

Sprenger, J. (2009). Statistics between inductive logic and empirical science.



416 References

Journal of Applied Logic 7, 239–50.
——— (2010). Statistical inference without frequentist justifications. In EPSA

Epistemology and Methodology of Science: Launch of the European Philosophy of
Science Association, Vol. I (eds M. Suárez, M. Dorato & M. Rédei), pp. 289–97.
Berlin: Springer.

Stigler, S. M. (1982). Thomas Bayes’s Bayesian inference. Journal of the Royal
Statistical Society Series A 145, 250–8.

——— (1999). Statistics on the Table: The History of Statistical Concepts and
Methods. Cambridge, Mass.: Harvard University Press.

Stoyan, D. & Stoyan, H. (1994). Fractals, Random Shapes and Point Fields: Methods
of Geometrical Statistics. Chichester: John Wiley & Sons.

Streater, R. F. (2000). Classical and quantum probability. Journal of Mathematical
Physics 41, 3556–3603.

Strevens, M. (2003). Bigger than Chaos: Understanding Complexity through Proba-
bility. Cambridge, Mass.: Harvard University Press.

——— (2006). Probability and chance. In The Encyclopedia of Philosophy, 2nd
edn (ed. D. M. Borchert), Vol. 8, pp. 24–40.
Detroit, Mich.: Macmillan Reference USA.

——— (2009). Depth: An Account of Scientific Explanation. Cambridge, Mass.:
Harvard University Press.

Suárez, M. (2004). An inferential conception of scientific representation. Philos-
ophy of Science 71, 767–79.

——— (2009). Propensities in quantum mechanics. In Compendium of Quantum
Physics (eds D. Greenberger, K. Hentschel & F. Weinert), pp. 502–5. Berlin:
Springer.

Sunder, V. (1986). An Invitation to von Neumann Algebras. Berlin: Springer.
Suppes, P. (1993). The transcendental character of determinism. Midwest Studies

in Philosophy 18, 242–57.
——— & Zanotti, M. (1981). When are probabilistic explanations possible?

Synthese 48, 191–9.
Sutherland, W. (2002). Introduction to Metric and Topological Spaces. Oxford:

Oxford University Press.
Swoyer, C. (1991). Structural representation and surrogative reasoning. Synthese

81, 449–508.
Takesaki, M. (1972). Conditional expectations in von Neumann algebras. Journal

of Functional Analysis 9, 306–21.
——— (2003). Theory of Operator Algebras, Vols 2 & 3. Berlin: Springer.
Teller, P. (1973). Conditionalization and observation. Synthese 26, 218–58.
Timpson, C. (2008a). Philosophical aspects of quantum information theory. In

The Ashgate Companion to Contemporary Philosophy of Physics (ed. D. Rickles),
pp. 197–261. Aldershot & Burlington, Vt.: Ashgate. arXiv e-print quant-ph/



References 417

0611187.
——— (2008b). Quantum Bayesianism: A study. Studies in History and Philoso-

phy of Modern Physics 39, 579–609. arXiv e-print quant-ph/0804.2047.
——— (2010). Quantum Information Theory and the Foundations of Quantum

Mechanics. Oxford: Oxford University Press.
Tolman, R. C. (1938). The Principles of Statistical Mechanics. Oxford: Oxford

University Press. Reissued Mineola, N.Y.: Dover, 1979.
Torretti, R. (2007). The problem of time’s arrow historico-critically reexamined.

Studies in History and Philosophy of Modern Physics 38 (4), 732–56.
Tsallis, C. (1988). Possible generalization of Boltzmann–Gibbs statistics. Journal

of Statistical Physics 52, 479–87.
Tsirelson, B. S. (1980). Quantum generalizations of Bell’s Inequality. Letters in

Mathematical Physics 4, 93–100.
Tumulka, R. (2006). A relativistic version of the Ghirardi–Rimini–Weber model.

Journal of Statistical Physics 125, 821–40.
——— (2007). Comment on ‘The Free Will Theorem.’ Foundations of Physics 37,

186–97.
Uffink, J. (1995). Can the Maximum Entropy Principle be explained as a

consistency requirement? Studies in History and Philosophy of Modern Physics
26, 223–61.

——— (1996). The constraint rule of the Maximum Entropy Principle. Studies
in History and Philosophy of Modern Physics 27, 47–79.

——— (1999). How to protect the interpretation of the wave function against
protective measurements. Physical Review A 60, 3474–81.

——— (2001). Bluff your way in the Second Law of Thermodynamics. Studies
in History and Philosophy of Modern Physics 32, 305–94.

——— (2004). Boltzmann’s work in statistical physics. In The Stanford Ency-
clopedia of Philosophy (ed. E. N. Zalta). 〈http://plato.stanford.edu/entries/
statphys-Boltzmann〉.

——— (2007). Compendium of the foundations of classical statistical physics.
In Butterfield & Earman 2007, pp. 923–1074.

Uhlhorn, U. (1963). Representation of symmetry transformations in quantum
mechanics. Arkiv Fysik 23, 307–40.

Vaidman, L. (1998). On schizophrenic experiences of the neutron or Why we
should believe in the many-worlds interpretation of quantum mechanics.
International Studies in the Philosophy of Science 12, 245–61.

——— (2002). Many-worlds interpretation of quantum mechanics. In The
Stanford Encyclopedia of Philosophy (ed. E. N. Zalta). 〈http://plato.stanford.
edu/archives/fall2008/entries/qm-manyworlds〉.

Valente, G. (2007). Is there a stability problem for Bayesian noncommutative
probabilities? Studies in History and Philosophy of Modern Physics 38, 832–43.



418 References

Valentini, A. (1991a). Signal-locality, uncertainty, and the Sub-quantum H-
Theorem I. Physics Letters A 156 (1,2), 5–11.

——— (1991b). Signal-locality, uncertainty, and the Sub-quantum H-Theorem II.
Physics Letters A 158 (1,2), 1–8.

——— & Westman, H. (2005). Dynamical origin of quantum probabilities.
Proceedings of the Royal Society of London A 461, 253–72.

van Fraassen, B. C. (1980). The Scientific Image. Oxford: Oxford University Press.
——— (1991). Quantum Mechanics: An Empiricist View. Oxford: Clarendon

Press.
van Kampen, N. G. (1981). Stochastic Processes in Physics and Chemistry. Amster-

dam: North-Holland.
van Lith, J. H. (2001a). Ergodic theory, interpretations of probability and the

foundations of statistical mechanics. Studies in History and Philosophy of
Modern Physics 32, 581–94.

——— (2001b). Stir in stillness: A study in the foundations of equilibrium
statistical mechanics. Ph.D. Thesis, Utrecht University. 〈http://igitur-archive.
library.uu.nl/dissertations/1957294/title.pdf〉.

von Mises, R. (1928). Probability, Statistics and Truth. London: George Allen
and Unwin. Page references are to the 2nd, revised English edn, prepared by
H. Geiringer, New York: Macmillan, 1957.

von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics.
Princeton, N.J.: Princeton University Press.

von Plato, J. (1982). The significance of the ergodic decomposition of stationary
measures for the interpretation of probability. Synthese 53, 419–32.

——— (1983). The method of arbitrary functions. British Journal for the Philoso-
phy of Science 34, 37–47.

——— (1989a). De Finetti’s earliest works on the foundations of probability.
Erkenntnis 31, 263–82.

——— (1989b). Probability in dynamical systems. In Logic, Methodology and
Philosophy of Science VIII: Proceedings of the Eighth International Congress of
Logic, Methodology and Philosophy of Science, Moscow, 1987 (eds J. E. Fenstad,
I. T. Frolov & R. Hilpinen), pp. 427–43. Studies in Logic and the Foundations
of Mathematics, Vol. 126. Amsterdam etc.: North-Holland.

——— (1994). Creating Modern Probability. Cambridge: Cambridge University
Press.

Wallace, D. (2002). Worlds in the Everett interpretation. Studies in History and
Philosophy of Modern Physics 33, 637–61.

——— (2003a). Everett and structure. Studies in History and Philosophy of Modern
Physics 34, 87–105.

——— (2003b). Everettian rationality: Defending Deutsch’s approach to
probability in the Everett interpretation. Studies in History and Philosophy of



References 419

Modern Physics 34 (3), 415–40.
——— (2006). Epistemology quantised: Circumstances in which we should

come to believe in the Everett interpretation. British Journal for the Philosophy
of Science 57 (4), 655–89.

——— (2007). Quantum probability from subjective likelihood: Improving on
Deutsch’s proof of the Probability Rule. Studies in History and Philosophy of
Modern Physics 38, 311–32.

——— (2010a). Gravity, entropy, and cosmology: In search of clarity. British
Journal for the Philosophy of Science 61, 513–40.

——— (2010b). How to prove the Born Rule. In Saunders et al. 2010, pp. 237–63.
——— (forthcoming). The Emergent Multiverse: Quantum Mechanics according to

the Everett Interpretation. Oxford: Oxford University Press.
——— & Timpson, C. G. (2010). Quantum mechanics on spacetime I: Spacetime

state realism. British Journal for the Philosophy of Science 61, 697–727.
Wehrl, A. (1978). General properties of entropy. Reviews of Modern Physics 50,

221–59.
Weisberg, M. (2007). Who is a modeler? British Journal for the Philosophy of

Science 58, 207–33.
Werndl, C. (2009a). Are deterministic descriptions and indeterministic descrip-

tions observationally equivalent? Studies in History and Philosophy of Modern
Physics 40, 232–42.

——— (2009b). Deterministic versus indeterministic descriptions: Not that
different after all? In Reduction, Abstraction, Analysis: Proceedings of the 31th
International Ludwig Wittgenstein-Symposium in Kirchberg, 2008 (eds A. Hieke
& H. Leitgeb), pp. 63–78. Frankfurt: Ontos.

——— (2009c). Justifying definitions in matemathics—going beyond Lakatos.
Philosophia Mathematica 17, 313–40.

——— (2009d). What are the new implications of chaos for unpredictability?
British Journal for the Philosophy of Science 60, 195–220.

Wessels, L. (1981). What was Born’s statistical interpretation?, In PSA 1980:
Proceedings of the 1980 Biennial Meeting of the Philosophy of Science Association,
Vol. 2: Symposia and Invited Papers (eds P. D. Asquith & R. N. Giere), pp.
187–200. East Lansing, Mich.: Philosophy of Science Association.

Wheeler, J. A. & Zurek, W. H. (eds) (1983). Quantum Theory and Measurement.
Princeton, N.J.: Princeton University Press.

Wigner, E. (1959). Group Theory and its Applications to Quantum Mechanics of
Atomic Spectra. New York: Academic Press.

Williamson, J. (2009). Philosophies of probability. In Handbook of the Philosophy
of Mathematics (ed. A. Irvine), pp. 493–533. Amsterdam: North Holland.

——— (2010). In Defence of Objective Bayesianism. Oxford: Oxford University
Press.



420 References

Winnie, J. A. (1997). Deterministic chaos and the nature of chance. In The
Cosmos of Science: Essays of Exploration (eds J. Earman & J. D. Norton), pp.
299–324. Pittsburgh, Pa.: University of Pittsburgh Press.

Winsberg, E. (2004a). Can conditionalizing on the ‘Past Hypothesis’ militate
against the reversibility objections? Philosophy of Science 71 (4), 489–504.

——— (2004b). Laws and statistical mechanics. Philosophy of Science 71 (5),
707–18.

Wüthrich, C. (2006). Approaching the Planck Scale from a Generally Relativistic Point
of View: A Philosophical Appraisal of Loop Quantum Gravity. Ph.D. dissertation,
University of Pittsburgh.

Yngvason, J. (2005). The role of type III factors in quantum field theory. Reports
on Mathematical Physics 55, 135–47.

Zabell, S. (2005). Symmetry and its Discontents. Cambridge: Cambridge Univer-
sity Press.

Zurek, W. H. (1993). Preferred states, predictability, classicality, and the envi-
ronment-induced decoherence. Progress in Theoretical Physics 89, 281–312.

——— (2003a). Decoherence, einselection, and the quantum origins of the
classical. Reviews of Modern Physics 75, 715–75.

——— (2003b). Environment-assisted invariance, entanglement, and probabili-
ties in quantum physics. Physical Review Letters 90, 120404.

——— (2005). Probabilities from entanglement, Born’s Rule pk = |ψk|2 from
envariance. Physical Review A 71, 052105.


